
02 February 2025

University of Parma Research Repository

Bounds to the pull-in voltage of a MEMS/NEMS beam with surface elasticity / Radi, E.; Bianchi, G.; Nobili,
A.. - In: APPLIED MATHEMATICAL MODELLING. - ISSN 0307-904X. - 91:(2021), pp. 1211-1226.
[10.1016/j.apm.2020.10.031]

Original

Bounds to the pull-in voltage of a MEMS/NEMS beam with surface elasticity

Publisher:

Published
DOI:10.1016/j.apm.2020.10.031

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2931034 since: 2024-06-07T14:25:40Z

This is the peer reviewd version of the followng article:

note finali coverpage



Please use this PDF proof to check the layout of your article. If you would like any changes to be

made to the layout, you can leave instructions in the online proofing interface. First, return to the

online proofing interface by clicking "Edit" at the top page, then insert a Comment in the relevant

location. Making your changes directly in the online proofing interface is the quickest, easiest way to

correct and submit your proof.

Please note that changes made to the article in the online proofing interface will be added to the

article before publication, but are not reflected in this PDF proof.



ARTICLE IN PRESS 

JID: APM [m3Gsc; November 6, 2020;2:14 ] 

Applied Mathematical Modelling xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Bounds to the pull-in voltage of a MEMS/NEMS beam with 

surface elasticity 

Enrico Radi a , b , Giovanni Bianchi a , b , Andrea Nobili b , c , ∗Q1 

a Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, Via Amendola, 2, 42122 Reggio Emilia, Italy 
b Centro Interdipartimentale “En&Tech”, via G. Amendola, 2, Reggio Emilia 42122, Italy 
c Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vivarelli, 10, 41125 Modena, Italy Q2 

a r t i c l e i n f o 

Article history: 

Received 21 April 2020 

Revised 9 October 2020 

Accepted 17 October 2020 

Available online xxx 

Keywords: 

Pull-in instability 

Electro-mechanical nano-switch 

Surface elasticity 

NEMS 

a b s t r a c t 

The problem of pull-in instability of a cantilever micro- or nano-switch under electrostatic 

forces has attracted considerable attention in the literature, given its importance in design- 

ing micro- and nano-electromechanical systems (MEMS and NEMS). The non-linear nature 

of the problem supports the typical approach that relies on numerical or semi-analytical 

tools to approximate the solution. 

By contrast, we determine fully analytical upper and lower bounds to the pull-in insta- 

bility phenomenon for a cantilever beam under the action of electrostatic, van der Waals 

or Casimir forces. In particular, the novel contribution of this works consists in account- 

ing for size effects analytically, in the spirit of surface elasticity, which adds considerable 

complication to the problem, allowing for a nonconvex beam deflection. Surface energy 

effects are generally ignored in classical elasticity, although they are known to become 

relevant for very small structures and especially at the nano-scale, owing to their large 

surface/volume ratio. Closed form lower and upper bounds are given for the pull-in char- 

acteristics, that allow to discuss the role of several tuneable parameters. Indeed, the evolu- 

tion of the cantilever tip deflection is presented as a function of the applied voltage up to 

the occurrence of pull-in and the contribution of van der Waals and Casimir intermolecular 

interactions is discussed. It is found that intermolecular forces strongly decrease the pull-in 

voltage, while surface elasticity works in the opposite direction and stabilizes the system. 

The accuracy of the bounding solutions, measured in terms of the difference between up- 

per and lower analytical bounds, is generally very good, although it rapidly deteriorates 

as the effect of surface elasticity becomes more pronounced. Finally, approximated closed- 

form relations are developed to yield simple and accurate design formulae: in particular, 

they provide estimates for the minimum theoretical gap and for the maximum operable 

length for a free-standing cantilever in the presence of the effects of surface elasticity and 

intermolecular interactions. Results may be especially useful for designing and optimizing 

NEMS switches. 

© 2020 Elsevier Inc. All rights reserved. 

1. Introduction 1 

Electrostatic bistable switches are widely available components of micro- and nanoelectromechanical systems (respec- 2 

tively MEMS and NEMS), as they serve under multiple purposes: for instance they may act as sensing, actuating, information 3 
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storing, signal filtering or resonating devices ( [1] , Ionescu, 2014). In the form of actuators, they generally appear as pairs of Q4 
4 

electrodes, one fixed and embedded in a support, the other movable and in the shape of a beam, that are operated by 5 

the application of a driving electrostatic potential. In dependence of this, the movable electrode deflects until a threshold 6 

voltage is reached, namely the pull-in voltage, which causes the beam to suddenly collapse onto the ground electrode. It is 7 

precisely the design of the pull-in voltage (and, consequently, of the pull-in gap, that is the minimum gap sitting between 8 

the electrodes right before pull-in kicks in) that is the fundamental feature of the actuator. 9 

Indeed, a large pull-in voltage allows for great deflection and therefore control, and yet it drains large amounts of en- 10 

ergy. Conversely, designing for small pull-in voltages affords efficient and fast operation, although the device becomes now 11 

susceptible to manufacturing defects, which may easily trigger the switch unexpectedly. This is especially true for NEMS, 12 

for which intermolecular action, such as van der Waals (vdW) or Casimir forces, takes on a relevant part in the mechanics 13 

of actuation. In fact, at the distance of tens of nanometers, typical of NEMS, very short range forces become comparable in 14 

magnitude to the electrostatic force. 15 

Also, the effect of surface free energy becomes especially important in the case of nano-scale elements. Indeed, the large 16 

surface-to-volume ratio of these requires that surface energy effects be taken into consideration, the energy associated with 17 

atoms at or near a free surface being different from that of atoms in the bulk. Consequently, the study of the elastic behavior 18 

of a nanobeam with surface energy effects is relevant for many current technological developments. 19 

Furthermore, at the micro- and, even more, at the nano-scale, size effects deeply affect mechanical performance of the 20 

flexible electrode and classical elastic theory produce unreliable results [2 , 3] . Experiments performed by Sadeghian et al. 21 

[4] show that pull-in instability of nanobeams is indeed size-dependent. Therefore, an improved beam model incorporating 22 

the contribution of the size effect is required for accurate modelling of MEMS and, especially, NEMS. 23 

Several strategies are available to incorporate size effects: through polar theories, such as couple-stress or modified cou- 24 

ple stress [5] , through introducing surface elastic energy [6–12 , 3] or by means of non-local theories [13–16] . Surface elastic 25 

energy was introduced by Gurtin and Murdoch [17 , 18] to account for the apparent increase of the elastic modulus when 26 

scaling down samples, owing to surface tension. This effect is measured by Cuenot et al. [7] by Atomic Force Microscopy 27 

(AFM) and by McFarland et al. [11] for the natural frequency of micro-cantilever beams. He and Lilley, [9] incorporate this 28 

contribution within the classical theory of bending and compare the outcomes of this new model with static bending tests 29 

for nano-wires. Similarly, Wang and Feng [3] investigate the contribution of surface elastic energy to buckling of nano- 30 

beams, Park [12] considers buckling strains of silicon nano-wires and Challamel and Elishakoff [6] extend the instability 31 

analysis to Timoshenko beam theories. 32 

An alternative approach for studying the mechanics of nano-scale structures and devices is based on atomistic modelling. 33 

This, however, requires a very substantial computational effort and thus adoption of continuum-based models allows for 34 

simple and efficient designing tools. 35 

The development of analytical models able to predict the pull-in voltage of micro- and nano-devices is extremely impor- 36 

tant for assuring efficient and consistent performance, while preventing unexpected structural failure [19] . 37 

Unfortunately, the inherently nonlinear nature of the operating forces prevents from developing a closed-form solution 38 

to put to advantage at the design and at the optimization stage. 39 

Instead, a large amount of numerical or semi-numerical approaches are presented in the literature. 40 

Zhang and Zhao [20] present a one-degree-of-freedom (lumped) system analysis that is extended to a cantilever beam 41 

with mid-plane stretching by Taylor expanding the electrostatic action; the resulting integro-differential equation is solved, 42 

with a one-mode approximation, by taking the transversal displacement proportional to the first vibration mode for a can- 43 

tilever. In similar fashion, Ramezani et al. [21 , 22] provide an estimation of the pull-in voltage by adopting the Green’s 44 

function of the linear differential operator and then resorting to a quadratic shape for the displacement. A similar analysis 45 

is presented in Baghani [5] , where Casimir effects are also introduced, and in Duan and Rach [8] and Duan et al. [23] , where 46 

the contribution of surface elastic energy is addressed. A semi-numerical approach is considered in Duan et al. [24] , by 47 

means of a modified Adomian decomposition, that falls upon a large body of literature employing homotopy perturbation 48 

theory, see Ma et al. [10] and references therein. Fu and Zhang [25] and Wang and Wang [26 , 27] numerically investigate 49 

pull-in instability of a nano-cantilever switch in the presence of surface elastic energy also accounting for geometric non- 50 

linearity for the beam curvature. 51 

All contributions available in the literature eventually resort to numerical methods for approximating the solution. In 52 

contrast, Radi et al. [28 , 29] introduce a purely analytical technique that relies on careful estimates of the beam deflection 53 

and provides sharp lower and upper bounds along the cantilever deflection until pull-in kicks in. Closed form solutions 54 

are especially valuable for they retain full information on the role of the problem’s parameters. This method is successfully 55 

applied to a MEM/NEM cantilever under electrostatic, vdW and Casimir forces, considering the effect of an elastic constraint 56 

[28] , and a compressive axial load [29] . Recently, this approach has been extended to investigate the pull-in instability of 57 

carbon nanotubes under electrostatic actuation [30] . It is important to emphasize that a common feature of these works is 58 

that size effects are neglected, so that the deflection of the system is always convex and much of the analysis relies thereon. 59 

As a novel contribution with respect to the previous papers, here we stretch the method to account for surface elas- 60 

tic energy, which substantially affects the beam stiffness at very small scales. In contrast to a compressive axial force, the 61 

contribution of surface elastic energy is associated with the second derivative of the transversal displacement via a nega- 62 

tive sign. This feature is a substantial obstacle to the application of the method, we can indeed no longer prove that the 63 

deflection is convex ( Section 2 ). Still, enough insight into the solution is provided to build lower and upper bounds to the 64 

2 
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beam deflection ( Section 3 ), which are then used for bounding the pull-in parameters in Section 4 . Results are discussed in 65 

Section 5 , where simple closed-form relations are proposed for approximate design of the pull-in parameters, namely the 66 

minimum admissible gap and the maximum operable length for a free-standing cantilever, in the presence of the effects of 67 

surface elasticity and intermolecular interactions. Finally, conclusions are drawn in Section 6 . 68 

2. Mathematical model 69 

The problem of an elastic micro- or nano-cantilever, subject to electrostatic actuation encompassing the effect of the 70 

fringing field, vdW or Casimir forces and of surface elastic energy is described by the following fourth-order, non-linear 71 

ODE [31 , 32 , 10] 72 

u 

IV ( x ) − η2 u 

′′ ( x ) = f ( u ( x ) ) , for x ∈ [ 0 , 1 ] , (1) 

where u = v / d and x = z / l are nondimensional variables, ν is the beam deflection, d the initial gap between the electrodes, l 73 

the beam length, 0 ≤ z ≤ l the position along the beam as measured from the clamped end, and prime denotes differentia- 74 

tion with respect to the function argument. The non-dimensional positive parameter 75 

η2 = 

2 w τ0 L 
2 

E I e f f 

, (2) 

takes into account the surface energy effect [31] , where τ 0 is the surface residual stress, EI eff = EI + E s wh 2 /2 is the bending 76 

rigidity of the beam incorporating the surface elasticity effect, being w and h the width and height of the nanobeam cross 77 

section, E the Young’s modulus of the elastic material, I the moment of inertia of the beam cross-section, and E s the surface 78 

elastic modulus. 79 

The loading term in (1) includes the contributions of electrostatic actuation, fringing field, vdW and Casimir forces, re- 80 

spectively 81 

f ( u ) = 

γ β

1 − u 

+ 

β

( 1 − u ) 
2 

+ 

αW 

( 1 − u ) 
3 

+ 

αC 

( 1 − u ) 
4 
, (3) 

being γ = 0.65 d / w the fringing coefficient. The nondimensional parameters β , αW 

, and αC are given by 82 

β = 

ε 0 w V 

2 l 4 

2 d 3 E I e f f 

, αW 

= 

A w l 4 

6 π d 4 E I e f f 

, αC = 

π2 h c w l 4 

240 d 5 E I e f f 

, (4) 

where V is the electric voltage applied to the electrodes, ε0 = 8.854 · 10 −12 C 2 N 

−1 m 

−2 is the permittivity of vacuum, A is the 83 

Hamaker constant, h = 1.055 · 10 −34 Js is the Planck’s constant divided by 2 π , c = 2.998 · 10 8 m/s is the speed of light. 84 

Let us denote with δ = u (1) the cantilever tip deflection, then the following inequalities hold for the functions f ( u ) and 85 

f ′ ( u ) 86 

0 ≤ f ( 0 ) ≤ f ( u ) ≤ f ( δ) , 0 ≤ f ′ ( 0 ) ≤ f ′ ( u ) ≤ f ′ ( δ) , for 0 ≤ u ≤ δ, (5) 

where 87 

f ′ ( u ) = 

γ β

( 1 − u ) 
2 

+ 

2 β

( 1 − u ) 
3 

+ 

3 αW 

( 1 − u ) 
4 

+ 

4 αC 

( 1 − u ) 
5 
, (6) 

The boundary conditions for a cantilever beam require that displacement and rotation vanish at the built-in cross section 88 

x = 0, while bending moment and shearing force disappear at the free end x = 1, namely [31] 89 

u ( 0 ) = 0 , u 

′ ( 0 ) = 0 , u 

′′ ( 1 ) = 0 , u 

′′′ ( 1 ) − η2 u 

′ ( 1 ) = 0 , (7) 

Note that Koochi et al. [32] in their investigation considered the boundary condition u ′ ′ ′ (1) = 0 instead of (7) 4 . Integrating 90 

the governing ODE (1) between x and 1 and using the boundary condition (7) 4 yields 91 

−u 

′′′ ( x ) + η2 u 

′ ( x ) = 

∫ 1 

x 

f (u (t)) dt ≥ ( 1 − x ) f ( 0 ) . (8) 

the inequality having being obtained making use of (5) 1 . Likewise, integrating again, taking advantage of the boundary 92 

condition (7) 3 and exploiting integration by parts yields 93 

u 

′′ ( x ) + η2 [ δ − u ( x ) ] = 

∫ 1 

x 

(t − x ) f (u (t)) dt ≥ 1 

2 

( 1 − x ) 
2 f ( 0 ) . (9) 

2.1. Nonlinear integral equation formulation 94 

We begin by seeking bounds for the beam transversal displacement and its derivatives. To this aim, we adopt an integral 95 

representation for the displacement through the problem’s Green function. The Green function for a cantilever beam with 96 

surface energy is obtained solving the following linear ODE 97 

G 

IV ( t ) − η2 G 

′′ ( t ) = δ( x − t ) (10) 

3 
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The general solution to the ODE (10) is 98 

G ( t ) = 

{
A 0 + A 1 t + A 2 cosh ηt + A 3 sinh ηt, 0 ≤ t < x, 

B 0 + B 1 t + B 2 cosh ηt + B 3 sinh ηt, x < t ≤ 1 . 
(11) 

where the eight coefficients A i and B i ( i = 0, 1, 2, 3) are determined by imposing the boundary conditions (7) at the ends 99 

t = 0,1, together with continuity across t = x for the function and its derivatives up to the second order. Furthermore, we 100 

impose the jump condition 101 

G 

′′′ (x + 
)

− η2 G 

′ (x + 
)

− G 

′′′ (x −
)

+ η2 G 

′ (x −
)

= 1 , (12) 

thus yielding 102 

G ( t ) = 

{{ ηt − sinh ηt + ( cosh ηt − 1) [ sinh ηx − ( cosh ηx − 1) tanh η] } / η3 , 0 ≤ t < x, 

{ ηx − sinh ηx + ( cosh ηx − 1) [ sinh ηt − ( cosh ηt − 1) tanh η] } / η3 , x < t ≤ 1 . 
(13) 

Therefore, by using the Green’s function (13) , the BVP defined by (1) and (7) can be equivalently formulated in term of 103 

the following non-linear integral equation 104 

u ( x ) = 

1 
η3 

∫ x 
0 { ηt − sinh ηt + ( cosh ηt − 1) [ sinh ηx − ( cosh ηx − 1) tanh η] } f (u (t)) dt 

+ 

1 
η3 

∫ 1 
x { ηx − sinh ηx + ( cosh ηx − 1) [ sinh ηt − ( cosh ηt − 1) tanh η] } f (u (t)) dt . 

(14) 

An integral expression for the normalized cantilever tip deflection δ = u (1) naturally follows from (14) 105 

δ = 

1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] f (u (t )) dt . (15) 

Recalling that tanh η < 1, we can write the estimates 106 

ηt − sinh ηt + ( cosh ηt − 1) [ sinh ηx − ( cosh ηx − 1) tanh η] ≥
≥ ηt − sinh ηt + ( cosh ηt − 1)( sinh ηx − cosh ηx + 1) 
≥ ηt − sinh ηt + ( cosh ηt − 1)( sinh ηt − cosh ηt + 1) ≥ 0 , 

(16) 

for 0 ≤ t ≤ x ≤ 1, and 107 

ηx − sinh ηx + ( cosh ηx − 1) [ sinh ηt − ( cosh ηt − 1) tanh η] ≥
≥ ηx − sinh ηx + ( cosh ηx − 1)( sinh ηt − cosh ηt + 1) 
≥ ηx − sinh ηx + ( cosh ηx − 1)( sinh ηx − cosh ηx + 1) ≥ 0 , 

(17) 

for 0 ≤ x ≤ t ≤ 1. These inequalities, plugged into (14) , immediately prove that the function u ( x ) is positive. Indeed, in light 108 

of (5) 1 , we obtain the lower bound 109 

u ( x ) ≥ A ( x ) f ( 0 ) ≥ 0 , (18) 

having let the positive function 110 

A ( x ) = 

1 

η3 

∫ x 

0 

{ ηt − sinh ηt + ( cosh ηt − 1) [ sinh ηx − ( cosh ηx − 1) tanh η] } dt 

+ 

1 

η3 

∫ 1 

x 

{ ηx − sinh ηx + ( cosh ηx − 1) [ sinh ηt − ( cosh ηt − 1) tanh η] } dt 

= 

1 

η2 

[
x − x 2 

2 

+ 

cosh ηx − 1 − η sin η + η sinh η(1 − x ) 

η2 cosh η

]
. (19) 

Looking at the derivative of Eq. (14) , one obtains 111 

u 

′ ( x ) = 

cosh ηx − sinh ηx tanh η

η2 

∫ x 

0 

( cosh ηt − 1) f (u (t)) dt 

+ 

1 

η2 

∫ 1 

x 

{ [ sinh ηt − ( cosh ηt − 1) tanh η] sinh ηx − cosh ηx + 1 } f (u (t )) dt , (20) 

and the function under the first integral is non-negative, given that cosh ηt ≥ 1. For the function in the second integral, we 112 

have the estimate 113 

[ sinh ηt − ( cosh ηt − 1) tanh η] sinh ηx − cosh ηx + 1 ≥ ( sinh ηt − cosh ηt + 1) sinh ηx − cosh ηx + 1 ≥
≥ ( sinh ηx − cosh ηx + 1) sinh ηx − cosh ηx + 1 = sinh 

2 ηx − ( cosh ηx − 1) ( sinh ηx + 1) ≥
≥ sinh 

2 ηx − cosh 

2 ηx + 1 = 0 

(21) 

whereby u ′ ( x ) ≥ 0 and u ( x ) is monotonic increasing. As a consequence, 0 ≤ u ( x ) ≤ δ and 0 ≤ f (0) ≤ f ( u ) ≤ f ( δ). Immediately, 114 

we have the bound 115 

u 

′ ( x ) ≥ B ( x ) f ( 0 ) ≥ 0 , (22) 

4 
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where we let the positive function 116 

B ( x ) = A 

′ ( x ) = 

1 

η2 

[
1 − x − cosh η(1 − x ) 

cosh η
+ 

sinh ηx 

η cosh η

]
. (23) 

Furthermore, from Eq. (20) evaluated at x = 1 and from condition (5) 1 , one readily has the upper bound 117 

u 

′ ( 1 ) ≤ 1 

η2 cosh η

∫ 1 

0 

( cosh ηt − 1) dt f ( δ) = 

sinh η − η

η3 cosh η
f ( δ) . (24) 

Turning now to the second derivative 118 

u 

′′ ( x ) = 

sinh ηx − cosh ηx tanh η

η

∫ x 

0 

( cosh ηt − 1) f (u (t)) dt 

+ 

1 

η

∫ 1 

x 

{ [ sinh ηt − ( cosh ηt − 1) tanh η] cosh ηx − sinh ηx } f (u (t )) dt , (25) 

we have that 119 

sinh ηx − cosh ηx tanh η = ( tanh ηx − tanh η) cosh ηx ≤ 0 , for x ≤ 1 , (26) 

whence nothing can be said in general on the sign of u ′ ′ ( x ). Indeed, surface energy opposes a simple convex deformation 120 

for the cantilever and this makes the analysis considerably harder. 121 

In fact, the function u is positive and increasing, namely u ( x ) ≥ 0 and u ′ ( x ) ≥ 0, but not necessarily convex, being u ′ ′ ( x ) 122 

not defined in sign. 123 

For the third derivative 124 

u 

′′′ ( x ) = ( cosh ηx − sinh ηx tanh η) 

∫ x 

0 

( cosh ηt − 1) f (u (t)) dt 

+ 

∫ 1 

x 

{ [ sinh ηt − ( cosh ηt − 1) tanh η] sinh ηx − cosh ηx } f (u (t )) dt . (27) 

we observe that 125 

[ sinh ηt − ( cosh ηt − 1) tanh η] sinh ηx − cosh ηx ≤ [ sinh ηt − ( cosh ηt − 1) tanh ηt ] sinh ηx − cosh ηx 
= ( tanh ηt tanh ηx − 1) cosh ηx ≤ 0 , 

(28) 

for 0 ≤ x ≤ t ≤ 1, and 126 

cosh ηx − sinh ηx tanh η = (1 − tanh ηx tanh η) cosh ηx ≥ 0 , (29) 

for 0 ≤ x ≤ 1, whence, again, nothing can be said in general on the sign of u ′ ′ ′ ( x ), since the first term of (27) is positive and 127 

the second is negative. Still, we can write the lower bound 128 

u 

′′′ ( x ) ≥ C ( x ) f ( 0 ) − D ( x ) f ( δ) , for 0 < x < 1 . (30) 

where we have let 129 

C ( x ) = ( cosh ηx − sinh ηx tanh η) 

∫ x 

0 

( cosh ηt − 1) dt = 

1 

η
( cosh ηx − sinh ηx tanh η)( sinh ηx − ηx ) , 

D ( x ) = −
∫ 1 

x 

{ [ sinh ηt − ( cosh ηt − 1) tanh η] sinh ηx − cosh ηx } dt = 

= 

(η − ηx + sinh ηx ) cosh η(1 − x ) − sinh ηx 

η cosh η
, (31) 

Indeed, the functions C ( x ) and D ( x ) ≥ 0 are positive, for 0 ≤ x ≤ 1 and η ≥ 0, and use have been made of inequality (5) 1 . 130 

3. A priori estimates on the beam deflection 131 

In order to define upper and lower bounds on the pull-in parameters, two-sided estimates are derived for the deflection 132 

u ( x ), that is the solution to the BVP defined by conditions (1) and (7) . 133 

To this aim, we employ lemmas A and B given in the Appendix, which were already introduced in [28 , 29] . Lemma A 134 

provides the upper bound for u ( x ) and requires defining a function h ( x ) such that h V ( x ) ≤ 0. For this, we observe that, from 135 

Eq. (1) and making use of the estimates (22) and (30) , 136 

u 

V ( x ) = u 

′ ( x ) f ′ ( u ) + η2 u 

′′′ ( x ) ≥ B ( x ) f ( 0 ) f ′ ( 0 ) + η2 [ C ( x ) f ( 0 ) − D ( x ) f ( δ) ] , (32) 

whereupon it easily follows 137 

h 

V ( x ) = B ( x ) f ( 0 ) f ′ ( 0 ) + η2 
[
C ( x ) f ( 0 ) − D ( x ) f ( δ) − u 

V ( x ) ≤ 0 

]
. (33) 

5 
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Let us now define the functions a ( x ), b ( x ), c ( x ) and d ( x ) such that 138 

a IV ( x ) = A ( x ) , b V ( x ) = B ( x ) , c V ( x ) = C ( x ) , d V ( x ) = D ( x ) , (34) 

Clearly, a ( x ) and b ( x ) are the same up to a constant. The expressions for a ( x ), b ( x ), c ( x ) and d ( x ) are given in Appendix B . 139 

Integrating five times Eq. (33) by using Eq. (34) , we get the function h ( x ) 140 

h ( x ) = H ( x ) − u ( x ) + p 4 ( x ) (35) 

where p 4 ( x ) is an arbitrary fourth-degree polynomial and we have let the shorthand 141 

H ( x ) = b ( x ) f ( 0 ) f ′ ( 0 ) + η2 [ c ( x ) f ( 0 ) − d ( x ) f ( δ) ] . (36) 

Similarly, Lemma B provides the lower bound for u ( x ) and demands letting a function g ( x ) such that g IV ( x ) ≥ 0. For this, 142 

we make once more use of Eq. (1) and take advantage of the estimates (5) 1 , (9) and (18) 143 

u 

IV ( x ) ≥ η2 

2 

( 1 − x ) 
2 f ( 0 ) − η4 [ δ − u ( x ) ] + f ( 0 ) ≥ η4 A ( x ) f ( 0 ) − η4 δ + 

η2 

2 

( 1 − x ) 
2 f ( 0 ) − f ( 0 ) . (37) 

Therefore, we let 144 

g IV ( x ) = u 

IV ( x ) − η4 A ( x ) f ( 0 ) + η4 δ − η2 

2 

( 1 − x ) 
2 f ( 0 ) − f ( 0 ) ≥ 0 , (38) 

which, integrated four times, gives 145 

g ( x ) = u ( x ) − η4 a ( x ) f ( 0 ) + 

x 4 

24 

[
η4 δ − f ( 0 ) 

]
− η2 x 4 

720 

(
15 − 6 x + x 2 

)
f ( 0 ) + p 3 ( x ) (39) 

where p 3 ( x ) is a yet unknown arbitrary polynomial of third degree. 146 

3.1. Upper bound for the deflection u(x) 147 

The explicit form for the yet undetermined polynomial p 4 ( x ) is determined so as to satisfy the boundary conditions for 148 

h ( x ) given in Lemma A, namely 149 

h ( 0 ) = 0 , h ( 1 ) = 0 , h 

′ ( 0 ) = 0 , h 

′′ ( 1 ) = 0 , h 

′′′ ( 1 ) = 0 , (40) 

By using the BCs (7) , the function h ( x ) defined in (35) that satisfies conditions (33) and (40) then writes 150 

h ( x ) = H ( x ) − H ( 0 ) − xH 

′ ( 0 ) − 1 

2 

H 

′′ ( 1 ) + 

1 

3 

(
6 x 2 − 4 x 3 + x 4 

)[ 
δ + H ( 0 ) − H ( 1 ) + H 

′ ( 0 ) + 

1 

2 

H 

′′ ( 1 ) 

] 

+ 

1 

18 

(
3 x 2 − 5 x 3 + 2 x 4 

)[
η2 u 

′ ( 1 ) − H 

′′′ ( 1 ) 
]

− u ( x ) ≥ 0 , (41) 

where the function H ( x ) has been defined in (36) . Then, by Lemma A, it is h ( x ) ≥ 0 for 0 ≤ x ≤ 1. 151 

By introducing the inequality (24) for u ′ (1) in (41) one obtains the upper bound U ( x ) on the beam deflection u ( x ), such 152 

that u ( x ) ≤ U ( x ) for 0 ≤ x ≤ 1, where 153 

U ( x ) = H ( x ) + 

1 

3 

(
6 x 2 − 4 x 3 + x 4 

)[ 
δ + H ( 0 ) − H ( 1 ) + H 

′ ( 0 ) + 

1 

2 

H 

′′ ( 1 ) 

] 

+ 

1 

18 

(
3 x 2 − 5 x 3 + 2 x 4 

)[ sinh η − η

η cosh η
f ( δ) − H 

′′′ ( 1 ) 

]
− H ( 0 ) − xH 

′ ( 0 ) − 1 

2 

x 2 H 

′′ ( 1 ) . (42) 

For small values of η, one finds 154 

U ( x ) = 

1 

3 

{ (
6 x 2 − 4 x 3 + x 4 

)
δ − 1 − x 

40320 

(
294 x 2 − 350 x 3 + 63 x 4 + 63 x 5 − 21 x 6 + 3 x 7 

)
f ( 0 ) f ′ ( 0 ) 

+ 

1 − x 

720 

η2 
[(

75 x 2 − 65 x 3 + 15 x 4 − 3 x 5 
)

f ( δ) 

+ 

f (0) f ′ (0) 

1680 

(
3483 x 2 − 3969 x 3 + 594 x 4 + 594 x 5 − 36 x 6 − 36 x 7 + 9 x 8 − x 9 

)]}
+ O 

(
η2 

)
, (43) 

3.2. Lower bounds for the deflection u(x) 155 

The four arbitrary constants in p 3 ( x ) are chosen such that the four conditions required by lemma B 156 

g ( 0 ) = 0 , g ( 1 ) = 0 , g ′ ( 0 ) = 0 , g ′′ ( 1 ) = 0 . (44) 

By using the BCs (7) , the function g ( x ) satisfying conditions (38) and (44) then writes 157 
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g ( x ) = u ( x ) − 1 

48 

(
72 − 3 η4 − 24 x + 5 η2 x − 2 η4 x 2 

)
x 2 δ

− f (0) 

96 η4 

[
96 η2 x − 3 

(
48 + 40 η2 − 2 η4 − η6 

)
x 2 + 

(
48 + 24 η2 − 10 η4 + 5 η6 

)
x 3 + 2 η4 

(
2 + η2 

)
x 4 

−2 

(
48 − 72 x 2 + 3 η4 x 2 + 24 x 3 − 5 η4 x 3 + 2 η4 x 4 − 48 cosh ηx 

)1 + η sinh η

cosh η
− 96 η sinh ηx 

]
≥ 0 . (45) 

Then, lemma B assures that the function g ( x ) is non-negative in the range 0 ≤ x ≤ 1. Therefore, the lower bound L ( x ) on 158 

the beam deflection u ( x ), such that u ( x ) ≥ L ( x ) for 0 ≤ x ≤ 1, is given by 159 

L ( x ) = 

1 

48 

(
72 − 3 η4 − 24 x + 5 η2 x − 2 η4 x 2 

)
x 2 δ

+ 

f (0) 

96 η4 

[
96 η2 x − 3 

(
48 + 40 η2 − 2 η4 − η6 

)
x 2 + 

(
48 + 24 η2 − 10 η4 + 5 η6 

)
x 3 + 2 η4 

(
2 + η2 

)

−2 

(
48 − 72 x 2 + 3 η4 x 2 + 24 x 3 − 5 η4 x 3 + 2 η4 x 4 − 48 cosh ηx 

)1 + η sinh η

cosh η
− 96 η sinh ηx 

]
. (46) 

For small values of η, one finds 160 

L ( x ) = 

1 

2 

( 3 − x ) x 2 δ + 

f ( 0 ) 

48 

( 1 − x ) x 2 
[

3 − 2 x + 

η2 

30 

(
15 − 20 x + 10 x 2 − 2 x 3 

)]
+ O 

(
η4 

)
. (47) 

4. Lower and upper bounds on the pull-in parameters 161 

Plugging the upper (lower) bound in expression (15) for the normalized cantilever tip deflection δ, the following upper 162 

(lower) bound can be derived for the pull-in parameters βPI and δPI . 163 

4.1. Lower bounds for the pull-in parameters 164 

By using (42) , Eq. (15) lends Q5 
165 

δ ≤ 1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] f (U(t )) dt , (50) 

being f ( u ( t )) ≤ f ( U ( t )) and 166 

ηt − sinh ηt + ( cosh ηt − 1) tanh η > ηt − sinh ηt + ( cosh ηt − 1) tanh ηt = ηt − tanh ηt > 0 , (51) 

for 0 < t < 1. 167 

Inequality (50) defines a lower bound for the relation between the electrostatic loading parameter β and the normal- 168 

ized pull-in deflection δ, both included in U ( t ). In particular, the maximum electrostatic load β and the corresponding tip 169 

deflection δ are to be found among stationarity points 170 

∂β

∂δ
= 0 . (52) 

This defines lower bounds for the pull-in parameters βL and δL , such that βPI ≥ βL and δPI ≥ δL , according to the 171 

condition 172 

δL = 

1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] [ f (U(t)) ] β= βL 

dt, (53) 

supplemented by the stationary condition obtained from the derivative of (53) with respect to δ and the maximum condition 173 

(52) 174 

1 = 

1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] 

[
f ′ (U(t)) 

∂U(t) 

∂δ

]
β= βL 

dt. (54) 

4.2. Upper bounds on the pull-in parameters 175 

By using (46) and (51) , Eq. (15) gives 176 

δ ≥ 1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] f (L (t )) dt , (55) 

being f ( u ( t )) ≥ f ( L ( t )). 177 
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Fig. 1. A micro/nanocantilever under electrostatic actuation. 

Table 1 

Lower and upper analytical estimates of the pull-in parameters for a micro/nanocantilever with surface elasticity parameter η = 0.5, for different 

values of the parameters αW , αC , and γ . 

η = 0.5 γ = 0 γ = 1 γ = 2 

αW αC δl β l δu βu δl β l δu βu δl β l δu βu 

0.0 0.0 0.4402 1.8254 0.4512 1.8591 0.4997 1.1025 0.5108 1.1211 0.5299 0.7979 0.5411 0.8108 

0.0 0.2 0.3833 1.4028 0.3936 1.4357 0.4136 0.8188 0.4238 0.8366 0.4265 0.5806 0.4366 0.5928 

0.0 0.4 0.3453 1.0252 0.3554 1.0579 0.3637 0.5866 0.3738 0.6044 0.3711 0.4118 0.3812 0.4241 

0.0 0.6 0.3157 0.6752 0.3257 0.7078 0.3264 0.3807 0.3366 0.3986 0.3306 0.2655 0.3409 0.2778 

0.0 0.8 0.2911 0.3448 0.3011 0.3773 0.2961 0.1922 0.3064 0.2101 0.2980 0.1333 0.3084 0.1457 

0.0 1.0 0.2698 0.0295 0.2797 0.0620 0.2702 0.0163 0.2806 0.0342 0.2703 0.0112 0.2809 0.0236 

0.0 0.0 0.4402 1.8254 0.4512 1.8591 0.4997 1.1025 0.5108 1.1211 0.5299 0.7979 0.5411 0.8108 

0.2 0.0 0.4181 1.5297 0.4290 1.5636 0.4607 0.9103 0.4717 0.9290 0.4803 0.6522 0.4914 0.6652 

0.4 0.0 0.3990 1.2416 0.4098 1.2755 0.4299 0.7302 0.4409 0.7490 0.4435 0.5195 0.4546 0.5325 

0.6 0.0 0.3821 0.9597 0.3929 0.9937 0.4040 0.5589 0.4151 0.5778 0.4133 0.3953 0.4245 0.4085 

0.8 0.0 0.3668 0.6831 0.3776 0.7172 0.3813 0.3943 0.3925 0.4134 0.3873 0.2776 0.3987 0.2910 

1.0 0.0 0.3528 0.4110 0.3636 0.4453 0.3610 0.2354 0.3723 0.2547 0.3643 0.1651 0.3758 0.1786 

Inequality (55) defines an upper bound on the relation between the electrostatic loading parameter β and the normalized 178 

pull-in deflection δ, both appearing in L ( t ). The maxima of the electrostatic loading parameter β and of the corresponding 179 

tip deflection δ follow from stationarity of (55) , as in (52) . Accordingly, we get the upper bounds on the pull-in parameters, 180 

βU and δU , such that βPI ≤ βU and δPI ≤ δU , where ( Fig. 1 ). 181 

δU = 

1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] [ f (L (t)) ] β= βU 

dt, (56) 

182 

1 = 

1 

η3 

∫ 1 

0 
[ ηt − sinh ηt + ( cosh ηt − 1) tanh η] 

[
f ′ (L (t)) 

∂U(t) 

∂δ

]
β= βU 

dt. (57) 

5. Results 183 

Tables 1–3 present lower and upper bounds on the normalized pull-in voltage βL and βU and the corresponding values 184 

of the normalized pull-in deflection δL and δU for different values of the surface elastic energy coefficient η at fixed values 185 

for the normalized parameters γ , αW 

, and αC controlling the fringing effect and the intermolecular forces. As expected, for 186 

η = 0 , namely neglecting the effect of the surface elastic energy, the analysis provides the results already presented in Radi 187 

et al. [28 , 29] . A purely numerical approach, based on the shooting method, has been used to obtain a reference solution to 188 

the boundary value problem (BVP) defined by the nonlinear ODE (1) and the boundary conditions (7) . 189 

The behaviour of the electrostatic loading parameter β against the nano-cantilever tip deflection δ = u (1) is reported in 190 

Fig. 2 for different values of the surface elastic energy coefficient η, in the absence of intermolecular forces, αW 

= αC = 0, 191 

and of fringing effects, γ = 0. The curves denote the numerical solution, whereas lower and upper analytical estimates of 192 

the pull-in parameters βPI and δPI (i.e. of the maxima) are indicated by circles and dots, respectively. It can be observed 193 

that uncertainty, that is the distance between lower and upper analytical bounds, is very small in terms of both β and δ. 194 

Moreover, bounds well compare to the numerical solution. Interestingly, the pull-in voltage βPI is an increasing function of 195 

η, thus denoting that the stiffening effect of surface elasticity leads to a higher pull-in voltage compared with that given by 196 

the classical theory of elasticity. Since the contribution of surface energy becomes more relevant as the size of the beam 197 

becomes smaller, its consideration is appreciable for microbeams and it definitely cannot be neglected when the beam size 198 

is reduced to the nanoscale. However, the effect of surface elasticity little affects the pull-in tip deflection δPI . Indeed, the 199 

latter stays almost constant at about 44% of the initial gap. 200 
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Table 2 

Lower and upper analytical estimates of the pull-in parameters for a micro/nanocantilever with surface elasticity parameter η = 1, for different 

values of the parameters αW , αC , and γ . 

η = 1 γ = 0 γ = 1 γ = 2 

αW αC δl β l δu βu δl β l δu βu δl β l δu βu 

0.0 0.0 0.4338 2.2723 0.4526 2.3426 0.4928 1.3731 0.5120 1.4121 0.5229 0.9939 0.5422 1.0212 

0.0 0.2 0.3868 1.8443 0.4044 1.9131 0.4203 1.0826 0.4380 1.1202 0.4348 0.7698 0.4524 0.7958 

0.0 0.4 0.3538 1.4562 0.3710 1.5244 0.3760 0.8395 0.3933 0.8769 0.3851 0.5915 0.4024 0.6173 

0.0 0.6 0.3275 1.0939 0.3445 1.1617 0.3423 0.6222 0.3596 0.6595 0.3483 0.4356 0.3656 0.4613 

0.0 0.8 0.3055 0.7504 0.3223 0.8180 0.3148 0.4222 0.3320 0.4595 0.3184 0.2941 0.3358 0.3198 

0.0 1.0 0.2862 0.4217 0.3029 0.4891 0.2911 0.2351 0.3083 0.2723 0.2930 0.1631 0.3104 0.1888 

0.0 0.0 0.4338 2.2723 0.4526 2.3426 0.4928 1.3731 0.5120 1.4121 0.5229 0.9939 0.5422 1.0212 

0.2 0.0 0.4160 1.9758 0.4346 2.0462 0.4611 1.1795 0.4800 1.2186 0.4822 0.8467 0.5013 0.8740 

0.4 0.0 0.4003 1.6856 0.4187 1.7561 0.4352 0.9961 0.4540 1.0354 0.4508 0.7107 0.4698 0.7380 

0.6 0.0 0.3861 1.4007 0.4044 1.4713 0.4129 0.8206 0.4318 0.8601 0.4245 0.5825 0.4436 0.6101 

0.8 0.0 0.3731 1.1204 0.3914 1.1912 0.3932 0.6514 0.4121 0.6911 0.4017 0.4605 0.4208 0.4882 

1.0 0.0 0.3611 0.8442 0.3793 0.9151 0.3754 0.4875 0.3944 0.5274 0.3813 0.3433 0.4006 0.3712 

Table 3 

Lower and upper analytical estimates of the pull-in parameters for a micro/nanocantilever with surface elasticity parameter η = 1.5, for various 

values of the parameters αW , αC , and γ . 

η = 1.5 γ = 0 γ = 1 γ = 2 

αW αC δl β l δu βu δl β l δu βu δl β l δu βu 

0.0 0.0 0.4249 2.9797 0.4575 3.1436 0.4832 1.8017 0.5167 1.8929 0.5130 1.3046 0.5468 1.3684 

0.0 0.2 0.3882 2.5462 0.4192 2.7072 0.4254 1.5039 0.4565 1.5924 0.4417 1.0731 0.4728 1.1342 

0.0 0.4 0.3608 2.1463 0.3911 2.3058 0.3875 1.2481 0.4179 1.3356 0.3987 0.8832 0.4291 0.9436 

0.0 0.6 0.3385 1.7697 0.3683 1.9283 0.3582 1.0168 0.3883 1.1040 0.3662 0.7152 0.3964 0.7754 

0.0 0.8 0.3195 1.4107 0.3489 1.5686 0.3339 0.8026 0.3639 0.8895 0.3396 0.5618 0.3698 0.6219 

0.0 1.0 0.3028 1.0657 0.3320 1.2231 0.3129 0.6012 0.3429 0.6880 0.3169 0.4193 0.3471 0.4792 

0.0 0.0 0.4249 2.9797 0.4575 3.1436 0.4832 1.8017 0.5167 1.8929 0.5130 1.3046 0.5468 1.3684 

0.2 0.0 0.4114 2.6824 0.4438 2.8464 0.4589 1.6067 0.4920 1.6980 0.4815 1.1558 0.5149 1.2195 

0.4 0.0 0.3991 2.3900 0.4313 2.5541 0.4382 1.4200 0.4711 1.5115 0.4560 1.0162 0.4892 1.0800 

0.6 0.0 0.3879 2.1019 0.4199 2.2663 0.4200 1.2399 0.4529 1.3317 0.4342 0.8835 0.4674 0.9476 

0.8 0.0 0.3774 1.8177 0.4093 1.9822 0.4036 1.0653 0.4365 1.1575 0.4149 0.7563 0.4482 0.8206 

1.0 0.0 0.3676 1.5370 0.3994 1.7017 0.3887 0.8955 0.4216 0.9881 0.3976 0.6337 0.4310 0.6983 

Fig. 2. Plot of the electrostatic loading parameter β against the tip deflection δ obtained by numerical integration of the BVP, for various values of the 

surface elasticity parameter η, for negligible intermolecular forces αW = αC = 0 and negligible fringing effect γ = 0. Lower and upper analytical estimates 

of the pull-in parameters are indicated by small circles and small points, respectively. 
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Fig. 3. Plot of the cantilever tip deflection δ against the electrostatic loading parameters β obtained by numerical integration of the BVP, for η = 0.5 and 

for different values of the fringing effect γ . Lower and upper analytical estimates of the pull-in parameters are indicated by small circles and small points, 

respectively. 

Fig. 4. Plot of the electrostatic loading parameter β against the cantilever tip deflection δ obtained by numerical integration of the BVP, for different values 

of the surface elasticity parameter η, for the fringing effect γ = 1 and for vdW parameters αW = 0.2 (a) or for Casimir parameters αC = 0.2 (b). Lower and 

upper analytical estimates of the pull-in parameters are indicated by small circles and small points, respectively. 

Fig. 3 shows the effects of the fringing coefficient γ on the pull-in parameters at η = 0.5 for the surface energy contribu- 201 

tion and no vdW or Casimir force. As expected, the largest pull-in voltage is attained for small fringing, that occurs when 202 

the separation gap between the electrodes, d, is much smaller than the beam width, w. As the effect of the fringing field 203 

becomes more pronounced, the pull-in voltage βPI decreases, whereas, interestingly, the corresponding pull-in deflection δPI 204 

increases. 205 

Fig. 4 couples the surface elasticity parameter η and the fringing field γ = 1 with either vdW or Casimir forces, αW 

or 206 

αC . A significant reduction of the pull-in voltage is observed with respect to the results of Fig. 2 , due to combined effects 207 

considered here. In particular, intermolecular forces significantly increase the beam deflection and consequently pull-in in- 208 
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Fig. 5. Plot of the vdW and of the Casimir parameters αW and αC , respectively , against the cantilever tip deflection δ obtained by numerical integration 

of the BVP, for vanishing electrostatic loading parameter ( β = 0) and for various values of the surface elasticity parameter η. Lower and upper analytical 

estimates of the pull-in parameters are denoted by small circles and small points, respectively. 

Table 4 

Lower and upper analytical estimates of αW , αC , and δ for different values of the surface 

elasticity parameter η, for a freestanding micro/nanocantilever ( β = 0). 

η αWl δWl αWu δWu αCl δCl αCu δCu 

0.0 1.1967 0.3350 1.2171 0.3423 0.9326 0.2694 0.9492 0.2756 

0.1 1.2025 0.3350 1.2218 0.3423 0.9372 0.2693 0.9528 0.2756 

0.5 1.3078 0.3332 1.3339 0.3425 1.0191 0.2679 1.0403 0.2758 

1.0 1.6273 0.3282 1.6813 0.3438 1.2679 0.2637 1.3116 0.2769 

1.2 1.8087 0.3255 1.8842 0.3450 1.4091 0.2615 1.4700 0.2780 

1.5 2.1327 0.3211 2.2584 0.3482 1.6611 0.2579 1.7626 0.2807 

stability occurs at lower applied voltage. If the contributions of fringing and intermolecular forces are neglected, the pull-in 209 

voltage may be considerably over-estimated, so that unexpected damage may occur during device operations. Remarkably, 210 

Fig. 4 shows that intermolecular surface forces produce an initial deflection of the nano-beam in the absence of applied 211 

electric voltage, namely for β = 0, even accounting for surface energy. This behaviour is explored in Fig. 5 that plots the 212 

tip deflection δ against the vdW and Casimir parameters, αW 

and αC , at different values of the surface elasticity parame- 213 

ter η, in the absence of electrostatic actuation, β = 0. Plots reveal that pull-in instability kicks in upon reaching the critical 214 

threshold αWPI and αCPI even when no electric voltage is applied to the electrodes. Interestingly, although threshold values 215 

considerably increase with the introduction of surface elasticity effect through the parameter η, the latter has no appre- 216 

ciable influence on the normalized pull-in tip deflection δPI , meaning that instability occurs upon reaching a critical value 217 

of the ratio between tip deflection and initial gap. This suggests that initial gap appears to be the most important design 218 

parameter in the system. Comparing Fig. 5 (a) and (b), it can be noted that vdW effects trigger pull-in instability at greater 219 

tip deflection (and therefore at smaller separation gap between the electrodes) than it does Casimir attraction. The critical 220 

normalized maximum deflection δPI caused by the sole effect of the vdW force is indeed about 3.4 and that caused by the 221 

sole effect of the Casimir force is about 2.7. These results correspond to critical gaps of about 66% and 73% of the initial 222 

gap d in the absence of every kind of forces, respectively. This outcome confirms the well-known result that vdW forces are 223 

effective at shorter range than Casimir’s, and thus the former are significant at the microscale whereas the latter are effec- 224 

tive at the nanoscale only. Also, for the freestanding case, the analytical estimates of αWPI and αCPI , and the corresponding 225 

pull-in deflection δPI agree very well with the numerical results. 226 

Lower and upper estimates of critical vdW and Casimir parameters αWPI and αCPI and tip deflection δPI for a freestanding 227 

nanocantilever can be found in Table 4 for different values of η. These results confirm that pull-in instability is hindered as 228 

the surface elasticity parameter η increases, as already observed from Fig. 2 . As already observed in Fig. 5 , the normalized 229 

pull-in tip deflection δPI is higher for vdW than for Casimir forces, whereas it is almost independent of η. 230 
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Fig. 6. Influence of the van der Waals ( a ) and Casimir ( b ) forces on the pull-in voltage parameter β , for different values of the surface elasticity parameter 

η. 

The behaviour of the upper and lower approximation to the pull-in voltage, respectively βU and βL , as a function of αW 

231 

and αC , is investigated in Fig. 6 for different values of the surface elasticity parameter η. There, it can be observed that 232 

both the pull-in parameter and the threshold value of the intermolecular coefficients increase when η increases, accounting 233 

for the fact that surface energy opposes pull-in instability regardless of whether it comes from electrostatic potential or 234 

from intermolecular action. In contrast, increasing the parameter αW 

and αC , the pull-in voltage is significantly reduced 235 

until the intermolecular parameters attain their threshold values αWPI and αCPI attained at zero applied voltage. In fact, 236 

when intermolecular surface attractions overcome the elastic restoring force of the nano-beam, negative values of β , namely 237 

repulsive electrostatic forces, are required to prevent pull-in instability. Again, lower and upper estimates are very close and 238 

accurate, especially when η ranges below 2 and regardless of intermolecular forces. 239 

The effect of the surface energy parameter η on the lower and upper bound of the pull-in voltage βPI and of the tip 240 

deflection δPI is presented, for vanishing fringing and intermolecular forces (that is for γ = αW 

= αC , = 0), in Fig. 7 a and 7 b, 241 

respectively. Fig. 7 a shows that the lower and upper analytical bounds on the pull-in parameter β are very close to each 242 

other and monotonically increase along with the surface energy η. Conversely, the lower and upper bound on the normalized 243 

pull-in tip deflection weakly decreases as the surface elasticity contribution strengthens, see Fig. 7 b, while remaining at 244 

about 44% of the initial gap. Here, the analytical lower and upper bounds are still close but they reveal an opposite trend, 245 

whereby the lower bound decreases and the upper bound increases. As a consequence, accurate pull-in bounds are available 246 

for tip deflection only inasmuch as sufficiently small values of η are considered. 247 

5.1. Approximated analytical relations for the pull-in parameters 248 

On the basis of the developed analytical bounds, approximate relations are here proposed for easy and simple design 249 

of the pull-in characteristics of an electrostatically actuated nano-cantilever taking into account the surface elasticity effect 250 

proportional to parameter η. 251 

When the effects of the fringing field and of intermolecular surface forces are neglected, the following approximate 252 

relations 253 

β = 1 . 69 + 0 . 61 η2 , δ = 

{
0 . 4426 − 0 . 01057 η2 + 0 . 0018 η3 

0 . 4523 − 0 . 0189 η
for η ≤ 2 , 

for η > 2 . 
(58) 

describe the evolution of the pull-in characteristics β and δ in terms of the surface elasticity parameter η. The accuracy 254 

of these relations is presented in Fig. 8 a and 8 b, respectively for voltage and tip deflection, where circles and dots indicate 255 

lower and upper analytical bounds. The first of the approximants (58) is determined by least-square polynomial interpolation 256 

of the analytical bounds in the range for η from 0 to 2. In contrast, the approximant for the tip deflection is obtained 257 

by interpolation of the lower bound only, since lower and upper bounds display opposite trends and no unique accurate 258 

interpolant exists. 259 

12 



E. Radi, G. Bianchi and A. Nobili Applied Mathematical Modelling xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: APM [m3Gsc; November 6, 2020;2:14 ] 

Fig. 7. Plot of the lower βL and upper βU bound for the pull-in voltage ( a ) and of the relevant cantilever tip deflection δL and δU ( b ) with respect to the 

surface elasticity parameter η for a micro-nanocantilever where the effects of fringing and intermolecular surface forces are absent. 

Fig. 8. Plot of the pull-in voltage β and cantilever tip deflection δ against the surface elasticity parameter η, where the effects of fringing and intermolecu- 

lar surface forces are neglected. Lower and upper analytical estimates of the pull-in parameters are denoted by small circles and small points, respectively. 

Blue lines show the pull-in values provided by the approximated relations (58) . 

For a freestanding nano-cantilever, namely in the absence of applied electrostatic voltage, β = 0, the following quadratic 260 

relations provide a very good approximation for the threshold vdW and Casimir parameters 261 

αW PI = 1 . 21 + 0 . 43 η2 , αCPI = 0 . 94 + 0 . 34 η2 . (59) 

As it appears from Fig. 9 , expressions (59) fit lower and upper analytical bounds very well, in the considered range of 262 

the parameter η. 263 

More involved relations are demanded for approximating the relationships between the pull-in voltage β and the surface 264 

elasticity parameter η in the presence of intermolecular attraction (but in the absence of the fringing field), namely for non- 265 
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Fig. 9. Relationships between vdW and Casimir parameters αW and αC and the surface elasticity parameter η, for vanishing electrostatic loading parameter 

( β = 0). Lower and upper analytical estimates of the pull-in parameters are denoted by small circles and small points, respectively. Blue lines show the 

pull-in values for intermolecular forces provided by approximated Eq. (59) . 

Fig. 10. Relationships between parameters β and the surface elasticity parameter η, for various values of the vdW and Casimir parameters αW and αC , for 

negligible fringing effect γ = 0. Lower and upper analytical estimates of the pull-in parameters are denoted by small circles and small points, respectively. 

Solid and dashed curves show the pull-in values provided by approximated Eqs. (60) and ( 61 ). 

zero values of the vdW parameter αW 

and of the Casimir parameter αC : 266 

β = 1 . 6935 − 1 . 4858 αW 

+ 0 . 0745 α2 
W 

+ (0 . 6043 − 0 . 017 α2 
W 

+ 0 . 0052 α3 
W 

) η2 , (60) 

267 

β = 1 . 6885 − 2 . 10 6 6 αC + 0 . 3291 α2 
C + (0 . 6033 − 0 . 1021 α2 

C + 0 . 051 α3 
C ) η

2 . (61) 

In both formulae, a relation that is quadratic in the parameter η is adopted, yet coefficients of the approximating poly- 268 

nomial explicitly depend on the intermolecular surface parameters αW 

or αC . This fitting is dealt with in a double stage 269 

process. First, families of lower and upper analytical bounds are obtained as a function of the elastic surface energy param- 270 

eter η in the range [0, 2], at 0.2 steps, for different sets of intermolecular action parameters αW 

and αC . Each data set in 271 
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a family is fitted by a quadratic polynomial. Second, the NonlinearModelFit function of Mathematica® is employed to de- 272 

termine the best functional dependence of the polynomial coefficients to accommodate for the family of approximants. The 273 

corresponding curves, plotted in Fig. 10 a and 10 b, exhibits excellent agreement with the analytical lower and upper esti- 274 

mates, indicated in the picture with circles and dots, respectively. As already observed, for high values of the intermolecular 275 

surface forces, pull-in instability occurs in the absence of electrostatic field, β = 0, provided that the stabilizing effect of the 276 

surface elasticity parameter η is small enough. The approximate relations (60) and (61) constitute powerful and easy-to-use 277 

tools for safe design of nano-switches. 278 

6. Conclusions 279 

We present sharp lower and upper analytical bounds on the deflection of an electrically-actuated micro/nano-cantilever, 280 

taking into account the effect of surface elastic energy, which is especially relevant at small length-scales. The bounding 281 

solutions to this non-linear problem are obtained by carefully estimating the cantilever deflection and its derivatives. In 282 

this approach, consideration of surface elasticity provides considerable complication, given that this contribution operates 283 

against the electrostatic action and prevents a simple convex shape for the deflection. Correspondingly, simple estimates for 284 

the second derivative of the deflection are not available. Analytical bounds compare very favourably with the results of direct 285 

numerical integration of the nonlinear BVP. In particular, they well capture the pull-in voltage and the pull-in gap, and show 286 

that only the former is strongly increased by surface elastic energy. However, the accuracy of the estimates deteriorates as 287 

the role of surface elasticity becomes more pronounced. This outcome is a result of the complex behaviour of the deflection 288 

shape, which affects in the negative any solution method. 289 

Simple approximate relations are proposed as ready-to-use design formulae for framing the pull-in parameters of newly 290 

conceived devices. In particular, they provide the limiting electrode gap and the maximum operative cantilever length which 291 

are possible for a given material parameter set. These bounds are crucial to avoid unwarranted operation of MEMS and NEMS 292 

actuators within the given driving voltage range, which may occur if devices are designed based on the classical theory of 293 

elasticity. 294 

It is further believed that this study may fill in the gap between purely numerical solutions of the governing equation, 295 

that shed no light on the role of the parameters, and crude one-degree-of-freedom approximations, which lack the accuracy 296 

required to adequately describe the behaviour of the system until pull-in instability occurs. This is especially true when 297 

surface elastic energy is considered, for then deflection is generally complicated and far from any classical deflection mode 298 

of a cantilever beam. 299 
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Appendix A 302 

Lemma A. Let the function h ( x ) be continuous up to the third derivative for x ∈ [0, 1] and satisfy the following conditions 303 

304 

h ( 0 ) = 0 , h ( 1 ) = 0 , h 

′ ( 0 ) = 0 , h 

′′ ( 1 ) = 0 , h 

′′′ ( 1 ) = 0 , (A.1) 

and 305 

h 

V ( x ) ≤ 0 , for x ∈ [ 0 , 1 ] (A.2) 

then 306 

h ( x ) ≥ 0 , for x ∈ [ 0 , 1 ] (A.3) 

Lemma B. Let the function g ( x ) be continuous up to the third derivative for x ∈ [0, 1] and satisfy the following conditions 307 

308 

g ( 0 ) = 0 , g ( 1 ) = 0 , g ′ ( 0 ) = 0 , g ′′ ( 1 ) = 0 . (A.4) 

and 309 

g IV ( x ) ≥ 0 , for x ∈ [ 0 , 1 ] (A.5) 

then 310 

g ( x ) ≥ 0 , for x ∈ [ 0 , 1 ] (A.6) 

Proof. The proofs are given in Radi et al. [28 , 29] . 311 
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Appendix B 312 

Expressions for the functions introduced in (34) 313 

a ( x ) = 

6 x 5 − x 6 

720 η2 
+ 

(1 + η sinh η)( cosh ηx − η4 x 4 / 24) 

η8 cosh η
− sinh ηx 

η7 
= b ( x ) − (1 + η sinh η) x 4 

24 η4 cosh η
, (B.1) 

314 

b ( x ) = 

6 x 5 − x 6 

720 η2 
+ 

1 + η sinh η

η8 cosh η
cosh ηx − sinh ηx 

η7 
, (B.2) 

315 

c ( x ) = 

15 cosh η(1 − 2 x ) + 4800 cosh η(1 − x ) + 960 ηx sinh η(1 − x ) + 4 η5 x 5 sinh η

960 η6 cosh η
, (B.3) 

316 

d ( x ) = 

15 cosh η(1 − 2 x ) + 4800 cosh η(1 − x ) − 960 η(1 − x ) sinh η(1 − x ) + 4 η5 x 5 sinh η − 960 cosh ηx 

960 η6 cosh η

= c ( x ) − cosh ηx + η sinh η(1 − x ) 

η6 cosh η
. (B.4) 
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