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Abstract. We present a new approach to solve the 2+1 Teukolsky equation
for gravitational perturbations of a Kerr black hole. Our approach relies
on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and
spatial compactification. In particular, we present a framework for waveform
generation from point-particle perturbations. Extensive tests of a time domain
implementation in the code Teukode are presented. The code can efficiently deliver
waveforms at future null infinity. The accuracy and convergence of the waveforms’
phase and amplitude is demonstrated.

As a first application of the method, we compute the gravitational waveforms
from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit.
The smaller mass black hole is modeled as a point particle whose dynamics is
driven by an effective-one-body-resummed analytical radiation reaction force. We
compare the analytical, mechanical angular momentum loss (computed using
two different prescriptions) to the gravitational wave angular momentum flux.
We find that higher-order post-Newtonian corrections are needed to improve
the consistency for rapidly spinning binaries. We characterize the multipolar
waveform as a function of the black-hole spin. Close to merger, the subdominant
multipolar amplitudes (notably them = 0 ones) are enhanced for retrograde orbits
with respect to prograde ones. We argue that this effect mirrors nonnegligible
deviations from circularity of the dynamics during the late-plunge and merger
phase. For the first time, we compute the gravitational wave energy flux flowing
into the black hole during the inspiral using a time-domain formalism proposed
by Poisson.

Finally, a self-consistent, iterative method to compute the gravitational wave
fluxes at leading-order in the mass of the particle is developed. The method can
be used alternatively to the analytical radiation reaction in cases the analytical
information is poor or not sufficient. Specifically, we apply it to compute dynamics
and waveforms for a rapidly rotating black hole with dimensionless spin parameter
â = +0.9. For this case, the simulation with the consistent flux differs from the
one with the analytical flux by ∼ 35 gravitational wave cycles over a total of
about 250 cycles. In this simulation the horizon absorption accounts for about
+5 gravitational wave cycles.
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1. Introduction

In this work we develop a new, accurate and efficient time domain wave generation
algorithm for perturbations of the gravitational field around the Kerr spacetime.
We focus on point-particle perturbations, and implement the algorithm to calculate
gravitational waveforms generated by a particle in equatorial motion. The method is
then applied to modeling the late-inspiral–merger waveforms from large-mass-ratio
black hole binaries, using an effective-one-body (EOB) approach for the particle
trajectory. We report new results on the multipolar structure of the waveforms, EOB
radiation reaction, and horizon-absorbed fluxes.

Perturbations of a field with spin s (integer or semi-integer) on a Kerr background
are typically described by a master equation derived by Teukolsky [1, 2]. The
Teukolsky equation (TE) is separable in the frequency domain, therefore solutions
to this equation have been historically obtained first in the frequency domain (see
e.g. [3, 4, 5]). Time domain methods are appealing, however, for the ease of treating
non-circular orbits. The first numerical computation of gravitational perturbations
of Kerr spacetime in the time domain is by Krivan et al. in 1997 [6]. They use
Boyer–Lindquist coordinates and solve the TE as a fully first-order system in 2+1
dimensions after a decomposition into azimuthal angular modes. The system is
discretized using a second-order convergent Lax–Wendroff scheme which has favorable
dissipative properties for numerical stability. The computational boundaries are
placed at finite radii and close to the horizon using a tortoise transformation of the
radial coordinate. The errors from the boundaries are mitigated by using a large
computational domain. Applications and improvements of this scheme can be found,
for example, in [7, 8, 9, 10, 11, 12, 13, 14].

Even though the 2+1 TE is a linear equation, its time-domain integration
with s 6= 0 is challenging and nontrivial due to stiff terms, exponentially growing
continuum modes, and boundary treatment [6, 15]. Until recently, the method
of [6] was the only successful approach to gravitational (|s| = 2) perturbations.
However, developments in computational and geometric methods suggest that this
problem should be revisited. On the geometric side, the accuracy ‡ of the numerical
approach can be significantly improved by the use of horizon-penetrating coordinates
and hyperboloidal compactification [16]. The idea is to use a spacelike foliation that
penetrates the horizon in a regular way and asymptotically approaches null infinity
so that one can compute both the ingoing and the outgoing radiation. This technique
removes the two largest systematic uncertainties of Krivan’s method (and of any
other based only on Boyer–Lindquist coordinates), namely (i) the inner and outer
numerical boundary errors, and (ii) finite-radius-extraction (and/or extrapolation)
errors. On the computational side, our approach is efficient because the computational
domain is much smaller than the one needed in standard Boyer–Lindquist tortoise
coordinates. The efficiency of the method can be further enhanced by employing high
order numerical discretization techniques (spectral methods or finite differencing). The
accuracy and efficiency resulting from the application of the above techniques have
been demonstrated in a calculation of gravitational tail decay rates in Schwarzschild

‡ We distinguish between accuracy and efficiency, referring, respectively, to systematic and
truncation errors. When the only source of error is discretization, an efficient code is also accurate
because it allows the use of more computational resources thereby reducing the truncation error. In
general, however, numerical calculations of gravitational waveforms include systematic errors due to
inaccurate numerical boundary treatment or extrapolation from finite radii. Our claim of accuracy
refers to the removal of these latter sources of error.
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spacetime [17], and for generic spin fields in Kerr spacetime, including the extreme
case [15].

In this paper we develop the work presented in [15] in two directions. First, we
introduce a new foliation of Kerr spacetime which leads to more efficient numerical
computations than in [15]. Second, we extend the approach to point particle
perturbations and test applications relevant for the binary black-hole problem.

Historically, particle perturbations of black hole spacetimes played a crucial role
in understanding the general relativistic two-body problem and the related problem of
modeling the emission of gravitational waves (GWs). Perturbation theory gave access
to the first waveforms from the strong-field/fast-motion regime (e.g. [18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28]), and has been used to study the radiation reaction problem
including black hole absorption (e.g. [29, 30, 31, 32, 33]). Perturbative methods
interface with post-Newtonian (PN) calculations in the test-mass limit [34], and have
led to a very high-order PN expansion of the circular GW flux [35, 36]. Also, wave
generation algorithms and the numerical evolution of linear perturbations sourced by
particles are key steps for the self-force problem [37, 38, 39, 40].

Most important for this work, linear point-particle perturbations provide a
natural tool to model black-hole binaries in the large-mass-ratio limit. Various
strategies have been proposed to model adiabatic inspirals of large-mass-ratio
binaries [41, 42, 43, 44, 45, 10, 11, 46]. More recently, time domain solutions of
the Regge-Wheeler-Zerilli equations (RWZE) [47, 48] with a particle source term
have been used as a building block of a hybrid method that models non-adiabatic
inspirals and the transition inspiral-plunge-ringdown, shortly insplunge [49, 50]. The
method combines the wave generation algorithm with an analytical, effective-one-
body prescription for the particle dynamics. The conservative Hamiltonian equations
of motion for the particle are augmented by a radiation-reaction term, F̂ linear in the
symmetric mass-ratio, i.e. of order O(ν). In this paper, following standard practice
in Numerical Relativity, we define the mass ratio as a quantity larger than 1, that
is q = M/µ, where µ is the mass of the smaller black hole and M the one of the
larger black hole. In our discussion, we will also use the quantity ν ≡ 1/q = µ/M ,
that we address, with a slight abuse of language, “symmetric” mass ratio §. In the
following, we will often set M = 1, which allows to identify ν with µ. The radiation
reaction is built from the factorized and resummed PN waveform for circular orbits
of [51]. The hybrid RWZE/EOB method proved to be a valuable “binary black-
hole laboratory” and led to (i) a detailed analysis of multipolar merger/ringdown
waveforms [52]; (ii) an improved analytical description of horizon-absorbed fluxes [53];
(iii) an improved EOB waveform [54, 55]; and (iv) an accurate calculation of the
gravitational recoil (kick) [52, 56]. Remarkably, the perturbative kick calculation can
be analytically extrapolated to finite mass ratios and provides quantitative answers
also for that case [57]. Most of the results mentioned above rely on an accurate time-
domain RWZE solver that employs the hyperboloidal layer method to include null
infinity in the computational domain [56, 58, 59]. The hybrid, perturbative method
has been applied to the Kerr case in [60, 14, 61], where the TE time domain solver
of [6, 10] is employed.

In the remainder of this paper, we extend the work in [52, 54, 56] to include
the spin of the massive black hole. We characterize the multipolar waveform at

§ The actual symmetric mass ratio of a system of two masses m1 and m2 is defined as ν =
m1m2/(m1 +m2)2. In the large-mass-ratio limit q = m1/m2 � 1 this corresponds to m1m2/(m1 +
m2) ≈ m2 = µ and (m1 +m2) ≈ m1 = M so that ν → µ/M .
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null infinity, quantify finite radius extraction and extrapolation uncertainties, and
investigate the performance of analytical EOB prescriptions for the radiation reaction
during the insplunge as a function of the black hole spin. For the first time, we compute
the gravitational wave energy flux into the black hole during the insplunge using a
time-domain formalism, proposed by Poisson [62]. Finally, we present a numerical
iterative method to compute gravitational wave fluxes at scri and at the horizon that
are consistent to first order in the symmetric mass ratio. The method is applied to
a rapidly spinning case for which the analytical EOB prescription is inaccurate. We
discuss significant differences between the use of the consistent radiation reaction and
the EOB one as well as the effect of including horizon-absorbed fluxes.

This paper is organized as follows. In Sec. 2 we introduce a new, horizon-
penetrating, hyperboloidal foliation of Kerr building on [56, 58, 59], and compare
the new coordinates to those in [63, 15]. In Sec. 3 the inhomogeneous 2+1 TE
is rewritten using these new coordinates. The derivation of the point particle
source term is presented in detail. In Sec. 4 we summarize the numerical method
employed in the Teukode. In particular, we discuss the advantages of the new
coordinates for the numerics and the strategies to represent the particle as a Dirac-
distribution. In Sec. 5 we describe the EOB dynamics used for the nonadiabatic
insplunge experiments and compare it with the one of [60, 64, 61]. In Sec. 6 we assess
the implementation by considering simple geodetic motion (circular orbits and radial
plunge), insplunge waveforms for the nonrotating background, and self-convergence
tests for waveforms. In Sec. 7 we present the main results on large-mass-ratio
insplunge waveforms. First, we study the consistency between two different analytical
prescriptions for the EOB fluxes and the one numerically computed by solving the 2+1
TE for the given dynamics. Second, we present new multipolar merger waveforms at
scri for various values of the background spin up to |â| = 0.9999, and discuss the
structure of amplitudes in relation to the particle dynamics. Third, we quantify finite
radius extraction errors and discuss the performance of the extrapolation procedure
commonly employed in numerical relativity when applied to our setup, e.g. [65]. In
Sec. 8 we present the calculation of the energy absorbed by the black hole during the
insplunge. In Sec. 9 we describe the self-consistent numerical method for the GW
fluxes. A complete calculation for a case study of a rapidly rotating hole is presented.
Conclusions are given in Sec. 10. In Appendix A we collect in tables quantitative
information on the used dynamics and the produced waveforms. Appendix B reviews
the Hamiltonian formulation of the particle dynamics. Appendix C presents a leading-
order analysis of next-to-quasi-circular effects in the quadrupolar waveform.

Geometric units (c = G = 1) are employed throughout the paper.

2. Horizon-penetrating, hyperboloidal foliations of Kerr spacetime

It has long been argued that hyperboloidal foliations should have favorable properties
for numerical calculations of outgoing gravitational radiation [66]. Until recently,
however, it was not clear how to use hyperboloidal surfaces in black hole perturbation
theory. An important step was presented by Moncrief in a talk [67], wherein he showed
how to fix the coordinate location of null infinity (scri-fixing) and gave an example in
Minkowski spacetime (see also [68]). This construction was later used in numerical
studies in Minkowski spacetime [69]. For black hole spacetimes there were no similarly
convenient coordinates available.

A general framework for the construction of explicit, hyperboloidal coordinates
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Figure 1. Foliations of Schwarzschild spacetime (a = 0): ingoing Kerr (iK; green
dotted), Racz–Tóth (RT; blue dashed), and horizon-penetrating-hyperboloidal
(HH; red solid) coordinates with S = 10.

with scri-fixing for stationary, weakly asymptotically flat spacetimes (including
black hole spacetimes) was presented in [16]. The idea is to introduce a new
time coordinate with a height function that satisfies certain asymptotic properties,
and to introduce a compactifying coordinate in the radial direction along with an
explicit conformal factor. The transformation from standard coordinates {t, r} to
hyperboloidal coordinates {t̄, r̄} can be written as

t = t̄+ h(r̄), r =
r̄

Ω(r̄)
, (1)

where h(r̄) is the height function and the explicitly prescribed Ω(r̄) acts both as a
radial compactification and a conformal factor. Asymptotic conditions derived in [16]
make sure that the resulting metric is regular. This method has been successfully
demonstrated in various examples and today there are many choices available for h(r̄)
and Ω(r̄) in Minkowski, Schwarzschild, Reissner–Nordström, and Kerr spacetimes.
How these functions are chosen beyond their asymptotic behavior is important for the
efficiency of the related numerical computation (see Sec. 4.2).

In the following, we discuss two such choices for the Kerr family. The first one
has been constructed by Racz and Tóth in [63] (“RT” coordinates hereafter) and has
been used in a numerical study of tail decay rates in Kerr spacetime. The second one
follows the general ideas of [56] (“HH” for horizon-penetrating, hyperboloidal) and
has been used in numerical studies of quasinormal mode behavior in nearly extremal
Kerr spacetimes in [70]. Both coordinate systems start from the ingoing Kerr metric,
which we review now.

Consider the Kerr metric in Boyer–Lindquist (BL) coordinates {t, r, θ, φ}

gBL = −
(

1− 2Mr

Σ

)
dt2 − 4aMr

Σ
sin2 θ dt dφ+

Σ

4
dr2 (2)

+ Σ dθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ dφ2 ,

where the two parameters are the mass of the Kerr spacetime M and its angular
momentum parameter a, so that its angular momentum is given as j = aM . We
further have Σ ≡ r2 +a2 cos2 θ and ∆ ≡ r2 +a2−2Mr = (r−r+)(r−r−). The ingoing
Kerr (iK) coordinates {t̃, r, θ, ϕ} are obtained through the following transformation

dt̃ = dt+
2Mr

∆
dr, dϕ = dφ+

a

∆
dr , (3)
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i.e.

t̃ = t− r +

∫
a2 + r2

∆
dr, ϕ = φ+ a

∫
dr

∆
. (4)

The resulting Kerr metric reads

giK = −
(

1− 2Mr

Σ

)
dt̃2 − 4aMr

Σ
sin2 θ dt̃ dϕ− 2a sin2 θ

(
1 +

2Mr

Σ

)
drdϕ+ (5)

+
4Mr

Σ
dt̃dr +

(
1 +

2Mr

Σ

)
dr2 + Σdθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θdϕ2.

This representation of the Kerr metric is the starting point for both the RT and HH
coordinates, which we discuss next.

2.1. RT coordinates

The RT coordinates presented in [63] are very similar to Moncrief’s scri-fixing
coordinates in Minkowski spacetime [67, 68, 69] but with an additional, necessary
term to satisfy the asymptotic properties presented in [16]. Denoting the time and
space RT coordinates by {T,R}, the transformation from the ingoing Kerr coordinates
reads

t̃ = T − 4M ln
(
1−R2

)
+

1 +R2

1−R2
, r =

2R

1−R2
. (6)

So the height function and the conformal factor are given by

h(R) =
1 +R2

2Ω
− 4M ln 2Ω , Ω(R) =

1−R2

2
. (7)

Note that the height function blows up at infinity, where the conformal factor vanishes,
in a suitable way. The first term in the height function is the same term as in
Minkowski spacetime; the second term is needed due to the presence of the black
hole. The resulting hyperboloidal foliation of Kerr spacetime is horizon penetrating
and smoothly reaches scri at R = 1. The event horizon R+ in the new radial coordinate
R is located at

R+ =
2
√

2M
√
M2 − a2 − a2 + 2M2 + 1− 2

2
(√
M2 − a2 +M

) . (8)

Figure 1 shows the time surfaces of the RT coordinates in a conformal diagram for
the non-rotating a = 0 case (blue lines). We mention that RT coordinates can be
modified to allow a prescribed scri position [15].

2.2. HH coordinates

We present a coordinate system which includes a free parameter and is more efficient
for numerical calculations as we argue in Sec. 4.2.

An intuitive way to construct hyperboloidal coordinates is to demand invariance
of the coordinate expression for outgoing characteristics in spatially compactifying
coordinates [56]. This requirement is beneficial for numerical purposes because, for a
prescribed choice of spatial compactification, the outgoing characteristic speeds do not
impose strong restrictions on the allowed time step due to the Courant-Friedrich-Lewy
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(CFL) limit. We are mainly interested in the asymptotic behavior of outgoing null
surfaces and therefore ignore the angular dependence by setting a = 0.

The outgoing radial characteristics for vanishing specific angular momentum in
the ingoing Kerr coordinates are given by u = t̃− (r + 4M ln(r − 2M)). For a further
simplification, we drop the subtraction term in the logarithm that is only relevant near
the horizon. Denoting the time and space HH coordinates by {τ, ρ}, our requirement
becomes

t̃− (r + 4M ln r)
!
= τ − (ρ+ 4M ln ρ) . (9)

For any choice of spatial compactification through ρ, the above requirement determines
the foliation. We choose the simplest conformal factor with a variable scri location S
and set

h(ρ) =
ρ

Ω
− ρ− 4M ln Ω, Ω(ρ) = 1− ρ

S
. (10)

Note that the asymptotic behavior of these functions near scri is similar to the one
given for the RT coordinates in (7). The event horizon ρ+ in the new radial coordinate
ρ is located at

ρ+ =
a2S +MS2 +

√
M2S4 − a2S4

a2 + 2MS + S2
. (11)

We will indicate with HHS these coordinates with a specific choice of S, e.g. HH10

refers to S = 10. The foliation HH10 is shown in a conformal diagram in Fig. 1 (red
lines) for a = 0. It is qualitatively similar to the RT coordinates [63] with the main
differences that the location of null infinity can be chosen freely and the outgoing
radial characteristic speeds are similar to those of the ingoing Kerr coordinates.

2.3. Advanced and retarded time coordinates

Gravitational waves propagate along null geodesics. The structure of null geodesics in
Kerr spacetime is rather complicated, but their approximations by Schwarzschild null
geodesics is sufficient for our purposes. The retarded and advanced time coordinates
in Schwarzschild spacetime, u and v, are defined by u = t − r∗ and v = t + r∗,
where r∗ = r + 2M ln(r/2M − 1) is the Schwarzschild tortoise coordinate. We
use these coordinates in Kerr spacetime to connect the particle’s dynamics with
the measured gravitational radiation. This approximation agrees with the general
practice in numerical relativity, where null geodesics in a binary black-hole spacetime
are approximated by their Schwarzschild counterparts for extrapolating gravitational
waveforms [65].

Here, we give the retarded and advanced time coordinates in the horizon-
penetrating, hyperboloidal coordinates used in the simulations. We get for the
retarded coordinate

u(τ, ρ) = τ − ρ− 4M ln

(
Sρ+ 2Mρ− 2MS

S

)
+ 2M ln 2M , (12)

and for the advanced coordinate

v(τ, ρ) = τ + ρ
S + ρ

S − ρ
− 4M ln

(
S − ρ
S

)
− 2M ln(2M) . (13)

The constant term 2M ln 2M comes from different conventions in the tortoise
coordinate. All plots in this paper employ the above coordinates for visualizing
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waves and fluxes at scri or the horizon. This allows a direct comparison of dynamical
quantities (e.g. the particle’s orbital frequency) with the measured wave signal because
the BL-t used for the particle’s dynamics can be identified with the retarded time at
scri and the advanced time at the horizon.

3. Inhomogeneous 2+1 Teukolsky equation with a particle source

In this section we briefly outline the main steps in the derivation of the 2+1 Teukolsky
equation in horizon-penetrating, hyperboloidal coordinates. The calculation of the
stress-energy tensor with a particle source term is presented in detail. Formulas for
gravitational wave fluxes at scri and the horizon in terms of 2+1 fields are collected.

3.1. The Teukolsky equation

The Teukolsky equation describes the evolution of perturbations of certain Weyl tensor
components on a Kerr background [2]. The equation is derived using the Newman–
Penrose formalism [71] which relies on the choice of a tetrad and a coordinate system.
In the original calculation Teukolsky used the Kinnersley tetrad in BL coordinates
which reads

`µ =
(r2 + a2,∆, 0, a)

∆
, nµ =

(r2 + a2,−∆, 0, a)

2Σ
, mµ =

(ia sin θ, 0, 1, i csc θ)√
2(r + ia cos θ)

.

(14)
In practice the equivalent, rationalized versions of mµ and its complex conjugate mµ∗

are preferable, e.g.

mµ =
(r − ia cos θ)√

2Σ
(ia sin θ, 0, 1, i csc θ) . (15)

One straightforward method to obtain the Teukolsky equation in horizon-
penetrating, hyperboloidal coordinates is to substitute the transformation formulas
(1) directly into the equation as given by Teukolsky [2]. Subsequently, the unknown
variable is rescaled for regularity of the coefficients at the horizon and at null
infinity [72, 15]. The field ψ with spin weight s behaves as ∆s towards the horizon
and as r2s+1 towards null infinity. Therefore, the rescaling goes as

ψ 7→ ∆−sr−1ψ . (16)

This is the approach followed in [15] for the transformation of the homogeneous
Teukolsky equation into RT coordinates.

For this paper we found that deriving the Teukolsky equation from scratch using
the new coordinates, while equivalent to the above transformation, yields better results
in the source term because the cancellations for regularity at the horizon are implied
automatically. To this end, we first perform a null rotation that corresponds to the
rescaling given above. For example, for regularity at the horizon a null rotation with
Λ = ∆ can be performed as in [73]. The rotation gives the tetrad fields

`µ = (∆ + 4Mr,∆, 0, 2a) , nµ =
(1,−1, 0, 0)

2Σ
. (17)

Note that, under a Λ rotation, `µ → Λ`µ, nµ → Λ−1nµ and mµ stays unchanged.
With Λ = ∆ and s = −2, the Weyl scalar ψ4 = −nαm∗βnγm∗δCαβγδ transforms as
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ψ4 → ∆−2ψ4. For general s, the null rotation with Λ = ∆ corresponds to a rescaling
with ∆−s. To obtain regularity at scri (in the homogeneous part of the equation) a
subsequent rescaling by r−1 or an additional null rotation must be performed. Then
the tetrad is transformed to horizon-penetrating, hyperboloidal coordinates and used
to calculate the coefficients and the source term for the Teukolsky equation. A more
general approach can also be taken by incorporating free coordinate functions in the
tetrad before the derivation of the TE [17].

Finally the Teukolsky equation is transformed in 2+1 form separating each Fourier
m-mode in the azimuthal direction. The resulting equation has the general form

Cττ∂ττψ + Cτρ∂τρψ + Cρρ∂ρρψ + Cθθ∂θθψ + Cτ∂τψ + Cθ∂θψ + Cρ∂ρψ + C0ψ = Ss ,
(18)

with coefficients C(ρ, θ;m, s) depending on the background coordinates, the spin
weight s, and the azimuthal mode-index m. The index m in the variable ψm has
been suppressed for brevity. The general formulas for the coefficients under time
transformation, spatial compactification, and rescaling can be found in [74].

3.2. Particle source term

The calculation of the stress-energy tensor for a particle source is well documented for
the frequency-domain Teukolsky equation (see [34]). For time domain applications,
however, we could not find a complete description. Therefore we present the
calculation in detail for a Hamiltonian formulation of the particle dynamics
(see Appendix B).

The source term Ss depends on the spin weight s, the background metric, and
the stress-energy tensor, Tµν , of the matter perturbation. The general form of Ss is
given in [2]. Here we discuss gravitational perturbations (s = ±2). In BL coordinates,

S−2 = 8πΣ(r − ia cos θ)4T4 , (19)

S+2 = 8πΣT0 , (20)

where T4 and T0 are expressions involving contractions of the stress-energy tensor with
tetrad vector fields and their first and second partial derivatives with respect to the
background coordinates. Specifically, the contractions involved are

Tmm∗ ≡ Tµνmµm∗ν , Tnm∗ ≡ Tµνnµm∗ν , Tnn ≡ Tµνnµnν . (21)

For example, the term T4 is given by

T4 = (∆ + 3γ − γ∗ + 4µ+ µ∗)(δ∗ − 2τ∗ + 2α)Tnm∗ (22)

− (∆ + 3γ − γ∗ + 4µ+ µ∗)(∆ + 2γ − 2γ∗ + µ∗)Tm∗m∗

+ (δ∗ − τ∗ + β∗ + 3α+ 4π)(∆ + 2γ + 2µ∗)Tnm∗

− (δ∗ − τ∗ + β∗ + 3α+ 4π)(δ∗ − τ∗ + 2β∗ + 2α)Tnn ,

where ∆, δ, γ, µ, τ, α, β are the complex Newmann-Penrose operators, e.g. [2]. In
Eq. (22) ∆ = nα∂α (the underbar is introduced to distinguish it from our previous
definition of ∆) and δ∗ = m∗α∂α are differential operators that depend on the
coordinates. They do not commute, that is, [∆, δ∗] 6= 0. For example, using the
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Kinnersley tetrad in BL coordinates they read

∆ =
1

2Σ

((
r2 + a2

)
∂t −∆∂r + a ∂φ

)
(23)

δ∗ =
1√
2Σ

(
(a2 cos θ sin θ − i r a sin θ)∂t + (r + i a cos θ)∂θ +

(
a

cos θ

sin θ
− i

r

sin θ

)
∂φ

)
.

(24)

The related 2+1 decomposed operators are obtained by the substitution ∂φ → i m.
The stress-energy tensor for a point particle with mass µ can be written as

Tµν = µ

∫
dλ√
−g

uµ uν δ
4(xα −Xα(λ)) (25)

with λ the proper time, Xα(λ) the particle’s worldline and uα(λ) = dXα/dλ the
4-velocity. Assuming the particle’s motion is described by Hamiltonian dynamics
(Appendix B), we write the 4-velocity in terms of the reduced momenta, uα =
(−Ĥ, pi), and the coordinates as xα = (t, qi). Here, t ≡ x0 is a generic time coordinate,
not necessarily the BL time. Replacing the affine parameter λ(t) with t and integrating
Eq. (25) one gets

Tµν =
µ√
−g

dλ

dt
pαpβδ

3(xi − qi(t)) . (26)

For the calculation of the 2+1 source term the equation above is mode decomposed.
In BL coordinates, we write Tµν =

∑
m T

m
µνe

imφ, and using

δ(φ− φ(t)) = (2π)−1
∑
m

eim(φ−φ(t)) , (27)

the Tmµν components read (dropping the m-index for brevity)

T00 =
µA Ĥ2

2πΣ sin θ (Ĥ − ωpφ)
δ(r − r(t))δ(θ − θ(t))e−imφ(t) , (28a)

T0i =
µA (−Ĥ)pi

2πΣ sin θ (Ĥ − ωpφ)
δ(r − r(t))δ(θ − θ(t))e−imφ(t) , (28b)

Tij =
µA pipj

2πΣ sin θ (Ĥ − ωpφ)
δ(r − r(t))δ(θ − θ(t))e−imφ(t) , (28c)

where we have specified to the Kerr metric,
√
−g = Σ sin θ, and used dλ/dt =

A/(Ĥ − ωpφ) (see Eq. (B.9)).
Inspecting Eq. (22) and Eq.’s (28), we define the following functions

L(t, r, θ) =
µ

2πΣ sin θ

dλ

dt
=

µ

2πΣ sin θ

A

Ĥ − ωpφ
(29a)

M(t, r, θ) = mµ∗pµ =
(r + ia cos θ)√

2Σ

(
ia sin θ Ĥ + pθ − i

pφ
sin θ

)
(29b)

N(t, r, θ) = nµpµ =
1

2Σ

(
−Ĥ(r2 + a2)−∆pr + apφ

)
, (29c)

and use them to express the contractions of the stress-energy tensor with the tetrad,
e.g. Tnm∗ = L M N δ2(...) e(...). The quantity T4 in Eq. (22) is then written in
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terms of L,M,N and their derivatives using the chain rule. In practice, in the code,
the algebraic complexity of the source is greatly reduced by computing and storing
L,M,N and derivatives, and combining them.

In order to compute the derivatives in Eq. (22) one needs to make a choice because
the delta functions formally identify the background coordinates with the particle’s
position coordinates. The result is theoretically independent of the particular choice,
but the explicit expressions can differ and, numerically, there may be differences
due to truncation errors (see discussion in [49]). Also, one has to perform the
calculation consistently. We leave all the background coordinates in the L,M,N
functions unchanged and consider functions of time only the reduced momenta pi(t),
the Hamiltonian Ĥ(t) and the trajectory qi(t). The time dependence in the momenta
and the Hamiltonian is assumed to account for dissipative forces (radiation reaction).
The time derivatives of the qi(t) are systematically substituted with the right-hand-
side (r.h.s.) of the Hamiltonian equation of motion, so they do not appear explicitly

but only ṗi(t),
˙̂
H(t), p̈i(t),

¨̂
H(t) remain.

We want to mention here a difference between the calculation of the TE source and
the RWZE source. Differently from the TE, in the RWZE case it is possible to remove
explicit time derivatives from the source by using the (linearized) Bianchi identities in
the metric perturbation framework. Specifically and referring to equations in Ref. [75],
this can be accomplished by substituting the Eq. (4.21) into the even parity source in
Eq. (4.27) and the Eq. (5.12) into the odd parity source in Eq. (5.16). The substitution
is used in the calculation of [76] although not explicitly stated.

Let us comment on the use of HH coordinates. First the NP operators in Eq. (22)
and the tetrad in Eq. (17) have to be rewritten in the HH-coordinate system. For iK
coordinates explicit expressions from [73] can be used as a starting point to apply the
transformation of Eq. (10). Because the particle’s trajectory is usually computed in
BL coordinates we also have to apply the coordinate transformations to the trajectory
and to the momenta (i.e. to Tµν). We emphasize that the rewriting of the source
term in HH-coordinates as sketched above is important in our approach, even though
the terms T4,0 are invariant under coordinate transformations (being tetrad scalars).
The reason is that in the code the particle event at each time step must be located
in hyperboloidal coordinates, say ρ(τ), and any discrete representation of the delta
function (see Sec. 4.3) involves a few grid points around ρ(τ). The transformation
t = τ + h(ρ) introduces a grid-point dependent BL-time t at a given evolution slice
τ . Using a trajectory in BL coordinates would mean to have a non-unique particle’s
position at the evolution slices τ of the code. Re-writing the source term in the
evolution coordinates removes the ambiguities and thus greatly simplifies the source
treatment.

3.3. Gravitational strain

We describe the relation between the master variables of the Teukolsky equation and
the gravitational strain. At scri, the s = −2 master variable ψm of the 2+1 TE
written in HH (or RT) coordinates is rψ4 m, i.e. the m-mode of the Weyl scalar (in
the Kinnersley tetrad) describing asymptotically outgoing radiation multiplied by r.
The s = +2 master variable ψm corresponds instead to the m-mode of the Weyl scalar
rψ0 m also (referring to the tetrad of eq. (17)).
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The GW strain h = h+ − ih× is found by integrating the asymptotic relation

ḧ = 2ψ4 (30)

for each m-mode. The integration gives r hm(u, θ) along scri. We also compute the
(spin weighted with s = −2) multipoles r h`m(u), defined through

r h =
∑
`=2,m

r h`m−2Y`m(θ, φ) =
∑
`=2,m

√
(`+ 2)!

(`− 2)!
Ψ`m −2Y`m(θ, φ) , (31)

by mode-projecting r hm(u, θ) in the θ-direction. The complex quantities Ψ`m =

Ψ
(e)
`m + iΨ

(o)
`m in Eq. (31) are the RWZE variables [76]. The energy flux at scri is given

by

Ė =
1

16π

∫
S2

dΩ |r ḣ|2 =
1

16π

∑
m

∫ 1

−1

dξ |r ḣm|2 , (32)

where in the last expression we have used ξ = cos θ and introduced the mode-
decomposition of h to express the flux in terms of the 2+1 fields. The angular
momentum ~J = (Jx, Jy, Jz) flux is given by

J̇i = − 1

16π
<
{∫

S2

dΩ (r ḣ)∗Ji(r h)

}
, (33)

where Ji are the spin 2 quantum mechanical operators, in particular Jz = ∂φ. For
equatorial orbits Jx = Jy = 0, so the relevant quantity is

J̇z =
1

16π
=

{∑
m

m

∫ 1

−1

dξ (r ḣm)∗(r hm)

}
. (34)

Similarly, the linear momentum ~P = (Px, Py, Pz) flux can be computed from

Ṗi =
1

16π

∫
S2

dΩ ni|r ḣ|2 , (35)

where ni = (sin θ cosφ, sin θ sinφ, cos θ). For equatorial orbits Pz = 0.
The horizon-absorbed GW energy and angular momentum are defined using

the first law of black-hole mechanics [77, 78] κ
8π ȦH = ṀH − ΩHJ̇H, where κ =

(r+−M)/(r2
+−a2) is the surface gravity and ΩH = a/(2Mr+) is the angular velocity

of the horizon. Considering the equations for the horizon generator dynamics, the
variation of the horizon mass and angular momentum can be expressed as [79, 80, 62],

ṀH =
1

16π

∫
dS σABLtγAB , J̇H =

1

16π

∫
dS σABLφγAB , (36)

where dS is the horizon area element of the induced 2-metric, σAB is the ’shear tensor’
(see Eq. (3.4) in [62]), and Lt,φ are Lie derivatives with respect to the Killing vectors

of the background. A similar equation holds for the area variation ȦH, see Eq. (4.24)
in [62]. The equations above are derived considering a particular coordinate system
on the horizon (v,XB) (B = 2, 3), where v = t +

∫
dr∆−1(r2 + a2) is the advanced

time as in (13) (connected to the ingoing Kerr time coordinate from (4) via v = t̃+r),
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and XB = (θ, φ− ΩHv) in terms of BL coordinates. Reference [62] specifies the final
flux equations for the 2+1 fields, which read

ṀH =
r2
+ + a2

4κ

∑
m

[
2κ

∫ 1

−1

dξ |f+
Hm|

2 − imΩH

∫ 1

−1

dξ
(
f+ ∗

Hmf
−
Hm − f

+
Hmf

− ∗
Hm

)]
,

(37)

J̇H = −
r2
+ + a2

4κ

∑
m

im

[∫ 1

−1

dξ
(
f+ ∗

Hmf
−
Hm − f

+
Hmf

− ∗
Hm

)]
. (38)

The complex quantities f±Hm are defined as integrals of the m-mode components of
the Weyl scalar ψ0 at the horizon

f+
Hm(v, θ) = −eκv

∫ ∞
v

dv′e−(κ−imΩH)v′ψ0 m(v′, r+, θ) (39)

f−Hm(v, θ) = −
∫ v

−∞
dv′eimΩHv

′
ψ0 m(v′, r+, θ) . (40)

The Weyl scalar ψ0 m is understood as the one defined by the Hawking-Hartle tetrad.
Our s = +2 TE master variable must be divided by (4r+(r2

+ + a2)2) because we use
the tetrad in Eq. (17) and rescale by r. Note also that f+

Hm(v) depends on the future
behavior of the field. As mentioned in [62], the formalism is not yet optimal for 2+1
simulations; a certain drawback for its use in our setup will be pointed out in Sec. 8.
Nonetheless, we employ it for the first time (to our knowledge) in this work and leave
the development of a more practical method to the future.

4. Numerical method

In Sec. 4.1, we describe the numerical discretization of the TE (see also [15]). In Sec. 4.2
RT and HH coordinates are compared in their efficiency. Strategies for implementing
the Dirac δ-functions are discussed in Sec. 4.3.

4.1. Discretization

For numerical integration the 2+1 TE is written as a first-order in time, and
second-order in space system with reduction variables u = {ψ, ∂τψ}. The domain
(x, θ) ∈ [x+, xS ]× (0, π), where x is the radial coordinate and x+ (xS) is the location
of the horizon (null infinity), is uniformly discretized with Nx × Nθ points. The
spatial derivatives are represented by finite differences up to eighth order of accuracy.
The stencils in the radial direction are centered in the bulk of the domain and lop-
sided/sided at the boundaries (we also tested ghost points at radial boundaries filled
by extrapolation and found no advantage). The angular grid is staggered and ghost
points are employed to implement the boundary conditions on the axis. The ghost
points are filled according to the parity condition π = (−1)m+s. Artificial dissipation
operators are implemented but not used for our results unless mentioned explicitly.

A standard fourth order Runge-Kutta integrator is employed for time advancing
the solution. The time step is chosen according to a CFL condition of type
4t = CCFL min(hx, hθ), where hx is the grid spacing in direction x and the factor
CCFL accounts for the maximum coordinate speed of the PDE system. Even the
most expensive simulations of this work (see Sec. 7) were performed on a standard
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Figure 2. Visualization of ingoing (c−, negative) and outgoing (c+, positive)
radial coordinate speeds. Setting a = 0, on the left panel we use HH1 (solid) and
RT (dashed) coordinates and on the right panel we use HH10 (solid) and HH20

(dashed) coordinates. The incoming (with respect to the domain) characteristic
speeds vanish at both boundaries (horizon and scri) so no boundary conditions
are needed. Note the radial domains are rescaled to [0, 1] for the comparison.

Linux desktop computer using a serial implementation and the GNU C compiler. For
example, EOB insplunge simulations at the typical resolution Nx ×Nθ = 3600× 160
took about 2 weeks to reach the final time 5000M .

The angular integrals for `-mode projections are computed with the Simpson
rule, while integrals in time with the trapezoidal rule. The integrals for the absorbed
fluxes are calculated in post-processing; accuracy is thus dependent on the sampling
of the output in time and angular direction. Note that the f+

Hm integrals at a given
time v∗ are mostly determined by the master function at times (v − v∗) ∼ κ−1,
due to the exponential function. Therefore we restrict the integrations to times v
such that e−κ(v−v∗) > 10−6. Since κ ∈ [0.25, 0.35] (for |â| ∈ [0, 0.9]) the interval is
typically v ∈ [v∗ − 50, v∗ + 50]. We use Gaussian quadratures in the angular direction
interpolating to∼ 50 Gauss-Lobatto output points, and manually vary the time output
sampling until results are satisfactory (see Sec. 6.1).

4.2. Numerical efficiency of background coordinates

Both RT and HH coordinates have desirable properties for numerical treatment:
(i) the horizon and scri are included in the computational domain, (ii) outgoing radial
coordinate speeds c+ vanish at the horizon and ingoing radial coordinate speeds c−
vanish at scri, so no particular treatment at the boundaries is needed (see Fig. 2).

The HHS coordinates, however, are more flexible due to the presence of the free
parameter S, and can therefore be tuned to be more efficient than the RT coordinates.
To understand the effect of this parameter on the simulations, it is useful to view
hyperboloidal surfaces as mediating between characteristic and Cauchy surfaces [16].

Geometrically, S is inversely correlated with the mean curvature of the foliation.
Remember that the asymptotic mean curvature vanishes for Cauchy surfaces and is
unbounded for characteristic ones. Therefore, a large S gives a more Cauchy-like
behavior, whereas a small S gives a more characteristic-like behavior.

Numerically, the mean extrinsic curvature is related to the characteristic
coordinate speeds and the spatial wavelength of waves propagating across the grid
[16]. A large S implies a low characteristic speed and a small spatial wavelength,
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whereas a small S implies a high characteristic speed and a large spatial wavelength.
The trade-off is between the time step size restricted by the CFL condition due to the
characteristic coordinate speeds and spatial resolution restricted by the wavelengths
to be represented. The free parameter allows us to find a good balance between the
time stepping and the spatial resolution requirements.

To find this balance, we compared the performances of RT and HHS coordinates
with S = 1, 10, 20 for a = 0 in wave scattering numerical experiments (no particle,
as in [15]), geodesic dynamics (Sec. 6), and EOB insplunge simulations (Sec. 7) using
the finite difference algorithm described in Sec. 4.1. Note that the RT slices have
high curvature, which implies that there are hardly any waves to be resolved on the
grid but the time stepping requirement becomes very restrictive. The HH1 and the
RT coordinates behave similarly with respect to numerical efficiency. Increasing S
allows us to use larger time steps, but the number of waves on the spatial grid also
increases. When S is too large (above S = 20), waves get blue shifted near the
compactification boundary and artificial dissipation becomes necessary for stability.
Artificial dissipation not only reduces numerical accuracy, but more importantly, it
adds a significant computational cost. Therefore it is preferable to choose a value for
S that does not require dissipation.

We found that S = 10 provides a good balance between time stepping and spatial
resolution requirements without artificial dissipation. The HH10 coordinates give a
speed up of ∼ 2 with respect to HH1 and RT coordinates. We adopted HH10 in all
the simulations presented in the following.

4.3. Representation of δ functions

A key point in the numerical algorithm is the discrete representation of the
distributional δ-functions appearing in the source term. The main requirements are
numerical stability and accuracy. We implemented and tested two different methods.

The first method is the narrow Gaussian representation,

δ(x− q(t))→ δσ(x− q(t)) =
1

σ
√

2π
exp

[
− (x− q(t))2

2σ2

]
, (41)

where σ ∼ nσh�M , nσ ∈ N as in e.g. [49, 52]. This method is very simple, smooth,
and analytical but, in principle, computationally expensive since (i) the Gaussian
must be well resolved on the grid (nσ & 4); (ii) exponential functions must be often
evaluated during the time evolution.

The second method is a 2n-points discrete δ as described in [81, 82, 10]. The
prescriptions discussed therein comprise (a) an order O(h2) with n = 1, (b) an order
O(h4)with n = 2 and (c) an order O(h2) with variable 2n-points representation for the
δ-function. Let us sketch the main ideas, for more details we refer to Sec. III.A of [10].
Assume that the position of the particle α lies between two grid points, α ∈ [xk, xk+1].
Then, the discrete δ has support only for 2n-points δi around α. These values are given
requiring that the integral properties of the δ-function, e.g.

f(α) =

∫
dxf(x)δ(x− α) ≈

∑
hfiδi , (42)

are preserved also on the discrete level. If by chance α = xk, setting δk = 1/h and
δi = 0 elsewhere solves the problem. In general, α does not lie on a grid point so
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Figure 3. Comparison of different δ-function representations in the two different
cases of an EOB insplunge (left panel) and a circular orbit (right panel). Note
the two panels shows different quantities. The left panel shows the evolution of
the m = 2 master variable <(ψ2). The right panel shows the evolution of the
GW fluxes. The left panel illustrates how the discrete representations lead to
instabilities in the simulation if few points are employed. Options (a), (b) and
(c) with n = 4 described in Sec. 4.3 are very noisy, while option (c) with n & 6
gives results comparable to the smooth, analytical Gaussian representation. The
right panel illustrates the accuracy of the discrete representations. The reference
solution is taken from the frequency domain results of Ref. [10] and shown as
a black solid line. Option (c) with n & 6 is less accurate than the Gaussian
representation. Options (a) and (b) are instead very accurate in this case. Thus
we use a Gaussian for any trajectory moving in the (r, θ) plane but the discrete
representation of option (a) for circular orbit simulations.

that interpolation has to be used. Linear interpolation leads to option (a) and (c), the
more accurate cubic interpolation yields option (b). The discrete representation uses
(a) a 2-points support, (b) a 4-points support, and (c) a variable 2n-points support.
For example, considering a 2-points support, linearly interpolating at α, and enforcing
Eq. (42) leads to option (a)

δ(x− q(t))→ δ(a) j =


γ h−1 , j = k

(1− γ)h−1 , j = k + 1

0 , otherwise ,

(43)

where γ = (xk+1 − α)/h. Similar formulas can be derived for the first two derivatives
[10]. Overall, this method is expected to be computationally more efficient than the
Gaussian. However (i) high-order accuracy requires larger stencils, increasing the cost;
(ii) too narrow/lower order representation may lead to instabilities, as we shall discuss
next (see also [10, 11]).

We have tested the different δ-representations for various numerical setups in the
cases of circular orbits and EOB insplunge simulations. Summarizing our findings,
the tests indicate that the discrete δ method in its simplest representation, option
(a), is efficient and accurate for simulating a source that is effectively not moving on
the computational domain, e.g. circular, geodesic orbits. In cases like inspiral-plunge,
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instead, for the same computational cost the most accurate, stable simulations are
achieved with the Gaussian method. An example is given in Fig. 3 where we plot for
the different options on the left panel the m = 2 field <(ψ2) for an EOB insplunge
configuration and on the right the GW energy fluxes from circular orbit experiments.
In case the source is effectively moving on the computational domain (left panel) the
discrete representations (a), (b) and (c) with n = 4 lead to instabilities towards merger.
A larger support makes the discrete representation smoother and only option (c) with
n & 6 gives results comparable to the smooth, analytical Gaussian representation. On
the contrary, in case of circular orbits (right panel) options (a) and (b) are both more
accurate and efficient. The accuracy of the circular fluxes is here evaluated against a
reference solution taken from the frequency domain results of Ref. [10] and shown as
a black solid line. Note that here the Gaussian is more accurate than option (c) with
n = 6. Finally, because the insplunge motion considered later on in this work is fixed
on the θ = π/2 plane, the best option is to use a combination of the two methods: a
Gaussian representation in radial direction and a discrete representation in θ direction
(we adopted option (b)).

5. Dynamics of an inspiraling and plunging, nonspinning point-particle

Let us now discuss our prescription to model the dynamics of an inspiraling and
plunging particle. The dynamics of the particle is described using an Hamiltonian
approach for the conservative part and an analytical radiation reaction force that
accounts for the losses of angular momentum through GWs for the dissipative part.
This analytic, EOB-resummed, but approximate, radiation reaction force will be
discussed in detail and we will review two different choices that were proposed in
the literature to define it. We will use the TE data to argue that one of the two may
be preferable for counterrotating orbits.

It is convenient to describe the Hamiltonian dynamics of a particle (a short review
is attached in Appendix B) using dimensionless quantities like Ĥ ≡ H/µ. We also
denote “reduced” quantities with respect to the background with a hat, e.g. t̂ ≡ t/M ,
although they coincide for M = 1 as used in the simulations. We focus on equatorial
motion only, so that the spin of the black hole is either aligned (corotating case) or
antialigned (counterrotating case) with the orbital angular momentum. The particle
Hamiltonian, Eq. (B.15), specified to the equatorial motion reads,

Ĥ ≡ ĤSO + Ĥorb = ωpφ +

√√√√A

(
1 +

p2
φ

$2

)
+A

∆

Σ
p2
r̂ , (44)

where pφ ≡ Pφ/(µM), r̂ = r/M , pr̂ ≡ Pr̂/µ and the functions (ω,A,∆,Σ, $) are
given by Eqs. (B.10)-(B.14) specified to the equatorial plane (θ = π/2). In Eq. (44)
we separate the Hamiltonian in a formally “pure orbital” part Ĥorb and a “pure
spin-orbit” part ĤSO. This formal separation will be used in Sec. 7.2 below. In
the general case of nonconservative dynamics the radiation reaction force enters in
both the Hamiltonian equations for the momenta, yielding both energy and angular
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momentum losses. The Hamilton’s equations read

˙̂r = ∂pr̂Ĥ, (45)

φ̇ = ∂pφĤ = Ω̂, (46)

ṗr̂ = −∂r̂Ĥ + F̂r̂, (47)

ṗφ = F̂φ , (48)

where the overdot stands for d/dt̂. In the following, we neglect the radial flux
contribution and set F̂r̂ = 0. The reason is that a robust strategy to resum the F̂r̂
in the strong-field regime is, at present, not available, even though the PN expansion
of F̂r̂ is known up to 2PN order [83]. As a consequence, F̂r̂ may be ill-behaved even
for non-extremal values of â. Although F̂r̂ has been considered at leading, Newtonian
order in [60], we believe it is still premature to include this term in the analytical model
of the dynamics. We postpone to future work a detailed analysis of its properties
needed to devise a robust resummation procedure.

By contrast, the analytic expression of F̂φ has been thoroughly used in recent
years. Nonetheless, a careful inspection of the literature indicates that there are two
ways of writing the flux during the plunge. During the latter, the Kepler’s constraint,
1 = Ω̂2r̂3, is not satisfied [84, 85] (only valid for the quasi-adiabatic, circular inspiral)
and the two descriptions differ in their way of relaxing the constraint. We will contrast
the original implementation of F̂φ (see Ref. [86] and references therein), here specified
to the test-mass case in Kerr spacetime, to the different one proposed in [60, 64, 61].
The differences are essentially in the choices of the arguments of certain functions so
to incorporate the non-Keplerian behavior during the plunge.

Let us discuss these differences in detail. In the circular approximation the
mechanical angular momentum loss is given by

F̂φ = − 1

νΩ̂
Ė , (49)

where the energy flux Ė is resummed according to the multipolar waveform
resummation introduced in [51] for nonspinning binaries and extended in [87] to the
spinning case. We consider multipoles up to ` = 8 and the energy flux is given by

Ė =

8∑
`=2

∑̀
m=1

Ė`m =
1

8π

8∑
`=2

∑̀
m=1

(mΩ̂)2|Rh`m(x)|2 , (50)

where we used the usual PN-expansion variable x = Ω̂2/3 and R is the distance ‖ from
the source. The multipoles h`m(x) are written in factorized form as

h`m(x) = h
(N,ε)
`m (x)Ŝ(ε)T`m(Ω̂) [ρ`m(x)]

`
eiδ`m , (51)

where ε = (0, 1) is the parity of `+m,

h
(N,ε)
`m (x) =

ν

R
n

(ε)
`mc`+εx

`+ε
2 Y `−ε,−m

(π
2
, φ
)

(52)

is the Newtonian contribution, Y `m(θ, φ) are the scalar spherical harmonics, and the

functions n
(ε)
`m and c`+ε are given in Eqs. (4a), (4b) and (5) of Ref. [51]. T`m(Ω̂) is the

‖ Here, we use R instead of r, as in Eq. (31), to avoid confusion with the relative separation r.
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Figure 4. Examples of insplunge trajectories for â = −0.9 (left), a = 0
(center), and â = +0.9 (right). The last stable circular orbits (LSO) are located,
respectively, at r̂LSO ' 8.697, 6.0, 2.424. The light rings (LR) are located at
r̂LR ' 3.910, 3.0, 1.558.

tail factor, the source term Ŝ(ε) is specified later, and ρ`m and δ`m are the residual
amplitude and phase corrections. We will specify their structure below. Note here
that the tail factor T`m(Ω̂) explicitly depends on the orbital frequency Ω̂, while all
other factors depend on x = Ω̂2/3 because of Kepler’s constraint for circular orbits.
On a Kerr background, the Kepler constraint may be written as

r̂3
(

1 + âr̂−3/2
)2

Ω̂2 = r̂3
ΩΩ̂2 = 1 , (53)

where we defined

r̂Ω = r̂
(

1 + âr̂−3/2
)2/3

. (54)

Since the circular Kepler constraint is not satisfied during the plunge, the usual
practice is to modify the standard F̂φ derived along circular orbits so that it is
not imposed explicitly in the analytical expressions during the plunge (though it is
automatically recovered during the quasi-circular inspiral). In the literature, one finds
two prescriptions to construct F̂φ’s such that the circular Kepler’s constraint is relaxed
during the plunge.

(A) – the vφ-prescription: The prescription introduced in [50, 86] is to impose that

the argument x entering in the functions h
(N,ε)
`m (x) and ρ`m(x) is the non-Keplerian

(squared) tangential velocity, x = v2
φ, where

vφ = rΩΩ̂ . (55)

When the black hole is spinning, semi-integer powers of x appear in the ρ`m’s. This
introduces a subtlety when the particle is counterrotating with respect to the black
hole, so that, to keep the correct sign, one should see the ρ`m’s as functions of

√
x

(with the correct sign) and not of x. The sources Ŝ(ε) are computed along the
dynamics and we use Ŝ(0) = Ĥ and Ŝ(1) = pφvφ (the Newton-normalized orbital
angular momentum). The ρ`m-functions are given by Eqs. (29a)-(29i) of Ref. [88],
augmented by the full 5PN-accurate terms computed in Ref. [89]. Note that the PN-
based calculations have been pushed to 22 PN for the nonspinning case [35] and to
20 PN for the spinning case [36], so that more analytical information is in principle
available and will be incorporated in the model in the future.
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(B) –the vΩ-prescription: Following Ref. [60], the first difference with (A) is that

the argument of the h
(N,ε)
`m (x) prefactors for the (2, 1) and (4, 4) multipoles differs from

the general prescription introduced above. The straightforward rewriting of Eqs. (13a)
and (13b) of Ref. [60] in our notation ¶ gives

x = v2
φ (`,m) 6= (2, 1), (4, 4) (56)

x = r
− 2
`+ε

Ω v
2(`+ε−2)
`+ε

φ (`,m) = (2, 1), (4, 4) , (57)

with vφ defined by Eq. (55). Explicitly for (`,m) = (2, 1) (ε = 1) and (`,m) = (4, 4)
(ε = 0) the expression Eq. (57) yields

x = Ω̂2/3 = v2
Ω (`,m) = (2, 1), (58)

x = r
1/2
Ω Ω̂ = r

1/2
Ω v3

Ω (`,m) = (4, 4), (59)

where we have introduced the circular velocity vΩ = Ω̂1/3. A second difference to (A)
is that the odd-parity source is normalized to the inverse of vΩ instead of vφ; namely

one uses Ŝ(1) ≡ pφvΩ. In other words, the “Newtonian” angular momentum used to
normalize the odd-parity source is computed imposing the Kepler’s constraint. Finally,
the argument of the ρ`m functions given by Eqs. (29a)-(29i) of Ref. [88] is taken to
be vΩ and not vφ. Note that here the ρ`m’s contain all the 5PN-accurate nonspinning
terms. This is done for consistency with case (A) and differs from Ref. [60] where only
part of the 5PN-accurate information was retained.

In summary, prescription (A) is “less Keplerian” than prescription (B) because of
the explicit relaxation of the Kepler’s constraint when choosing the argument of the
various functions. A priori, one expects (A) to give a more accurate representation
of the “actual” flux when the deviations from circularity are larger; notably when
the black hole spin is high and antialigned with pφ. However, (A) and (B) should be
essentially equivalent when the plunge is more circularized, that is, when the black
hole spin is high and aligned with pφ. In this work, we consider (A) as our standard
way of implementing the non-Keplerian behavior in an analytical expression of the
radiation reaction. On top of its simplicity and uniformity of implementation (the
circular velocity vΩ = Ω̂1/3 is ubiquitously replaced by vφ and Kepler’s constraint
is always relaxed), it offers a more consistent analytical representation of the loss of
mechanical angular momentum during the plunge.

Before contrasting the two flux prescriptions with TE fluxes, we show in Fig. 4
examples of particle trajectories, as obtained with (A), for â = −0.9 (left) â = 0
(center) and â = +0.9 (right). The qualitative differences of the dynamics as a
function of the rotation parameter â are mainly due to the spin-orbit coupling in
the Kerr potential for geodesics. The latter determines the positions of the last stable
orbit (LSO), r̂LSO(â), and the light ring (LR), r̂LR(â). Compared to the nonrotating
case (â = 0), positive spins (aligned to the orbital angular momentum) move the LSO
and LR closer to each other and closer to the horizon, e.g. r̂LSO(â > 0) < r̂LSO(0).
As a consequence, the plunge becomes progressively “more circular” as â → 1, and
the radial momentum of the particle attains a minimum for â = 1. Negative spins
(antialigned with pφ) move the LSO and the LR farther from each other, and farther
from the horizon, i.e. r̂LSO(â < 0) > r̂LSO(0). Retrograde plunges are characterized

¶ Reference [60] uses the notation V `φ , where the ` is a label, and not an exponent, to denote x(`+ε)/2.
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Figure 5. Comparing two different prescriptions for the mechanical angular
momentum loss, −F̂vφφ and −F̂vΩ

φ , with the TE angular momentum flux J̇TE

(all values normalized with (M/µ2)). We set â = −0.99 and focus on late-
plunge and merger phase. The left panel compares vΩ and vφ; the right panel
compares the fluxes. The vertical dashed line marks the light-ring crossing.
The prescription F̂vφφ captures the correct qualitative behavior of the TE flux.

Remaining differences are due to next-to-quasi-circular effects not included in the
modeling of F̂φ and to QNMs ringdown oscillations.

by a turning point, Ω̂ = 0, after which Ω̂ changes sign until the particle locks to the
horizon. This effect is due to frame dragging and happens at r̂ < r̂LR. The radial
momentum of the particle during plunge, as a function of the rotation parameter,
attains a maximum for â = −1.

Now that we have discussed qualitatively the structure of insplunge trajectories,
let us motivate why we use prescription (A) for the radiation reaction force. We focus
on the case â = −0.99 and perform a consistency comparison between EOB and TE
fluxes. The particle inspirals from r̂0 = 9.5. The LSO is at r̂LSO = 8.97, the light-
ring at r̂LR = 3.99 and the outer horizon at r̂+ = 1.14. The left panel of Fig. 5
compares the time evolution of Ω̂, vΩ, and vφ close to merger; the light-ring crossing
time is identified by the dashed vertical line. The right panel of the figure presents,
versus time, the triple comparison between: (i) the mechanical angular momentum
loss −F̂vφφ computed via prescription (A); (ii) −F̂vΩ

φ obtained from prescription (B);
(iii) the TE angular momentum flux computed from the waves extracted at future null
infinity along dynamics (A). Figure 5 highlights that the differences in the analytical
fluxes only occur in the very late plunge phase, very close to the LR crossing (when
r̂ = r̂LR) at tLR/M = 2392.6. As a consequence, the plunge dynamics is unaffected
by the differences between prescriptions (A) and (B). This is why in Fig. 5 we report
only one TE curve: the dynamics is practically the same and so are the TE fluxes.
However, the comparison of Fig. 5 indicates that −F̂vφφ is qualitatively closer to the

numerical flux than −F̂vΩ

φ around and after the light-ring crossing. The main reason

for this difference resides in the behavior of Ω̂ and its effect on the (2, 1) and (4, 4)
Newtonian contributions to the analytical flux, that are proportional to certain powers
of Eqs. (58) and (59). The difference between −F̂vφφ and −F̂vΩ

φ is then easily explained
from the different behavior of vΩ and vφ. Referring to the left panel of Fig. 5, one sees

that, after the Ω̂ = 0 point, vΩ keeps decreasing monotonically, while vφ is limited and

eventually its derivative changes sign. Since Ė21 ∝ x6 and Ė44 ∝ x7 one understands
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the origin of the unphysical growth of the −F̂vΩ

φ when x = v2
Ω for (2, 1) and by

x = r
1/2
Ω v3

Ω̂
for (4, 4), since one gets Ė21 ∝ Ω̂4 and Ė21 ∝ r

7/2
Ω Ω̂7. By contrast, the

milder behavior of vφ when Ω̂ → 0 produces limited fluxes (Ė21, Ė44) and a globally

more consistent behavior of −F̂vφφ . It is also worth noting the consistency between

−F̂vφφ and J̇ after the turning point Ω̂ = 0, with both quantities having approximately

the same magnitude. On the contrary, −F̂vΩ

φ is very different there because of the

vertical tangent of vΩ at Ω̂ = 0. The residual differences between −F̂vφφ and J̇ seen
in the right panel of Fig. (5) are due to: (i) next-to-quasi-circular terms depending
explicitly on pr∗ that are not included in the analytical modeling and (ii) effects of
the ringdown. Though we will quantify the amount of noncircularity of the dynamics
versus â in Sec. 7 and connect it with the multipolar structure of the waveform around
the light-ring crossing, the proper modeling of next-to-quasi-circular effects in the EOB
waveform and flux and ringdown is out of the scope of this paper.

When the black hole spin is aligned with the orbital angular momentum, we shall
show below, in Sec. 7.1, that the differences between −F̂vΩ

φ and −F̂vφφ become much
smaller and practically negligible as â → 1. Actually, when â → 1 one finds that
they are equally inaccurate with respect to TE fluxes, because of missing higher PN
(spin-dependent) terms in the expansion of the ρ`m’s.

6. Code tests: accuracy of gravitational waveforms and fluxes

Before discussing in detail the structure of the multipolar waveforms for â 6= 0 and
their properties when |â| → 1, we present several tests of our new computational
infrastructure. In Sec. 6.1 we first consider circular, equatorial orbits for different
values of â, calculate the GW energy fluxes emitted to future null infinity and to the
horizon, and compare with the results of Ref. [10, 14]. In Sec. 6.2 we discuss the radial
geodetic plunge (no radiation reaction) for â = 0 and compare with the RWZE results
of [52]. This test also gives us the opportunity to discuss the numerical treatment
of the source during the plunge. Self-convergence is studied in Sec. 6.3 for insplunge
waveforms. We show that the expected convergence rate is attained already at low
resolutions and the absolute phase errors are small. Note that this is a challenging test
of the main physical application of the method. In Sec. 6.4 we compare the multipolar
insplunge waveform for a nonrotating background computed with the 2+1 Teukode
and with the 1+1 RWZE code from [54, 56, 53]. All the fluxes shown are normalized
by the appropriate powers of M,µ.

6.1. GW fluxes from circular orbits

This test considers circular equatorial trajectories at various radii r̂0 = 4, 6, 8, 10, for
â = 0, 0.9 and m = 2, 3. GW energy fluxes at scri are compared with the frequency
domain results kindly provided to us by Scott Hughes using an improved version of
his frequency domain code from [10, 14].

GW fluxes at the horizon are calculated in two different ways: (i) using the
formulas presented in Sec. 3.3 and performing in postprocessing the integral of
Eq. (37), and (ii) using the frequency domain formulas of [79]. The latter calculation
is possible because we are considering circular orbits. It is performed as a check of
method (i) to verify its accuracy and robustness. The data of the horizon fluxes are
compared with the corresponding ones also provided to us by Scott Hughes [14]. The
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Table 1. GW energy fluxes at scri, Ė∞m , and at the horizon, ĖHm , for circular,
equatorial orbits at various r̂0 for m = 2, 3 and background rotations â = 0.0, 0.9.
The values are normalized by (M/µ)2. Radii below the LSO are marked with
∗. The resolution used for the shown results is Nx × Nθ = 2400 × 200. The
horizon fluxes are computed with two different methods: the usual frequency
domain formula [79] applicable in our time domain setup because of circular orbits,

and the time domain formula in Eq. (37) (in brackets). ∆Ė∞,Hm /Ė∞,Hm are the
percentual relative differences to the frequency domain values of [10, 14]. Note
that our results include all the `-mode contributions, while the reference solution
truncates the sums at ` = 8.

â m r̂0 Ė∞m AA
A

∆Ė∞m /Ė
∞
m [%] ĖHm ∆ĖHm/Ė

H
m [%]

0 2 4* 8.580479 e-03 8.33e-03 5.64953e-04 (5.64849e-04) 2.03e-02
0 2 6 7.368338 e-04 3.58e-04 2.62484e-06 (2.62443e-06) 3.91e-03
0 2 8 1.650495 e-04 1.52e-03 1.09970e-07 (1.09953e-07) 4.00e-05
0 2 10 5.373492 e-05 2.75e-03 1.13139e-08 (1.13122e-08) 2.14e-03
0.9 2 4 2.661563 e-03 2.57e-03 -5.28423e-05 (-5.28346e-05) 4.72e-03
0.9 2 6 4.621241 e-04 2.81e-03 -3.98467e-06 (-3.98441e-06) 1.30e-03
0.9 2 8 1.254217 e-04 3.44e-03 -5.68006e-07 (-5.67988e-07) 9.13e-04
0.9 2 10 4.455909 e-05 3.49e-03 -1.19689e-07 (-1.19702e-07) 1.36e-03

0 3 4* 2.710318 e-03 7.95e-03 6.92585e-05 (6.92581e-05) 5.34e-03
0 3 6 1.459721 e-04 1.22e-02 5.41814e-08 (5.41814e-08) 8.86e-03
0 3 8 2.449258 e-05 1.31e-02 8.61375e-10 (8.61376e-10) 1.17e-02
0 3 10 6.434177 e-06 1.34e-02 4.69154e-11 (4.69155e-11) 1.28e-02
0.9 3 4 6.466345 e-04 1.37e-02 -3.00663e-06 (-3.00675e-06) 8.98e-03
0.9 3 6 8.042190 e-05 1.34e-02 -1.17094e-07 (-1.17111e-07) 1.11e-02
0.9 3 8 1.717198 e-05 1.35e-02 -1.00392e-08 (-1.00421e-08) 1.20e-02
0.9 3 10 5.043443 e-06 1.34e-02 -1.40038e-09 (-1.40118e-09) 1.21e-02

Table 2. GW energy fluxes for a circular, equatorial orbit at r̂0 = 6 for â = 0.9
in the l = m = 2 mode at different finite extraction radii, for waves extrapolated
using Eq. (62) and K = 2, and for waves at null infinity. The values are normalized
by (M/µ)2.

r̂ 100 200 300 500 740 1000 Extrp. (K = 2) I

Ė22 × 104 4.546 4.595 4.604 4.608 4.610 4.610 4.611 4.611

relevant results are collected in Table 1. Using Nx × Nθ = 2400 × 200 we reproduce
three digits of the frequency domain data, that is, the agreement is around 0.01%. We
mention that already a resolution of 1200× 100 ( runtime ∼ 0.5 hours on a standard
desktop machine) suffices to obtain agreement up to two digits. These results rely on
the waveform extraction at scri. For completeness, Table 2 lists, for the ` = m = 2
mode, the energy flux computed from waveforms extracted at finite radii as well as
the value obtained by extrapolation (see Eq. (62) below), that coincides with the one
computed from scri waveforms.

Similar results are obtained for the horizon fluxes. Table 1 shows that the time
domain calculation in post-processing is indeed accurate. Note that the agreement
with the frequency domain data is obtained also below the last stable orbit, e.g.
r̂0 = 4 for â = 0.
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Figure 6. Comparison of 2+1 TE/1+1 RWZE code waveforms for geodetic
radial infall dynamics. The particle is falling from r̂0 = 25 along the x-axis onto
a Schwarzschild black hole. Left: The ` = 2, m = 0 waveform Ψ20(u) (RWZE
variable) at I (Teukode) and large finite radius (RWZE code). Right: The ` = 2,
m = 0 component of the Weyl scalar ψ4 20 at I (Teukode) and large finite radius
(RWZE code) in logarithmic scale.

6.2. Geodetic radial infall for â = 0: TE vs. RWZE waveforms

This test considers a radial trajectory from r̂0 = 25 along the x-axis in Schwarzschild
background (â = 0). For simplicity, we focus only on the ` = 2, m = 0 multipole. But
contrarily to previous calculations of the waveform from the radial geodetic plunge
along the z-axis [25], also the multipoles with m 6= 0 are switched on since the particle
is moving in the equatorial plane.

The TE waveforms are compared with the RWZE ones computed as described
in [52]. Waveforms from the RWZE code are extracted at large finite radius r̂ ∼ 2200,
TE waveforms are extracted at I . The initial data for the RWZE code solve the
linearized Hamiltonian constraint [25]. On the contrary, initial data for the TE are
not solving the constraints and we trivially set ψ = ψ̇ = 0. This produces an initial
burst of junk radiation which is radiated away after ∼ 200M . In Fig. 6 we compare
the outcome of the two codes in the ` = 2, m = 0 RWZE variable Ψ20(u) (left)
and the Weyl mode ψ4 20(u) (right). Despite the differences in the setup, we find
visual agreement; quantitative differences are below a few percent. In particular the
ψ4 20(u) variables (right panel) agree also during the tail phase and both codes capture
the correct tail decay. The simulation of the correct tail phase requires artificial
dissipation. The tail cannot be captured in the 2+1 RWZE variable because the
integration to Ψ20 of the TE data produces inaccuracies.

Let us discuss the behavior of the particle at the horizon. In BL coordinates
the source smoothly “switches-off” when approaching the horizon due to a red-shift
effect driven by the term dλ/dt → 0 in Eq. (26). If, in addition, the computational
domain does not include the horizon (e.g. the tortoise coordinate is employed) no
particular treatment is needed for the source approaching the horizon, see e.g. [12].
The situation is different in horizon penetrating coordinates. We observe a red-shift
“shrinking” effect but the source does not approach zero towards the horizon, instead
it reaches a finite limit. When the particle has reached the last point before the
horizon, we remove the remaining half of the Gaussian by simply advecting it out of
the computational domain. This procedure is somehow unphysical but does not affect
the waveform since it involves very few points close to the horizon. Furthermore (i) the
inspiral-plunge waveform is mainly determined by the particle crossing the light-ring
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Figure 7. Self-convergence for the amplitude and phase at the extraction point
(ρ, θ) = (10, π/2) for insplunge waveforms. Left: â = 0, right: â = 0.9. The triplet
uses radial resolutions Nx = (400, 600, 900), with nσ = (4, 6, 9) and Nθ = 30.
The expected scaling for the error is 1.54 ≈ 5.0625 for 4th-order finite differences.
Top panels: absolute differences in phase ∆φ and amplitude ∆A between various
resolutions. The differences between medium and high resolution are rescaled
by the expected factor assuming convergence and lay on top of the differences
between low and medium resolution. For visualization the differences in amplitude
are rescaled by an arbitrary factor 200 in the left panel. Bottom panels: ratios of
absolute differences. Convergence is thus observed already at very low resolutions.

and entering the potential well, (ii) the ringdown part of the waveforms is essentially
particle-independent.

6.3. Self-convergence of insplunge waveforms

To test the accuracy of the code, Fig. 7 shows self-convergence tests for â = 0 (left)
and â = 0.9 (right) obtained at resolutions Nx = (400, 600, 900) (all with Nθ = 30),
using 4th order finite differencing and a minimal number of points for the Gaussian,
i.e. σ = nσhx with nσ = (4, 6, 9). The absolute differences in phase and amplitude
between the low and medium resolutions are at the level of ∆φ ∼ 10−7 and ∆A ∼ 10−8

(top panel). In both cases we obtain the expected 4th order convergence up to merger
(bottom panels). Convergence is slightly worse in the â = 0.9 case. The plots are noisy
in the ringdown phase (not shown), where the fields exponentially decrease by several
orders of magnitude. Hence, we expect larger relative errors during the ringdown. For
the science runs of the next section a much higher resolution is employed.
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Figure 9. Case â = 0: comparison between the 2+1 TE and the 1+1 RWZE
code for insplunge-ringdown waveforms with µ/M = 10−3. Absolute phase (left)
and relative amplitude (right) differences for the dominant multipoles at I . The
absolute phase differences are . 2 × 10−3 rad until the time of the light-ring
crossing (uLR = uΩmax = 4308.39M) and remain . 0.01 during the ringdown
(u > 4308.39M). The relative amplitude differences are at the order of ∼ 0.25%
until uLR and remain . 1.25% afterwards.

6.4. TE vs. RWZE insplunge waveforms for â = 0

We compare the 2+1 TE data for â = 0 with the 1+1 RWZE data of [54, 56]. We
use exactly the same dynamics for both sets of simulations, with r̂0 = 7. Figure 8
shows the RWZE Ψ22 complete (inspiral-plunge-ringdown) waveform extracted at I
as computed from two simulations with µ/M = 10−3. The data are in excellent
visual agreement also during the ringdown. A quantitative comparison for various
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Figure 10. Multipolar structure around merger of the Ψ`m insplunge waveforms
with µ/M = 10−3 and â = 0 obtained from the 2+1 TE. Amplitudes (left) and
GW frequencies (right). The vertical lines correspond to the maximum of the

orbital frequency uΩmax = uLR = 4308.39M (the orbital frequency Ω̂ is also
shown as a black line in the right panel). The horizontal lines in the right panel
mark the QNM frequencies of the black hole [90].

Table 3. Properties of multipolar waveforms at merger for â = 0. The retarded
time at the crossing of the light ring uLR, coincides with the time of the maximum
of the orbital frequency, uLR = uΩmax = 4308.39M (for â 6= 0 they can differ, see
Table A1 below) , with MΩmax = 0.136. The peak of each multipolar amplitude

divided by µ, Âmax
`m ≡ Amax

`m /µ occurs at another time uAmax
`m
6= uΩmax . The table

lists the differences ∆t`m = uAmax
`m
− uΩmax . For completeness we also state the

peak values Âmax
`m and the frequencies at that time Mω

Amax
`m

`m . Values in brackets
refer to 1+1 RWZ simulations of [54]. The table confirms that the peak of the
` = m = 2 multipole occurs before the light ring crossing as pointed out in [54].

` m ∆t`m Âmax
`m Mω

Amax
`m

`m

2 2 -2.38 (-2.56) 0.29589 (0.29472) 0.27335 (0.27213)
2 1 9.41 (9.37) 0.10694 (0.10692) 0.29067 (0.29064)
3 3 1.11 (1.00) 0.051673 (0.051456) 0.45462 (0.45321)
3 2 6.85 (6.84) 0.018170 (0.018174) 0.45181 (0.45174)
3 1 10.55 (10.54) 0.0056954 (0.0056872) 0.41176 (0.41129)
4 4 2.90 (2.82) 0.014581 (0.014523) 0.63541 (0.63400)
4 3 7.22 (7.21) 0.0049634 (0.0049653) 0.63686 (0.63668)
4 2 9.54 (9.51) 0.0016570 (0.0016543) 0.62603 (0.62533)
5 5 4.18 (4.12) 0.0052278 (0.0052093) 0.81811 (0.81672)
5 4 7.63 (7.63) 0.0017267 (0.0017277) 0.82170 (0.82148)
6 6 5.20 (5.14) 0.0021703 (0.0021636) 1.00027 (1.00013)
6 5 8.09 (8.09) 0.00069673 (0.00069726) 1.00079 (1.00077)

multipoles is shown in Fig. 9, that reports phase and amplitude differences. Note
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that no time/phase alignment is required to perform such a comparison since both
sets of waveforms are extracted at scri and generated from the same dynamics. Phase
differences are ∆φ`m = |φTE

`m − φRWZ
`m | . 10−3 rad until the time of the light ring

crossing (uLR = uΩmax = 4308.39M) and remain below 0.01 during the ringdown
(u > uLR). The relative amplitude differences ∆A`m/A`m are at the order of 0.25%
until uLR and remain . 1.25% during the ringdown.

These differences are larger than those estimated from self-convergence tests,
so they have systematic origin. The two codes are independent, use different
coordinate systems, solve different equations, and differ in many implementation
details. Furthermore, the Teukode is a 2+1 code and the 2+1 RWZ waveforms are
reconstructed from ψ4 by integration. Remarkably, these systematic differences in
phase and amplitude are small enough to be negligible for many practical purposes.
We note in particular that the ∆φ`m are significantly smaller than the differences
between RWZE and EOB waveforms found in [54, 55]. Thus, the result of that
analysis is robust and confirmed here with an independent waveform data set. In
particular, in [54] it was reported for the first time that the peak of the ` = m = 2
multipole is located earlier in time than the peak of the orbital frequency (for â = 0
the peak coincides with uLR). This observation is confirmed also by the 2+1 TE data,
see Table 3.

The multipolar amplitudes and frequencies near merger are shown in Fig. 10. The
data agree with the analysis of the multipolar structure performed in [52] within the
1+1 RWZE approach. Note in particular the oscillations in the quasi normal mode
(QNM) frequencies, e.g. in modes (2, 1),(2, 2) and (3, 1). As explained in [50, 52],
these oscillations arise from the interference between positive (m > 0) and negative
(m < 0) QNM frequencies.

We analyzed also the effect of finite-radius extraction on the waveforms; these
results are reported in Sec. 7.4 together with â 6= 0 data.

7. From quasi-circular inspiral to merger and ringdown: dynamics and
waveforms for â 6= 0

In this Section we discuss the structure of the waveforms emitted from inspiraling and
coalescing configurations with spin â 6= 0. The underlying dynamics of the particle is
computed according to Sec. 5. The purpose of this Section is threefold: (i) check the
consistency of the (two) analytical expressions of the mechanical angular momentum
loss with the angular momentum flux computed from the waves, Sec. 7.1; (ii)
characterize quantitatively the multipolar waveform around merger, as obtained with
F̂vφφ , for |â| ≤ 0.9 in Sec. 7.2 and for nearly-extremal configurations 0.9 < |â| ≤ 0.9999
in Sec. 7.3, (iii) quantify waveform extrapolation errors in Sec. 7.4.

All simulations in this work refer to µ/M = 10−3 and post-circular initial data.
Simulations are done for different values of black hole spins â ∈ [−0.9999,+0.9999]
and m = 0, 1, ..., 8. For |â| < 0.99 the initial separations r̂0 were chosen such that
the systems perform about ∼ 25 orbits before merger. This implies that the inspiral
is “very-strong-field” when the spins are highly positive (with r̂0 ∼ 3), and relatively
“less-strong-field” when spins are highly negative (with r̂0 ∼ 10). For nearly-extremal
simulations the pronounced potential-well close to the black hole “traps“ the junk
radiation for long times (e.g. 1000M for â = 0.9999), so that we needed bigger
separations/longer inspirals for |â| ≥ 0.99. We collect in Table A1 in Appendix A
detailed information about the configurations we consider.
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) â=0.9

 

 

TE (A)

EOB (A)

TE (B)

EOB (B)

7.277e-02 (r̂=3.05)

200 400 600 800
u/M

−8e−01
−6e−01
−4e−01
−2e−01

0

∆
J̇
/J̇

 

 

( TE(A) − EOB(A) ) / TE(A)

Figure 11. Consistency of numerical and EOB fluxes for â = −0.9 (left) and
â = +0.9 (right). The top panels show the two analytical EOB-flux-prescriptions
(A) and (B) (discussed in Sec. 5) and the respective numerical fluxes produced
using those prescriptions. The vertical lines correspond to the LSO and the
LR crossing. The horizontal line is the circular flux corresponding to the initial
separation. The bottom panels show the difference between the numerical and
the analytical flux when using prescription (A) (the respective line for (B) would
lie on top in the plotted sector). Looking at the bottom left panel the analytical
prescriptions for â = −0.9 match the numerical fluxes within . 1% until well
beyond the LSO. Instead, for â = 0.9 the analytical information is less accurate
(∼ 100% off at LSO). The numerical fluxes (A) and (B) are visually the same in
both plots though the flux prescriptions differ significantly at LR.

The simulations discussed below use 6th-order finite differences. The resolution
employed is Nx × Nθ = (3600 × 160). This setup is chosen to guarantee that the
truncation errors, as estimated from self-convergence tests (Sec. 6.3), are around 10−10,
at least for the dominant multipoles and for most of the configurations.

7.1. Checking the consistency of the analytical radiation reaction

We compare the two prescriptions for the radiation reaction F̂φ described in Sec. 5
with the numerical fluxes of the TE, to complement the analysis in Sec. 5. For both
F̂vφφ and F̂vΩ

φ we compute an insplunge trajectory and perform a TE simulation. The
consistency between the analytical flux and the numerical one (or “exact”, for the
given dynamics) is a crucial test of the consistency of the analytical model. Note that
the comparison presented here is meaningful because in our setup the TE waveforms
are extracted at scri. In the nonspinning case the accuracy of the 5PN-accurate,
resummed, analytical radiation reaction has been tested in [50, 52, 56]. In these
references it was shown that (for µ/M ≤ 10−3) the 5PN-accurate information yields
a radiation reaction consistent up to a few percent even below the LSO crossing.

When â 6= 0 things are more complicated since the accuracy of the analytical
flux, that is based on a limited PN knowledge of the ρ`m’s, actually depends on the
value of â. As already pointed out in previous works, the analytical information we
are employing here is not sufficient to guarantee agreement between analytical and
numerical fluxes for â > 0.7. Practically speaking, the analytical radiation reaction is
too large and yields a smaller number of GW cycles up to merger than what it should
be. This discrepancy was pointed out in Ref. [88], and thoroughly analyzed in follow-
up works [91, 60, 14, 61]. In particular, Ref. [14] proposed to fit several high-order
coefficients entering the ρ`m’s to the circular flux in order to improve the behavior
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Figure 12. Consistency of numerical and EOB analytical fluxes for â = −0.9
(left) and â = +0.9 (right). The two major panels show the EOB-fluxes as

obtained with prescriptions (A), i.e. −F̂vφφ , and (B), i.e. −F̂vΩ
φ , (discussed in

Sec. 5) and the two respective numerical fluxes as functions of twice the orbital

frequency Ω̂ = MΩ. The bottom panels show the difference between the numerical
flux as produced with prescription (A) and (B). The vertical lines correspond to
the LSO, the plots terminate at the LR. The horizontal line is the circular flux
corresponding to the initial separation, which was chosen to provide ∼ 25 orbits
before merger. Note that all orbits are spent before the LSO, Ω̂ < Ω̂LSO.

of the purely analytical ρ`m’s as â → 1 (, see their Fig. 13). Here, for simplicity, we
rely exclusively on analytical information, though we do not expect good consistency
between the analytical and numerical fluxes for large, positive values of the black hole
spin. In Sec. 9 we present a method to calculate the consistent GW flux at linear
order in ν.

Let us compare the GW fluxes for spins â = ±0.9 (with r̂0 as in Table A1).
Figure 11 displays the comparison in the time domain. In the top panels we contrast
J̇ with −F̂vφφ and −F̂vΩ

φ while the bottom panels show the relative difference between

J̇ and −F̂vφφ . The two vertical lines on the plot indicate, from left to right, the LSO
and the LR crossing. As expected, we find excellent agreement between the analytical
and numerical flux when â = −0.9 (also beyond the LSO and almost up to merger),
whereas the agreement is poor for â = +0.9 (the analytical flux is off by a factor 2 at
LSO crossing) due to the lack of higher PN information in the ρ`m’s. This discrepancy
holds for both implementations of the non-Keplerian behavior we discussed in Sec. 5.
Instead, the differences in the prescriptions manifest in the behavior of the fluxes for
â = −0.9 around the light ring crossing time. −F̂vΩ

φ (dashed magenta line in Fig. 11)

deviates from −F̂vφφ , consistently with the â = −0.99 case analyzed above, with −F̂vφφ
remaining close, in shape, to J̇ .

Figure 12 illustrates the same comparison under a different and complementary
point of view: the fluxes are plotted versus the orbital frequency Ω̂ = MΩ. Note that
the ∼ 25 orbits (most of the simulated time) have frequencies Ω̂ < Ω̂LSO (the LSO is
marked by vertical lines). For â < 0 (left panel), the analytical prescription (A) ((B))
deviates from the numerical flux by about 1% (1%) at the LSO and 60% (30%) at the
LR. This is roughly comparable to the nonspinning case [56]. The unphysical feature
of prescription (B) for â < 0 as discussed in Sec. 5 happens at r < rLR and does
therefore not affect the waveforms: both analytical fluxes generate almost identical
numerical fluxes. Differences between the two TE fluxes are below 0.2% during the
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Figure 13. Multipolar amplitudes of the µ/M = 10−3 insplunge waveforms for
certain values of â. The vertical line on each plot marks the crossing of the LR,
except for +0.9999, where it marks the end of the trajectory (in this case our
trajectory stops slightly before the horizon, see discussion in text).
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â → −1 is responsible for the sharpness of the peak of the multipolar waveform
and the increased importance of subdominant multipoles.

whole insplunge. The reason for this is simply that during the plunge (i.e. after the
LSO crossing) the radiation reaction does not play a significant role (quasi-geodetic
plunge.) Although the standard flux can still be improved, we consider the results
for â ≤ 0 quite satisfactory for studying large-mass-ratio mergers. For â = 0.9 the
figure illustrates clearly how both analytical prescriptions systematically deviate from
the numerical fluxes already at the beginning of our (rather strong-field) inspiral.
Comparing the deviations for different â > 0 runs we find that higher spins suffer
from larger deviations. For instance, for â = 0.5 both flux prescriptions deviate from
the numerical outcomes by about 2% at the LSO and more than 60% at the LR;
for â = 0.9 the deviation is about a factor two already at the LSO. The reason is
that, differently from â < 0, the plunge dynamics for â → 1 is very circular and the
radiation reaction plays a significant role also in the strong-field regime. We conclude
that an urgent step for future analytical developments (beyond using the effective
fits of [14]) is the inclusion of higher PN corrections to the ρ`m’s residual amplitude
corrections [36].

7.2. Waveforms for â 6= 0: multipolar hierarchy at merger

Gravitational waveforms for a particle inspiraling and plunging into a Kerr black hole
have been computed for the first time by Sundararajan et al. [12] and then used
and updated in [60, 61]. In particular, the recent Taracchini et al. [61] paper (that
appeared while the current study was being finalized) presented a detailed analysis
of the ringdown waveforms for modes (`,m) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (5, 5).
Our study confirms previous findings but also extends/complements them because it
(i) computes TE data for all multipoles up to ` = m = 8; (ii) considers higher values
of the black hole spin; (iii) presents a detailed analysis of m = 0 modes; and (iv)
explicitly connects the structure of the multipolar waveform around merger with the
noncircularity of the plunge.

Let us focus first on the dependence of the waveform amplitude on â. Figure 13
gathers the time evolutions of the (µ-normalized) amplitudes Â`m ≡ A`m/µ ≡ |Ψ`m|/µ
of several multipoles for representative values of â. This figure is complemented by
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â = −0.5

1530 1630 1730 1830

0.25

0.75

1.25

1.75

A

u/M

M
ω
ℓm

(2,1) 

(3,1)
(3,2)

(4,3)
(5,4)

(6,5)

Ω

(2,2)
(3,3)
(4,4)
(5,5)
(6,6)

(7,7)
(8,8)

QNM(4,4)

QNM(5,5)

QNM(6,6)

QNM(7,7)
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Figure 16. Multipolar GW frequencies of the µ/M = 10−3 insplunge waveforms
for certain values of â. The vertical line on each plot marks the crossing of the
LR, except for +0.9999, where it marks the end of the trajectory (in this case our
trajectory stops slightly before the horizon, see discussion in text). Horizontal
lines are the QNM frequencies of [90]. For nearly-extremal negative â we find
negative frequencies due to the inversion of the trajectory after the LSO-crossing.

Fig. 14 that highlights certain properties of the maxima of the Â`m’s. The left panel
of Fig. 14 shows the global variation of Âmax

`m = max(Â`m) versus (`,m, â). The right
panel of the figure is the vertical plane projection of the left panel restricted to modes
up to ` = m = 4 for clarity. We make the following observations:

(i) In the quasi-circular inspiral, the hierarchy between the (2, 1) and (3, 3) modes
is inverted as the spin goes from negative to positive values. The (2, 1) mode
becomes progressively less important for â → 1. More precisely, looking at the
maxima (right panel of Fig. 14), Âmax

21 ≥ Âmax
33 for â . 0.6 and Âmax

21 < Âmax
33 for

â & 0.6. Similarly, Â31 is close to Â43 during the inspiral for â = −0.9, but at least
an order of magnitude smaller for â = +0.9. This feature is even more prominent
for higher spins with Â43 and Â31 practically coinciding for â = −0.9999 (see
top left plot of Fig. 13) . This behavior is due to the analytical structure of
the leading-order spin-dependent term entering the (2, 1) and (3, 1) waveform
(see for example Eqs. (38b) and (38e) of Ref. [88]). When taking the limit of
a nonspinning point particle, the leading, spin-dependent PN correction to the
Newtonian prefactor is of the form (1 − 3

2 âv) for (2, 1) and (1 − 2âv3) for (3, 1),
which explains why their amplitudes are larger for â < 0 and smaller for â > 0.

(ii) Concerning multipoles with m 6= 0, the peak of each waveform flattens for
â → 1, and becomes sharper and more pronounced for â → −1. This effect
was pointed out in Ref. [61] for the therein computed modes, though explicitly
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shown only for ` = m = 2. Here we complete the results of Ref. [61], showing
how this flattening is a general property of all multipoles, as it is related to the
(absence of) next-to-quasi-circular (NQC) corrections in the waveform. Defining
the function B = Σ/∆, it is meaningful to use for this analysis the radial
momentum pr∗ =

√
A/Bpr, i.e., the momentum conjugate to the definition of a

tortoise-like coordinate as dr∗/dr ≡
√
B/A (note that this r∗ is different from the

usual tortoise coordinate introduced above). The important point is that using
pr∗ the pr-dependent part of the Hamiltonian just reads p2

r∗ , analogously to the
Schwarzschild case [92]. Consistently with the discussion in [61], the magnitude
of pr∗ becomes very small when â → 1 and so does the corresponding effect on
the waveform amplitude. On the contrary, due to the larger values of pr∗ around
light-ring crossing when â → −1, noncircular effects are nonnegligible and yield
the sharpness of the peak of each multipolar amplitude. The dependence of pr∗
on â is illustrated in Fig. 15. In Appendix C we present an heuristic discussion
based on the leading-order Newtonian waveform to practically illustrate how NQC
corrections can shape the multipolar waveform peaks close to merger.

(iii) The effect of pr∗ is particularly evident when inspecting the m = 0 modes,
that only depend on the radial part of the motion. For example, for â = 0.9,
Âmax

20 = 0.0009, which is negligible compared to the dominant mode’s peak
Âmax

22 = 0.3212. By contrast, for â = −0.9 we have Âmax
20 = 0.1788, which is of

the same order as Amax
22 = 0.2738 and Âmax

33 = 0.1996. This kind of information is
gathered in Fig. 14, where the right panel of the figure clearly shows the “growth”
of the subdominant modes over 1 > â > −1. This is particularly striking for the
m = 0 modes, that for â → −1 attain values that are comparable to the ` = m
ones. The consequence of this growth is that the well-known hierarchy of the
modes at merger in the â = 0 case (discussed in Appendix A of [54]) does no
longer hold when â 6= 0.

Let us now turn to discuss the dependence of the multipolar frequencies Mω`m
on â, which is illustrated in Fig. 16 for the same â’s as above. The plots show that the
QNM interference phenomenon mentioned in Sec. 6.4 is greatly enhanced for â < 0,
i.e. retrograde plunges. This is due to the progressively larger excitation of m < 0
QNMs as â→ −1. These results are consistent with the findings of Refs. [60, 61].

Finally, though we do not discuss EOB waveform calibration in this work, we list
in Table A2 useful information extracted from the TE waveforms for a few values of
â. The numerical relativity completion of the EOB waveform requires the calibration
of next-to-quasicircular (NQC) corrections to data and the attachment of the QNM
waveform to the merger one. Both NQC corrections and QNM attachment are usually
performed after a careful analysis of the properties of the merger waveform, i.e. around
the peak of Â22. The table lists the values of Âmax

`m and the corresponding GW
frequencies together with the time lag between the peak of the orbital frequency,
tΩmax , and the peak of each multipole uAmax

`m
,

∆t`m = uAmax
`m
− tΩmax . (60)

We confirm the finding of [60] that ∆t22 (as well as all ∆t`m’s) strongly depends on the
spin for â→ 1. The comparison of our ∆t`m with the values stated in Tab.III of [60]
shows excellent agreement between the two codes, considered that they are completely
independent and use different prescriptions for the radiation reaction. Besides ∆t`m
also the peak of Ω̂ is spin-dependent, because the peak of Ω̂ becomes progressively



GW generation, particles on Kerr 35

less visible for â→ 1, so that Ω̂ becomes effectively monotonic in time for large spins.
As advocated already in [60], Ω̂ is not a good quantity to identify an “anchor” point
(like its maximum, that is a robust choice in the nonspinning case) for EOB modeling
purposes, namely for determining effective next-to-quasi-circular corrections and for
matching the insplunge EOB waveform to the ringdown part. Reference [60] suggested
to use the time when the EOB insplunge waveform peaks. An alternative approach
currently under investigation [92] is to use the peak of the (formally) “pure orbital”
frequency. This frequency is defined as

Ω̂orb = ∂φĤorb, (61)

that, differently from Ω̂, always has a neat isolated peak (before the particle gets to
the horizon) due to the absence of spin-orbit effects. Table A3 in Appendix A displays
the time lag uAmax

22
− t̂Ωmax

orb
between the peak of Â22 and the peak of Ω̂orb. Interestingly,

this time difference is small (order unity) and has a very mild dependence on spin up
to â = 0.8.

7.3. Waveforms for nearly-extremal configurations

The analytical and numerical setup of this work allows us to explore nearly extremal
configurations. In this section we discuss the multipolar hierarchies at merger for the
cases |â| = 0.99, 0.999, 0.9999. To our knowledge these are the first results available of
this kind (compare with [61].)

Since these simulations are technically more challenging than those for |â| ≤ 0.99,
we needed artificial dissipation operators for stability (using the same resolution as
before). Also, for such high positive spins, the analytical radiation reaction (in
both prescriptions) is not only inaccurate but grows very rapidly around the LR
and corrupts the numerical calculation of the trajectory. In order to perform the
simulations one can either (i) stop the particle dynamics before it reaches the horizon
or the LR and advect the source off the domain (for example, for â = 0.999 (0.9999) the
LR is at r̂LR ∼ 1.05 (1.02) while our trajectory stops at r̂end = 1.09); or (ii) smoothly
“switch off” the fluxes after the LSO (similarly to the procedure of Sec. 9). Both
procedures lead to qualitatively the same results, and, although they might introduce
a systematic effect in the QNM waveforms, we do not observe any obvious unphysical
features in using (i).

Figures 13 and 16 include the amplitudes Â`m and frequencies Mω`m for |â| =
0.9999 for various dominant multipoles. (The analogous plots for |â| = 0.99, 0.999
resemble that one and do not convey more information).

The features discussed for lower spins remain valid, i.e. flattening of the waveform
amplitude around merger for â→ 1 and sharpening as â→ −1. The most interesting
features are observed during the QNM ringing. First, the top left plot of Fig. 16
shows that for nearly-extremal negative â the QNM waveforms are characterized by
negative frequencies. The frequencies correspond to the QNM ringing modes with
m < 0 [90]. As noted in [61], they are excited by the change of sense of rotation
of the particle (Ω̂ has a zero) during the plunge. Our analysis extends the previous
one by considering higher spins and including all the multipoles up to ` = m = 8.
Second, for nearly-extremal cases the trapping of modes leads to very weakly damped
QNM’s in the case of free QNM ringing (no particle), see e.g. [93, 94, 90, 15, 70]. We
qualitatively confirm this behavior also for the QNM’s excited by a particle. Damping
times can be measured by fitting the exponential decays of Fig. 13. Note that in
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Figure 17. Finite-extraction-radius effects on the phase of the ψ4 22 waveforms
from insplunges with â = 0 (left) and â = 0.9 (right). Top panels refer to absolute
differences between scri and finite radii r̂ ∼ (100, 200, 500, 750, 1000, 4800).
Bottom panels refer to absolute differences between the scri values and waveforms
extrapolated according to Eq. (62) with various polynomial orders K = 1, 2, 3, 4, 5.
Note the log10 in the y-axis. The vertical line represents the crossing of the LR.

the nearly-extremal regime the exponential decay holds for much longer times than
shown in the plots, e.g. for â = 0.9999 we fit over [5400M, 6800M ] for the ` = m = 2
mode. The damping exponents of the dominant overtones computed for â = 0.9999
are {−3.52,−39.11,−3.61}×10−3 for (`,m) = {(2, 2), (2, 1), (3, 3)} respectively. These
numbers match at . 4% with the corresponding values for free QNM ringing [90].

7.4. Finite extraction errors in waveforms

To estimate finite extraction effects on the waveforms, we have investigated systematic
phase and amplitude differences between scri and finite radius waveforms, as well as
the performance of an extrapolation procedure commonly used in numerical relativity.

Figure 17 (top panels) shows phasing results for two case studies: the â = 0
insplunge ` = m = 2 waveform of Sec. 6.4 (left) and the â = 0.9 insplunge ` = m = 2
waveform (right). In the â = 0 plot finite extraction errors at r̂ ∼ 100 amount to
∆φ22 ∼ 0.16 rad. This value is not only significantly larger than truncation errors,
but has a similar size as the dephasing due to horizon absorption fluxes [53]. Hence,
extraction at these radii can affect relevant physics. Similarly, phase errors in the
â = 0.9 plot are at the order of ∆φ22 ∼ 0.08 rad (∼ 0.03 rad) for r̂ ∼ 100 (∼ 300)
accumulated to merger over 25 orbits. In all the cases analyzed, finite extraction errors
are typically larger at early times. The quantitative difference between finite radius
and scri waveforms is relevant when comparing and calibrating the EOB waveform.
For example, Ref. [54] has found that no time-phase alignment is needed if waveforms
are extracted at scri and that the errors at early times are those expected by the order
of the PN approximation of the EOB waveform.

Many numerical relativity (either nonlinear or perturbative) simulations calculate
approximate GWs at finite radii and use extrapolation to estimate those at null infinity.
Our method allows us to test such a procedure. In order to extrapolate waveforms
extracted at finite radius, we assume that the phase (and the amplitude) of the finite-



GW generation, particles on Kerr 37

radii waveform behaves as a Kth order polynomial in 1/r,

f(u, r) = f (0)(u) +

K∑
k=1

r−kf (k)(u) . (62)

We fit this model for every radius and some choices of the polynomial order K. The
first term approximates the scri waveform. The extrapolation procedure is applied here
on the ψ4 multipolar waveform considering radii r̂ ∼ (100, 200, 500, 750, 1000, 4800).
We find that the leading finite radius effect on φ(u, r) is the 1/r behavior, i.e. the
term K = 1. Using larger K can reduce the phase errors, but we do not find
a single prescription for K > 1 that robustly improves the results among different
datasets. Figure 17 (bottom panels) shows these findings for the case study. Using
linear extrapolation we obtain typical phase differences of ∆φ . 10−3 with respect to
scri. Different results are obtained using extrapolations with K > 1. For example, for
â = 0 the choice K = 5 gives the smallest errors, but for â = 0.9 that choice leads to
a large error and K = 2 is the optimal one. As suggested by the figure, in many cases
K = 2 improves the K = 1 result. Similar results are found for the amplitude (not
shown in the figure). The only important difference in that case is that A(u, r) clearly
shows a parabolic behavior, thus K = 1 extrapolation cannot be used. We suggest
K = 2 as a “safe option” also in nonlinear numerical relativity simulations +.

8. Horizon absorption during insplunge

Here, we discuss the fluxes absorbed by the black hole. The theoretical tools to
compute time-domain horizon fluxes are provided by [62] and described in Sec. 3.3.
The accuracy of our implementation was tested against frequency domain circular
orbit data as presented in Sec. 6.1. In this Section, we compute, for the first time,
horizon fluxes for insplunge trajectories around spinning black holes.

Horizon absorption is nonnegligible during the inspiral and can be important at
merger already in the nonspinning case [53]. In the spinning case, it is expected to be
more relevant because absorption terms enter at 2.5 PN order (4PN for â = 0), e.g. [14].
So far, no numerical calculation of horizon-absorbed fluxes during the insplunge into
a rotating black hole has been performed. The formalism of Poisson [62] allows us to
perform this calculation beyond the LSO, but not up to the LR, as we shall see.

In Fig. 18 we compare the m = 2 horizon absorbed energy flux with the infinity
flux for â = −0.9 (left) and â = 0.9 (right). The horizontal lines indicate the fluxes for
a circular orbit at the initial separation of the insplunge, r̂0 = 9.5 (3.05) for â = −0.9
(0.9). The agreement of our fluxes at initial times with the circular fluxes at r̂0 is
about ∼ 0.2%. During the 25 orbits up to the LSO the ratio of horizon-absorbed
fluxes to null infinity fluxes amounts to ∼ 1% (∼ 3%) for â = −0.9 (0.9). These values
are consistent with circular orbits’ fluxes of Sec. 6.1.

Between the LSO and the LR we observe a rapid variation of the horizon fluxes.
Unfortunately, our calculation becomes inaccurate and we stop it some time before
reaching the LR. The reason of the failure is twofold: (i) the wave-extraction at the
horizon is corrupted by the source term when the particle reaches the horizon (cf. also
Fig. 3 of [53]); (ii) the time-domain formalism by Poisson relies on the calculation

+ Note in the nonlinear case there are more complications due to the dynamical gauge (no fixed
background), dynamical null structure, nonlinear effects, and outer boundary errors.
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Ė
2
,⋆
×

(M
/µ

)2
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Ė
2
,⋆
×

(M
/µ

)2

 

 

4.518e-05 (r̂ = 9.5) 4.356e-07 ×(25)

700 750 800 850 900
0

3.0e−03

6.0e−03

9.0e−03

1.2e−02

1.5e−02

A

u/M

Ė
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Figure 18. Comparison of m = 2 energy fluxes at the horizon (red) and scri (blue
dashed) for â = −0.9 (left panel) and â = 0.9 (right panel). The time coordinate
u refers to the retarded time for scri and the advanced time v for the horizon.
The first vertical lines mark the LSO and the second the LR. The horizontal lines
show the circular orbits’ fluxes at the initial separation. Note the absorbed fluxes
are scaled by multiplicative factors, and, in the right panel, the factor is negative,
i.e. the two fluxes have different signs. The relative importance of horizon fluxes
to infinity fluxes remains around ∼ 1% (∼ 3%) for â = −0.9 (0.9). The waveforms
at the horizon are contaminated by the source at late times. As a consequence,
the horizon fluxes are reliable until v ≈ vr+ − 100M as marked by the solid
line (see discussion in the text). The dashed lines illustrate how we analytically
continue the horizon fluxes in order to build a self-consistent radiation reaction
for insplunge trajectories (see Sec. 9).

of advanced-time integrals (see Sec. 3.3); the resulting absorbed fluxes are corrupted
earlier than the waveforms. In order to exclude the waveform corruption, the flux
integrals are considered up to v ∼ vr+ − 100M , where vr+ is the advanced time
corresponding to the particle reaching the horizon (see also Sec. 4). For this reason
a 2+1 formalism that is “local” in time, i.e. only relies on data on hypersurfaces,
seems desirable. We leave the development of such a formalism, that will allow us to
compute horizon fluxes up to the LR, to the future.

Finally, we stress that the absorbed fluxes calculated in this Section are
inconsistent since they are not taken into account in the trajectory. Analytical results
for absorbed fluxes are available, but the development of resummed expressions valid
in the strong-field–fast-motion regime and for generic spins has just started [95, 14].
In the next Section we develop a numerical method to calculate consistent horizon
absorptions and evaluate their impact on the waveform phasing for a test case.

9. A numerical method to compute O(ν) self-consistent GW fluxes

In this Section we present a method to compute exactly the GW fluxes at linear
order in the symmetric mass ratio O(ν). The method is a simple and self-consistent
procedure that iteratively employs the GW flux extracted from the TE simulations
in the particle dynamics. We have tested it for various spin values; here we discuss
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â=0.9-F̂φ-1

1-2

2-3

3-4
4-5

5-6
6-7 7-8

8-9

Figure 19. Convergence of the iterative self-consistent procedure for the
radiation reaction. Insplunge with â = 0.9 and r0 = 4M . Left: GW fluxes
after each iteration. Note the large differences with respect to the EOB radiation
reaction (iteration 0) even though we used the refining fit given in [14]. Right:
Convergence of the fluxes after each iteration. After 9 iterations we obtain a
self-consistent radiation reaction including both infinity and horizon fluxes.

the case â = 0.9. Differently from the â = 0.9 simulation of previous Sections (see
also Tab. A1), the simulations of this Section start at r̂0 = 4 corresponding to ∼ 120
orbits. We discuss, in particular, the differences with the EOB analytical radiation
reaction and the effect of horizon absorbed fluxes.

At the first iteration, the fluxes are calculated by the analytical EOB formula,
as described in Sec. 5. Then, we run a series of 16 simulations for m = 1, ..., 8
and s = ±2 and compute the numerical fluxes at scri and at the horizon. These
numerical fluxes are then employed for a new calculation of the trajectory. At the
next iteration, new fluxes are computed by another series of 16 simulations. If a fixed
point exists, and/or the first step is accurate enough, convergence should be observed.
This was the case for all the tests we performed, i.e. provided with a “close-enough”
guess, the method converges and the differences between the fluxes at each iteration
consistently converge to zero. The most difficult cases are those with positive high
spins, where EOB fluxes are less accurate. For example, for â = +0.9 we were able
to obtain iterative convergence only when the initial EOB trajectory was computed
incorporating the refined ρ`m’s obtained in Ref. [14] by fitting to numerical data into
the radiation reaction.

The result of the iterative procedure is summarized in Fig. 19. The left panel
shows the complete (scri and horizon) GW flux at each iteration. The peak position
of the flux significantly changes for the first iterations and in total from upeak ≈ 5450M
for the analytical flux to upeak ≈ 5553M for the 9th iteration. On the contrary the
peak amplitude remains approximately the same after the first iteration (see inset),
consistently with the intuition that it is not a radiation-reaction-driven effect, but
rather its structure depends on the plunge phase. The right panel shows that the
relative differences in the fluxes between the previous and the next iteration converge
very rapidly to zero. At iteration 9 the relative flux differences saturate around
10−7 during most of the evolution, and the radiation emitted during the insplunge
is consistent with the one used for the particle to this level.

The impact of the consistent flux on the GW modeling is quantified by considering
the difference in the number of gravitational wave cycles ∆Ngw between the final
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waveform (after 9 iterations) and the starting one (iteration 0): ∆Ngw ∼ 6.7. Note,
however, that the 0th iteration waveform is already very different from the one
computed in Sec. 7.2 without the use of the fit of [14]. The latter difference amounts to
∆Ngw ∼ 28.8; so, overall, the self-consistent simulation differs from the corresponding
EOB one by about ∆Ngw ∼ 35.5.

We tested the importance of horizon absorbed fluxes by performing another self-
consistent calculation that neglects these contributions. We found that the final
trajectory is shorter and the particle reaches the horizon ∼ 117M earlier compared
to the final trajectory that includes horizon absorption. The fact that in presence of
horizon absorption effects the insplunge is longer is explained by superradiance, i.e. the
net effect of horizon-absorption for â = 0.9 is essentially an emission of energy/angular
momentum. The differences in the dynamics correspond to ∆Ngw ∼ 5.4, i.e. ∼ 127.1
instead of ∼ 124.4 orbits before merger. This result highlights the importance of
horizon-absorbed fluxes during the insplunge.

We mention two technical details. First, at early times . 200M our numerical
fluxes are corrupted by “junk radiation” due to the imperfect initial data. For their
use in the trajectory calculation, we linearly extrapolate the flux from u ∈ [250, 500] to
u = 0. This procedure does not introduce a significant error. As a check we compared
the extrapolated value at u = 0 with the circular flux at the relative radius and find
an agreement of ∼ 0.2%. Second, as mentioned in the previous Section, our horizon
fluxes are only reliable until v ≈ vr+ − 100M . For the numerical fluxes we therefore
switch off the absorbed fluxes at late times by multiplying them with a tanh() function
that goes rapidly to zero. The result of this procedure is shown by the dotted red
lines of Fig. 18.

10. Summary and Outlook

We summarize the main findings of this paper and give an outlook for future
developments.

New approach for time-domain solution of the 2+1 Teukolsky equation. We presented
a new approach to compute time domain solutions of the 2+1 Teukolsky equation (TE)
based on horizon-penetrating, hyperboloidal foliations of Kerr spacetime and spatial
compactification. The coordinates are constructed from the ingoing-Kerr coordinates,
introducing a simple compactification and demanding the invariance of the coordinate
expression for outgoing radial characteristics (see Sec. 2). The advantages of these
coordinates in numerical applications are pointed out in Sec. 4.2.

In Sec. 3 we discussed the derivation of a regular inhomogeneous 2+1 TE as
well as the computation of the point-particle source term in the new coordinates. A
natural way to derive a regular TE in horizon-penetrating coordinates is to use the
Hartle-Hawking tetrad [2] or the one in [73] (we use the latter) with a subsequent
rescaling for regularity at scri.

New wave generation algorithm for point-particle perturbations. We implemented and
tested a gravitational wave generation algorithm based on the new coordinates. The
code Teukode [15], employed in this work, uses a standard method-of-lines approach
and finite differencing operators of fourth and sixth order. The Dirac δ functions
involved in the particle description are handled either using a narrow Gaussian or a
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discrete representation [81, 82, 10]. We found that the “best” representation, i.e. the
most accurate and computationally most efficient, depends on the trajectory (see
Sec. 4.3).

We have tested the code for the simple, but physically relevant, cases of circular
orbits (various rotating backgrounds) and a radial geodetic plunge (Schwarzschild). In
the computation of circular GW fluxes at scri and at the horizon, our 2+1 simulations
obtain a good accuracy as verified in a comparison against frequency domain results.

In Sec. 6.4 the results of the 2+1 Teukode for a nonrotating background are
directly compared with those of the RWZE 1+1 code [54, 56, 53]. At the resolution
employed, small systematic differences in the multipolar phases and amplitudes
(i.e. larger then those expected from self-convergence tests) are found between the
two codes. These differences are negligible for many practical purposes; notably they
do not influence, but confirm, the precise analysis of [54, 55].

Modeling the late-inspiral-merger waveforms from large-mass-ratio spinning black hole
binaries. We applied our method to study GWs from large-mass-ratio and spinning
black-hole binaries. The plunging particle’s trajectory is calculated by an analytic and
nonadiabatic effective-one-body approach [49, 50].

Consistency of analytical EOB fluxes. In Sec. 7.1 we have compared and contrasted,
for the first time, the numerical GW flux at scri (as computed from the TE) with
two analytical prescriptions (“F̂vφφ ” and “F̂vΩ

φ ”) for the EOB radiation reaction. For
spins anti-aligned with the orbital angular momentum, the current, resummed, PN
knowledge suffices to make the analytical fluxes agree well with the numerical data.
This is in-line with the nonspinning case [50, 52, 56]. For highly negative spins,
the vφ-prescription is qualitatively and quantitatively closer to the numerical data
in the late plunge and merger phases than the vΩ-prescription. The reason is the
intrinsic “less Keplerian” character of F̂vφφ , represented by the uniform use of vφ = rΩΩ

instead of vΩ = Ω1/3 as the argument in the Newtonian prefactors of the subdominant
(2, 1) and (4, 4) multipoles. As such, the uniform use of vφ in the EOB resummed
(circular) multipolar waveform (and flux) seems the most natural way to incorporate
the violation of Kepler’s law during the plunge; being qualitatively consistent with the
TE data, it offers a more suitable starting point for further improvements of the EOB
insplunge waveform that are needed in the late plunge and merger phase (such as the
addition of NQC corrections and the matching to the ringdown). In the case of spins
aligned with the orbital angular momentum, we found that the dominant source of
uncertainty in both EOB fluxes is the lack of high-order PN resummed knowledge. A
crucial step for the development of next generation EOB models for spinning binaries
will therefore be the update of the EOB resummed multipolar waveforms with higher
order PN corrections. Similar conclusions have been drawn recently in [61] in an
independent analysis based on the waveform phasing. Note that the necessary PN
information to update the ρ`m’s of the EOB waveform is implicitly available in the
work of Shah [36] (a result that complements the 22PN-accurate result for a particle
orbiting a Schwarzschild black hole by Fujita [35]). Once the various PN multipoles
are available and resummed to obtain the higher order PN corrections to the ρ`m’s,
it will be interesting to revise our study of the span of accuracy for the radiation
reaction.
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Multipolar insplunge waveforms at scri. We computed multipolar waveforms
spanning almost the entire black hole rotation parameter range, i.e. corotating and
counterrotating backgrounds up to nearly-extremal spins of |â| = 0.9999. Results
are reported in Sec. 7.2 and Sec. 7.3. The multipolar hierarchy at merger has been
investigated in detail as a function of the spin, considering all the multipoles up to
` = m = 8. Close to merger, the subdominant multipolar amplitudes (notably the
m = 0 ones) are enhanced for retrograde orbits with respect to prograde ones. We
argue that this effect mirrors nonnegligible deviations from circularity of the dynamics
during the late-plunge and merger phase (see in particular Fig. 14 and Appendix C).

The waveforms presented here are the first test-mass waveforms extracted
at scri for inspirals on spinning backgrounds driven by a nonadiabatic EOB
radiation reaction ∗. We believe these results improve quantitatively over previous
calculations [60], due to the extraction at scri and the accuracy of the employed high-
order finite differencing scheme. In particular, systematic uncertainties due to finite
radius extraction and extrapolation are discussed in Sec. 7.4. Future work will be
devoted to the analysis and the improvement of the relative EOB analytical multipolar
waveform following the lines of [54, 60, 55].

Horizon-absorbed fluxes in the time-domain. For the first time to our knowledge, we
have applied the time-domain formalism of Poisson [62] to calculate the GW fluxes
absorbed by the horizon during the insplunge. Results are collected in Sec. 8. We
calculated the horizon fluxes up to (and slightly beyond) the LSO. The TE solution
indicates that during the last 25 orbits and up to the LSO the horizon-absorbed flux
contributes to the total GW flux at least 3% (1%) for â = 0.9 (â = −0.9). These
values are consistent with those from adiabatic circular orbits’ fluxes. Notably, it was
not possible to obtain reliable results up to the LR due to inaccuracies related to the
calculation of the advanced-time integrals and the presence of the particle source term.
We argued that, in our setup, a local formalism using data only from the hypersurfaces
would be preferable.

In future work we will develop an improved analytical description within the EOB
framework extending the work in [95, 14] to evaluate the relevance of absorbed fluxes
for GW astronomy with intermediate-mass-ratio astrophysical binaries [53].

A numerical method for a O(ν)-consistent radiation reaction. We proposed a
numerical, iterative method to calculate self-consistently the GW fluxes to first
order in the symmetric mass ratio, O(ν). As a proof of principle, a calculation of
the O(ν) consistent radiation reaction for â = 0.9, including horizon absorption is
presented in Sec. 9. The self-consistent simulation produces a waveform that differs
by ∆Ngw ∼ 35.5 gravitational wave cycles from the one using the EOB radiation
reaction. Two self-consistent simulations, one with and the other without horizon
absorption, differ by ∆Ngw ∼ 5.4. This result further highlights the importance of
horizon-absorbed fluxes during insplunge.

The method can be used alternatively to the EOB analytical radiation reaction
when the analytical information is poor or not sufficient. For example, it could be
employed for rapidly spinning and/or precessing binaries, for the horizon absorbed
fluxes, and for generic orbits, including eccentric/scattering configurations.

∗ The work of [61] also computed waveforms at scri. Differently from here, however, the Teukolsky
waveforms therein are generated by a radiation reaction computed numerically from frequency domain
circular orbits’ fluxes, and extracted with the algorithm presented in [96]. See also Sec. 7.2.
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Appendix A. Data and Tables

Tab. A1 shows parameters and important times (crossing of LR etc.) and orbital
frequencies of the dynamics. Tab. A2 lists important features of the waveforms at
merger, which will be useful for waveform modeling and calibration studies. Tab. A3
shows the mild dependence of uAmax

22
− t̂Ωmax

orb
discussed in Sec. 7.2.

Table A1. Key numbers for the simulations discussed in this work (see
Figs. 11, 12, 13, 14, 16 ). From left to right: r̂0 is the initial separation,

MΩ0 =
(
r̂3/2 + â

)−1
the initial (circular) orbital frequency; Ω̂LSO ≡ Ω̂

(
t̂LSO

)
and Ω̂LR ≡ Ω̂

(
t̂LR

)
refer to the orbital frequency of the particle at the LSO

and LR crossing respectively, (at t̂LR). The last column of the table lists the
time corresponding to max(MΩ). For â→ 1 the trajectories stop slightly outside
the LR (see discussion in Sec. 7.3). Note, how (i) for positive spins the inspiral
starts already in the strong-field regime and (ii) for â 6= 0, t̂Ωmax 6= t̂LR with
progressively larger differences as â→ 1.

â r̂0 MΩ0 r̂LSO MΩLSO t̂LSO r̂LR MΩLR t̂LR t̂Ωmax

-0.9999 10.00 0.03266 9.000 0.0385 6858.3 4.000 0.03846 7321.7 7321.3
-0.9995 9.90 0.03317 8.999 0.0385 5541.0 4.000 0.03846 6004.4 6004.0
-0.9990 9.80 0.03369 8.997 0.0385 4382.9 3.999 0.03847 4846.3 4845.8
-0.9950 9.75 0.03396 8.986 0.0385 3963.1 3.996 0.03854 4425.2 4424.8
-0.9900 9.50 0.03535 8.972 0.0386 1931.5 3.991 0.03863 2392.6 2392.2
-0.9700 9.40 0.03591 8.916 0.0390 1629.7 3.973 0.03898 2085.5 2085.1
-0.9500 9.50 0.03530 8.859 0.0393 2747.8 3.955 0.03934 3198.1 3197.7
-0.9000 9.50 0.03523 8.717 0.0403 3985.5 3.910 0.04025 4423.4 4423.0
-0.8000 9.20 0.03689 8.432 0.0422 3668.1 3.819 0.04222 4080.8 4080.4
-0.7000 8.90 0.03868 8.143 0.0444 3397.0 3.725 0.04436 3785.2 3784.8
-0.6000 8.60 0.04062 7.851 0.0467 3168.7 3.630 0.04673 3533.0 3532.7
-0.5000 8.30 0.04271 7.555 0.0493 2980.4 3.532 0.04934 3321.3 3321.0
-0.4000 8.00 0.04499 7.254 0.0522 2829.6 3.432 0.05224 3147.7 3147.5
-0.3000 7.70 0.04747 6.949 0.0555 2714.6 3.329 0.05548 3010.4 3010.2
-0.2000 7.40 0.05018 6.639 0.0591 2634.3 3.223 0.05913 2908.4 2908.3
-0.1000 7.10 0.05314 6.323 0.0633 2588.9 3.113 0.06328 2841.8 2841.8
0.0000 7.00 0.05399 6.000 0.0680 4076.1 3.000 0.06802 4308.4 4308.4
0.1000 6.40 0.06138 5.669 0.0735 2012.0 2.882 0.07352 2224.2 2224.3
0.2000 6.10 0.06551 5.329 0.0800 2088.2 2.759 0.07995 2281.0 2281.1
0.3000 5.80 0.07009 4.979 0.0876 2207.2 2.630 0.08762 2381.0 2381.2
0.4000 5.40 0.07723 4.614 0.0969 1862.8 2.493 0.09694 2018.3 2018.6
0.5000 5.01 0.08537 4.233 0.1085 1671.1 2.347 0.10854 1808.8 1809.2
0.6000 4.70 0.09268 3.829 0.1235 1914.2 2.189 0.12351 2034.5 2035.0
0.7000 4.10 0.11109 3.393 0.1438 1126.9 2.013 0.14379 1230.1 1230.9
0.8000 3.80 0.12184 2.907 0.1736 1571.6 1.811 0.17360 1657.3 1658.5
0.9000 3.05 0.16060 2.321 0.2251 820.7 1.558 0.22514 883.6 886.2
0.9500 3.02 0.16134 1.937 0.2732 1432.9 1.386 0.27316 1472.5 1491.6
0.9700 3.30 0.14358 1.738 0.3037 2813.7 1.296 0.30368 2841.9 2862.4
0.9900 3.01 0.16097 1.454 0.3510 2010.0 1.168 0.35101 2032.6 2058.5
0.9950 3.60 0.12779 1.341 0.3722 4914.9 1.118 0.37215 4941.1 4945.2
0.9990 3.60 0.12772 1.182 0.4137 5018.1 1.052 0.45258 × 5032.5
0.9995 3.60 0.12771 1.140 0.4308 5034.2 1.037 0.45309 × 5043.6
0.9999 3.60 0.12771 1.079 0.4537 × 1.016 0.45368 × 5052.5
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Table A2. Properties of multipolar waveforms at merger for representative values
of â. See Table 3 for definitions. The values in brackets are the numbers found
in [60].

` m â ∆t`m Âmax
`m Mω

Amax
`m

`m â ∆t`m Âmax
`m Mω

Amax
`m

`m

2 2 0.5 −7.23 (−7.22) 0.3147 0.3396 −0.5 −0.03 (−0.08) 0.2820 0.2378
2 1 0.5 3.83 0.0666 0.2912 −0.5 12.79 0.1508 0.2391
2 0 0.5 8.45 0.0155 × −0.5 12.81 0.1108 ×
3 3 0.5 −1.99 0.0576 0.5678 −0.5 2.76 0.0480 0.3916
3 2 0.5 −1.61 0.0146 0.4262 −0.5 12.15 0.0220 0.4422
3 1 0.5 3.12 0.0025 0.3514 −0.5 12.10 0.0115 0.3162
3 0 0.5 8.94 0.0004 × −0.5 17.93 0.0091 ×
4 4 0.5 0.32 0.0169 0.7954 −0.5 4.40 0.0132 0.5458
4 3 0.5 0.54 0.0046 0.6535 −0.5 10.10 0.0056 0.5934
4 2 0.5 1.06 0.0009 0.5306 −0.5 12.44 0.0027 0.5719
4 1 0.5 4.81 0.0001 0.4958 −0.5 16.38 0.0015 0.4168
4 0 0.5 8.69 2.16e-05 × −0.5 16.22 0.0011 ×
2 2 0.7 −12.74 (−12.77) 0.3228 0.3886 −0.7 0.76 (×) 0.2776 0.2279
2 1 0.7 −0.02 0.0472 0.2950 −0.7 13.62 0.1728 0.2095
2 0 0.7 6.50 0.0061 × −0.7 13.43 0.1418 ×
3 3 0.7 −5.10 0.0611 0.6505 −0.7 3.28 0.0468 0.3729
3 2 0.7 −9.57 0.0143 0.4236 −0.7 13.24 0.0241 0.4015
3 1 0.7 −1.12 0.0018 0.3196 −0.7 18.65 0.0151 0.2230
3 0 0.7 8.30 0.0001 × −0.7 18.38 0.0138 ×
4 4 0.7 −2.12 0.0183 0.9117 −0.7 4.90 0.0128 0.5192
4 3 0.7 −4.66 0.0047 0.6832 −0.7 12.92 0.0058 0.5907
4 2 0.7 −9.29 0.0007 0.4515 −0.7 17.17 0.0032 0.5043
4 1 0.7 −0.39 5.97e-05 0.3849 −0.7 16.79 0.0022 0.3207
4 0 0.7 27.91 4.68e-06 × −0.7 16.61 0.0018 ×
2 2 0.9 −39.16 (−39.09) 0.3212 0.4771 −0.9 1.54 (1.60) 0.2738 0.2198
2 1 0.9 −35.01 0.0249 0.2509 −0.9 14.36 0.1996 0.1738
2 0 0.9 0.09 0.0009 × −0.9 14.03 0.1788 ×
3 3 0.9 −18.03 0.0645 0.8013 −0.9 3.75 0.0459 0.3567
3 2 0.9 −35.46 0.0148 0.4860 −0.9 13.94 0.0267 0.3442
3 1 0.9 −26.01 0.0010 0.2711 −0.9 19.13 0.0209 0.1295
3 0 0.9 5.18 1.75e-05 × −0.9 18.82 0.0203 ×
4 4 0.9 −12.11 0.0201 1.1223 −0.9 5.37 0.0125 0.4960
4 3 0.9 −19.96 0.0052 0.7959 −0.9 13.93 0.0062 0.5318
4 2 0.9 −51.22 0.0007 0.4624 −0.9 17.65 0.0042 0.3645
4 1 0.9 −13.43 3.11e-05 0.3218 −0.9 17.18 0.0032 0.2089
4 0 0.9 21.41 4.17e-07 × −0.9 16.98 0.0029 ×
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Table A3. Time lag between Ω̂max, Ω̂max
orb and Âmax

22 varying â. The time

difference uAmax
22
− t̂Ωmax

orb
exhibits a mild dependence on â up to â = 0.8.

â ∆t22 t̂Ωmax − t̂Ωmax
orb

uAmax
22
− t̂Ωmax

orb

−0.9999 1.94 −4.09 −2.15
−0.9990 1.93 −4.09 −2.16
−0.9900 1.90 −4.07 −2.17
−0.9500 1.74 −3.97 −2.23
−0.9000 1.54 −3.84 −2.30
−0.8000 1.15 −3.56 −2.41
−0.7000 0.76 −3.26 −2.50
−0.6000 0.37 −2.93 −2.56
−0.5000 −0.03 −2.56 −2.59
−0.4000 −0.43 −2.16 −2.59
−0.3000 −0.86 −1.71 −2.57
−0.2000 −1.33 −1.21 −2.54
−0.1000 −1.83 −0.65 −2.48

0.0000 −2.38 0.00 −2.38
0.1000 −3.02 0.75 −2.27
0.2000 −3.76 1.64 −2.12
0.3000 −4.64 2.73 −1.91
0.4000 −5.76 4.12 −1.64
0.5000 −7.24 6.00 −1.24
0.6000 −9.35 8.80 −0.55
0.7000 −12.74 13.63 0.89
0.8000 −19.36 24.86 5.50
0.9000 −39.16 88.26 49.10
0.9500 −85.79 323.13 237.34
0.9900 −156.26 670.37 514.11
0.9990 −154.70 862.53 707.83
0.9999 −154.96 1122.53 967.57

Appendix B. Hamiltonian dynamics

The geodesic motion of a particle on a fixed background metric can be expressed
in Hamiltonian form using coordinates qα (e.g. qα = (t, r, θ, φ)) and the conjugate
momenta pα (e.g. Pα = (Pt, Pr, Pθ, Pφ)). The affine parameter λ disappears. One
starts from the four dimensional Hamiltonian H written as

H =
1

2
gαβPαPβ = −1

2
µ2 , (B.1)

where the second equation comes from using the length of the geodesic as the affine
parameter itself. The reduced momenta are defined as

dqα
dλ

=
Pα
µ
≡ pα , (B.2)

which leads to the expression
gαβpαpβ = −1 . (B.3)
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Since the dynamics does not depend explicitly on the affine parameter λ (,i.e. the
proper time) one can use the time coordinate as the integration parameter and thus
reduce the geodesic equations generated by the superhamiltonian, Eq. (B.1), to just
six Hamilton equations. The Hamiltonian is defined from Eq. (B.3) as

Ĥ ≡ H

µ
= −p0 =

g0ipi
g00

+

(
g0ipi
g00

− gijpipj + 1

g00

)1/2

. (B.4)

Note that Ĥ is the energy that is conserved for geodesic orbits, i.e. one of the
first integrals of motion that one gets from the usual Lagrangian description of the
relativistic geodesic motion. The equations of motion follow,

dqi

dt
=
∂Ĥ

∂pi
;

dpi
dt

= −∂Ĥ
∂qi

+ F̂i . (B.5)

We introduced explicitly at the r.h.s. of the second set of equations the dissipative
terms F̂i that represent the radiation reaction. For example F̂φ is prescribed in the
EOB model as a resummed analytical expression for the radiation-reaction. The
Hamiltonians relevant for this work are given below. From the Schwarzschild metric

ds2 = −AS(r̂)dt2 +A−1
S (r̂)dr̂2 + r̂2(dθ2 + sin2 θdφ2) , (B.6)

one gets the well-known Schwarzschild Hamiltonian

ĤSchw =

√√√√AS(r̂)

(
1 +

p2
φ

r̂2

)
+AS(r̂)2p2

r̂ (B.7)

where AS(r̂) = (1−2/r̂). Note that we use normalized coordinates, r̂ ≡ r/M . Moving
to Kerr spacetime, the line element can be written as (we adopt a common notation,
see e.g. [97])

ds2 = −Adt2 +$2(dφ− ωdt)2 +
Σ

∆
dr̂2 + Σdθ2 . (B.8)

The inverse metric that enters the definition of the Hamiltonian reads

gµν =


−1/A 0 0 −ω/A

0 ∆/Σ 0 0
0 0 1/Σ 0

−ω/α2 0 0 1/$2 − ω2/A

 , (B.9)

where one has defined

Σ ≡ r̂2 + â2 cos2 θ (B.10)

∆ ≡ r̂2 − 2r̂ + â2 (B.11)

A ≡ Σ∆

Σ∆ + 2r̂(â2 + r̂2)
(B.12)

ω ≡ 2r̂â

Σ∆ + 2r̂(â2 + r̂2)
(B.13)

$2 ≡
[

Σ∆ + 2r̂(â2 + r̂2)

Σ

]
sin2 θ . (B.14)
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Figure C1. Effect of next-to-quasi-circular correction factors to the Newtonian
(circular) waveform for â = ±0.9. NQC terms are responsible for the sharpening
of the amplitude’s peak when â < 0.

The Hamiltonian of a nonspinning particle on Kerr spacetime is finally written as

ĤKerr = ωpφ +

√√√√A

(
1 +

p2
φ

$2

)
+
A

Σ
p2
θ +A

∆

Σ
p2
r̂ . (B.15)

Appendix C. Next-to-quasi-circular effects in the multipolar waveform
amplitude

In Sec. 7 we pointed out that (consistently with the discussion in Ref. [61]) next-
to-quasi-circular (NQC) effects related to the growth of pr∗ in the late-plunge and
merger phase when â→ −1 are responsible for the corresponding “sharpening” of the
peaks of the multipolar amplitudes Â`m. On the contrary, when â → 1 and pr∗ is
almost negligible, the peak is rather flat and barely distinguishable. In other words,
when â → +1 one has a long, persistent, quasi-adiabatic inspiral until the particle
locks to the black hole horizon. In this Appendix we add some details, showing how
NQC effects can practically act to shape the waveform amplitude around merger.
For pedagogical purposes, we focus on the ` = 2 modes only and use Newtonian-like
waveforms to illustrate the effect. The same structural behavior is valid also for the
other multipoles.

At the leading-order, Newtonian level the (µ-normalized) quadrupolar mass
moments (Î20, Î22) and the mass current Ŝ21 moment of a particle moving along a
trajectory expressed in terms of (r, φ) read

Î22 =

√
π

30
r̂2e−2iφ, (C.1)

Ŝ21 =

√
16π

45
r̂3Ω̂e−iφ, (C.2)

Î20 = −
√

π

15
r̂2. (C.3)

The leading-order waveform is computed taking two time derivatives of these
multipoles. The numerical constants here are chosen consistently with our RWZ
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normalizations. Replacing dr/dt → pr∗ (as they coincide in the Newtonian limit)
in the two time derivatives of the multipolar moments, one finds

ÂNewt
22 = Â0

22Â
NQC
22 =

√
16π

30
v2
φ

(
1− n1

2
− n2

2

)
, (C.4)

ÂNewt
21 = Â0

21Â
NQC
21 =

√
16π

45
v3
φ (1− 6n1 − 3n2 − 6n3) , (C.5)

ÂNewt
20 =

√
4π

15

(
ṗ2
r∗ + rṗr∗

)
. (C.6)

Here, the m 6= 0 amplitudes were factorized in a circular prefactor, Â0
`m, where we

replaced rΩ̂ → rΩΩ̂ = vφ, and a NQC correction factor, ÂNQC
`m , that depends on pr∗

through the factors

n1 =
p2
r∗

(r̂Ω̂)2
, (C.7)

n2 =
ṗr∗

r̂Ω̂2
, (C.8)

n3 =
pr∗

r̂Ω̂2

˙̂
Ω

Ω̂
. (C.9)

Useful conclusions can be driven from this simple Newtonian formulas. Let us first
focus on the (2, 1) mode end explore its dependence on â. Figure C1 illustrates the
effect of the NQC corrections (n1, n2, n3) on the circular waveform (represented by a
thin green line) when â = −0.9 (left panel) and â = +0.9 (right panel). Note that
the vertical dashed line in the figure marks the location of the peak of Ω̂ and that
the plot is done versus t − tLR, so to easily identify the merger. When â = −0.9 one
sees that the large effect of the noncircular factors (n1, n2, n3) produces a sharpening
of the waveform amplitude, while the time location of the peak moves to the right,
closer to the light-ring crossing. On the contrary, for â = +0.9 the much smaller
amplitude of the NQC factor is unable to further sharpen the waveform peaks, but
just results in moving it farther to the left of the light-ring crossing. This simple
Newtonian-based example is helpful in understanding heuristically the role of the NQC
amplitude effects incorporated in the TE waveforms displayed in Fig. 13. A similar
heuristic understanding can be driven also for the other multipoles. Evidently, in the
actual TE waveform the numerical coefficients in Eq. (C.5) are replaced by functions
of 1/r so that the actual behavior is more complicated than what is discussed here,
though the behavior of the NQC terms is the key element behind the sharpening of
the peak of the Â`m as â→ −1.

The inspection of Figs. 13 also shows that, for a given value of â (,i.e. a given
behavior of pr∗), and a given value of ` the peaks of amplitudes with ` = m are
always less pronounced (with respect to the inspiral part) than the corresponding
0 ≤ m < ` subdominant modes. This holds true for any value of â and is explained
as due to differences between the various ÂNQC

`m ’s. Again, the Newtonian analysis
helps us understanding the key physical elements. For example, when one looks at
the Newtonian NQC corrections, Eqs. (C.4) and (C.5), one sees that, for a given value
of pr∗ , the absolute values of the coefficients of the ni factors are smaller than 1 in

ÂNQC
21 , while they are larger than 1 in ÂNQC

22 . This implies that the NQC correction
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Figure C2. Comparing the NQC correction factors ÂNQC
22 and ÂNQC

21 for
â = −0.9.

factor for (2, 1) is larger than the one for (2, 2), as illustrated in Fig. C2. Note that n3

is approximately degenerate with n1 when using the Kepler’s constraint for circular

orbits: at leading order one has
˙̂
Ω/Ω̂ = −2/3 (pr∗/r) that is n3 ≈ −2/3n1, which yields

Â21 ∝ (1 − 2n1 − 3n2). An analogous behavior is found for any other subdominant
mode, in the sense that, for any `, the NQC correction for 0 ≤ m < ` is always
larger than for ` = m, and progressively increasing as m → 0. It is remarkable that
the Newtonian analysis suffices in capturing the essential elements of the hierarchical
behavior we find in the complete waveform. We postpone to further studies a detailed
analysis of the effect on each multipole of the other PN-resummed corrections factors
(Ŝ(ε), T`m, ρ

`
`m) entering the EOB resummed waveform, Eq. (51), as well as of the

corresponding NQC corrections.
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