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Improved effective-one-body description of coalescing nonspinning black-hole binaries

and its numerical-relativity completion
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1Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France and

2Theoretical Physics Institute, University of Jena, 07743 Jena, Germany

(Dated: April 16, 2013)

We improve the effective-one-body (EOB) description of nonspinning coalescing black hole bina-
ries by incorporating several recent analytical advances, notably: (i) logarithmic contributions to
the conservative dynamics; (ii) resummed horizon-absorption contribution to the orbital angular
momentum loss; and (iii) a specific radial component of the radiation reaction force implied by
consistency with the azimuthal one. We then complete this analytically improved EOB model by
comparing it to accurate numerical relativity (NR) simulations performed by the Caltech-Cornell-
CITA group for mass ratios q = (1, 2, 3, 4, 6). In particular, the comparison to NR data allows us to
determine with high-accuracy (∼ 10−4) the value of the main EOB radial potential: A(u; ν), where
u = GM/(Rc2) is the inter-body gravitational potential and ν = q/(q + 1)2 is the symmetric mass
ratio. We introduce a new technique for extracting from NR data an intrinsic measure of the phase
evolution, (Qω(ω) diagnostics). Aligning the NR-completed EOB quadrupolar waveform and the
NR one at low frequencies, we find that they keep agreeing (in phase and amplitude) within the NR
uncertainties throughout the evolution for all mass ratios considered. We also find good agreement
for several subdominant multipoles without having to introduce and tune any extra parameters.

I. INTRODUCTION

The Effective One Body (EOB) formalism [1–5] has
been proposed as a new analytical method for describing
the motion and radiation of coalescing black hole bina-
ries. One of its main aims is to provide analytical 1 grav-
itational wave (GW) templates covering the full coales-
cence process, from early inspiral to ringdown, passing
through late inspiral, plunge and merger. The definition
of the EOB formalism mainly relies on two sources of
information:
(i) high-order results of post-Newtonian (PN) theory;
(ii) high-accuracy results from Numerical Relativ-

ity (NR) simulations of coalescing black hole binaries
(both in the comparable-mass case, ν = O(1), and
in the extreme-mass-ratio limit, ν ≪ 1). [Here, ν ≡
m1m2/(m1 +m2)

2 denotes the symmetric mass ratio.]
In addition, EOB theory has recently tapped useful

information out of Gravitational Self Force (GSF) com-
putations at order O(ν). All this information is not used
in its original form, but rather as a way to determine,
or at least constrain, the structure of the few basic func-
tions that enter the definition of the EOB formalism. For
recent general reviews of the EOB formalism and its his-
torical roots, see [6, 7].
The EOB formalism has been developed in a sequence

of papers, both for nonspinning black hole binaries [1–
3, 5, 8, 9] and for spinning ones [4, 10–14]. In addition,
it has been extended to the case of tidally interacting

1 Here we use the adjective “analytical” (instead of “semi-
analytical”) for methods that are based on solving analytically
given ordinary differential equations, even if one needs to use
numerical tools to solve them.

neutron star binaries [15, 16]. For all those types of sys-
tems, many comparisons between the predictions of EOB
theory and the results of NR simulations have been per-
formed [9, 17–29] and have demonstrated that it is possi-
ble to devise accurate EOB waveforms by combining im-
proved resummation methods [5, 8, 9], high-order PN re-
sults (see [30] for a review), and some nonperturbative in-
formation coming from high-accuracy NR results. These
EOB waveforms can be used both in GW detection and in
GW parameter-estimation protocols. The EOB formal-
ism can thereby crucially help detecting the GWs emitted
by coalescing black hole binaries, since many thousands
of waveform templates need to be computed to extract
the signal from the broad-band noise, an impossible task
for NR alone. The EOB formalism might also be crucial
in allowing one to extract information on the equation
of state of nuclear matter from observations of coalesc-
ing neutron star binaries [31]. An early version of the
EOB waveform [28] has already been incorporated2, and
used [32] in the LIGO and Virgo search pipeline.
In addition, some recent comparisons between NR

studies of the dynamics of black hole binaries and its EOB
description, have directly confirmed the ability of EOB
theory to accurately describe several (gauge-invariant)
aspects of the conservative dynamics of binary systems,
such as periastron precession [33] and the relation be-
tween energy and angular momentum [26].
The aim of the present paper is to improve the defini-

tion of some of the basic elements of the EOB formalism
both by including for the first time recently obtained an-
alytical information, and by extracting, in a new way,
nonperturbative information from accurate NR simula-
tions performed by the Caltech-Cornell-CITA group [34].

2 See https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html.
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Though our study will be limited to nonspinning binaries,
the EOB structures we shall improve (such as the basic
EOB radial potential A(R)) are central, and should then
be included both in the spinning and tidal extensions of
the EOB formalism.
The recent analytical progresses that we shall incorpo-

rate here in EOB theory are:

(i) 4PN and 5PN logarithmic contributions to the con-
servative dynamics [35–38];

(ii) the O(ν) 4PN nonlogarithmic contribution to the
conservative dynamics [36, 38–40];

(iii) resummed horizon-absorption contributions to an-
gular momentum loss [41, 42];

(iv) the radial component of the radiation reaction force
implied by consistency with the azimuthal one [43];

(v) an additional 3.5PN contribution to the phase of
the (factorized [5, 8, 9]) quadrupolar waveform [44].

In addition, we shall bring up some novelties in the def-
inition of the EOB formalism, and in the way to extract
information from (comparable-mass) NR data. Namely:

(a) we introduce a Padé resummation of the additional
tail phases δℓm of the factorized EOB waveform;

(b) we show how to accurately extract from NR data
the Qω(ω) function measuring, in an intrinsic way,
the phase evolution of the (curvature) quadrupolar
waveform;

(c) we introduce a new way to improve the EOB wave-
form during plunge and merger by matching it to
the NR one at a specifically chosen (ν-dependent)
NR time tNR

extr(ν) around merger. More precisely, we
impose [by using six next-to-quasi-circular (NQC)
parameters] a C2 contact condition between the
amplitudes and the frequencies of the NR and EOB
waveforms at an NR instant tNR

extr(ν), correspond-
ing to the maximum of the EOB orbital frequency
tEOB
Ωpeak.

The paper is organized as follows. In Sec. II we present,
in a self contained manner, the detailed definition of
our improved EOB formalism. Section III explains
how to extract the Qω(ω) function from NR data while
Sec. IV revisits the extreme-mass-ratio case. In Sec. V
we then complete our new EOB formalism by compari-
son with several comparable-mass simulations performed
by the Caltech-Cornell-CITA group. Section VI studies
the structure of the main EOB radial potential (A(u)
function) obtained from the latter NR comparison and
Sec. VII discusses how to compute EOB waveforms for ar-
bitrary values of ν. We summarize our main conclusions
in Sec. VIII, while some supplemental material is pre-
sented in several Appendixes. In particular, Appendix D
gives the explicit expressions of the ρℓm and δℓm bricks
of the EOB factorized waveform we use.

II. EFFECTIVE-ONE-BODY ANALYTICAL
FRAMEWORK

In this section we shall present in detail the definition
of the new (nonspinning) EOB formalism, incorporating
several recent analytical improvements that we shall use
in this paper. Our presentation will be self-contained so
as to allow readers to generate for themselves all our EOB
results. We also intend to make available soon a public
version of our EOB codes.
The EOB formalism is made of three basic building

blocks: (i) a EOB Hamiltonian that resums the conserva-
tive two-body dynamics; (ii) a resummed EOB radiation
reaction force that completes the conservative dynamics
by causing the system to inspiral down to merger, and
(iii) a resummed EOB inspiral-plus-plunge waveform, to-
gether with a prescription for extending the waveform
through merger and ringdown. Each one of these build-
ing blocks has been developed in previous papers. In
particular, the construction of the EOB Hamiltonian was
initiated in Refs. [1, 3], while the definition of the re-
summed, factorized inspiral waveform was initiated in
Refs. [5, 8, 9]. Here we bring new (recently derived) the-
oretical improvements to each element of the formalism,
namely: (i) we include logarithmic contributions [35–38]
to the EOB Hamiltonian; (ii) we include the effect of a
resummed version of horizon absorption [41, 42] in the
radiation reaction; (iii) we add a recently derived [43]
radial component of radiation reaction; (iv) we include
the 3.5PN contribution [44] to the phase δ22 of the fac-
torized quadrupolar waveform; (v) we resum δ22, as well
as some higher-multipoles δℓm’s, by Padé methods. All
these improvements either add some new physics that
was not included in the previous EOB models [22, 28],
or improve [in the case of (v)] the robustness of the EOB
resummations. We shall discuss them in detail in the
sections below.

A. Improved Hamiltonian: logarithmic
contributions to the A function

The conservative (nonspinning) two-body dynamics is
described, within the EOB formalism, by a Hamilto-
nian HEOB(Q

i, Pi), describing the relative motion Qi =
Qi

1−Qi
2 of the binary, and depending on two radial func-

tions, A(R) and B(R), where R ≡ |Qi| is the binary
separation (in EOB coordinates). We are using phase
space variables (R,PR, ϕ, Pϕ) associated to polar coor-
dinates in the equatorial plane θ = π/2. Actually it is
useful to replace the radial momentum PR by the mo-
mentum PR∗

= (A/B)1/2 PR conjugate to the “tortoise”
radial coordinate R∗ =

∫

dR(B/A)1/2. Furthermore, it
is convenient to use suitably rescaled dimensionless vari-
ables:

r =
R

GM
, pr∗ =

PR∗

µ
, pϕ =

Pϕ

µGM
, t =

T

GM
. (1)
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Here, and in the following, we use the notation

M ≡ m1 +m2, µ ≡ m1m2

m1 +m2
, ν ≡ µ

M
, q ≡ m1

m2
. (2)

Note that the dimensionless symmetric mass ratio ν =
m1m2/(m1+m2)

2 = q/(q+1)2 varies between 0 (extreme
mass-ratio case) and 1

4 (equal-mass case), and that we
shall conventionally consider that m2 ≤ m1, so that q ≥
1. In addition we generally set c = 1, and shall also often
set G = 1 in the following.
With the above notation, the µ-rescaled (real) EOB

Hamiltonian reads

ĤEOB(r, pr∗ , pϕ) ≡
HEOB

µ
=

1

ν

√

1 + 2ν (Ĥeff − 1) , (3)

where Ĥeff denotes the (µ-rescaled) effective EOB Hamil-
tonian, given by

Ĥeff =

√

p2r∗ +A(r)

(

1 +
p2ϕ
r2

+ z3
p4r∗
r2

)

, (4)

with z3 = 2ν (4 − 3ν).
The (rescaled) EOBHamiltonian (3) leads to equations

of motion for (r, ϕ, pr∗ , pϕ) with respect to the rescaled

time t = T/GM , Eq. (1) , of the form3

dϕ

dt
≡ Ω =

∂ ĤEOB

∂ pϕ
, (5a)

dr

dt
=

(

A

B

)1/2
∂ ĤEOB

∂ pr∗
, (5b)

dpϕ
dt

= F̂ϕ , (5c)

dpr∗
dt

= −
(

A

B

)1/2
∂ ĤEOB

∂ r
+ F̂r∗ , (5d)

which explicitly read

dϕ

dt
≡ Ω =

Apϕ

νr2ĤEOBĤeff

, (6a)

dr

dt
=

(

A

B

)1/2
1

νĤEOBĤeff

(

pr∗ + z3
2A

r2
p3r∗

)

, (6b)

dpϕ
dt

= F̂ϕ , (6c)

dpr∗
dt

= −
(

A

B

)1/2
1

2νĤEOBĤeff
{

A′ +
p2ϕ
r2

(

A′ − 2A

r

)

+ z3

(

A′

r2
− 2A

r3

)

p4r∗

}

+ F̂r∗ ,

(6d)

3 For clarity, we shall sometimes restore the M ’s in the text below,
as well as in the figures.

where A′ = dA/dr. In these equations, F̂ ≡ F/µ denotes
the µ-rescaled radiation-reaction force. Its explicit form
will be given in Sec. II D below.

Let us now define the explicit forms of the two basic
EOB radial functions A(r) and B(r) entering the Hamil-
tonian (3). One of the main theoretical novelties of the
EOB model used in the present work is the inclusion in
A(r) (which plays the role of the main radial potential

in the EOB Hamiltonian) of the recently computed log-

arithmic contributions appearing at the 4PN and 5PN
levels [35–38]. If we first focus on the Taylor-expanded

version of the A potential, it has, when considered at the
5PN level, the form

ATaylor(u) = 1− 2u+ 2νu3 +

(

94

3
− 41

32
π2

)

νu4

+ ν
[

ac5(ν) + aln5 (ν) ln u
]

u5 + ν
[

ac6(ν) + aln6 (ν) lnu
]

u6,

(7)

where u ≡ GM/R ≡ 1/r denotes the (EOB) dimension-
less gravitational potential, and where

aln5 (ν) =
64

5
, (8)

aln6 (ν) = −7004

105
− 144

5
ν, (9)

denote the analytically known logarithmic contributions,
while ac5(ν) and a

c
6(ν) represent currently unknown, non-

logarithmic ν-dependent 4PN and 5PN contributions to
A(u). Following the EOB methodology initiated in Ref.
[3], we do not use the Taylor-expanded radial potential
ATaylor(u) to define the EOB Hamiltonian, but use in-
stead its (1,5) Padé approximant, namely

A(u; ac5(ν), a
c
6(ν); ν) ≡ P 1

5 [A
Taylor(u)]

=
1 + n1u

1 + d1u+ d2u2 + d3u3 + d4u4 + d5u5
, (10)

where the coefficients n1 and di appearing in the nu-
merator and the denominator of the Padé approximant
depend rationally on ac5, a

c
6, ν and lnu.

As is well known, Padé approximants can sometimes
exhibit “spurious poles” in u. The appearance of such
poles was emphasized by Pan et al. [45] within the
context of an EOB model for spinning black holes
where the A(u) radial potential is defined by Padéing
a Taylor-expanded A function augmented by Kerr-like
spin-dependent terms (as suggested in Ref. [4]). In the
case we shall investigate here (with ac5 fixed to the value
in Eq. (13) below) we found that such a spurious pole is
present even in the absence of spin, but that it is always
located behind a horizon (i.e. a zero of A(u)). How-
ever, when ν = 0.25 and ac6 . −130, the presence of this
pole (even “hidden” behind the horizon) starts visibly
affecting the position of the adiabatic light-ring (i.e. the
location of the maximum of u2A(u)), and thereby the
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late-plunge dynamics4. This hidden pole will not affect
our analysis below because we shall work in the range
ac6 ≥ −110. We note in this respect that the presence of
spurious poles in the context of a spinning EOB model
has motivated Barausse and Buonanno [12] to propose
a different resummation of the A potential which does
not rely on Padé approximants, but imposes by hand the
presence of a horizon.
The logarithmic-dependent 5PN-Padé-resummed ra-

dial potential A(u; ac5, a
c
6; ν) will play in our work the

role played by the nonlogarithmic 5PN Padéed poten-
tials Ano−log(u; a5, a6; ν) (obtained by replacing ac5(ν) +
aln5 (ν) ln u → a5(ν) and ac6(ν) + aln6 (ν) ln u → a6(ν) in
the formulas above) used in the previous EOB works [6,
22, 28]. As in those references, we shall use NR data to
constrain, for each value of the symmetric mass ratio ν,
the values of ac5(ν), and a

c
6(ν). To simplify this task, we

shall take into account from the beginning a finding of
Refs. [6, 22, 28]. The latter references found that there
is, for each value of ν, a good EOB/NR agreement within
a long and thin banana-like region in the (a5, a6) plane.
In view of this degeneracy between a5 and a6, we shall
then fix the value of ac5 and fit only for the (ν-dependent)
value of ac6(ν).
Recent works connecting PN and/or EOB theory to

gauge-invariant observables computable from GSF the-
ory have succeeded in determining the ν-linear contribu-
tions to the two EOB potentials A(u; ν) and B(u; ν) [35,
38, 40, 46–48]. In particular, the limiting values as
ν → 0 of the Taylor value of ac5(ν) and ac6(ν) (defined
from Eq. (7)) were found by Barausse et al. [38] to be

acTaylor5 (0) = 23.50190(5) and acTaylor6 (0) = −131.72(1).
It is important to note here that these values correspond
to the “true” Taylor coefficients of the PN-expansion of
the A(u) function when u→ 0, i.e., the coefficients of u5

and u6 in an expansion in powers of u around u = 0 5.
However, within our present EOB model the mean-

ing of the parameters (ac5(ν), a
c
6(ν)) is different. First,

when ν → 0, as the expansion (7) does not include pow-
ers of u beyond u6, any attempt at determining values
of (ac5(0), a

c
6(0)) by comparing Eq. (7) to GSF data will

strongly depend on the u-interval where this comparison
is done. For instance, we might want to require that the
function a(u) [35] takes at u = 1/6, i.e. at the unper-
turbed ν = 0 LSO, the numerical value corresponding
to periastron precession, as determined by GSF calcu-
lations [48, 49]. This would lead (similarly to what is
done in Ref. [35] which did not take into account logarith-
mic contributions) to determining values of (ac5(0), a

c
6(0))

4 By contrast, for ν . 0.2 the spurious pole still exists but has
nearly no effect neither on the location of the adiabatic light-
ring nor on the late-plunge dynamics.

5 By contrast, note that Ref. [48] obtained slightly different values
of ac5(0) and ac6(0), namely ac eff

5 (0) = 23.47267 and ac eff
6 (0) =

−127.154, because they were derived from u-global fits instead
of an expansion around u = 0.

such that Eq. (92) of [48], namely

a(1/6, ac5, a
c
6) = 0.795883004(15) (11)

is satisfied. Taking for instance ac5(0) = 23.50190(5) [38],
we would then get the following “effective” value of ac6(0)

ac6(0) = +39.1223 [from GSF LSO precession]. (12)

Note that this value is completely different, even in sign,

from the value acTaylor6 (0) = −131.72(1) which refers to
the Taylor expansion around u = 0.
A second reason why the meaning of (ac5(ν), a

c
6(ν)) is

different in our framework than in the GSF one is that the
function A(u; ac5(ν), a

c
6(ν); ν) defined by Eq. (10) is the

Padé-resummed version of the Taylor polynomial given
in Eq. (7), which does not contain any term beyond u6.
This implies that, when ν 6= 0, the Taylor-expansion
of A(u; ac5(ν), a

c
6(ν); ν) does contain higher-order terms

in u which are all expressed in terms of (ac5, a
c
6) and ν.

Therefore, the values of (ac5(ν), a
c
6(ν)) extracted by com-

parison with NR data (for ν 6= 0) represent a kind of mix
between the true Taylor values and a plethora of higher-
order PN corrections. In other words (ac5(ν), a

c
6(ν)) rep-

resent an effective parametrization of the global shape of
the A potential.
Summarizing, in view of the effective character of the

parameters (ac5(ν), a
c
6(ν)) there is no necessity to im-

pose that their ν → 0 limits coincide with those of
Ref. [38]. However, due to the strong degeneracy be-
tween (ac5(ν), a

c
6(ν)), it is convenient to fix ac5(ν) to some

fiducial value. We then decided to use the following sim-
ple, ν-independent, fiducial value

ac fiducial5 (ν) = 23.5 . (13)

We will see later that we could have replaced this value
(which is compatible with the rounded-off Taylor value
of ac5(0)) with a significantly different one.
Finally, as the other EOB potential B(u), or equiva-

lently the associated potential

D(u; ν) ≡ A(u; ν)B(u, ν), (14)

plays only a secondary role in the dynamics of coalescing
binaries, and is therefore difficult to probe by using NR
data, we used its 3PN-resummed value as obtained in
Ref. [3], namely

D(u; ν) =
1

1 + 6νu2 + 2(23− 3ν)νu3
, (15)

without trying to improve it by including the known loga-
rithmic contributions appearing at 4PN and 5PN [37, 38]
(which mix with unknown nonlogarithmic contributions).

Summarizing: Our EOB Hamiltonian
HEOB(r, pr∗ , pϕ) contains only one free (ν-
dependent) parameter, namely ac6(ν). The
Hamiltonian HEOB(r, pr∗ , pϕ; a

c
6(ν)) is defined by

Eqs. (3), (4), (10), (15), with Eqs. (7), (8), (9), and (13),
together with pr∗ = (A/B)1/2 pr , B(u) ≡ D(u)/A(u)
and u ≡ 1/r.
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B. Improved EOB waveform during inspiral and
plunge

Following Refs. [5, 8, 9], we describe the inspiral-plus-
plunge multipolar waveform by the factorized structure

hinsplungeℓm = h
(N,ǫ)
ℓm (vϕ)S

(ǫ)
eff ĥ

tail
ℓm (y)

[

ρℓm(v2ϕ)
]ℓ
ĥNQC
ℓm ,

(16)
where we indicated the (main) arguments used in several
factors of the waveform. Here ǫ = 0, 1 is the parity of the

considered multipole (i.e. the parity of ℓ+m) , h
(N,ǫ)
ℓm the

Newtonian waveform, Ŝ
(ǫ)
eff a source factor, with Ŝ

(0)
eff =

Ĥeff or Ŝ
(1)
eff = pϕ/(rωvϕ) according to the parity of the

multipole (see below for definitions),

ĥtailℓm (y) ≡ Tℓm(y)eiδℓm(y), (17)

the tail factor [5, 8, 9], ρℓm the resummed modulus

correction and ĥNQC
ℓm a next-to-quasi-circular correction.

The precise definitions of the factors entering Eq. (16),
and of their arguments is given next.
The Newtonian contribution reads

h
(N,ǫ)
ℓm (vϕ) =

Mν

R
n
(ǫ)
ℓmcℓ+ǫ(ν)v

ℓ+ǫ
ϕ Y ℓ−ǫ,−m

(π

2
, ϕ
)

, (18)

where ϕ is the orbital phase, vϕ = rωΩ a suitably defined

azimuthal velocity, and rω ≡ rψ1/3 a modified EOB ra-
dius with ψ defined as

ψ(r, pϕ) =
2

r2

(

dA

dr

)−1

×



1 + 2ν





√

√

√

√A

(

1 +
p2ϕ
r2

)

− 1







 . (19)

The definitions of vϕ and rω are such that they satisfy
Kepler’s law, 1 = Ω2r3ω = v2ϕrω , during the adiabatic

inspiral [50]. In Eq. (18), n
(ǫ)
ℓm and cℓ+ǫ(ν) are numerical

coefficients given by [5]

n
(0)
ℓm = (im)ℓ

8π

(2ℓ+ 1)!!

√

(ℓ+ 1)(ℓ+ 2)

ℓ(ℓ− 1)
, (20)

n
(1)
ℓm = −(im)ℓ

16πi

(2ℓ+ 1)!!

√

(2ℓ+ 1)(ℓ+ 2)(ℓ2 −m2)

(2ℓ− 1)(ℓ+ 1)ℓ(ℓ− 1)
,

(21)

cℓ+ǫ = Xℓ+ǫ−1
2 + (−1)mXℓ+ǫ−1

1 , (22)

where X1,2 ≡ m1,2/M . [Note that, in our EOB/NR
comparisons below, we shall often work with a
“Zerilli-normalized” waveform, denoted Ψℓm, whose
normalization differs from that of hℓm by a factor
R/(M

√

(l + 2)(l + 1)(l)(l − 1)).] For what concerns the

tail factor ĥtailℓm , Eq. (17), its main contribution, Tℓm, is
written as

Tℓm(y) =
Γ(ℓ+ 1− 2i

ˆ̂
k)

Γ(ℓ+ 1)
eπ

ˆ̂
ke2i

ˆ̂
k ln(2kr0), (23)

with
ˆ̂
k ≡ mGHEOBΩ, k ≡ mΩ and r0 = 2GM/

√
e. Note

that, apart from the logarithm term ln(2kr0), the main
tail contribution Tℓm depends on the dimensionless ar-
gument y ≡ (GHEOBΩ)

2/3, which differs from the usual
dimensionless frequency parameter x ≡ (GMΩ)2/3 by
the replacement M → HEOB.

1. Further resummation of the residual tail phase δℓm(y).

The main factorized tail term Tℓm(y) = |Tℓm|eiτℓm is a
complex quantity whose modulus |Tℓm| describes the tail
amplification of the waveform modulus, and whose phase
τℓm describes the main part of the dephasing caused by
tails. There are, however, additional dephasings caused
by tails, which are described by the supplementary phase
factor eiδℓm in Eq. (17). The residual phase correc-
tions δℓm(y) entering the tail factor (17) were obtained in
Ref. [5] as a PN series in the variable y = (GHEOBΩ)

2/3.
Here we shall use for δℓm(y) an expression that differs
both from the one originally given in Ref. [5], and from its
test-mass-higher-PN completion given in Ref. [51]. More
precisely: (i) we do not include the highest-order O(y9/2)
test-mass (ν = 0) PN corrections because of their PN-gap
with respect to the last known comparable-mass terms;
(ii) we include the 3.5PN, ν-dependent, contribution to
δ22(y) that can be deduced from a recent analytical com-
putation of the PN-expanded waveform at 3.5PN accu-
racy [44]; and (iii) we Padé-resum the Taylor series in
powers of y1/2 giving δℓm(y). Indeed, we found that the
PN-expanded version of δℓm(y) presents some unpleas-
ant features (discussed below in the ℓ = m = 2 case)
that are avoided if one resums δℓm(y1/2) by factorizing
the leading-order term and and replacing the rest with a
suitable Padé approximant N(y1/2)/D(y1/2).
Let us explain our new procedure on the (most im-

portant) example of the ℓ = m = 2 phase (the others
are listed in Appendix D). Let us start from its Taylor-
expanded form

δTaylor22 (y) =
7

3
y3/2 − 24νy5/2 +

428

105
πy3

+

(

30995

1134
ν +

962

135
ν2
)

y7/2. (24)

Here we did not include the highest-order test-mass
term

(

−2203/81+ 1712/315π2
)

y9/2 that was obtained
in Ref. [51]. On the other hand, the 3.5 PN ν-dependent
term proportional to y7/2 is a new contribution that is
obtained by applying the factorization of [5] to the re-
sults of [44]. Note that this is the only genuinely new
information given by this calculation; indeed, the real
3.5PN contributions to h22 are already contained in the

modulus of the EOB-resummed tail factor ĥtailℓm . For the
comparable-mass cases that are of primary concern for
upcoming GW observations (say for ν & 0.1) the O(y7/2)
contribution is numerically quite significant compared to
the lower-order terms. To better appreciate the relative
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importance of the successive PN corrections we factorize
Eq. (24) in a leading order (LO) part, δLO22 (y) ≡ (7/3)y3/2

and a fractional PN-correction term, δ̂22 ≡ δTaylor22 /δLO22 .
In terms of vy ≡ √

y, the latter fractional PN-correction
has the structure

δ̂22 = 1 + c2v
2
y + c3v

3
y + c4v

4
y. (25)

We plot, in Fig. 1 the successive truncated PN approxi-
mants, at 1PN, 1.5PN and 2PN accuracy (i.e. up to v2y,

v3y and v4y) for q = 1 (ν = 1/4) and q = 6 (ν = 6/49 ≈
0.1224). This figure illustrates two facts: (i) the succes-

sive PN approximants to δ̂22 = 1+c2v
2
y+c3v

3
y+c4v

4
y+· · ·

are suspiciously different from each other; and (ii) they
introduce rather large fractional modifications of the LO
phase δLO22 (y) ≡ (7/3)y3/2 when vy & 0.3 (which is
reached during the late plunge). This suggests a non-
robust behavior of the Taylor approximants in the high-
velocity regime. In addition we have found that using

δTaylor22 (y) in the generation of the EOB waveform gener-
ates pathological features in the waveform phase in the
very late plunge phase, compromising the accuracy of the
phasing in a crucial region. To overcome this difficulty,

we replace δ̂Taylor22 (vy) with its (2, 2) Padé approximant,

i.e. we take P 2
2 [δ̂22(vΩ)]. Finally, we use in defining the

factorized EOB waveform the following resummed ver-
sion of the δ22(y) phase:

δ22(y) ≡ δLO22 (y)P 2
2

[

δ̂22 (
√
y)
]

=
7

3
v3y
p0 + p1vy + p2v

2
y

p0 + p1vy + p′2v
2
y

,

(26)

where vy ≡ y1/2. The explicit expressions of the ν-
dependent Padé coefficients p0(ν), p1(ν), p2(ν), p

′
2(ν) will

be found in Appendix D. Note that this Padé representa-

tion degenerates as ν → 0, and yields P 2
2

[

δ̂22 (vy)
]

→ 1;

this occurs because the definition of this Padé approxi-
mant crucially depends on having a non-vanishing 3.5PN
contribution. Figure 1 compares the Padé-resummed

δ̂22(vy) to its successive Taylor approximants. This figure
suggests that the Padé approximant represents a reason-
able “average” of the successive Taylor approximants.

We found that the (known) successive PN approxi-

mants to δ̂Taylor21 , δ̂Taylor33 and δ̂Taylor31 , exhibited a rather

nonrobust behavior similar to that of δ̂Taylor22 . We there-
fore decided to Padé resum them, using now (1, 2) Padé
approximants, in view of the available PN knowledge.
For the other residual phase corrections, δ32, δ4m with
m = 1, . . . , 4 and δ55, there is too little PN information
to try a resummation, so that we keep them in their un-
resummed Taylor-expanded form. See Appendix D for
details.

FIG. 1. (color online) Comparing the Taylor-expanded δ̂22
with its (2,2) Padé approximant for two mass ratios.

2. Further factorized corrections to the waveform: ρℓm(v2ϕ)

and ĥNQC
ℓm .

Let us first emphasize that, as in our previous
work [22], we shall use as argument in the modulus cor-
rection ρℓm (to replace the generic variable x used in
[5]) the quantity xϕ = v2ϕ = (rωΩ)

2 defined above. By

contrast, Ref. [28] uses x = (MΩ)2/3 as argument in
the ρℓm’s. The ρℓm’s that enter Eq. (16) are taken at
the complete 3+2 PN approximation (as done in previous
work [26, 27, 31, 42, 52]), i.e., by completing the 3PN-
accurate, ν-dependent results of Ref. [5] by the ν = 0,
5PN-accurate, terms obtained6 by Fujita and Iyer [51].
Note that in doing so we are taking into account more
test-mass terms in the ρℓm’s than was done in Ref. [28],
which was stopping one PN order earlier for ρ33, ρ31,
ρ4m, and two PN orders earlier for ρ5m, ρ6m and ρ7m.
For completeness we list in Appendix D the explicit ex-
pressions of the ρℓm’s that we use. As we said, one must
replace the generic variable x used in these expressions
by xϕ = v2ϕ = (rωΩ)

2.
Let us now discuss the structure of the final, NQC fac-

tor ĥNQC
ℓm in the factorized waveform, Eq. (16), as well

as the procedure we shall use to determine (from NR
data) the values of the coefficients aℓmi and bℓmi entering

this NQC correction factor ĥNQC
ℓm . We shall adopt here a

more elaborate NQC factor ĥNQC
ℓm than what was consid-

ered in previous EOB literature. In particular, for each

6 In successive steps, this computation has been recently pushed
to the remarkable 22 PN order by Fujita [53, 54].
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multipole (ℓ,m) this NQC factor depends on 6 real pa-
rameters, 3 for the amplitude, aℓmi , i = 1, . . . , 3, and 3
for the phase bℓmi , i = 1, . . . , 3 and reads

ĥNQC
ℓm =



1 +

3
∑

j=1

aℓmj nj



 exp



i

3
∑

j=1

bℓmj nj+3



 , (27)

where the ni’s factors are chosen here to be

n1 =
(pr∗
rΩ

)2

(28a)

n2 =
(r̈)(0)

rΩ2
, (28b)

n3 = n1p
2
r∗ , (28c)

n4 =
pr∗
rΩ

, (28d)

n5 = n4(rΩ)
2, (28e)

n6 = n5p
2
r∗ . (28f)

Here, the superscript (0) on the right-hand side of the
definition of n2 means that the second time derivative
of r is evaluated along the conservative dynamics (i.e.
neglecting the contributions proportional to F , see Ap-
pendix A for a discussion).
One should keep in mind that the EOB (dynamical)

time tEOB differs from the NR (retarded) time tNR by an
apriori unknown constant shift: tEOB = tNR + τ . Deter-
mining τ is equivalent to the problem of aligning the NR
and EOB waveforms. Physically, determining τ is equiv-
alent to identifying one specific feature in the EOB wave-
form to a corresponding specific feature in the NR one.
This choice has been different in various EOB-related
works. From the beginning, i.e. [2], it was emphasized
that a good marker on the EOB time axis of the “moment
of merger” was the time tEOB

Ωpeak where the EOB orbital
frequency reaches its maximum. The issue is then to se-
lect the corresponding moment on the NR time axis. In
all early EOB studies, it was assumed that the NR corre-
spondent of tEOB

Ωpeak is tNR
A22 peak, i.e. the NR instant when

the ℓ = m = 2 amplitude reaches its maximum. How-
ever, several recent EOB-related works [29, 55, 56] gave
evidence that, in the test-mass limit, the two instants
tEOB
Ωpeak and tNR

A22 peak do not exactly correspond to each
other.
In this work, we shall define the correspondence be-

tween tEOB and tNR by requiring that the correspondent
on the NR time axis of the EOB instant tEOB

Ωpeak is a spe-

cific time tNR
extr which will be defined in Eq. (55) below.

In addition, we shall use this time tEOB
Ωpeak ↔ tNR

extr both as

NQC determination point and as QNM attachment one 7.

7 Note that this choice differs from the one used in Refs. [29, 56].
In these references the NQC and QNM EOB instant is chosen
to be earlier than tEOB

Ω peak and to correspond to the NR instant

tNR
A22 peak.

More precisely, for each multipole, the 6 parameters aℓmi
and bℓmi entering Eq. (16) are determined from NR data
by imposing that the EOB waveform hEOB

ℓm (tEOB) (which
is a function of the EOB dynamical time tEOB) “os-
culates” the NR waveform hNR

ℓm (tNR) (which is a func-
tion of the NR retarded time tNR) around the NQC-
determination point tEOB

Ωpeak ↔ tNR
extr.

Note again that in this work we shall use as NQC-
determination point on the EOB time axis the EOB dy-
namical time tEOB

Ωpeak when the EOB orbital frequency

Ω(tEOB) reaches its (first) maximum8. The degree of os-
culation between the EOB and NR waveforms is defined
by separately imposing a C2 contact between the ampli-
tudes, Aℓm, and the frequencies, ωℓm, of the two wave-
forms at the NQC-determination point tEOB

Ωpeak ↔ tNR
extr.

We do not constrain the relative phase of the EOB and
NR waveforms. Explicitly, we impose the following six
conditions

AEOB
ℓm (tEOB

Ωpeak) = ANR
ℓm (tNR

extr), (29a)

ȦEOB
ℓm (tEOB

Ωpeak) = ȦNR
ℓm (tNR

extr), (29b)

ÄEOB
ℓm (tEOB

Ωpeak) = ÄNR
ℓm (tNR

extr), (29c)

ωEOB
ℓm (tEOB

Ωpeak) = ωNR
ℓm (tNR

extr), (29d)

ω̇EOB
ℓm (tEOB

Ωpeak) = ω̇NR
ℓm (tNR

extr), (29e)

ω̈EOB
ℓm (tEOB

Ωpeak) = ω̈NR
ℓm (tNR

extr), (29f)

which yield two separate 3×3 linear systems to be solved
to obtain the aℓmi ’s, and, separately, the bℓmi ’s.
Note that the values of the aℓmj ’s affect the modulus

of the inspiral-plus-plunge waveform, which then affects
the computation of the radiation reaction force (through
the angular momentum flux, see below). In turn, this
modifies the EOB dynamics itself, and, consequently, the
determination of the (aℓmj , bℓmj )’s. This means that one
must bootstrap, by iteration, the determination of the
(aℓmj , bℓmj )’s until convergence (say at the third decimal
digit) is reached. This typically requires three iterations.
In previous work only the dominant (2, 2) NQC cor-
rection was included in the radiation reaction (though
they were all taken into account when finally comparing
EOB and NR waveforms). Here we shall follow the
same simplifying prescription, though we have explored
the effect of including also the subdominant (2, 1) and
(3, 3) NQC corrections to the flux. We found that their
effect amounts only to a small change in the NR de-
termination of the “good values” of ac6 (see Appendix C).

8 This EOB time was often referred to, in previous works, as
the “effective EOB light-ring crossing time”, because, in the
test-mass limit, it does correspond to the dynamical time when
R(tEOB) = 3M , and, in the comparable-mass case, it is very
close to the time when R(tEOB) crosses the formal EOB analog
of the light ring. Here, to avoid confusion, we shall call it the
Ω-peak time, and denote it as tEOB

Ωpeak.
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Summarizing: Our EOB waveform is given by
Eq. (16) and employs the resummation of residual phases
δℓm as in Eq. (26). The NQC correction is defined by
Eqs. (27)-(28) with constants determined from NR data
by Eqs. (29).

C. EOB waveform during merger and ringdown

One of the specificities of the EOB formalism is to
construct a complete waveform, covering the full pro-
cess from early inspiral to ringdown, passing through
late inspiral, plunge, and merger. This is done by at-
taching a sum of quasi-normal modes (QNM) to the end
of the plunge waveform. The procedure for doing so
has improved over the years [2, 8, 45]. Here, we use
a new way of extending the inspiral-plus-plunge wave-
form to describe the merger-plus-ringdown subsequent
signal, which fits with the NQC-determination procedure
we have explained above. Our new procedure for, simul-
taneously, determining NQC corrections, and attaching
QNM’s, is motivated by the findings of Bernuzzi, Na-
gar and Zenginoglu [55] in the extreme mass ratio limit
(ν ≪ 1). We shall discuss the rationale for this procedure
in the next Section.
The merger-plus-ringdown signal is described, for each

multipole ℓm, by a sum of N QNM signals of a final Kerr
black hole (of mass Mf and spin parameter af ), say

(

Rc2

GM

)

hringdown
ℓm (t) =

N−1
∑

n=0

Cℓm
n e−σ+, ℓm

n (t−tEOB
Ωpeak) , (30)

where σ+, ℓm
n = αℓm

n + i ωℓm
n is the complex frequency of

the nth QNM of multipolarity ℓm and Cℓm
n are complex

constants.
In this work, we use N = 5 positive frequency (ωℓm

n >
0) QNM’s. These complex frequencies are functions of
the massMf and spin parameter af of the final hole [57].
For Mf and af we adopt the fit to the numerical results
given in Eqs. (29) of [28],

Mf

M
= 1 +

(

√

8

9
− 1

)

ν − 0.4333ν2 − 0.4392ν3, (31)

af
M

=
√
12 ν − 3.871ν2 + 4.028ν3. (32)

The procedure we shall use here for matching the ring-
down signal (30) to the inspiral-plus-plunge signal (16)
is similar to the ones used in previous EOB work [55]
though it differs in a significant way from the one used
in [28]. Namely, contrary to the latter reference, the at-
tachment (along the EOB dynamical time axis tEOB) of
the QNM signal (30) to the NQC-corrected inspiral-plus-
plunge signal (16) is done, for each multipole ℓm, at the
time

tEOB
ℓmQNMattachment = tEOB

ℓmmatching = tEOB
Ωpeak, (33)

where we recall that tEOB
Ωpeak denotes the EOB dynamical

time where the EOB orbital frequency reaches its (first)
maximum. Note in particular that tEOB

Ωpeak does not de-
pend on the considered multipolarity ℓm, so that we are
attaching the QNM’s corresponding to all the different
multipolarities at the same EOB dynamical time.
To complete the description of our QNM attachment

procedure it remains to say that we determine, for each
multipolarity ℓm, the values of the N complex coeffi-
cients Cℓm

n by requiring that the (NQC-corrected) EOB

inspiral-plus-plunge waveform hinsplungeℓm (tEOB), Eq. (16),
coincides with the QNM sum (30) at N points, say
t1, t2, · · · , tN , forming a regularly spaced “comb” on the
tEOB axis, centered on tEOB

Ωpeak. Such a “matching comb”
is specified by choosing its total length, say

∆match = tN − t1 . (34)

D. Improved radiation reaction: Including horizon
absorption and a radial component Fr∗

Let us now turn to our improved description of the
radiation reaction force F entering the EOB dynamics.
Note that we have included in the equations of motion (5)

not only an azimuthal radiation reaction F̂ϕ (as in all
previous EOB works), but also an explicit radial contri-

bution F̂r∗ . We have improved the analytical description
of both components of F . Let us discuss them in turn.
The azimuthal component, Fϕ, of the radiation reac-

tion force describes the loss of the orbital angular momen-
tum pϕ of the system during evolution. Indeed, Hamil-
ton’s equation for pϕ reads

dpϕ
dt

= F̂ϕ, (35)

where F̂ϕ = Fϕ/ν.
Following a standard EOB practice (since Ref. [2]), we

require that the loss of orbital angular momentum be
balanced by the instantaneous flux of angular momen-
tum leaving the orbital system. In previous EOB work,
one took into account only the flux of angular momen-
tum in the form of GWs at infinity. However, there is
also a flux of angular momentum which is drained out of
the two-point mass orbital system by penetrating within
the two horizons of the moving black holes. [The lat-
ter flux is transformed from the orbital form measured
by pϕ to some intrinsic spin-angular momentum of the
holes; from the point of view of the orbital pϕ this repre-
sents a loss that must be accounted for by an additional
contribution to Fϕ.] We shall include here such an addi-
tional horizon-absorption flux by using the recent work
of Nagar and Akcay [41]. The corresponding effect is
rather small and, in a PN sense, starts only at the 4PN
level [58, 59]. Reference [59], using a leading-order (New-
tonian) approximation both to the phase evolution and to
the horizon flux had estimated that, in the nonspinning
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case (that we consider here), the inclusion of the horizon
flux entails an additional dephasing at R ≈ 6M smaller
than 0.01 rad for mass ratios 1 ≤ q ≤ 4. On the other
hand, recently Bernuzzi, Nagar and Zenginoglu [42], us-
ing an EOB description of the phase evolution together
with an improved estimate of the horizon flux (resum-
ming higher effects), have found significantly larger de-
phasings (accumulated over the last 20-30 orbits) than
those estimated in [59]. Within the EOB model that we
use here we confirmed the findings of Ref. [42]. For in-
stance taking the most relevant case q = 6 with initial
separation r0 = 15 (corresponding to ∼ 27 orbits up to
merger, see Table II below) the effect of horizon absorp-
tion entails a dephasing ∆Hφ ≡ φH+I −φI ∼ 0.12 rad at
tEOB
Ωpeak, that increases up to 0.18 rad during ringdown9.

Such dephasings are quite significant for the EOB/NR
comparison that we shall perform below. This is why we
decided to include the horizon contribution to the angu-
lar momentum flux.
It is convenient to decompose Fϕ as the product of

the usual quadrupolar GW flux (expressed in terms of
rω and of the orbital frequency Ω = dϕ/dt) and of a
supplementary dimensionless correction factor (of the 1+
O(x)-type) :

F̂ϕ = −32

5
νr4ωΩ

5f̂(v2ϕ; ν). (36)

Here the function f̂(x; ν) = 1 + O(x) (taken with the
argument x = v2ϕ) is the reduced flux function. It can
be defined, for a circularized binary, as the ratio between
the total energy flux (including the horizon flux) and the
ℓ = m = 2 asymptotic energy flux. In our case this
function is given by the sum of an asymptotic (labeled
by I ) and a horizon (labelled by H) contribution, and
can be further written as

f̂(x; ν) = f̂I (x; ν) + (1 − 4ν + 2ν2)x4f̂H(x; ν), (37)

where each function f̂ (I ,H)(x; ν) is of the 1+O(x) type
and is defined by dividing by the corresponding ℓ = m =
2 LO contribution, namely

f̂ (I ,H)(x; ν) = F
(I ,H)
ℓmax

/F
(I ,H),LO
22 . (38)

Here, F
(I ,H)
ℓmax

is either the total asymptotic (I ) or hori-

zon (H) energy flux for circular orbits summed up to

multipole ℓ = ℓmax, while F
I ,LO
22 = (32/5)ν2x5 is the LO

(or “Newtonian”) quadrupolar (asymptotic) energy flux,

and FH,LO
22 = (32/5)ν2(1 − 4ν + 2ν2)x9 = x4(1 − 4ν +

2ν2)FI ,N
22 the LO quadrupolar horizon flux [58, 59]. In

the EOB model one uses suitably factorized expressions

9 Note that one has ∆Hφ ∼ 1.6 × 10−4 at the initial separation
r0 = 15, which is negligible compared to the dephasing accumu-
lated during the subsequent evolution.

TABLE I. Coefficients of our hybrid 1+3PN-accurate
ρHℓm(x; ν) functions as given by Eq. (45).

ℓ m cℓm1 cℓm2 cℓm3 cℓm4

2 2 4−21ν+27ν2
−8ν3

4(1−4ν+2ν2)
4.78752 26.760136 43.861478

2 1 0.58121 1.01059 7.955729 1.650228

for the multipolar fluxes F
(I ,H)
ℓm to resum and improve

them with respect to standard PN-expanded expressions
in the strong-field, fast-velocity regime. In the case of
the multipolar asymptotic flux FI

ℓm, this factorized flux
is simply defined (as first proposed in [22]) by squaring
the corresponding factorized multipolar waveform of [5],
recalled above. An analogous procedure for the multipo-
lar horizon fluxes, FH

ℓm was introduced in Ref. [41] and
compared with Regge-Wheeler-Zerilli numerically com-
puted horizon fluxes in Ref. [42]. [Here, we are consider-
ing nonspinning binaries.]
The horizon and asymptotic energy fluxes along circu-

lar orbits are then written as multipolar sums, say

F [(I ,H),ℓmax](x; ν) =

ℓmax
∑

ℓ=2

ℓ
∑

m=1

F
(I ,H,ǫ)
ℓm (x; ν), (39)

where F
(I ,H,ǫ)
ℓm = F

(I ,H,ǫ)
ℓ|m| sums the two equal contribu-

tions corresponding to +m and −m (m 6= 0 as the m = 0
contributions vanish for circular orbits).
Inserting in the (circular) asymptotic multipolar flux

contribution,

F
(I ,ǫ)
ℓm =

1

8π
(mΩ)2|Rh(ǫ)ℓm|2 , (40)

the factorized waveform (16) yields

FI ,ǫ
ℓm = F

(N,ǫ)
ℓm

(

Ŝ
(ǫ)
eff

)2

|Tℓm(y)|2 (ρℓm(x; ν))2ℓ F̂
(I ,ǫ)NQC
ℓm ,

(41)

where F
(N,ǫ)
ℓm is defined by inserting the Newtonian-order

waveform in (40), and where each subsequent factor is
the squared modulus of a corresponding PN-correction

factor entering (16); e.g., F̂
(I ,ǫ)NQC
ℓm =

∣

∣

∣
ĥNQC
ℓm

∣

∣

∣

2

=
(

1 +
∑3

j=1 a
ℓm
j nj

)2

. Let us mention that |Tℓm(y)|2 can

be explicitly written in the simple form

|Tℓm(y)|2 =
1

(ℓ!)
2

4π
ˆ̂
k

1− e−4π
ˆ̂
k

ℓ
∏

s=1

(

s2 + (2
ˆ̂
k)2
)

. (42)

Similarly the horizon partial multipolar fluxes are writ-
ten in factorized form [41]

F
(H,ǫ)
ℓm (x; ν) = F

(HLO,ǫ)
ℓm (x; ν)

[

Ŝ
(ǫ)
eff (x; ν)

(

ρHℓm(x; ν)
)ℓ
]2

.

(43)
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where ρHℓm(x; ν) = 1 + O(x) are the residual amplitude
corrections to the horizon waveform. Following Refs. [41,
42] we use a 1+3 PN approximation for ρHℓm(x; ν) and we
include only the ℓ = 2 contribution in Eq. (43) (i.e., we
fix ℓmax = 2 in Eq. (39)).
Finally, this means that the fractional horizon cor-

rection (before multiplication by the additional factor
1− 4ν + 2ν2) in Eq. (37) is of the form

x4f̂H(x; ν) = x4
[

Ŝ
(0)
eff

(

ρH22(x; ν)
)2
]2

+x5
[

Ŝ
(1)
eff

(

ρH21(x; ν)
)2
]2

(44)

where Ŝ
(0)
eff = Ĥeff , Ŝ

(1)
eff = pϕ/(rωvϕ), and where we use

4PN accurate expressions for ρHℓm(x; ν),

ρHℓm(x; ν) = 1 + cℓm1 x+ cℓm2 x2 + cℓm3 x3 + cℓm4 x4, (45)

with values for the needed ℓ = 2 coefficients cℓmi , i =
1, . . . , 4 listed in Table I.
Let us finally come to discussing the radial compo-

nent Fr∗ of the radiation reaction force. Such a contri-
bution was generally neglected in previous EOB papers,
or replaced (e.g. in [10, 28]) by an expression which was
not consistently derived. Recently, Bini and Damour [43]
(building on previous work by Iyer and collaborators [60–
62]) have shown that consistency with the usual EOB def-

inition of F̂ϕ (as being equal to minus the instantaneous
flux of angular momentum) required a specific form for

F̂r∗ which differed from previously used expressions.
The result of Ref. [43] that we use here has the form

F̂r∗ = −5

3

pr∗
pϕ

F̂ϕ(1 + c1(ν)u + c2(ν)u
2) (46)

where the coefficients entering the 2PN correction
read [43]

c1(ν) = −227

140
ν +

1957

1680
, (47)

c2(ν) =
753

560
ν2 +

165703

70560
ν − 25672541

5080320
. (48)

E. Post-post-circular initial data

The construction of initial data for the EOB dynam-
ics has been refined in a series of works [2, 9, 10, 20].
Here we shall use the post-post-circular prescription, in-
troduced in 2007 (see Sec. III B of [9]), and then used in
all subsequent EOB-related works by our group [15, 20–
22, 24–26, 31, 42, 52]. This choice allows one to start
the EOB dynamics (with negligible initial eccentricity)
at a frequency that is compatible with the initial fre-
quency of the NR waveforms we shall use here (Mω22 ≈
0.0345 approximately corresponding to initial separation
R0 ≈ 15M , see Table II below). Note that, by contrast,
Pan et al. [28], who use the less accurate post-circular
initial data of Ref. [10], start their EOB runs at an ini-
tial radius R0 & 50M (corresponding to an initial GW

frequencyMω22 ≤ 0.005) in order to get a good circular-
ization of the dynamics at the frequency where numerical
simulations start.
For completeness, let us review here the construction

of post-post-circular initial data for a given relative ini-
tial separation r0. We introduce a formal bookkeeping
parameter ε (to be set to 1 at the end) in front of the
radiation reaction Fϕ in the EOB equations of motion.
The quasi-circular inspiralling solution of the EOB equa-
tions of motion can then be formally expanded in powers
of ε as

p2ϕ = j20(r)
(

1 + ε2k2(r) +O(ε4)
)

, (49)

pr∗ = επ1(r) +O(ε3). (50)

Here, j20(r) is the usual circular approximation to the in-
spiralling squared angular momentum as explicitly given
by

j20(r) = − A′(u)

[u2A(u)]′
(51)

where the prime means d/du (recall u ≡ 1/r). The or-
der ε-approximation to pr∗ , i.e. π1(r) (“post-circular”) is
then obtained by approximating the left-hand side (l.h.s)
of Eq. (6c) by dpϕ/dt ≈ dj0(r)/dt = (dj0(r)/dr)(dr/dt).
This determines dr/dt and thereby a corresponding value
of pr∗ using Eq. (6b) (where we neglect the p3r∗ contribu-
tion). This leads to the following explicit expression for
π1(r):

επ1(r) =

[

νĤEOBĤeff

(

B

A

)1/2(
dj0
dr

)−1

F̂ϕ

]

0

, (52)

where the subscript 0 indicates that the r.h.s. is evalu-
ated at the leading circular approximation ε → 0. The
post-post-circular approximation to p2ϕ (term ε2k2 above)
is then obtained by approximating the l.h.s. of Eq. (6d)
by

dpr∗
dt

≈ ε
dπ1(r)

dr

dr

dt
, (53)

where the radial derivative dπ1(r)/dr is numerically com-
puted. This transforms Eq. (6d) in a linear equation
for p2ϕ, which leads to an explicit expression for the r-

dependent correction ε2k2(r) introduced above. In solv-
ing for p2ϕ we keep, for additional accuracy, the contribu-

tion proportional to p4r∗ ≃ ε4π4
1(r).

Table II lists the post-post-circular data (as a function
of r0) obtained by this procedure, as we have used them
in the present study. Note that these values mainly de-
pend on the parameters entering the A function, (ac5, a

c
6),

and depend almost negligibly on the values of the NQC
parameters aℓmi entering Fϕ that appears on the r.h.s.
of Eq. (52). Actually, the values listed in Table II were
computed by keeping only the (a221 , a

22
3 ) NQC contribu-

tions.
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TABLE II. Post-post-circular initial data for EOB dy-
namics that we shall consider in this paper to assure
negligible initial eccentricity. They are obtained with
the choice ac

5 = 23.5 and ac
6(ν) = [−110.5 + 129(1 −

4ν)]
[

1− 1.5 × 10−5/(ν − 0.26)2
]1/2

.

q ν r0 pϕ pr pr∗
1 0.25 16 4.42467206 -0.00101207 -0.00088970

2 0.2̄ 15 4.31684166 -0.00113064 -0.00098466

3 0.1875 15 4.31889270 -0.00096445 -0.00083930

4 0.1600 15 4.32052406 -0.00083018 -0.00072202

6 0.1224 15 4.32276101 -0.00064296 -0.00055874

F. Analytically unknown parameters, choices to be
made, NR-completion of the EOB model

Let us summarize the parameters entering the con-
struction of our EOB model, emphasizing which param-
eters contain important dynamical information, which
ones are already known with sufficient accuracy, which
ones depend on reasonable choices we can make, and how
NR data can be used to complete the EOB model by de-
termining the various parameters.
At face value, the EOB model defined above depends

on quite a few analytically unknown parameters, namely:
ac5(ν), a

c
6(ν), the 6 NQC parameters (aℓmi , bℓmi ) for each

waveform multipole, the values of the mass Mf and spin
af of the final black hole, the number N of QNM modes
used in the ringdown signal, and the width ∆match of the
QNM matching comb.
Our attitude towards the use of NR data to complete

the EOB model by determining these parameters is the
following:

(i) As already said, we think (in view of previous EOB
results [22, 28]) that it is a reasonable choice to
impose some a priori relation between ac5(ν) and
ac6(ν), so as to look only for one free dynamical pa-
rameter. Here we shall fix ac5(ν) to the simple value
ac5(ν) = 23.5, Eq. (13). This leaves only ac6(ν) as
free parameter. We shall discuss below (see Sec-
tion V) how the nonperturbative information con-
tained in NR phasing data can be used to determine
the value of ac6(ν), in a way which is nearly decor-
related from the uncertainties in the determination
of other parameters. Let us already indicate here a
possible analytical fit to represent the, essentially
linear in ν, final result we shall get for this EOB
parameter

ac6(ν) = (−110.5 + 129(1− 4ν))

×
(

1− 0.000015

(ν − 0.26)2

)1/2

(54)

from Caltech-Cornell-CITA data.

We think that the NR determination of ac6(ν) leads
to important information about the conservative
dynamics of binary black holes (as we shall illus-
trate below);

(ii) Concerning the NQC parameters (aℓmi , bℓmi ), the
procedure explained above reduces their determi-
nation from nonperturbative NR data to a single

choice, namely that of the time tNR
extr on the NR (re-

tarded) time axis corresponding to the EOB time
tEOB
Ωpeak (which can be thought of as defining the

“EOB merger time”). The choice of tNR
extr on the NR

time axis is not a matter of convention, but has (a
priori) important physical consequences. It must
be done by combining information coming both
from comparable-mass NR simulations, and from
extreme-mass-ratio ones. For reasons that shall be
discussed below, we shall choose, for each mass ra-
tio ν, a specific value of tNR

extr(ν) given by

tNR
extr(ν) = tNR

A22 peak(ν)

+ f(ν)
(

tNR
ω̇22 peak(ν)− tNR

A22 peak(ν)
)

(55)

where

f(ν) =
1

6
(1 + 3(1− 4ν)), (56)

and where tNR
A22 peak(ν) is the NR time when the

NR quadrupolar amplitude reaches its peak, and
tNR
ω̇22 peak(ν) the NR time when the quadrupolar fre-

quency has an inflection point. Here f(ν) varies
between f(0) = 2/3 and f(1/4) = 1/6 as ν varies
between 0 and 1/4. tNR

extr(ν) always lies on the right
of (i.e. later than) the NR time tNR

A22 peak(ν). We
shall extract nonperturbative information from NR
data by computing from the various multipolar NR
waveforms a certain number of derivatives of their
amplitudes and frequencies at the extraction point
tNR
extr(ν).

(iii) Building on previous work, we shall use the simple
(NR-based) analytical fits (31) for the mass and
spin of the final black hole. Note, however, that,
in principle, the EOB model (when NR-completed
by NQC corrections up to merger) does yield, by
itself, predictions forMf and af [2, 63]. This might
be useful in cases (e.g. with large, precessing spins)
where one does not have in hand accurate analytical
fits for the characteristics of the final black hole.

(iv) We shall use here N = 5 QNM’s, and as explained
below, we shall fix ∆match = 0.7M for all multi-
poles. Note, that by contrast, Ref. [28] uses N = 8
QNM’s, introduces “pseudo QNM’s”, and employs
much larger matching intervals, which also vary
with ℓm. [E.g., the latter reference uses ∆22 = 5M
and ∆33 = 12M .]
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(v) Let us finally note that (contrary to [28]) we shall
not introduce adjustable parameters in the wave-
forms, nor shall we introduce special modifications
to improve the behavior of some subdominant mul-
tipoles.

III. NUMERICAL RELATIVITY
INFORMATION, AND Qω DIAGNOSTIC

A. Overview of numerical waveforms data

The NR data we use here to complete the EOB wave-
form were obtained with the Spectral Einstein Code
(SpEC) developed by the Caltech-Cornell-CITA collab-
oration [64–68]. Specifically, we used the waveforms
recently published in Ref. [34], coming from simula-
tions of nonspinning black hole binaries with mass ra-
tios q = m1/m2 = (1, 2, 3, 4, 6). Before their publica-
tion, these data were already used in some EOB/NR and
PN/NR comparisons [28, 33, 69]. We address the reader
to Ref. [34] for all technical details about the numerical
setup and estimates of the accuracy. Here we only re-
call that these are the longest published waveforms to
date (together with the 33 orbits, equal-mass waveform
of Ref. [69]), with a number of gravitational wave cycles
up to merger (here conventionally defined as the maxi-
mum of the modulus of the quadrupolar metric waveform
|hNR

22 |) respectively NGW = {33, 31, 31, 31, 43}. We made
use of two different types of waveform data: curvature,
ψ4
ℓm, and metric, hℓm, extrapolated to infinite extrac-

tion radius. Indeed, the metric waveform hℓm was also
directly extracted from the numerical spacetime using a
Regge-Wheeler-Zerilli-based (RWZ) approach 10, see Ap-
pendix of Ref. [23] for a discussion.

B. Estimating the NR Qω(ω) function for the
curvature waveform

In this subsection we shall explain how we extracted
from NR data a useful, intrinsic measure of the NR phase
evolution, namely the Qω(ω) function. This function is
a convenient version of the “intrinsic phase acceleration”
function α(ω) introduced in Ref. [9], which was defined
such that dω/dt = α(ω). This function is an intrinsic

measure of the time-domain phase evolution in the sense
that it is independent of the two shift ambiguities that
affect any time-domain phase, φ(t): an arbitrary phase
shift φ → φ + c, and an arbitrary time shift t → t + τ .
The Qω(ω) function is defined as

Qω(ω) ≡
ω2

α(ω)
=
ω2

ω̇
(57)

10 This type of RWZ approach was initiated by Abrahams and
Price [70] and first implemented in the form of Ref. [23] in
Refs. [71, 72].

FIG. 2. (color online) Top panel: Raw NR, curvature wave-
form, data; smoothed data and fit. Bottom panel: difference
between smoothed data and the fit.

FIG. 3. (color online) Fitting the Newton-rescaled Q̂ω, cur-
vature waveform, function. The top panel contrasts the
smoothed data with the outcome of the fit. The bottom panel
shows their difference.

Note that this definition is equivalent to saying that the
time-domain phase accumulated in the frequency interval
(ω1, ω2) is given by the integral

φ(ω1,ω2) =

∫ ω2

ω1

Qωd lnω. (58)
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TABLE III. Coefficients entering the fitting function for the Newton-rescaled, curvature-waveform, Q̂ω, Eq. (64). In the second
column we also report the frequency interval M(ω1, ω2) on which the fit was performed.

q Mω1 Mω2 n1 n2 n3 n4 n5 d1 d2 d3

1 0.03877 0.29654 -27.88757 256.94609 -1053.85269 1926.40123 -1274.57280 -6.60927 47.87468 -104.35366

2 0.04133 0.29709 15.51565 -372.20973 1725.17714 -3145.40474 2105.30901 -15.77371 90.80420 -103.95952

3 0.04476 0.29642 6.50413 -243.11043 1108.15054 -1913.96522 1193.58571 -14.56312 79.22950 -111.26577

4 0.04819 0.29671 0.52391 -172.68858 806.19352 -1350.57200 797.20936 -14.39733 78.72314 -124.83300

6 0.04280 0.29720 7.18353 -247.53679 1096.28420 -1833.39721 1090.77236 -14.59256 75.97063 -113.64331

The function Qω(ω) has proven to be a very useful
diagnostic of phase evolution in recent EOB/NR com-
parisons of binary neutron stars [24, 25, 27]. Note that,
in the definition, ω can be the frequency either of the
curvature waveform, or of the metric one (thereby defin-
ing two different, though numerically close, functions).
In general, one only considers the frequency of the dom-
inant quadrupolar waveform, though one can also study
the Qω(ω) function of any (ℓ,m) multipole. Note also
that we are here considering the phase acceleration of
a time-domain phase. One can also usefully consider
the frequency-domain counterpart of Qω(ω), defined as
QFD

ω(ω) ≡ ω2d2ψ(ω)/dω2, where ψ(ω) denotes the
phase of the Fourier-transformed waveform. In the sta-
tionary phase approximation, QFD

ω (ω) is simply equal to
the time-domain Qω(ω) (see, e.g., Eq. (17) in [31]).
Let us now discuss how to accurately estimate Qω(ω)

from the numerical data, in spite of the loss of accuracy
associated to the fact that its definition (57) involves the
computation of two derivatives of the phase φ(t). We
consider the ψ4

22 curvature waveform extrapolated to in-
finite extraction radius, decompose it in amplitude and
phase with the convention

ψ4
22 = |ψ4

22|e−iφ22 , (59)

and consider as frequency in the definition (57) the cur-

vature quadrupolar frequency: ω ≡ φ̇22.
It is somewhat of a challenge to get an accurate Qω

out from numerical data. For example, in the case of
binary neutron star waveforms, Refs. [24, 25, 27] argued
that the successive straightforward differentiation (using
finite-differencing, 4th-order stencils) of the numerical
data is unable to get this information correctly, so that a
suitable fitting of the GW phase was necessary to obtain
something qualitatively and quantitatively correct. For
general binary black hole simulations, due to the much
higher resolution involved as well as due to the higher
finite differencing operators used, direct differentiation
could be more meaningful than in the binary neutron
star case. This should be even more true for SpEC data,
since they are expected to be particularly accurate.
Therefore, as a first step we directly computed Qω

from the raw data simply by finite-differencing φ twice to
get ω and ω̇, i.e., applying twice a 1st-derivative finite-
differencing operator with 4th-order stencil. The result

of this first step is shown, for q = 1 data, as a dashed,
light-gray line in Fig. 2 (see also the close up). The figure
shows the presence of high frequency noise which pre-
vents one from using this diagnostics as is for reliable
quantitative estimates.
To improve on this, and get a quantitatively useful

estimate of the Qω curve, we applied three more steps.
First, in order to eliminate the high-frequency noise, we
smoothed ω(t) with a Sgolay filter. Second, we com-
puted the time derivative of the smoothed ω(t), and
then smoothed again that derivative with a Sgolay fil-
ter. These two steps succeeded in strongly reducing the
high-frequency noise in the curve (thick line in Fig. 2,
blue online). However, there remained a low-frequency
residual oscillation in the resulting Qωcurve (evident in
the inset of Fig. 2). We do not know the precise origin
of this residual oscillation (it might either be related to
some small residual eccentricity in the waveform or con-
nected to the extrapolation procedure), but we think it
is of spurious numerical origin and that it does not have
any actual physical content (note that such an oscillation
is not present in the EOB Qω curve).
This led us to our third step: a fitting procedure of the

Qω(ω) function. To implement such a fitting procedure,
it is convenient to first normalize the Qω curve with re-
spect to its leading-order, Newtonian part,

QN
ω (ω) =

5

3ν
2−7/3ω−5/3, (60)

thereby factoring out the blowing up of Qω(ω) at low
frequency. The normalized function

Q̂ω(ω) = Qω/Q
N
ω (61)

stays of order unity on the full frequency range (and

Q̂ω → 1 for ω → 0) and is a better starting point for
any fitting procedure (see Fig. 3 for q = 1). Then we

use as fitting template for Q̂ω a general analytical struc-
ture consistent with the structure of Q̂ω predicted by PN
theory in the adiabatic approximation. More precisely,
the 3.5PN-accurate expansion of Q̂ω is a Taylor expan-
sion in half-integer powers of x = (MΩ)2/3 (modulo some
logarithmic corrections) that reads

Q̂PN
ω (x) = 1+b2x+b3x

3/2+b4x
2+b5x

5/2+b6x
3+b7x

7/2,
(62)
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where

b2 =
743

336
+

11

4
ν, (63a)

b3 = −4π, (63b)

b4 =
3058673

1016064
+

5429

1008
ν +

617

144
ν2, (63c)

b5 = π

(

−7729

672
+

13

8
ν

)

, (63d)

b6 = −10817850546611

93884313600
+

32

3
π2

+

(

3147553127

12192768
− 451π2

48

)

ν − 15211

6912
ν2 +

25565

5184
ν3

+
1712

105
(γE + 2 log x+ 2 log 2), (63e)

b7 = −π
(

15419335

1016064
+

75703

6048
ν +

14809

3024
ν2
)

. (63f)

This motivated us to fit the smoothed version (coming
out of the first two steps) of the numerically computed

Q̂ω(ω) with a Padé-type function of the form

Q̂fit
ω (xω) =

1 + n1xω + n2x
3/2
ω + n3x

2
ω + n4x

5/2
ω + n5x

3
ω

1 + d1xω + d2x2ω + d3x3ω
,

(64)
where xω ≡ (Mω/2)2/3.

Let us now illustrate the result of performing this
three-step evaluation of the numerical Qω(ω) function.
The top panel of Fig. 2 shows, for q = 1, the three
successive estimates of the numerical Q̂ω: the raw one
(dashed line, featuring many large spikes), the smoothed
one (solid line), and finally the fit obtained using the
template (64). Note that all those curves are plotted
versus Mω. The bottom panel of the same figure shows
the difference ∆Q̂ω(ω) = Q̂smoothed

ω (ω)− Q̂fit
ω (ω) between

the smoothed data and the fit. Note that this differ-
ence is oscillating around 0, which indicates that the fit
has been effective in averaging away the low-frequency
oscillation remaining after having smoothed the high-
frequency noise. The procedure works in the same way
for the other mass ratios, and for each one the difference
∆Q̂ω(ω) nicely oscillates around zero.

We list in in Table III, for all mass ratios, the fitting co-
efficients of the smoothed numerical Q̂ω to the template
Eq. (64). Note that this list of coefficients provides a
convenient way of condensing the information contained
in the NR phasing during most of the inspiral and plunge
(indeed, our fit worked well up to frequency Mω ≃ 0.3,
which is quite close to the merger). This packaging of
the NR phasing information might be useful for many
purposes, e.g., comparing various numerical simulations,
computing the Fourier transform in the stationary-phase
approximation, etc.

FIG. 4. (color online) Hierarchy of important points of
the test-mass (Zerilli-normalized) quadrupolar metric wave-
form (divided by ν), Ψ22/ν ≡ (R/M)h22/(ν

√
24) around the

merger point. The orbital frequency Ω peaks at approxi-
mately 2/3 of the time interval between the peak of the metric
amplitude and the inflection point of the GW frequency, i.e.
the first peak of ω̇22.

TABLE IV. Time intervals tNR
ω̇22 peak − tNR

A22 peak for all numer-
ical waveforms considered in this paper.

q ν tNR
ω̇22 peak − tNR

A22 peak

1 0.25 3.2493

2 0.2̄ 3.4426

3 0.1875 3.3261

4 0.1600 3.5714

6 0.1224 3.5681

∞ 0 3.8158

IV. REVISITING TEST-MASS LIMIT RESULTS

A. The new information acquired from
test-particle computations

Before dealing with the Caltech-Cornell-CITA
comparable-mass waveforms, we shall revisit in this
Section the test-mass limit case ν ≪ 1 both to motivate
our introduction of an NR extraction point tNR

extr differing
from the peak of the waveforms, and to test the perfor-
mance of the basis of functions ni’s that we shall use in
our NQC correction factor, (27).

State-of-the-art computations of multipolar RWZ
waveforms for the plunge and merger of a test particle (of
mass µ), moving in a Schwarzschild background (of mass
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FIG. 5. (color online) Test-mass waveform: comparison between RWZ waveform extracted at I
+ and EOB waveform completed

by the 6-parameter NQC correction factor to the waveform, Eq. (27). Top panels: ℓ = m = 2 multipole, modulus and frequency
(left) and phasing (right). Bottom panels: ℓ = 2 and m = 1 and ℓ = m = 3 frequency and modulus. The ringdown is modeled
using 5 (positive-frequency only) QNMs.

M), and submitted to a leading-order EOB resummed
radiation-reaction force, have been presented in a recent
series of works [42, 55, 73, 74]. These works have used a
recently developed method [75–77] allowing one to com-
bine an accurate treatment of the particle motion in the
strong field region, with the extraction of the waveforms
directly at null infinity (I ). The findings of Ref. [55]
that will be of direct interest for our present study are:

(i) The extraction of the waveforms at I allows one
to relate the retarded time tNR used as argument of
the waveforms to the EOB time tEOB used in the
dynamics of the particle (namely, one has simply
tNR = tEOB). This allows one to connect without
ambiguity features in the waveform (such as, say,
a peak in the modulus of h22(t

NR)) with features
in the dynamics (such as, say, the location along
the tEOB axis of the maximum of the orbital fre-

quency Ω(tEOB)). Such a possibility is not available
in comparable-mass NR simulations, because they
do not track the light cones emitted by the center
of mass of the binary system. In addition, even
if they did, this would not allow one to relate the
dynamical EOB time tEOB to the waveform time
tNR, because we would not know the exact relation
between tEOB and the NR coordinate time relevant
for the NR dynamics.

(ii) Using the connection between the waveform time
tNR and the dynamical time tEOB offered by (i), it
was found that the waveform amplitude A22 peaks
approximately≈ 2.56M earlier than the orbital fre-
quency Ω, i.e. tEOB

Ωpeak ≈ tNR
A22 peak + 2.56M . This is

new information which conflicts with the standard
simplifying EOB assumption of a coincidence be-
tween the peaks of A22 and of Ω. The existence of
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FIG. 6. (color online)Test-mass limit: comparison between
ℓ = 4, m = 1 EOB and RWZ modulus and frequency

a difference between tEOB
Ωpeak and tNR

A22 peak was later

confirmed in Ref. [56] and extended to the case of
a spinning central black hole.

(iii) Using this new information, Ref. [55] suggested to
incorporate it in a new prescription for the deter-
mination of the EOB NQC correction factor based
on extracting numerical data at the NR point tNR

extr

corresponding to tEOB
Ωpeak, rather than

11 at tNR
A22 peak.

They implemented such a prescription by imposing
a C1 contact at tNR

extr ↔ tEOB
Ωpeak both (for the first

time) between the modulus and the frequency of
the waveform. They then showed that such a pro-
cedure produced NQC-corrected EOB waveforms
which had an excellent agreement with the numer-
ical RWZ waveforms up to merger.

The procedure we indicated in Eqs. (29a)-(29f) above
is a generalization of this prescription to a C2 contact
requirement. We shall test below the increased accu-
racy brought by using such a C2 contact requirement,
involving six NQC-parameters, instead of the C1 contact
requirement used in Ref. [55], which involved only four
NQC parameters. This test will also probe the new basis
of NQC correction functions ni’s used in Eq. (27).

B. Zooming on the structure of the test-mass
waveform near merger

Before doing the latter test, let us display the finding
(ii) of Ref. [55] by investigating in detail the structure of

11 Note that, by contrast, Ref. [29] has chosen to keep, for ℓ = m =
2 the NR extraction point at tNR

A22 peak and to map it to an EOB

time earlier than tEOB
Ωpeak.

the ℓ = m = 2 RWZ waveform around the peak of the
modulus, with the idea that a similar structure might
hold in the comparable mass case.
Figure 4 shows together (as functions of the wave-

form retarded time u, which can be identified with
the EOB dynamical time): the waveform modulus
A22/ν; the orbital frequency Ω; and the derivative

of the GW frequency ω̇22. Here, A22 is the modu-
lus of the Zerilli-normalized quadrupolar metric test-
mass waveform, Ψ22 ≡ (R/M)h22/

√
24. [For a gen-

eral multipole the Zerilli normalized metric waveform is
Ψℓm ≡ (R/M)hℓm/

√

(ℓ+ 2)(ℓ+ 1)(ℓ)(ℓ − 1).] The fig-
ure clearly illustrates how the orbital frequency peaks at
a time tEOB

Ωpeak that is between the locations of the max-

ima of A22 and ω̇22, i.e. we have the relation tNR
A22 peak <

tEOB
Ωpeak < tNR

ω̇22 peak. Quantitatively, given that we have

tEOB
Ωpeak− tNR

A22 peak = 2.565388M and tNR
ω̇22 peak− tNR

A22 peak =
3.815784M we have that

tEOB
Ωpeak − tNR

A22 peak

tNR
ω̇22 peak − tNR

A22 peak

=
2.565388

3.815784
= 0.6723096 ≈ 2

3
. (65)

The comparable-mass NR simulations show that the or-
dering tNR

A22 peak < tNR
ω̇22 peak remains true for all values of ν

(for nonspinning binaries). By continuity, one then also
expects that the EOB orbital frequency will continue to
peak between these two points for any value of ν. In other
words, one expects that the correspondence between the
EOB and NR time axes should be such that the EOB
dynamical time tEOB

Ωpeak(ν) corresponds to an NR wave-

form time tNR
extr(ν) such that tNR

A22 peak(ν) < tNR
extr(ν) <

tNR
ω̇22 peak(ν) for any ν. It is convenient to rewrite these
inequalities as

tNR
extr(ν) − tNR

A22 peak(ν) = f(ν)
(

tNR
ω̇22 peak(ν)− tNR

A22 peak(ν)
)

(66)
where f(ν) is an unknown function satisfying the condi-
tion that f(0) = 2/3, and expected to remain positive for
any ν. The intervals tNR

ω̇22 peak − tNR
A22 peak as measured on

the numerical waveforms are listed in Table IV. We shall
discuss our choice for the function f(ν) in the following
Section.

C. Testing the improvements brought by requiring
a C2 contact when using the NQC factor Eq. (27)

Reference [55] was able to build a rather satisfactory
EOB waveform modulus and frequency up to merger for
the ℓ = m = 2 mode (and in general for all ℓ = m modes)
by using four NQC parameters (two for the amplitude
and two for the phase). However, their results for the
modulus were much less satisfactory for the other (ℓ 6=
m) subdominant multipoles, such as the ℓ = 2, m = 1
one. Let us show here how the use of the new NQC
factor, Eq. (27) (which contains six NQC parameters,
and uses different choices for the NQC functions n3 and
n4) improves the closeness of the EOB waveform to the
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numerical (RWZ) one. To be consistent with Ref. [55],
the EOB dynamics used for this comparison is slightly
different from the one we discussed above. Namely: (i)
we set to zero FH

ϕ , i.e. the horizon-absorption part of
the radiation reaction; (ii) we also set Fr∗ = 0; (iii) in
addition, the residual phase corrections δℓm for ν = 0 are
considered in their Taylor-expanded form and all terms
(up to 4.5PN accuracy) are included (see Appendix D).
The improved EOB waveform obtained by using the

new six-parameter NQC factor is illustrated in Fig. 5.
The top panels refer to the ℓ = m = 2 mode: frequency
and modulus (left) and phasing (right). The bottom pan-
els compare EOB and RWZ frequency and modulus for
ℓ = 2, m = 1 (left) and ℓ = m = 3 (right). For all
waveforms the QNM matching comb has a total width
∆ = 0.7M and we use five, positive frequency, QNMs.
The restriction to positive frequency QNMs is the reason
why one cannot reproduce the oscillations during ring-
down in the ℓ = 2, m = 1 mode. The improvement with
respect to Fig. 3 of Ref. [55] is evident. Notably, the ℓ = 2
m = 1 modulus comes out extremely well (modulo the
absence of negative-frequency modes to model the ring-
down). The ℓ = m = 2 phasing remains good also dur-
ing merger and ringdown −0.05 < ∆φEOBRWZ < +0.05
(while the QNM matching of Ref. [55] led to significantly
larger dephasings during ringdown). Note on the top
right panel of Fig. 5 the behavior of the phase difference:
it dips just before merger down to −0.04 rad, and then
jumps up to +0.06 rad during ringdown. Such a behavior
is a useful compromise for keeping, on average, a good
phasing through inspiral, plunge, merger and ringdown.
Finally, to prove the robustness of the NQC determi-

nation procedure and the accuracy of the EOB waveform
for higher multipoles, we show in Fig. 6 the ℓ = 4, m = 1
frequency and modulus. The agreement between EOB
and RWZ waveform is again very good, modulo the ab-
sence of negative modes in the ringdown modelization.

V. COMPARABLE MASS CASE: ac
6(ν), t

NR
extr(ν),

AND PHASING PERFORMANCE

A. Iterative procedure for determining tNR
extr(ν) and

ac
6(ν): overview

After having tested the performance of the NQC fac-
tor (27) in the test-mass limit, we now move to the
comparable-mass case. Let us explain how we distilled
crucial nonperturbative information out of the Caltech-
Cornell-CITA waveform data. Our aim was to determine
good values of the 5PN parameter ac6(ν), and of the NR
time tNR

extr(ν) corresponding to the EOB time tEOB
Ωpeak. We

recall that tNR
extr(ν) is parametrized by a function f(ν),

according to Eq. (66). Actually, the determinations of
ac6(ν), and of tNR

extr(ν) are correlated, and must be done es-
sentially simultaneously. From a practical point of view,
we used an iterative, trial and error method.
First, for a given mass ratio ν, and a given choice of

NR extraction time tNR
extr (chosen around merger), we ex-

tract, from the behavior of the waveform in the immedi-
ate vicinity of the retarded time, tNR

extr, a collection of NR

waveform quantities (ANR
ℓm , Ȧ

NR
ℓm , Ä

NR
ℓm , ω

NR
ℓm , ω̇NR

ℓm , ω̈NR
ℓm ).

[As mentioned above, these quantities are then used, for
any given value of ac6(ν), to determine the parameters
(aℓmi , bℓmi ) entering the EOB NQC factor; i.e. the last fac-
tor in the pre-merger EOB waveform (16).] Second, we
study how the phase difference ∆φEOBNR between the so
determined NQC-corrected EOB waveform and the NR
waveform evolves (either as a function of frequency, or of
time) from the beginning of the simulation up to tNR

extr.
The evolution of the phase difference ∆φEOBNR depends
(after having chosen tNR

extr, and having implemented the
previous step) only on the 5PN (ν-dependent) parame-
ter ac6(ν). We then search (for each ν) whether there
exist values of ac6(ν) which entail that ∆φEOBNR(ac6(ν))
remains within the numerical uncertainty during the full
simulation (up to tNR

extr). If such a tuning of ac6(ν) does
not seem to lead to a a satisfactorily small phase discrep-
ancy during the whole evolution, we try another value of
the NR extraction time and repeat the two steps above,
until we end up with a better pair (tNR

extr, a
c
6(ν)).

When completed (by iteration), the above two steps
completely define an NR-completed EOB model up to
merger. The EOB waveform is then extended through
merger and ringdown by attaching QNMs at the end of
the inspiral-plus-plunge waveform, i.e. at the EOB time
tEOB
Ωpeak (which corresponds to the NR time tNR

extr). This
extension does not require the extraction of further NR
information, but only requires to choose, by trial and
error, reasonably good values of the number of QNM
modes N , and of the total width of the matching comb
∆match around tEOB

Ωpeak. As already said, we use N = 5

and ∆match = 0.7M .

B. Determining tNR
extr(ν)

We started by applying this iterative procedure to the
equal-mass case q = 1 (i.e. ν = 0.25). After trial and
error, we concluded that, for q = 1, the coefficient f(ν)
in Eq. (66) could be taken to have the value f(0.25) =
1/6. In other words, when q = 1, tNR

extr can be taken to
be rather close to the peak of the A22 modulus, as was
indeed assumed in all previous EOB works. By contrast,
when considering larger mass ratios, we found more and
more advantageous to increase the value of f(ν), up to
values of order of the test-mass value discussed above,
f(0) = 2/3, for large mass ratios. Then, as a simplifying
choice, we decided to assume for the ν dependence of
f(ν) a simple linear behavior between the two extreme
values for ν = 0 and ν = 0.25, in the form

f(ν) = f(0.25) + (f(0)− f(0.25)) (1− 4ν); (67)
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TABLE V. Next-to-quasi-circular (aℓm
i , bℓmi ) coefficients needed to complete the EOB for the five mass ratios considered. They

are obtained by imposing C2 conditions to the waveform amplitude and frequency around the merger.

q ℓ m aℓm
1 aℓm

2 aℓm
3 bℓm1 bℓm2 bℓm3

1 2 2 -0.0577 1.8127 -0.1205 0.0794 -0.9164 -2.5890

3 2 0.0987 2.4076 -0.4987 0.0490 1.0532 -2.9188

2 2 1 -0.0656 0.4871 0.2959 0.2544 0.9033 1.1975

2 2 -0.0602 1.7571 -0.0646 0.0963 -0.8789 -2.0165

3 2 -0.0658 2.7289 -0.2130 0.0864 1.2601 -2.7701

3 3 -0.0068 2.1915 -0.1837 0.2300 -1.2604 -2.2847

3 2 1 -0.0566 0.2988 0.3668 0.2636 0.8883 1.8284

2 2 -0.0484 1.6672 -0.0347 0.1161 -0.7453 -1.4052

3 2 -0.1349 2.6377 -0.0518 0.1747 1.5855 -0.2960

3 3 0.0016 2.0213 -0.0789 0.2560 -1.1539 -1.0416

4 2 1 -0.0464 0.1260 0.4288 0.2772 1.0397 1.9334

2 2 -0.0396 1.5639 0.0004 0.1342 -0.5509 -1.1731

3 2 -0.1360 2.3134 0.0559 0.2795 1.9825 -0.0350

3 3 0.0079 1.8294 0.0243 0.2807 -0.9226 -0.5157

6 2 1 -0.0323 -0.0701 0.5183 0.2770 1.2750 2.0649

2 2 -0.0229 1.4177 0.0397 0.1498 -0.4375 -0.9124

3 2 -0.1114 1.7472 0.2487 0.3207 2.2001 1.5262

3 3 0.0296 1.5816 0.1347 0.3014 -0.7664 -0.1969

which yields, when using f(0.25) = 1/6 and f(0) = 2/3,
the explicit expression

f(ν) =
2

3
− 2ν . (68)

Having so chosen tNR
extr(ν), we measure, for each

(ℓ,m), on the NR mutipolar waveform the vector

(ANR
ℓm , Ȧ

NR
ℓm , Ä

NR
ℓm , ω

NR
ℓm , ω̇NR

ℓm , ω̈NR
ℓm ) at tNR

extr(ν). Then, for
any value of ac6, we first compute the EOB dynamics,
then we solve the linear system given by Eqs. (29a)-(29f)
to obtain the NQC parameters (aℓmi , bℓmi ); and finally
we iterate the procedure until (aℓmi , bℓmi ) converge at the
fourth digit.

C. Determining ac
6(ν)

At this stage, the only freedom left in the model is the
value of ac6(ν). Let us now explain how we investigated
the phase difference ∆φEOBNR(ac6(ν)) and used it to de-
termine ac6(ν). Actually, we used a two-pronged approach
towards studying ∆φEOBNR. We first studied the Qω(ω)
function defined by the NR data, and compared it to the
EOB-predicted one. Then, in a second step, we consid-
ered the time-domain phase difference ∆φEOBNR(t).
Let us start by explaining how we used the Qω(ω) di-

agnostics to constrain the possible good values of ac6(ν).
Since, as we explained above, we could extract from NR
data a rather accurate estimate of QNR

ω (ω), we compared
it to the value QEOB

ω (ω; ac6(ν)) predicted, for each value

of ac6(ν), by EOB theory. Such a comparison (in the
q = 2 case) is illustrated in Fig. 7. The top panel of
this figure shows the EOB−PN and NR−PN differences
∆QX

ω ≡ QX
ω − Q3.5PN

ω , where X labels either EOB (for
the three indicated values of a6c) or NR, and Q3.5PN

ω is
the 3.5PN-accurate, Taylor-expanded expression given
by Eq. (62). Note first that the black solid line, cor-
responding to NR−PN, shows that the current best PN
knowledge of the intrinsic phasing function, Q3.5PN

ω (ω),
differs from the NR result by a large amount, reaching
Q3.5PN

ω (ω) − QNR
ω (ω) ≃ −18 at Mω2 = 0.29, which is

close to merger. The corresponding integrated dephas-
ing between PN and NR,

∆φPNNR ≡
∫ ω2

ω1

d lnω(Q3.5PN
ω (ω)−QNR

ω (ω)) , (69)

accumulated from Mω1 = 0.07 to Mω2 = 0.29, is found
to be equal to −11.72 radians.
By contrast to the NR − PN, or EOB − PN dif-

ferences displayed in the top panel of Fig. 7, its bot-
tom panel displays the much smaller EOB−NR difference
∆Qω ≡ QEOB

ω (ω; ac6(ν)) − QNR
ω (ω) for five different val-

ues of ac6. In addition, the shaded region represents the
NR−NR difference ∆Qω = QNR,N=5

ω − QNR,N=4
ω , where

where N = 5 (respectively N = 4) labels the numeri-
cal waveform with the highest (resp. medium) resolu-
tion [34]. The visual comparisons displayed in Fig. 7 are
made quantitative in Table VI, which lists correspond-
ing values of the EOB−NR phase difference over the fre-
quency interval M(ω1, ω2) = (0.07, 0.29) obtained from
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FIG. 7. (color online) Using the Qω(ω) diagnostics to con-
strain the good values of ac

6(ν). The figure refers to the
case q = 2, ν = 2/9. Top panel: difference between ei-
ther QEOB

ω or QNR
ω and the 3.5PN-accurate, Taylor-expanded

Q3.5PN
ω given by Eq. (62). Bottom panel: the lines show

the differences ∆Qω = QEOB
ω − QNR,N=5

ω for different val-
ues of ac

6. The shaded region exhibits the difference ∆Qω =
QNR,N=5

ω − QNR,N=4
ω where N = 4, 5 labels two different res-

olutions, respectively medium and high, of the NR data [34].
See text for further details.

the integral

∆φ ≡
∫ ω2

ω1

d lnω(QEOB
ω (ω; ac6(ν))−QNR

ω (ω)) . (70)

Note thatMω2 = 0.29 approximately corresponds to the
merger. These phase differences indicate that a good
range of values of ac6(2/9) is roughly between −90 and
−100. Within such a range, ∆φ remains of the order of
the NR phasing uncertainty as estimated in Ref. [28, 34]
by comparing the two resolutions N = 4 and N = 5.
Note that the small phase differences corresponding to
−100 ≤ ac6(2/9) ≤ −90 result from a cancellation be-
tween positive and negative contributions to the above

FIG. 8. (color online) Top panel: Illustrating the meaning
of “flat” and “effective” EOB/NR phase differences around
merger for q = 1 (ν = 0.25). The flat phase difference is
obtained here with ac

6(0.25) = −105.719 from Eq. (73), while
the effective one uses ac

6(0.25) = −101.876, from Eq. (74).
Bottom panel: “flat” and “effective” best values of ac

6 and
their analytical fits (dashed lines).

integral. However, a look at Fig 7 shows that within this
range of ac6 the nonzero values of ∆Qω remain of the or-
der ±0.05 for most of the integration region. Such range
of values of ∆Qω is comparable to the numerical uncer-
tainty on Qω (at least) during the inspiral, as illustrated
by the shaded region in the figure. Note indeed that the
frequencyMω = 0.1 is reached only 150M before merger
(cf. bottom left panel of Fig. 10). Note also that the fre-
quency interval 0.2 ≤ Mω22 ≤ 0.3 (where the top panel
of Fig. 7 shows visible differences, made quantitative in
the bottom panel) only corresponds to the last 25M be-
fore merger. [The GW frequency 0.2 approximately cor-
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FIG. 9. (color online) Illustrating the effect of the NQC factor on the “bare”, inspiral EOB waveform (equal-mass case):
modulus (left panel) and frequency (right panel).

TABLE VI. Mass ratio q = 2: phase difference ∆φ = φEOB −
φNR accumulated between frequencies ω1 = 0.07 and ω2 =
0.29 versus ac

6 as obtained using Eq. (70).

ac
6 ∆φ [rad]

-80 +0.0810

-90 -0.0010

-100 -0.0909

-110 -0.1942

TABLE VII. Best values of ac
6 selected according to the behav-

ior of the ∆φ = φEOB − φNR phase difference around merger
time.

q ν ac
6 (flat) ac

6 (effective)

1 0.25 -106 -103

2 0.2̄ -99 -96

3 0.1875 -82 -79

4 0.1600 -67 -63

6 0.1224 -47 -45

responds to the adiabatic LSO crossing, i.e. the end of
the quasi-adiabatic inspiral].

This analysis based on the Qω diagnostics selects, for
each value of the mass ratio (q = 1, 2, 3, 4, 6), a range of
good values of ac6(ν), which then needs to be confirmed
and refined by directly comparing the time-domain phase
evolution of the EOB waveform to the NR one. We have
done such an analysis by considering, for each value of
ac6(ν) within the above range, the phase evolution from
the beginning of the simulation up to merger, and also

after merger, during ringdown. The comparison up to
merger only depends on the choices of tNR

extr(ν) and a
c
6(ν),

while the comparison during the subsequent ringdown
also depends on the choices made in attaching QNMs to
the NQC-corrected pre-merger signal. The time-domain
phasing comparison allowed us to close up, for each value
of ν, on a more precisely determined value of ac6(ν) (with
an uncertainty of order unity). Actually, depending on
the criterion we put on the quality of the EOB/NR phase
agreement, the resulting best values of ac6(ν) are slightly
different. However, in all the cases we have explored,
we found that the good, ν-dependent values of ac6 were
approximately lying along a straight line.

We choose ac6 according to the following two criterions:
on the one hand, we can require that the time-domain
phase difference (after alignment) ∆φEOBNR(t; ac6(ν)) re-
mains near zero in as flat a manner as possible up to

merger. In this case, the price to pay for this is that
the subsequent, somewhat coarse QNM attachment de-
fined by the current EOB prescriptions, will cause, after
merger and during ringdown, the EOB-NR phase differ-
ence ∆φEOBNR(t; ac flat6 (ν)) to jump to positive values of
order ∼ +0.15 rad (more about this below). On the
other hand, one can also look for a more “effective” de-
scription of the phasing where we allow ∆φEOBNR to take
slightly negative values just before merger, but to jump
to smaller values ∼ +0.05 rad after merger (see more de-
tails below). The so obtained corresponding good values
of ac6 are listed in Table VII. The bottom panel of Fig. 8
plots these values versus ν. One sees that, for both the
effective and flat cases, they approximately lie along a
straight line. However, as evidenced by these plots, a
linear fit to ac6(ν) does not give an accurate representa-
tion of the points when the ν = 0.25 value is taken into
account. Before discussing a way to fit such a behavior,
let us note that the top panel of Fig. 8 displays, for q = 1,
the phase differences for the “flat” and “effective” values
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FIG. 10. (color online) Comparison between EOB and NR (Zerilli-normalized) waveforms for mass ratios q = 1, 2. Left panels:
amplitude and frequency. In the right panels, each subplot shows the phase and amplitude differences between the EOB and
NR waveform (top) and the real part of Ψ22 (bottom). The time axis is the NR one: u = tNR. The EOB waveform has been
time- and phase-shifted so as to minimize the EOB − NR phase difference for frequencies Mω < 0.1. The vertical dashed lines
mark the tEOB

Ωpeak crossing time.

of ac6(0.25). The same behavior, with very similar phase
differences, is found for all other mass ratios.
Let us come back to the issue of constructing an ana-

lytical fit for the behavior of the functions ac6(ν) exhibited
in the bottom panel of Fig. 8. We checked that the use
of a global linear fit for the values of ac6(ν) would give
unacceptably large phase differences ( > 0.1 rad) accu-
mulated up to merger. This suggests the need of using a
fitting function which deviates from a linear function of
ν only in a rather limited interval 0.2̄ < ν ≤ 0.25. There
are many ways to construct such fits. Here, as a first at-
tempt (to be possibly improved in future work), we have
used the following, factorized, mostly-linear, functional
form

ac6(ν) = [a+ b(1− 4ν)] s̃(c; ν), (71)

where s̃ denotes a localized (when the parameter c is
much smaller than one) correction to the linear behavior

parametrized by a and b:

s̃(c; ν) ≡
(

1 +
c

(0.26− ν)2

)1/2

. (72)

We have determined sufficiently accurate values of the
parameters (a, b, c) by fitting the the values of ac6 listed
in Table VII in two steps. [For simplicity, we fixed the
location of the pole in the function s̃2(ν) to the fidu-
cial value ν = 0.26.] First (a, b) were determined by
fitting only the q = (2, 3, 4, 6) data in Table VII to a
straight line. The raw data were then divided by the
outcome of the fit and the resulting ratios were further
fitted against the factor of Eq. (71) so as to determine
c. Applying this fitting procedure, we find (a, b, c)flat =
(−114.006, 130.774,−1.352 × 10−5) for the flat choices
of ac6 and (a, b, c)effective = (−110.467, 129.022,−1.468×
10−5) for the effective choices of ac6. Rounding up these
numbers, we summarize our search of a “flat” ac6(ν) by
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FIG. 11. (color online) Comparison between EOB and NR (Zerilli-normalized) waveforms for mass ratios q = 3, 4, 6. Left
panels: amplitude and frequency. In the right panels, each subplot shows the phase and amplitude differences between the
EOB and NR waveform (top) and the real part of Ψ22 (bottom). The vertical dashed lines mark the tEOB

Ωpeak crossing time.

the following analytical expression

ac flat6 (ν) = [−114 + 131(1− 4ν)] s̃(−1.4× 10−5; ν).
(73)

For the effective description of the phasing we found in-

stead

ac6(ν) = [−110.5 + 129(1− 4ν)] s̃(−1.5× 10−5; ν). (74)

This is one of the central results of our work, and one of
the most important pieces in the NR-completion of our
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EOB model.
In conclusion, we propose to define the NR completion

of our EOB model by adopting the analytical expres-
sions (68) and (74) for defining, respectively, tNR

extr(ν) and
ac6(ν). In addition, we found that the following QNM-
attachment choices define a reasonably accurate ring-
down completion of the EOB waveform: N = 5 QNM
modes, and ∆comb = 0.7M . In the following, we shall
illustrate the comparison of the EOB multipolar wave-
form defined by these choices to the corresponding NR
multipolar waveform.

D. Values of the NQC parameters (aℓm
i , bℓmi )

Before doing so, let us recall that, for each mass ra-
tio, we must determine (by iteration) the NQC param-
eters (ai, bi) defined by the above choices (using given
NR data). In Table V we list, for the mass ratios
q = (1, 2, 3, 4, 6) and for multipoles (2,2), (2,1), (3,3),
(3,2), the values of the (aℓmi , bℓmi )’s that define the NQC
corrections to the bare inspiral-plus-plunge EOB wave-
form. [When q = 1 there are no entries for ℓm = (2, 1)
and (3, 3), because these modes are identically zero in
this case for symmetry reasons.] We will discuss below
the issue of replacing the information contained in this
table by ν-dependent fitting formulas.

E. Effect of the NQC factor on the EOB waveform

Let us first illustrate how the NQC factor modifies the
purely inspiral EOB waveform. The q = 1 case is con-
sidered in Fig. 9: modulus (left panel) and frequency
(right panel). Similar results are obtained for any other
mass ratio (see also Ref. [55] for the test-mass limit).
We show together: (i) the purely inspiral waveform, i.e.,

Eq. (16) without the NQC factor ĥNQC
ℓm (dash-dotted, thin

line, black online); (ii) the inspiral+merger waveform, in-
cluding the NQC factor (dash-dotted and thick line, blue
online); (iii) the extended EOB waveform, including the
ringdown part (thick, solid line, red online); and the NR
waveform (thin, solid line, black online). As noted al-
ready in Ref. [55] the most striking feature of this plot
is that the pure inspiral EOB waveform modulus peaks
(after alignment as explained in Sec. VF) just ∼ 1.4M
before the peak of the NR modulus. On the other hand,
its amplitude is about 20% larger than the NR one12.
Note that the largish difference in amplitude is very ef-
fectively corrected by the NQC factor. In order to reduce

12 Such a behavior follows from our use of x = v2ϕ as argument
in ρ22(x). As noted in Fig. 2 of Ref. [28], the different choice
x → Ω2/3 (which is however not physically justified during the
plunge), makes the EOB waveform peak considerably earlier (by
6.2M) than NR, but with an amplitude much closer to the NR
one (≈ −0.23% smaller).

the amplitude and displace it to the right we need a NQC
factor that, near merger, is smaller than one and growing.
This is what n2 succeeds in doing thanks to its shape, as
illustrated in Appendix A. This explains why the values
of the NQC parameter a222 are the dominant ones, see Ta-
ble V. By contrast, if one has to increase the amplitude
and displace it to the right (as was needed in Ref. [28]
because of the use of the argument Ω2/3 in ρ22(x)), one
needs a NQC factor which, near merger, is larger than
one and growing, as, for instance, our n1, Eq. (28a).

F. Comparison between the ℓ = m = 2 NR and
EOB waveforms

Let us now present the results of the comparison
between the dominant quadrupolar ((ℓ,m) = (2, 2))
NR waveform, and the corresponding NR-completed
EOB waveform introduced in this work. For each
mass ratio among q = (1, 2, 3, 4, 6) , Figs. 10-11
compare the EOB and NR modulus and frequency
(left panels), the real parts of the waveforms (right
panels, bottom) and also show the phase difference
∆φEOBNR ≡ φEOB − φNR and the relative amplitude
difference ∆AEOBNR/ANR ≡ (AEOB −ANR)/ANR (right
panels, top). The vertical dashed line present in all
panels marks the location of the peak of the EOB or-
bital frequency, tEOB

Ωpeak. These time-domain compar-
isons are done by suitably determining a relative time
and phase shift between the two phases φNR

22 (tNR) and
φEOB
22 (tEOB). These shifts are estimated by minimiz-

ing the time integral of the square of the phase differ-
ence on a time interval corresponding to a given fre-
quency interval [MωL,MωR]. Following Refs. [28, 67]
, we perform this waveform alignment on the long in-
spiral phase. Note that, in doing so, we do not enforce
the constraint that tNR

extr corresponds to tEOB
Ωpeak. How-

ever, the EOB/NR agreement is so good up to merger
that such an early-inspiral alignment succeeds in re-
alizing, a posteriori, a near coincidence between tNR

extr

and tEOB
Ωpeak. For instance, we find that, for q = 1,

tNR
extr−tEOB

Ωpeak ≃ −0.13M . The right limit of the frequency
for each mass ratio is MωR = 0.1. The left bounds are
MωL = (0.035, 0.035, 0.035, 0.044, 0.045).

These figures indicate an excellent EOB/NR agree-
ment in phasing and in modulus from the early inspi-
ral up to merger. The remaining disagreements are well
within the nominal error bar on numerical data. Ac-
tually, the only estimate of the numerical error on the
phasing of these numerical data that is available in the
literature is a rather conservative one that is done by tak-
ing the difference between the highest and the medium
resolution. This procedure gives uncertainties that are
very small during the inspiral phase (< 0.01 rad) and
small, though not negligible, in the late plunge phase up
to merger (∼ 0.1 − 0.3 rad, depending on the mass ra-
tio) [34]. A less conservative NR error estimate might be
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FIG. 12. (color online) Subdominant multipoles, ℓ = 2, m = 1 (left panels) and ℓ = m = 3 (right panels) Comparison between
EOB model and NR (Zerilli-normalized) waveform for mass ratio q = 2. Top: amplitudes and frequencies. Bottom panels:
amplitude and phase differences. The vertical dashed lines mark the tEOB

Ωpeak crossing time.

smaller by (at least) a factor two13. Keeping this in mind,
it is remarkable that our EOB model, with the very sim-
ple law for ac6(ν) given in Eq. (74) is able to reproduce
all numerical data within . 0.06 radians at merger.
Let us also emphasize the very good agreement be-

tween the moduli before and at merger (see the top-right
inset in the right-panels of Figs. 10-11), though they ex-
hibit a visible difference during the subsequent ringdown.
The good agreement before merger is an improvement
with respect to previous works [22, 28, 45] that is due to
a combination of effects coming both from the use of an

13 We thank Harald Pfeiffer and Luisa Buchman for informing us
of this more realistic estimate of the NR errors.

improved analytical EOB model, from a new choice of
the basis of NQC functions ni, and from the choice of an
NQC determination point which differs from the maxi-
mum of the amplitude. [ Note that such an agreement
before merger is also comparable to the one obtained by
Taracchini et al. [29] with an EOB model that is rather
different from the one discussed here]. Let us also note
that, as already mentioned, we have, on purpose, cho-
sen effective values of ac6(ν) causing the phase difference
∆φEOBNR to dip towards negative values ∼ −0.05 rad
just before merger, before jumping towards positive val-
ues of order +0.05 or +0.1 rad during ringdown. Such a
behavior ensures a good average phase agreement during
the entire process. Had we instead chosen the slightly dif-
ferent “flat” values of ac6(ν), Eq. (73), they would have led
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FIG. 13. (color online) Subdominant multipoles, ℓ = 2, m = 1 (left panels) and ℓ = m = 3 (right panels) Comparison between
EOB model and NR (Zerilli-normalized) waveform for mass ratio q = 6. Top: amplitudes and frequencies. Bottom panels:
amplitude and phase differences. The vertical dashed lines mark the tEOB

Ωpeak crossing time.

to a near perfect phase agreement up to merger. How-
ever, the price for doing so would then have been the
presence of a larger global phase disagreement (of order
∼ +0.15 rad), due to a positive jump in ∆φEOBNR af-
ter merger, and during ringdown. We note that such
a positive jump ∼ +0.15 rad in ∆φEOBNR is consistent
with the study, done in Ref. [28], of the intrinsic error
in ∆φEOBNR coming from the procedure of QNM attach-
ment itself. This indicates that more work should be de-
voted towards improving the current EOB technique for
attaching QNMs onto the inspiral-plus-plunge waveform.

G. Subdominant multipoles

Up to now, our study has only considered the dom-
inant quadrupolar ℓ = m = 2 waveform. Let us now

compare some of the subdominant multipolar waveforms.
We consider here the ℓ = 2, m = 1 and ℓ = m = 3 sub-
dominant waveforms, for the two mass ratios q = 2 and
q = 6 (similar results were obtained for q = 3 and q = 4).
We limit ourselves to such a partial comparison here to
show the capability of the EOB model, as it was defined
above, to get the main characteristics of the subdominant
multipoles, without introducing ad hoc modifications, or
tuning further parameters. At the end of this section
we will also mention some results for the ℓ = 3, m = 2
multipole.

In Figs. 12-13 we compare, for the two mass ratios
q = 2 and q = 6, the NR and EOB frequency and mod-
ulus for the two subdominant multipoles ℓ = 2, m = 1
and ℓ = m = 3 (top panels) as well as the phase and am-
plitude differences (bottom panels). We use the same
matching interval as for the ℓ = m = 2 mode, i.e.
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FIG. 14. (color online) Subdominant multipole ℓ = 3, m = 2:
phase difference for q = 1 (top panel) and q = 6 (bottom
panel). The vertical dashed lines mark the tEOB

Ωpeak crossing
time.

∆match = 0.7M , and the same number of QNM modes,
i.e. N = 5. Note the good agreement of the moduli in all
cases, both up to merger, and during ringdown [In the
A21, q = 2 case the multiple crossings between the NR
and EOB moduli may be due to inaccuracies in the NR
waveform.] Note also the good agreement, up to merger,
of the frequencies, in all cases, and the good agreement of
the frequency of the (3, 3) mode after merger, and during
ringdown. The only case which is slightly less successful
is the discrepancy between the EOB frequency and the
NR frequency in the ℓ = 2, m = 1 case for both mass
ratios (compare with Ref. [28], but note we have not in-
troduced here any ad hoc treatment of the the ℓ = 2,
m = 1 case.) Namely, the EOB frequency of the (2, 1)
mode shoots up, just after merger , a bit faster than
its NR counterpart. In turn, such a frequency difference
builds up a phase difference after merger. This is illus-
trated in the bottom panels of the figure, which shows the
phase differences ∆φEOBNR

21 (left) and ∆φEOBNR
33 (right)

as functions of time during the entire simulation. Note
that the dephasing is remarkably small up to merger
for both multipoles, and then accumulates a dephasing
∆φEOBNR

21 ∼ 0.5 rad (and ∆φEOBNR
33 ∼ 0.15 rad) during

the ringdown.

Let us emphasize that the phase difference
∆φEOBNR

21 (t) plotted in the bottom panels of Figs. 12-13
has been computed without introducing any new arbi-

trariness, neither in time, nor in phase, in comparing
the two phase evolutions. Indeed, the least-squares
alignment procedure of the NR and EOB dominant
(2, 2) waveforms has determined both a shift in time,
say τ22, and a phase shift, say α22, connecting them.
The time shift τ22 determines the (a priori unknown)

connection between the two time variables tNR and
tEOB, and should therefore be used in comparing the
time evolutions of all the other physical quantities, and
in particular the subdominant multipoles. The case of
the phase shift α22 is similar, but with a difference.
Indeed, in our case (with a common, preferred z axis
given by the total angular momentum of the sytem)
the only a priori unknown angular difference between
NR and EOB is a rotational shift, by some angle β,
connecting the NR basis of tensorial spherical harmonics
to the corresponding EOB basis. This common angle
β then introduces a phase shift in all the various ℓm
multipoles simply given by

αℓm = mβ, (75)

independently of ℓ. As this result applies in particular to
α22 (which is determined modulo 2π by the alignment of
the (2, 2) waveforms), we see that the phase shifts in the
subdominant multipoles are determined to be

αℓm =
m

2
α22 modulo mπ (76)

In addition to this phase shift, there might be extra phase
shifts due to the use of different conventions in defin-
ing the phase of the tensorial spherical harmonics. Such
phase conventions differ at most by multiples of π/2, cor-
responding to powers of i. In other words, we can always
write that αℓm = m

2 α22 modulo π/2, which is sufficient

for unambiguously computing ∆φEOBNR
ℓm for all subdom-

inant multipoles. This absence of phase-shift ambiguity
in ∆φEOBNR

ℓm makes it all the more remarkable that, in
the (2, 1) case, the phase difference ∆φEOBNR

21 plotted in
Fig. 12 (for q = 2) and Fig. 13 (for q = 6) stays very
small up to merger.
Let us finally comment on Fig. 14, were we show the

phase difference one gets for the ℓ = 3, m = 2 multi-
pole, for the two representative cases q = 1 (top panel)
and q = 6 (bottom panel). The figure, again, illus-
trates a rather good consistency between EOB and NR
up to merger. The differences after merger are mostly
due to our simplified description of the ringdown (see
Appendix A of Ref. [28] for a detailed analysis of the
structure of the (3, 2) ringdown waveform).
We leave to future work a more detailed analysis of the

subdominant multipoles, and the investigation of pos-
sible ways of improving their EOB representation, in
case the slight dephasing exhibited in Figs. 12-13 for the
(ℓ,m) = (2, 1) multipole happens to significantly degrade
the faithfulness of the complete EOB waveform (summed
over all multipoles).

VI. STRUCTURE OF THE EOBNR RADIAL
POTENTIAL A(u) AND ITS CONNECTION

WITH OTHER RESULTS

One of the most important nonperturbative dynami-
cal knowledge acquired in this work by comparing EOB
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FIG. 15. (color online) Contrasting various estimates of the
A(u; ν) function. in the equal-mass case, ν = 0.25. The plot
shows the 1PN, 2PN and 3PN Taylor-expanded versions of
A(u; 0.25); its 3PN-accurate Padé resummed form as well as
the EOBNR one (5PN accurate with logarithmic terms and
ac
5 = 23.5, ac

6(0.25) = −101.876, as per Eq. (74)).

predictions to the Caltech-Cornell-CITA simulations con-
cerns the function A(u; ν). We recall that A(u; ν) is the
main radial potential of the EOBHamiltonian, and repre-
sents the time-time component of the effective EOB met-
ric: A(u; ν) = −geff00 (R). In the test-mass limit, ν → 0,
the effective metric is the Schwarzschild metric, so that
limν→0 A(u; ν) = 1 − 2u ≡ 1 − 2GM/(Rc2). We saw
above that NR data selected, in the strong-field domain,
an A function given by Eq. (10) with ac5 = 23.5 and
ac6(ν) = [−110.5 + 129(1 − 4ν)]s̃

(

−1.5× 10−5; ν
)

). Let
us now discuss some properties of this NR-informed EOB
potential (or simply EOBNR potential) and its connec-
tion with other relevant results.

A. Global shape of AEOBNR(u; ν) as a function of u,
and comparison with previous purely analytical

estimates

As a first orientation, we contrast in Fig. 15 vari-
ous estimates of the function A(u; ν) in the equal-mass
case, i.e. ν = 0.25. Our NR-informed estimate (5PN-
log–Padé resummed and with ac5 = 23.5 and ac6(ν) =
[−110.5 + 129(1− 4ν)]s̃

(

−1.5× 10−5; ν
)

) is shown as a
thick solid line (red online), i.e. the second line from
the top. The dashed bottom line represents the 1PN-
accurate estimate of A, which happens to coincide with
the simple Schwarzschild-metric result ASchw(u) = 1−2u.
[Indeed, in Eq. (7) there are no terms of order u2 corre-
sponding to the 1PN level.] The thicker dashed line just
above this 1PN estimate represents the Taylor-expanded
2PN estimate, i.e. Eq. (7) taken up to the term O(u3)

included. The upper dashed line represents the Taylor-
expanded 3PN estimate of A(u; ν), as given by Eq. (7)
up to the term O(u4) included. Finally, the thin solid
line (black online) just below the NR-completed 5PNlog
Padé curve is the Padé-resummed estimate of the analyti-
cally known 3PN result, which was proposed by Damour,
Jaranowski and Schäfer [3] in 2000, i.e. five years before
NR simulations started yielding information about the
strong-field dynamics of binary black holes. It is remark-
able that the latter simple 3PN-Padé estimate is rather
close to the best current NR-informed estimate: (i) it
is numerically quite close to it if one considers values
u . 0.3 which are already beyond the last stable orbit,
and therefore are crossed during the plunge; and (ii) even
in the very strong field domain 0.3 . u . 0.6 (where the
merger occurs) the 3PN-Padé estimate is a much better
approximation to AEOBNR(u; ν) than any of its standard
PN approximants. This closeness explains the success
of the simple Padéed 3PN A function in agreeing with
several recent NR studies of dynamical aspects of close
black hole binaries [26, 33], and confirms the effectiveness
of using Padé approximants to improve the strong-field
behavior of Taylor approximants.

B. Detailed study of the ν-dependence of
AEOBNR(u; ν)

The comparison of the previous subsection has indi-
cated that an accurate description of the gravitational
wave emission of coalescing binary black holes requires
a very precise determination of the shape of A(u; ν) in
the very strong-field domain u & 0.3 (i.e. R . 3GM/c2).
Let us zoom on the detailed shape of the A function in
the strong-field domain by focusing on the properties of
the associated a function, defined by writing

A(u; ν) ≡ 1− 2u+ νa(u; ν). (77)

The Taylor expansion of this small-a function starts as

a(u; ν) = 2u3 +

(

94

3
− 41

32
π2

)

u4 +O(u5 lnu). (78)

Note that the ν dependence of a(u; ν) is only contained
in the O(u5 lnu) remainder term. In order to zoom on
the ν dependence of a(u; ν) it is then useful, following
Ref. [48], to normalize the a function by its LO PN be-
havior, a2PN (u; ν) = 2u3, i.e. to consider the â(u; ν)
function defined as

â(u; ν) ≡ a(u; ν)

2u3
≡ A(u; ν)− (1 − 2u)

2νu3
. (79)

In the upper panel of Fig. 16, we plot the values of the
EOBNR â(u; ν) functions for the values of ν correspond-
ing to the five mass ratios we used in our EOB/NR com-
parisons above, namely q = 1, 2, 3, 4, 6, as well as the
EOBNR predicted â curves corresponding to q = 10, to
q = 100 and also to q = ∞, i.e. to the ν = q/(q+1)2 → 0
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limit of âEOBNR(u; ν). The (red online) round markers
on the curves indicate the EOB-defined, light-ring loca-
tions, i.e. the solutions of the equation (u2A(u))′ = 0
(see Table VIII for the precise numbers). In addi-
tion, we have also indicated the recently derived (GSF-
computed) “exact” value of the limit limν→0 â(u; ν) [48]
(using their best analytical fit). In the bottom panel of
Fig. 16 we plot the corresponding values of the products
νaEOBNR(u; ν) = 2νu3âEOBNR(u; ν), i.e. the correspond-
ing differences of AEOBNR(u; ν) away from its test-mass
limit, i.e. AEOBNR(u; ν) − ASchw(u), where ASchw(u) =
1 − 2u = limν→0A

EOBNR(u; ν). This shows again how
the physics of the GW emission by coalescing black hole
binaries depends on fine features in the A potential. Note
how, as ν decreases, â(u; ν) monotononically increases, in
a way which is qualitatively compatible with the shape
of the limiting GSF result â(u; 0) = limν→0 â(u; ν). [The
latter limiting GSF shape has a singularity at u = 1/3,
which is probably smoothed out by higher-order correc-
tions in ν around ν = 0. See [48] for a detailed discussion
of the origin of this singularity, and its probable fictitious
character.] Though the ν → 0 limit of âEOBNR(u; ν)
(which is a polynomial in u, with logarithmic coefficients)
does not coincide with the exactO(ν) GSF result, it stays
quite close to it up to u . 0.2. It is interesting in this
respect to point out that the ν → 0 limit of our NR fitted
ac6(ν), given by Eq. (54), is ac6(0) = +18.4979 ≈ +18.5.
This is completely different from the true Taylor value

acTaylor6 (0) = −131.72(1) [38]. However, it has the same
sign and order of magnitude as the effective value ob-
tained above, in Eq. (12), by requiring compatibility with
the GSF determination of LSO precession for ν → 0.
This shows a reasonable compatibility between two ef-
fective determinations of ac6(0) in the strong field regime.

Note also, on the bottom panel, how the behavior
of the corresponding contribution to the A potential,
i.e. the product νa(u; ν), seems to tend continuously
(though maybe not uniformly) towards zero as ν → 0.
This bottom panel suggests that the q = 10 case should
be thought of as belonging to the class of the normal
comparable-mass cases q = O(1). One needs q’s of order
at least O(100) to belong to the class of extreme-mass-
ratio binaries. The EOBNR potential derived here has
anyway been tuned to the physics of comparable-mass
binaries with 1 ≤ q ≤ 6. As we knew (from Ref. [48])
that the ν → 0 limit of the (exact) A potential was (prob-
ably) mildly singular, and as we are mainly interested in
describing the physics of comparable-mass systems, we
did not attempt to incorporate in the A function too
much of the information contained in its ν → 0, GSF
limit. In our work above, we only incorporated some in-
formation about the ν → 0 limit of the 4PN coefficient
limν→0 a

c
5(ν). But, as we shall discuss next, this was

mainly done as a practical way of reducing the number
of unknowns to be fitted to NR data.

FIG. 16. (color online) Top panel: Behavior of the EOBNR
â(u) function defined in Eq. (79) with ac

5 = 23.5 and ac
6(ν) =

[−110.5+ 129(1− 4ν)]s̃
(

−1.5× 10−5; ν
)

. The red line shows
the ν = 0 function as obtained from the fit of GSF data [48].
Bottom panel: the difference AEOBNR(u; ν) − ASchw(u) with
ASchw(u) = 1− 2u. For each value of ν, the marker indicates
the EOB-defined adiabatic light ring location.

TABLE VIII. EOB-defined adiabatic light-ring (LR) and last-
stable-orbit (LSO) locations for ac

5 = 23.5 and ac
6 = [−110.5+

129(1− 4ν)]s̃
(

−1.5× 10−5; ν
)

.

q ν rLR uLR rLSO uLSO

1 0.25 1.8067 0.5535 4.5108 0.2217

2 0.2̄ 1.9324 0.5175 4.6964 0.2129

3 0.1875 2.1119 0.4735 4.9226 0.2031

4 0.1600 2.5223 0.4440 5.0962 0.1962

6 0.1224 2.4366 0.4104 5.3235 0.1878

10 0.0826 2.6240 0.3811 5.5529 0.1801

∞ 0 3.0000 0.3̄ 6.000 0.16̄

C. On the “equivalence classes” of the A(u)
potential

References [6, 22] found, for the q = 1 case, that there
was a strong degeneracy between the two parameters en-
tering a 5PN-accurate Padé representation of the A func-
tion, say ac5 and ac6. This was confirmed for other values
of q in Ref. [28]. This finding leads to the idea that the
good values of ac5 and ac6 can be organized in “equiva-



29

lence classes” of quasi-interchangeable values of the pairs
(ac5, a

c
6). An explicit way of constructing these equiva-

lence classes was indicated in [35]: it consists in defin-

ing the equivalence class of some given pair (a
c (0)
5 , a

c (0)
6 )

as the set of pairs (ac5, a
c
6) such that the u-derivative

A′(u; ν; ac5, a
c
6) of the A function, evaluated at some fidu-

cial strong-field point, say ub (the value ub ≃ 0.215 was
suggested there), takes the same value at (ac5, a

c
6) and at

(a
c (0)
5 , a

c (0)
6 ). In equations

A′(ub; ν; a
c
5, a

c
6) = A′(ub; ν; a

c (0)
5 , a

c (0)
6 ) , (80)

or, equivalently,

a′(ub; ν; a
c
5, a

c
6) = a′(ub; ν; a

c (0)
5 , a

c (0)
6 ) . (81)

When working, as we do here, with the normalized func-
tion â(u; ν), we could alternatively define these equiva-
lence classes as level sets (in the space of pairs (ac5, a

c
6))

of â′(ub; ν; a
c
5, a

c
6), or even, simply, of â(ub; ν; a

c
5, a

c
6).

Evidently, all those possible “definitions” lead (when
one changes the fiducial value ub, and/or the consid-
ered function a′, â′, a, etc.) to different equivalence
classes. However, because of the properties of the A
function, one checks that, as long as one bases one’s
definition on the value of A or some related function
in the strong-field region, this leads, to a good approxi-
mation, to a numerically rather well-defined equivalence
class of (ac5, a

c
6) pairs. This is illustrated in Fig. 17. This

figure shows (for the case q = 1) that our NR-tuned

preferred values (a
c (0)
5 , a

c (0)
6 ) = (23.5,−101.876) define

a νa(u) function which can be very nearly reproduced
by using other pairs of (ac5, a

c
6) values, namely (0, 220),

(5, 125), or (10, 40). The upper panel shows together,
versus u, the functions νa(u; ν; ac5, a

c
6), for q = 1, i.e. ν =

0.25, and for the four different pairs of parameters val-
ues (ac5, a

c
6) = (23.5,−101.876), (10, 40), (5, 125), (0, 220).

The upper panel illustrates that these five different
functions are indistinguishable by eye. The bottom
panel of the figure zooms on the differences away from

our standard choice (a
c (0)
5 , a

c (0)
6 ) = (23.5,−101.876),

i.e. it plots ν∆a(u; ν; ac5, a
c
6) ≡ A(u; ν; ac5, a

c
6) −

A(u; ν; 23.5,−101.876). For any choice of the parame-
ters, these differences are of the order 10−4. Note that
we have not used, here, any precise, level-set type, cri-
terion for selecting the pairs equivalent to our preferred
value, but we have selected them by simple trial and er-
ror, until we could reduce the (maximum) difference to
the smallest level we could find . This smallest level
was O(10−4). The reason why such a level of deviation
is small enough for our purpose can be seen by turning
back to our analysis above, when we were fixing the fidu-
cial value ac5 = 23.5, and then tuning the value of ac6 for
the EOB phasing to best agree with the NR one. In that
case, as is clear from the number of digits we were giving
in Table VII above for ac6 (before fitting them), we found
that the “good” values of ac6 were determined, roughly,
within an uncertainty δac6 = O(1). Such an uncertainty

FIG. 17. (color online) Elements of the equivalence class
of â(ac

5, a
c
6) functions for q = 1. The bottom panel shows

the fractional difference with our favorite choice ac
5 = 23.5,

ac
6(0.25) = −101.876.

on the good value of ac6 (for the fixed ac5 = 23.5) entails
a corresponding uncertainty on the value of the function
A(u; ac5, a

c
6) of order δA(u; ac5, a

c
6) ∼ ∂A(u; ac5, a

c
6)/∂a

c
6.

The latter quantity is found to increase with u, and to
reach a value of order 0.8× 10−4 when u takes the light-
ring value uLR ≃ 0.55 (for q = 1). In conclusion, a pos-
sible variation in the A(u) function of L∞ norm ∼ 10−4,
for 0 ≤ u ≤ uLR, is a reasonable way of defining the
equivalence class of A(u), and Fig. 17 shows that one
can indeed, starting from the (analytically fitted) values

(a
c (0)
5 , a

c (0)
6 ) = (23.5,−101.876), find a (relatively thin)

strip of values of (ac5, a
c
6) along which the 5PN Padéd

function AEOBNR(u; ac5, a
c
6; ν) stays within such an equiv-

alence class.

Though here we focus only on the q = 1 case, similar
classes of equivalence of â functions exist for any mass ra-
tio. In summary, this exercise confirms that we were jus-
tified in a priori fixing the value of ac5. Finally, the impor-
tant fact is that NR data allow one to directly determine
the A(u; ν) function itself, essentially independently of
the chosen “representative” (ac5, a

c
6) within some equiv-

alence strip in the (ac5, a
c
6) plane. This determination

of the AEOBNR(u; ν) function is exemplified on Fig. 16
(keeping in mind the invisible deviations plotted in the
upper panel of Fig. 17).
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D. Comparison between the present determination
of AEOBNR(u; ν) (5PN with logs), with previous

estimates (5PN without logs).

The present work is the first EOB work to include loga-
rithmic terms in a comparison with NR data. Let us now
compare our final NR-aided determination of such an A
function (with logarithmic terms) to the 5PN-accurate
A functions (without logarithmic terms) used in previous
EOB works [6, 12, 22, 27–29]. In particular, Ref. [22], us-
ing a 5PN-accurate A(ac5, a

c
6; ν) function (without logs),

exploited a previous version of the q = 1 Caltech-Cornell-
CITA numerical waveform to find a banana-like region
of good values in the (ac5, a

c
6) plane such that the phase

difference between EOB and NR waveform through in-
spiral, plunge and merger was < 0.02 rad. The values
ac5 = −6.37 and ac6 = 50 lie in the middle of this good re-
gion and have been used extensively in subsequent EOB
work [26, 27, 31, 42]. [By contrast Ref. [22] actually used
the values ac5 = 0 and ac6 = −20 which lie on the bound-
ary of the good region.] The analog, banana-shaped
equivalence classes in the (ac5, a

c
6) plane corresponding to

other values of q were then first investigated in Ref. [28].
[The latter reference basically used the same conceptual
structure as Ref. [22] with some technical differences.]
Ref. [28] found a very good agreement between EOB and
NR waveforms with an A function defined by the follow-
ing choices

a5(ν) = −5.828− 143.5ν + 447ν2, a6 = 184 . (82)

More recently, Barausse and Buonanno [12] introduced
a differently resummed A function, which is 3PN accu-
rate and does not contain the 4PN and 5PN logarithmic
contributions used in the present work. Their resumma-
tion does not rely on a Padé approximant, but imposes by
hand the presence of a horizon, by factoring out of A(u) a
binomial of the form 1−2(1−K(ν)ν)u+a2(1−K(ν)ν)2u2

. [Here, a is a Kerr-like spin parameter, which vanishes
in the non-spinning case considered here.] The flexibility
parameter K(ν), which effectively parametrizes 4PN and
higher contributions, was then calibrated in Ref. [29]
against Caltech-Cornell-CITA non-spinning waveforms
(for q = 1, 2, 3, 4, 6), with the result:

K(ν) = 1.447− 1.715ν − 3.246ν2 . (83)

In Fig. 18 we consider the two mass ratios q = 1
and q = 6 and for each mass ratio we compare four
different â(u) curves, namely: (i) the log-containing
5PN-accurate one determined in this work (“EOBNR-
log” with ac5 = +23.5, and ac6(ν) = [−110.5 + 129(1 −
4ν)]s̃

(

−1.5× 10−5; ν
)

); (ii) the log-less 5PN-accurate
one of [22] (with ac5 = −6.3 and ac6 = 50); (iii) the log-less
5PN-accurate one of [28], see Eq. (82); and (iv) the (log-
less) 3PN-accurate Barausse-Buonanno [12] one, âBB(u),
for the value of the adjustable parameter, K(ν), cited
above [29].
The figure shows that while the first three different

analytical descriptions seem to be visually close for the

FIG. 18. (color online) Comparing â functions for different,
5PN-accurate, EOBNR-completed models. The markers in-
dicate the location of the EOB-defined adiabatic light-ring for
each curve. See text for explanations.

equal-mass case, q = 1, they exhibit visible differences in
the q = 6 case. However, we have seen above that only
differences of order 10−4 in the A function can be consid-
ered as being negligibly small. When computing the dif-
ferences ∆AX(u; ν) ≡ AX−AEOBNRlog for the two labels
X = DN2009, Ref. [22] and X = Pan et al, Ref. [28], one
finds that, for q = 1, ∆AX(u) is a monotonically decreas-
ing function of u which reaches values of order ≃ −0.004
for X = DN2009 and ≃ −0.0025 for X = Pan et al when
u ≃ 0.5, i.e., close to the corresponding adiabatic light-
ring position. Such differences are therefore quite signif-
icant on the 10−4 scale of the equivalence classes of A
functions exhibited in Fig. 17. In the q = 6 case the cor-
responding differences taken at u ≃ 0.4, close to the adi-
abatic light-ring position, are ≃ −0.006 for X = DN2009
and≃ +0.003 forX = Pan et al.. Again these differences
are quite significant. Note however that for u ≤ 0.3 the
log-less model of [28], Eq. (82), (which had been tuned
to the same q = 6 NR data as ours) stays quite close to
our present log-containing model (∆A = 2× 10−4).

Let us finally discuss the comparison with the (log-less)
Barausse-Buonanno âBB(u) function calibrated by Tarac-
chini et al. [29] (orange line online, solid for q = 1, dashed
for q = 6). Figure 18 shows that up to its own light ring
(marked by an orange circle on the curves) this function
stays rather close to our EOBNRlog one with ac5 = +23.5,
and ac6(ν) = [−110.5 + 129(1 − 4ν)]s̃

(

−1.5× 10−5; ν
)

.

The differences are however so large that âBB cannot be
considered to be part of the equivalence class of EOB-
NRlog in the sense discussed above. More precisely, we
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find that the difference between the respective A poten-
tials varies, roughly, between ±0.01 for q = 1 and be-
tween ±0.005 for q = 6. This is two orders of magni-
tudes larger than the 10−4 level that we used above to
define the equivalence class (see Fig. 17 and correspond-
ing text). Despite this, one finds that the adiabatic LSO
orbital frequencies predicted by the two potentials are

very close. For q = 1, we have ΩEOBNRlog
LSO = 0.0993 and

ΩBB
LSO = 0.1010 (i.e. a ∼ 2% difference), and for q = 6 we

obtain ΩEOBNRlog
LSO = 0.0801 and ΩBB

LSO = 0.0797. In ad-
dition, we see on the figure that the difference âBB(u)−
âEOBNRlog(u) oscillates in sign around zero, so that the
phasing defined by âBB(u) can be expected to agree, on
average, with that defined by âEOBNRlog(u). We have
performed a quantitative check of this expectation by
considering the phasing during the quasi-adiabatic inspi-
ral, which is rather directly related to the conservative
part of the dynamics and thereby to the A(u) function.
More precisely, we computed, for each A(u) potential,
the adiabatic phasing along the sequence of EOB circu-
lar orbits. This phasing is best measured by the (adi-

abatic) Qadiabatic
ω (ω) ≡ −5/(24ν)x−1∂xj0(f̂(x))

−1 func-
tion. Here, ω = 2Ω is the adiabatic GW frequency,

x = Ω2/3, f̂ is the resummed, Newton-normalized, energy
flux as introduced in Eq. (37) above, and j0 is the angular
momentum along the sequence of EOB circular orbits de-
fined by Eq. (51) for a given A potential. We then focus
on the difference ∆Qω(ω) = QEOBNRlog

ω (ω)−QBB
ω (ω).

Inspection of the ∆Qω(ω) function more or less con-
firms the conclusion drawn from the comparison between
the â(u) functions in Fig. 18. More precisely, we find
that: for q = 1 it basically averages around zero up
to the LSO, varying between ±0.5 in a frequency range
∆ω = (0.03, 0.2); on the contrary, for q = 6 the same
function is negative and monotonically decreasing over
the frequency interval ∆ω = (0.03, 0.16), reaching the
value ∼ −4.4 at ω = 0.16. As explained in Sec. III above
where the Qω(ω) function was introduced, the usefulness
of this phasing diagnostic is that its integral over lnω di-
rectly gives the GW phase as a function of frequency.

Correspondingly the integral ∆φ =
∫ ω̄LSO

0.03
∆Qωd ln(ω)

yields the relative dephasing (here estimated in the adia-
batic approximation) between the waveforms correspond-
ing to the choice of two different A potentials, which is
accumulated between the initial frequency ω = 0.03 and
the average LSO frequencies, say ω̄LSO = 0.2 for q = 1,
and ω̄LSO = 0.16 for q = 6. We obtained ∆φ = 0.62 rad
for q = 1 and ∆φ = 2.66 rad for q = 6. This result shows
that the difference between the BB and EOBNRlog A
functions entails, when considered by itself, a correspond-
ing difference in the phasing (up to the LSO) that can be
as large as∼ 3 rad depending on the mass ratio consid-
ered. However, the model of Ref. [29], that is based on the
ABB function, succeeded (like our EOBNRlog model) in
getting an agreement with the NR waveform at the level
of a % of a radian. This means that the A-dependent
intrinsic difference in the (adiabatic) phasing that we are

pointing out here can be (and has been) effectively com-
pensated by other adjustable elements entering the model
of Ref. [29] (notably parameters entering the radiation re-
action, such as the argument of the ρℓm’s, the number of
multipoles in the flux, a different NQC basis, the tuning

of ρ
(4)
22 (ν), etc.).

The conclusions of this comparative analysis of various
EOB A(u) functions are two sided. On the one hand, if
we insist on trying to determine the A function with the
utmost accuracy needed to stay within an all-purposes
equivalence class of A functions, our results above show
that the introduction of logarithmic contributions in the
A function cannot be reabsorbed by tuning log-less ver-
sions of the EOB A potential. As we know, from ana-
lytical PN work, that these logarithmic contributions do
exist, we conclude that it is necessary to include them,
and therefore to prefer the type of improved EOB model
presented in this work to previous log-less versions of the
EOB Hamiltonian. On the other hand, if we are ready to
neglect the need of reaching an ideal all-purposes accu-
racy in the determination of the A function, the overall
conclusion of the comparison done in Fig. 18 is that ac-
curate NR data (here the Caltech-Cornell-CITA ones) do
constrain so much the value of the EOB A(u) potential
(at least up to u ∼ 0.5) that various ways of parametriz-
ing the shape of the A(u) potentials lead to final results
that are rather close to each other. This comforts us in
showing how the EOB formalism is able to extract from
NR data reliable information about the strong-field dy-
namics of binary black holes.

VII. EXTENSION OF THE MODEL BY
ANALYTIC CONTINUATION IN ν

In the present work, we have used a discrete sample
of numerical simulations to complete an EOB model, no-
tably through the use of suitable, NR-fitted NQC correc-
tions. In order to be able to compute the predictions of
such a NR-completed EOB model for arbitrary values of
ν, we need to fix a procedure for computing the six NQC
parameters, (aℓmi (ν), bℓmi (ν)), as continuous functions of
ν. [The remaining defining elements of the EOB model,
notably ac5 and ac6 were already given as functions of ν.]
One can think of two different ways of continuously ex-

tending the definition of the present EOB model to any
value of ν: first, one can interpolate the discrete sam-
ple of (aℓmi , bℓmi ) values of the NQC parameters that we
obtained (from the five numerical simulations with q =
1, 2, 3, 4, 6) by fitting them to, say, quadratic polynomials
in ν; second, one can instead fit the original NR-extracted
numerical values of (Aℓm, Ȧℓm, Äℓm, ωℓm, ω̇ℓm, ω̈ℓm) to
quadratic polynomials in ν, and then, for any given ν,
determine (aℓmi (ν), bℓmi (ν)) with the iterative procedure
described above. We have explored in detail both pro-
cedures. The first one, i.e fitting the end parameters
(aℓmi , bℓmi ) needed to compute an EOB waveform (and
explicitly given in Table V for all q’s) is clearly a faster
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TABLE IX. Fits of Zerilli-normalized multipolar quantities
(amplitude, frequencies and derivatives) extracted at tNR

extr(ν)
as function of ν. Each quantity is fitted to a quadratic poly-
nomial of the form fℓm(ν) = cℓm2 ν2+ cℓm1 ν+ cℓm0 . For the am-
plitude and its derivatives the full leading-order ν-dependence
(νcℓ+ǫ(ν), see Eq. (22)) is factorized before fitting.

ℓm cℓm2 cℓm1 cℓm0

Aℓm

νcℓ+ǫ(ν)

2 1 1.8020×10−1 -5.3482×10−2 9.4465×10−2

2 2 3.6836×10−1 2.3213×10−2 2.9281×10−1

3 2 2.3484×10−1 -5.1891×10−2 1.5969×10−2

3 3 1.5774×10−1 7.1170×10−3 5.1385×10−2

Ȧℓm

νcℓ+ǫ(ν)

2 1 1.3075×10−2 -5.3660×10−3 2.7088×10−3

2 2 6.2259×10−3 2.8059×10−3 -1.5658×10−3

3 2 2.7001×10−2 -6.8708×10−3 5.0927×10−4

3 3 1.2320×10−2 7.6133×10−4 1.5238×10−4

Äℓm

νcℓ+ǫ(ν)

2 1 5.2570×10−4 -4.9124×10−4 -1.1183×10−4

2 2 1.4031×10−3 -1.0071×10−3 -7.4628×10−4

3 2 4.9252×10−3 -1.2516×10−3 -3.1190×10−6

3 3 -3.5470×10−4 8.2613×10−5 -1.3908×10−4

ωℓm

2 1 -7.1306×10−3 1.8015×10−1 1.9488×10−1

2 2 3.1848×10−1 2.2996×10−1 2.8788×10−1

3 2 -2.3137 5.3441×10−1 3.5026×10−1

3 3 3.7872×10−1 4.1589×10−1 4.4262×10−1

ω̇ℓm

2 1 -5.4429×10−2 2.3401×10−2 8.6489×10−3

2 2 2.6909×10−2 1.3939×10−2 6.3061×10−3

3 2 -3.3131×10−1 5.7770×10−2 1.3219×10−2

3 3 1.9620×10−2 2.6984×10−2 1.0610×10−2

ω̈ℓm

2 1 3.1509×10−2 -5.7895×10−3 9.1507×10−4

2 2 2.2304×10−3 3.2830×10−4 9.6664×10−5

3 2 -1.5297×10−2 2.7862×10−6 7.3264×10−4

3 3 1.6612×10−2 -2.0232×10−3 3.0898×10−4

way to compute, for any ν, a corresponding EOB wave-
form. Indeed, this approach does not require any itera-
tion procedure.

We found that the fitted (aℓmi (ν), bℓmi (ν))’s give very
accurate results for the multipoles we have at hand, i.e.
ℓ = m = 2, ℓ = 2, m = 1, ℓ = m = 3 and ℓ = 3, m = 2.
This allows us to construct EOB waveforms that are as
accurate as the ones obtained by determining (aℓmi , bℓmi )
by the iterative procedure, discussed above, that uses the
actual NR data. The coefficients of these quadratic fits
are listed in Table X.

By contrast, the determination of (aℓmi , bℓmi ) from
quadratic fits of NR data (given in Table IX) is equally
accurate for ℓ = m = 2 waveforms, but leads to slightly
less accurate results for the subdominant multipoles.
More precisely, this procedure introduces some visible,
though small, differences between the EOB and NR wave-
form modulus around the peaks of the (ℓ = 2, m = 1 and
ℓ = m = 3) waveforms. Note that, contrarily to the
fits of the (ai, bi) mentioned above (which relied only on
the q = 1, 2, 3, 4, 6 data), we have done quadratic fits of

TABLE X. Fits of the NQC parameters (aℓm
i , bℓmi ) considered

in this work as function of ν. Each quantity is fitted to a
quadratic polynomial of the form fℓm(ν) = cℓm2 ν2+cℓm1 ν+cℓm0 .

ℓm cℓm2 cℓm1 cℓm0

aℓm
1 (ν)

2 1 0.9150 -0.6522 0.0340

2 2 2.1601 -1.0937 0.0793

3 2 31.671 -10.310 0.6844

3 3 2.6793 -1.2792 0.1456

aℓm
2 (ν)

2 1 1.9035 4.9785 -0.7106

2 2 -10.807 7.1420 0.7035

3 2 -132.73 55.153 -3.0449

3 3 -12.932 10.634 0.4704

aℓm
3 (ν)

2 1 2.6950 -3.1603 0.8650

2 2 -2.7666 -0.1769 0.1012

3 2 -19.734 1.8299 0.3031

3 3 -0.8932 -2.9229 0.5078

bℓm1 (ν)
2 1 -2.2480 0.5304 0.2466

2 2 -0.8568 -0.2417 0.1929

3 2 -1.3497 -1.8083 0.5735

3 3 -1.6468 -0.1611 0.3464

bℓm2 (ν)
2 1 51.726 -21.689 3.1616

2 2 9.6382 -7.6453 0.3732

3 2 -4.4860 -7.7968 3.2538

3 3 6.9597 -7.5958 0.0709

bℓm3 (ν)
2 1 -112.81 30.559 -0.0026

2 2 -80.991 17.075 -1.7974

3 2 3.2489 -38.133 6.1648

3 3 -213.46 52.819 -3.4718

(Aℓm, Ȧℓm, Äℓm, ωℓm, ω̇ℓm, ω̈ℓm) to six numerical results,
namely the Caltech-Cornell-CITA q = (1, 2, 3, 4, 6) data
together with the q = ∞ data of Ref. [42]. Given these
fits, one then needs to solve for the NQC parameters. Ac-
tually, such a procedure is simplified by the fact that, as
we said, the quadratic fits for the a22i (ν)’s (which are the
only NQC parameters which need to be reinserted in the
flux) can be used from the start, so that, contrary to the
general case, one can get the needed values of the other
NQC parameters in one go, without having to iterate the
procedure.

Figure 19 illustrates the performances of the two dif-
ferent fitting procedures. The figure refers to mass ratio
q = 2 only (equivalent results are found for the other
mass ratios, with improvements for larger values of q) and
shows the following triple comparison for ℓ = m = 2 (top
panel) and ℓ = 2, m = 1 (medium panel), and ℓ = m = 3
(bottom panle) between: (i) the NR waveform frequency
and modulus; (ii) the EOB waveform frequency and mod-
ulus obtained using the fits (aℓmi (ν), bℓmi (ν)); (iii) the
EOB waveform frequency and modulus obtained by fit-
ting the numerical data extracted at tNR

extr, determining
the NQC parameters in the usual way, but using the a22i
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FIG. 19. (color online) Testing two possible fitting strategies
to continuously extend the discrete sample of NQC param-
eters (aℓm

i , bℓmi ) to any value of ν: comparison (for q = 2)
between ℓ = 2 and ℓ = 3 modulus and frequency.

fits of Table X to account for NQC corrections in the
radiation reaction.

In conclusion, the prescription of using the
(aℓmi (ν), bℓmi (ν)) fits of Table X a priori looks as
the best (and simplest) choice to obtain the NQC
parameters interpolating between the discrete sample of

NR-computed q-values. Since the NR data we have at
hand are limited to the ℓ = 3 multipole, we cannot check
the reliability of the procedure also for higher values of
ℓ. We leave such an investigation to future work.

VIII. CONCLUSIONS

We have improved the EOB description of nonspinning
coalescing black hole binaries by incorporating several
recent analytical advances, namely:

(i) 4PN and 5PN logarithmic contributions to the con-
servative dynamics [35–38];

(ii) the O(ν) 4PN nonlogarithmic contribution to the
conservative dynamics [36, 38–40];

(iii) resummed horizon-absorption contributions to an-
gular momentum loss [41, 42];

(iv) the radial component of the radiation reaction force
implied by consistency with the azimuthal one [43];

(v) an additional 3.5PN contribution to the phase of
the (factorized [5, 8, 9]) quadrupolar waveform [44].

Moreover, we have introduced new features in the EOB
formalism, namely:

(a) a Padé resummation of the additional tail phases
δℓm of the factorized EOB waveform;

(b) a new way of matching the EOB waveform to the
NR one by mapping the EOB time when the orbital
frequency reaches a maximum tEOB

Ωpeak to a specifi-

cally chosen (ν-dependent) NR time tNR
extr(ν) around

merger, Eq. (55). More precisely, we impose [by
using six next-to-quasi-circular (NQC) parameters]
a C2 contact between the amplitudes and the fre-
quencies of the NR and EOB waveforms at the NR
instant tNR

extr(ν) which corresponds to tEOB
Ωpeak.

We have extracted new information from the NR data,
namely:

(c) We showed how to extract from NR (curvature)
phasing data the function QNR

ω (ω) ≡ ω2/ω̇ which
is an intrinsic measure of the phase evolution. We
have given an explicit representation of the func-
tion QNR

ω (ω; q), for q = (1, 2, 3, 4, 6), in terms of
some fitting coefficients (see Eqs. (61),(64) and Ta-
ble III).

(d) We extracted data on the NR amplitude and fre-
quency, together with their first two derivatives, at
the specific ν-dependent NR time tNR

extr(ν), which
is located a little bit after the maximum of the
quadrupolar waveform amplitude. We gave fitting
formulas for the ν-dependence of those quantities
for several multipoles, see Table IX.
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Using such nonperturbative information from NR data,
we showed how to complete the EOB model by:

1. Constraining the value of the main EOB radial po-
tential, i.e. the A(u; ν) function; and

2. Determining the coefficients entering the NQC cor-
rection factor Eq. (27).

Among these results, we think that the new expression of
the NR-tuned A function, containing logarithms, is more
refined and more accurate than its previous determina-
tions [22, 28, 29]. Let us recall that, as in previous work,
the A function is parametrized in terms of coefficients,
here called (ac5, a

c
6), entering a certain Padé approximant,

APade(u; ν; ac5, a
c
6), Eq. (10). Then NR data were used

to constrain these parameters. We have delineated the
reason why the two parameters (ac5, a

c
6) entering the Padé

definition of APade(u; ν; ac5, a
c
6) are degenerate by giving

a definition of equivalence classes of the pairs (ac5, a
c
6) in

terms of some L∞ norm of the A(u) function. We have
determined a good NR-tuned A function by assuming
a fixed value of ac5 (ac5 = 23.5 as suggested by recent
GSF results [38, 48]), and by then tuning the remaining
parameter ac6(ν). We found that ac6(ν) can be simply
represented by the mostly-linear function of ν

ac6(ν) = [−110.5 + 147(1− 4ν)]

(

1− 1.5× 10−5

(0.26− ν)2

)1/2

,

(84)
where the last, nonlinear 14 factor is relevant only in
the range 0.2̄ . ν ≤ 0.25 (i.e., 1 ≤ q . 2). We think
that the resulting function of u and ν, AEOBNR(u; ν) ≡
APade(u; ν; 23.5, ac6(ν)), yields an accurate representa-
tion of the A(u; ν) function itself, independently of the
way it was obtained. Moreover, we find remarkable that
the good value of A(u; ν) could be obtained already by
considering only the inspiral phasing (before the LSO
crossing) and was then checked to yield (together with
the NR-determined NQC corrections) an excellent phas-
ing agreement up to merger.
We have presented our improved EOB model in a self

contained manner so as to allow interested readers to
generate for themselves all our EOB results. We in-
tend to make available soon a public version of our EOB
codes. In view of the new physics that we have in-
cluded in our EOB model, and of its excellent perfor-
mance (obtained without introducing any ad hoc param-
eters) against the very accurate Caltech-Cornell-CITA
data, we recommend to use this new EOB model (or
small variations thereof) in future EOB works (in partic-
ular in extensions to spinning and/or tidally interacting
systems).

14 Additional NR simulations in the mass-ratio range 1 ≤ q . 2
will be needed to probe/improve the nonlinear behavior of the
ac6(ν) function there.

FIG. 20. (color online) Top: computation of r̈ with finite
differencing and analytical iterations, and comparison with
(r̈)(0). Bottom: effect on the NQC basis vector n2. The figure
refers to q = 1 with the choices ac

5 = 23.5 and ac
6(0.25) =

−101.876. See text for discussion.
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Appendix A: On the computation of r̈

In the definition of the NQC correction n2, Eq. (28b),
we used for the second time derivative of the relative
separation r the quantity (r̈)(0), which is the value of r̈
along the conservative dynamics, i.e. neglecting the con-
tributions proportional to F . This choice is made for ef-
ficiency’s sake because it is faster to compute (r̈)(0) along
the dynamics. In spite of the neglect of F in its compu-
tation, (r̈)(0) does represent an allowed NQC correction
because it vanishes (together with ṙ and the exact value
of r̈) in the circular limit (see below).
For completeness, let us discuss here how to compute

a more exact value of r̈ along the dynamics and how the
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TABLE XI. Fits of Zerilli-normalized multipolar quantities
of the numerical waveforms (modulus, frequency and their
derivatives) measured at the peak of each multipole (“max-
ima”) as function of ν. Each quantity is fitted to a quadratic
polynomial of the form fℓm(ν) = cℓm2 ν2+ cℓm1 ν+ cℓm0 . For the
modulus and its derivatives the leading order ν-dependence
(Eq. 22) is factorized before fitting.

ℓm cℓm2 cℓm1 cℓm0

Aℓm

νcℓ+ǫ(ν)

2 1 2.9410×10−1 -1.0286×10−1 1.0691×10−1

2 2 3.8132×10−1 1.3011×10−2 2.9467×10−1

3 2 3.9814×10−1 -9.2149×10−2 1.8310×10−2

3 3 2.0896×10−1 4.7198×10−3 5.1463×10−2

Äℓm

νcℓ+ǫ(ν)

2 1 -5.2646×10−3 6.1932×10−4 -5.4059×10−4

2 2 1.5609×10−4 -1.4628×10−3 -4.8017×10−4

3 2 1.8500×10−4 2.2093×10−4 -1.4184×10−4

3 3 -3.4677×10−3 -6.6072×10−6 -1.6713×10−4

ωℓm

2 1 5.8728×10−1 -8.3459×10−2 2.9074×10−1

2 2 4.1410×10−1 2.4377×10−1 2.7221×10−1

3 2 3.6315 -9.5776×10−1 4.5459×10−1

3 3 1.0192 5.4557×10−1 4.5319×10−1

ω̇ℓm

2 1 -2.2041×10−1 1.0228×10−1 6.2835×10−4

2 2 2.8060×10−2 1.4581×10−2 5.8725×10−3

3 2 -2.8225×10−1 3.7702×10−2 1.6036×10−2

3 3 2.5253×10−2 2.7690×10−2 1.0871×10−2

ω̈ℓm

2 1 7.8607×10−3 1.5684×10−2 -3.5511×10−3

2 2 2.3604×10−3 7.2810×10−5 2.2436×10−4

3 2 -8.7028×10−2 1.7233×10−2 8.6570×10−5

3 3 -1.1065×10−2 -2.3899×10−6 2.1351×10−4

result differs from (r̈)(0). Let us first recall that along the
EOB equations of motion ṙ is, at any moment, a function
of the phase space variables: ṙ = ṙ(r(t), pϕ(t), pr∗(t)).
Therefore, its total time derivative is the sum of three
partial contributions

r̈ =
∂ṙ

∂r
ṙ +

∂ṙ

∂pr∗
ṗr∗ +

∂ṙ

∂pϕ
ṗϕ. (A1)

Using the other EOB equations of motion, this equation
reads explicitly

r̈ =
∂ṙ

∂r
ṙ +

∂ṙ

∂pr∗

(

F̂r∗ −
∂ĤEOB

∂r∗

)

+
∂ṙ

∂pϕ
F̂ϕ. (A2)

where ∂HEOB/∂r∗ ≡ (A/B)1/2∂HEOB/∂r.
By definition, the circular dynamics limit corresponds

to setting ṙ = 0 = pr∗ and ∂HEOB/∂r = 0. One then
sees that, along the circular dynamics, one has also Fr∗ ∝
pr∗ = 0, and (using ṙ = C(r, pr∗ , pϕ)pr∗) ∂ṙ/∂pϕ ∝ pr∗ =

0. As a consequence, both r̈ and (r̈)(0), defined by setting
to zero the contributions proportional to F , i.e.

(r̈)(0) =
∂ṙ

∂r
ṙ − ∂ṙ

∂pr∗

∂ĤEOB

∂r∗
, (A3)

vanish in the circular dynamics approximation. This
shows that we can use either the exact r̈ or its “geodesic”
approximation (r̈)(0) to define the second element of the
“NQC basis”, n2 = r̈/(rΩ2).
When using the definition n2 = (r̈)(0)/(rΩ2), Eq. (A3)

allows one to compute immediately n2 along the exact
dynamics. By contrast, if one wished to use the defi-
nition n′

2 = r̈/(rΩ2), a complication arises. Indeed, as

contributions proportional to F̂r∗ and F̂ϕ appear on the
r.h.s. of Eq. (A2), and as these contain the squared mod-
ulus of the NQC factor (i.e., for each multipole, a factor
|1+∑j a

ℓm
j nj |2) we see that n′

2 ∝ r̈ now appears on both

sides of Eq. (A2).
Schematically, defining ξ = (r, pr∗ , pϕ), Eq. (A2) has

the structure

r̈ = a(ξ) + b(ξ)F̂r∗(ξ, r̈) + c(ξ)F̂ϕ(ξ, r̈) (A4)

which only gives an implicit equation for determining the
exact r̈ along the dynamics. We can however get an
explicit expression for r̈ by an iterative procedure. In-
serting r̈(0) as lowest order approximation on the r.h.s.
of Eq. (A4) defines an improved value, say (r̈)(1) for r̈,
namely

r̈(1) = a(ξ) + b(ξ)F̂r∗(ξ, r̈
(0)) + c(ξ)F̂ϕ(ξ, r̈

(0)). (A5)

By iterating the procedure once more, we then get

r̈(2) = a(ξ) + b(ξ)F̂r∗(ξ, r̈
(1)) + c(ξ)F̂ϕ(ξ, r̈

(1)). (A6)

The result (A6) leads to a sufficiently accurate computa-
tion of r̈ up to merger, as illustrated in the top panel of
Fig. 20. However, the recursive presence of the flux in this
iteration substantially increases (by approximately a fac-
tor 4) the computational time needed to produce an EOB
waveform. This is why we prefer to use n2 = r̈(0)/(rΩ2).
Anyway, as Fig. 20 shows, n2 and n′

2 are numerically
quite similar. In view of the arguments above their dif-
ferences are essentially absorbed in a redefinition of the
coefficients ai.

Appendix B: NQC factor determined using NR data
at tNR

A22 peak

In the text, we argued that it was advantageous to
determine NQC corrections by matching the EOB wave-
form (considered at tEOB

Ωpeak) to the NR waveform con-

sidered at the time tNR
extr. Let us illustrate here (see

Fig. 21) in the case q = 6 the slightly different (but sig-
nificantly worsened) EOB waveform obtained when one
instead matches the ℓ = m = 2 EOB waveform (con-
sidered at time tEOB

Ωpeak) to the NR waveform considered

at the time tNR
A22 peak (as was done in early EOB works).

Figure 21 uses as before 6 NQC corrections and the value
ac6(6/49) = −44.67. However, the NR extraction point,
which is also used as NQC determination point, is now
tNR
A22 peak.
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FIG. 21. (color online) Mass ratio q = 6: EOB waveform
(frequency and modulus) obtained by determining NQC cor-
rections from NR data extracted at tNR

A22 peak instead of tNR
extr.

The fits of the vector of NR quantities
(ANR

ℓm , Ä
NR
ℓm , ω

NR
ℓm , ω̇NR

ℓm , ω̈NR
ℓm ) now measured at the

location of the maximum of each multipole are given
in Table XI and include, as before, the test-mass
information. We checked that these fits are compatible
with the fits given in Table II of Ref. [28].
When comparing Fig. 21 with the bottom left panel of

Fig. 11, we see that, though the effect of having replaced
tNR
extr by tNR

A22 peak is small, it leads to visible differences.
In particular, one sees that the frequency evolution near
merger was more accurately captured in Fig. 11 than in
Fig. 21.

Appendix C: Effect of including NQC corrections to
higher multipoles in the radiation reaction

In this Appendix we explore the effect of including the
NQC correction factor in the higher multipole contribu-
tions to radiation reaction, specifically in some of the

main subdominant multipoles, ĥNQC
21 , ĥNQC

33 and ĥNQC
32 .

[By contrast in the main text we NQC corrected only

ĥNQC
22 in the radiation reaction]. Note that with our

choice x = v2ϕ of the argument in ρℓm(x) we need larger
NQC modulus correction factors than Ref. [28] which
used x = Ω2/3. Indeed as during the plunge Ω2/3 is
larger than v2ϕ and as the function ρℓm(x) is a decreasing
function of its argument, one has, along the EOB dynam-

ics,
(

ρℓm(v2ϕ)
)ℓ
>
(

ρℓm(Ω2/3)
)ℓ
. Therefore the inclusion

of NQC corrections for higher multipoles is apriori more
significant within our EOB setup than within the one of
Ref. [28]. We focus on the mass ratio q = 6 only, because

FIG. 22. (color online) Negligible effect on the phasing (and
modulus), for q = 6, of including ℓ = 2, m = 1 and ℓ = 3,
(m = 2, 3) NQC corrections to the energy flux beyond the
ℓ = m = 2 one.

subdominant multipoles do not significantly contribute
when q ∼ 1. Figure 22 compares the phase difference and
the fractional amplitude difference for two EOB models:
one with the standard h22–only NQC flux correction (ma-
genta online), and another one which includes in addition

the three subleading NQC factors ĥNQC
21 , ĥNQC

33 and ĥNQC
32 .

The effect of this inclusion is totally negligible, so that it
is justified to include only the ℓ = m = 2 NQC correction
to the radiation reaction.

Appendix D: Explicit expression of ρℓm(x) and δℓm(y)

In this Appendix we list the explicit expressions of
the residual amplitude, ρℓm(x), and phase, δℓm(y) cor-
rections that we have implemented in our EOB code.
They rely on the results of Refs. [5, 51]. We give ex-
plicit expressions for all multipoles up to ℓ = 8 included.
Such expressions are given at the 3+2 PN approximation,
i.e. the 3PN-accurate, ν 6= 0 results of Ref. [5] are hy-

bridized with the 5PN-accurate, ν = 0, terms obtained in
Ref. [51]. Let us recall that we used here the following
values of the arguments of these functions: x → v2ϕ in

ρℓm(x) and y → (HEOBΩ)
2/3.
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ρ22(x; ν) = 1 +

(

55ν

84
− 43

42

)

x+

(

19583ν2

42336
− 33025ν

21168
− 20555

10584

)

x2

+

(

10620745ν3

39118464
− 6292061ν2

3259872
+

41π2ν

192
− 48993925ν

9779616
− 428

105
eulerlog2(x) +

1556919113

122245200

)

x3

+

(

9202

2205
eulerlog2(x) −

387216563023

160190110080

)

x4 +

(

439877

55566
eulerlog2(x)−

16094530514677

533967033600

)

x5, (D1)

ρ21(x; ν) = 1 +

(

23ν

84
− 59

56

)

x+

(

617ν2

4704
− 10993ν

14112
− 47009

56448

)

x2

+

(

7613184941

2607897600
− 107

105
eulerlog1(x)

)

x3 +

(

6313

5880
eulerlog1(x) −

1168617463883

911303737344

)

x4

+

(

−63735873771463

16569158860800
+

5029963

5927040
eulerlog1(x)

)

x5, (D2)

ρ33(x; ν) = 1 +

(

2ν

3
− 7

6

)

x+

(

149ν2

330
− 1861ν

990
− 6719

3960

)

x2 +

(

3203101567

227026800
− 26

7
eulerlog3(x)

)

x3

+

(

13

3
eulerlog3(x) −

57566572157

8562153600

)

x4 +

(

−903823148417327

30566888352000
+

87347

13860
eulerlog3(x)

)

x5, (D3)

ρ32(x; ν) = 1 +
320ν2 − 1115ν + 328

270(3ν − 1)
x+

3085640ν4 − 20338960ν3 − 4725605ν2 + 8050045ν − 1444528

1603800(1− 3ν)2
x2

+

(

5849948554

940355325
− 104

63
eulerlog2(x)

)

x3 +

(

−10607269449358

3072140846775
+

17056

8505
eulerlog2(x)

)

x4, (D4)

ρ31(x; ν) = 1 +

(

−2ν

9
− 13

18

)

x+

(

−829ν2

1782
− 1685ν

1782
+

101

7128

)

x2 +

(

11706720301

6129723600
− 26

63
eulerlog1(x)

)

x3

+

(

169

567
eulerlog1(x) +

2606097992581

4854741091200

)

x4 +

(

430750057673539

297110154781440
− 1313

224532
eulerlog1(x)

)

x5, (D5)

ρ44(x; ν) = 1 +
2625ν2 − 5870ν + 1614

1320(3ν − 1)
x

+
1252563795ν4 − 6733146000ν3 − 313857376ν2 + 2338945704ν− 511573572

317116800(1− 3ν)2
x2

+

(

16600939332793

1098809712000
− 12568

3465
eulerlog4(x)

)

x3 +

(

845198

190575
eulerlog4(x) −

172066910136202271

19426955708160000

)

x4, (D6)

ρ43(x; ν) = 1 +
160ν2 − 547ν + 222

176(2ν − 1)
x− 6894273

7047040
x2 +

(

−1571

770
eulerlog3(x) +

1664224207351

195343948800

)

x3

+

(

−2465107182496333

460490801971200
+

174381

67760
eulerlog3(x)

)

x4,

ρ42(x; ν) = 1 +
285ν2 − 3530ν + 1146

1320(3ν − 1)
x

+
−379526805ν4 − 3047981160ν3 + 1204388696ν2 + 295834536ν− 114859044

317116800(1− 3ν)2
x2

+

(

848238724511

219761942400
− 3142

3465
eulerlog2(x)

)

x3 +

(

300061

381150
eulerlog2(x)−

12864377174485679

19426955708160000

)

x4, (D7)
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ρ41(x; ν) = 1 +
288ν2 − 1385ν + 602

528(2ν − 1)
x− 7775491

21141120
x2 +

(

−1571

6930
eulerlog1(x) +

1227423222031

1758095539200

)

x3

+

(

−29584392078751453

37299754959667200
+

67553

261360
eulerlog1(x)

)

x4, (D8)

ρ55(x; ν) = 1 +
512ν2 − 1298ν + 487

390(2ν − 1)
x− 3353747

2129400
x2 +

(

−1546

429
eulerlog5(x) +

190606537999247

11957879934000

)

x3

+

(

−1213641959949291437

118143853747920000
+

376451

83655
eulerlog5(x)

)

x4, (D9)

ρ54(x; ν) = 1 +
33320ν3 − 127610ν2 + 96019ν − 17448

13650(5ν2 − 5ν + 1)
x− 16213384

15526875
x2

+

(

−24736

10725
eulerlog4(x) +

6704294638171892

653946558890625

)

x3, (D10)

ρ53(x; ν) = 1 +
176ν2 − 850ν + 375

390(2ν − 1)
x− 410833

709800
x2 +

(

−4638

3575
eulerlog3(x) +

7618462680967

1328653326000

)

x3

+

(

−77082121019870543

39381284582640000
+

2319

1859
eulerlog3(x)

)

x4, (D11)

ρ52(x; ν) = 1 +
21980ν3 − 104930ν2 + 84679ν − 15828

13650(5ν2 − 5ν + 1)
x− 7187914

15526875
x2

+

(

1539689950126502

653946558890625
− 6184

10725
eulerlog2(x)

)

x3, (D12)

ρ51(x; ν) = 1 +
8ν2 − 626ν + 319

390(2ν − 1)
x− 31877

304200
x2 +

(

− 1546

10725
eulerlog1(x) +

7685351978519

11957879934000

)

x3

+

(

− 821807362819271

10740350340720000
+

22417

190125
eulerlog1(x)

)

x4, (D13)

ρ66(x; ν) = 1 +
273ν3 − 861ν2 + 602ν − 106

84 (5ν2 − 5ν + 1)
x− 1025435

659736
x2 +

(

−3604

1001
eulerlog6(x) +

610931247213169

36701493028200

)

x3,

(D14)

ρ65(x; ν) = 1 +
220ν3 − 910ν2 + 838ν − 185

144 (3ν2 − 4ν + 1)
x− 59574065

54286848
x2 +

(

−22525

9009
eulerlog5(x) +

67397117912549267

5798416452820992

)

x3,

(D15)

ρ64(x; ν) = 1 +
133ν3 − 581ν2 + 462ν − 86

84 (5ν2 − 5ν + 1)
x− 476887

659736
x2 +

(

−14416

9009
eulerlog4(x) +

180067034480351

24467662018800

)

x3, (D16)

ρ63(x; ν) = 1 +
156ν3 − 750ν2 + 742ν − 169

144 (3ν2 − 4ν + 1)
x− 152153941

271434240
x2 +

(

− 901

1001
eulerlog3(x) +

116042497264681103

28992082264104960

)

x3,

(D17)

ρ62(x; ν) = 1 +
49ν3 − 413ν2 + 378ν − 74

84 (5ν2 − 5ν + 1)
x− 817991

3298680
x2 +

(

−3604

9009
eulerlog2(x) +

812992177581

453104852200

)

x3, (D18)

ρ61(x; ν) = 1 +
124ν3 − 670ν2 + 694ν − 161

144 (3ν2 − 4ν + 1)
x− 79192261

271434240
x2 +

(

− 901

9009
eulerlog1(x) +

6277796663889319

28992082264104960

)

x3,

(D19)
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ρ77(x; ν) = 1 +
1380ν3 − 4963ν2 + 4246ν − 906

714 (3ν2 − 4ν + 1)
x− 32358125

20986602
x2 +

(

−11948

3315
eulerlog7(x) +

66555794049401803

3856993267327200

)

x3,

(D20)

ρ76(x; ν) = 1 +
6104ν4 − 29351ν3 + 37828ν2 − 16185ν + 2144

1666 (7ν3 − 14ν2 + 7ν − 1)
x− 195441224

171390583
x2, (D21)

ρ75(x; ν) = 1 +
804ν3 − 3523ν2 + 3382ν − 762

714 (3ν2 − 4ν + 1)
x− 17354227

20986602
x2 +

(

−59740

32487
eulerlog5(x) +

192862646381533

22039961527584

)

x3,

(D22)

ρ74(x; ν) = 1 +
41076ν4 − 217959ν3 + 298872ν2 − 131805ν + 17756

14994 (7ν3 − 14ν2 + 7ν − 1)
x− 2995755988

4627545741
x2, (D23)

ρ73(x; ν) = 1 +
420ν3 − 2563ν2 + 2806ν − 666

714 (3ν2 − 4ν + 1)
x− 7804375

20986602
x2 +

(

−35844

54145
eulerlog3(x) +

1321461327981547

428554807480800

)

x3,

(D24)

ρ72(x; ν) = 1 +
32760ν4 − 190239ν3 + 273924ν2 − 123489ν + 16832

14994 (7ν3 − 14ν2 + 7ν − 1)
x− 1625746984

4627545741
x2, (D25)

ρ71(x; ν) = 1 +
228ν3 − 2083ν2 + 2518ν − 618

714 (3ν2 − 4ν + 1)
x− 1055091

6995534
x2 +

(

− 11948

162435
eulerlog1(x) +

142228318411021

550999038189600

)

x3,

(D26)

ρ88(x; ν) = 1 +
12243ν4 − 53445ν3 + 64659ν2 − 26778ν + 3482

2736 (7ν3 − 14ν2 + 7ν − 1)
x− 1.5337092502821381 x2, (D27)

ρ87(x; ν) = 1 +
38920ν4 − 207550ν3 + 309498ν2 − 154099ν + 23478

18240 (4ν3 − 10ν2 + 6ν − 1)
x− 1.175404252991305x2, (D28)

ρ86(x; ν) = 1 +
2653ν4 − 13055ν3 + 17269ν2 − 7498ν + 1002

912 (7ν3 − 14ν2 + 7ν − 1)
x− 0.9061610303170207 x2, (D29)

ρ85(x; ν) = 1 +
6056ν4 − 34598ν3 + 54642ν2 − 28055ν + 4350

3648 (4ν3 − 10ν2 + 6ν − 1)
x− 0.7220789990670207x2, (D30)

ρ84(x; ν) = 1 +
4899ν4 − 28965ν3 + 42627ν2 − 19434ν + 2666

2736 (7ν3 − 14ν2 + 7ν − 1)
x− 0.47652059150068155 x2

ρ83(x; ν) = 1 +
24520ν4 − 149950ν3 + 249018ν2 − 131059ν + 20598

18240 (4ν3 − 10ν2 + 6ν − 1)
x− 0.4196774909106648 x2, (D31)

ρ82(x; ν) = 1 +
3063ν4 − 22845ν3 + 37119ν2 − 17598ν + 2462

2736 (7ν3 − 14ν2 + 7ν − 1)
x− 0.2261796441029474x2 (D32)

ρ81(x; ν) = 1 +
21640ν4 − 138430ν3 + 236922ν2 − 126451ν + 20022

18240 (4ν3 − 10ν2 + 6ν − 1)
x− 0.26842133517043704x2 (D33)
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The “eulerlog” functions eulerlogm(x) are defined as

eulerlogm(x) = γE + log 2 +
1

2
log x+ logm , (D34)

where γE is Euler’s constant, γE = 0.577215 . . . and
log(x) the natural logarithm function.

Let us now give the explicit expression of the resid-
ual phase corrections δℓm that are implemented in the

code. For δ2m, δ33 and δ31 we list here explicitly both
their Taylor-expanded forms (labeled with a “Taylor” su-
perscript) and their Padé resummed ones. The δℓm for
higher multipoles can be given only in Taylor-expanded
form and thus the label “Taylor” is omitted. The terms
in boldface are the highest-order known PN terms for
ν = 0. They are omitted when ν 6= 0, and in particular
in the computation of the Padé approximants, but they
are kept in the computation of the ν = 0 EOB waveform.
The Taylor-expanded δℓm read

δTaylor22 =
7

3
y3/2 − 24νy5/2 +

428

105
πy3

(

30995

1134
ν +

962

135
ν2
)

y7/2+

(

1712

315
π

2
−

2203

81

)

y
9/2, (D35)

δTaylor21 =
2

3
y3/2 − 493

4
νy5/2 +

107

105
πy3+

(

214

315
π

2
−

272

81

)

y
9/2, (D36)

δTaylor33 =
13

10
y3/2 − 80897

2430
νy5/2 +

39

7
πy3+

(

78

7
π

2
−

227827

3000

)

y
9/2, (D37)

δ32 =
10 + 33ν

15(1− 3ν)
y3/2 +

52

21
πy3+

(

208

63
π

2
−

9112

405

)

y
9/2, (D38)

δTaylor31 =
13

30
y3/2 − 17ν

10
y5/2 +

13

21
πy3 +

(

26

63
π

2
−

227827

81000
+

)

y
9/2, (D39)

δ44 =
112 + 219ν

120(1− 3ν)
y3/2 +

25136

3465
πy3+

(

201088

10395
π

2
−

55144

375

)

y
9/2, (D40)

δ43 =
486 + 4961ν

810(1− 2ν)
y3/2 +

1571

385
πy3, (D41)

δ42 =
7(1 + 6ν)

15(1− 3ν)
y3/2 +

6284

3465
πy3+

(

25136

10395
π

2
−

6893

375

)

y
9/2, (D42)

δ41 =
2 + 507ν

10(1− 2ν)
y3/2 +

1571

3465
πy3, (D43)

δ55 =
96875 + 857528ν

131250(1− 2ν)
y3/2 . (D44)

Among these, we used δ32, δ4m and δ55 in their Taylor-
expanded form indicated above. By contrast, for δ22,

δ21, δ33 and δ31 we used (denoting vy ≡ √
y) the following

Padé resummed expressions (see Section II B 1 for further
details)

δ22 =
7

3
v3y

808920νπvy + 137388π2v2y + 35ν2(136080 + (154975− 1359276ν)v2y)

808920νπvy + 137388π2v2y + 35ν2(136080 + (154975 + 40404ν)v2y)
, (D45)

δ21 =
2

3
v3y

69020ν + 5992πvy
5992πvy + 2456ν(28 + 493νv2y)

, (D46)

δ33 =
13

10
v3y

1 + 94770πvy/(566279ν)

1 + 94770πvy/(566279ν) + 80897νv2y/3159
, (D47)

δ31 =
13

30
v3y

4641ν + 1690πvy
4641ν + 1690πvy + 18207v2y ν

2
. (D48)
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