
25 December 2024

University of Parma Research Repository

End-to-end learning for off-road terrain navigation using the Chrono open-source simulation platform /
Benatti, S.; Young, A.; Elmquist, A.; Taves, J.; Tasora, A.; Serban, R.; Negrut, D.. - In: MULTIBODY SYSTEM
DYNAMICS. - ISSN 1384-5640. - 54:4(2022), pp. 399-414. [10.1007/s11044-022-09816-1]

Original

End-to-end learning for off-road terrain navigation using the Chrono open-source simulation platform

Publisher:

Published
DOI:10.1007/s11044-022-09816-1

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2925228 since: 2022-06-10T19:17:11Z

Springer Science and Business Media B.V.

This is the peer reviewd version of the followng article:

note finali coverpage



Springer Nature 2021 LATEX template

End-to-end learning for off-road terrain

navigation using the Chrono open-source

simulation platform

Simone Benatti1, Aaron Young1, Asher Elmquist1, Jay
Taves1, Alessandro Tasora2, Radu Serban1* and Dan Negrut1

1*Department of Mechanical Engineering, University of
Wisconsin-Madison, Madison, 53706, WI, USA.

2Dipartimento di Ingegneria ed Architettura, Università di
Parma, Parma, I-43100, Italy.

*Corresponding author(s). E-mail(s): serban@wisc.edu;
Contributing authors: benatti@wisc.edu; aryoung5@wisc.edu;

amelmquist@wisc.edu; jtaves@wisc.edu;
alessandro.tasora@unipr.it; negrut@wisc.edu;

Abstract

This contribution (i) describes an open source, physics-based simulation
infrastructure that can be used to learn and test control policies in off-
road navigation; and (ii) demonstrates the use of the simulation platform
in an end-to-end learning exercise that relies on simulated sensor data
fusion (camera, GPS, and IMU). For (i), the 0.5 million lines of open
source code support vehicle dynamics (wheeled/tracked vehicles, rovers),
deformable & non-deformable terrains, and virtual sensing. The library
has a Python API for interfacing with existing Machine Learning frame-
works. For (ii), we use a Gator off-road vehicle to demonstrate how a
policy learned on non-deformable terrain performs when used in hilly
conditions while navigating around a course of randomly placed obstacles
on deformable terrain. The hilly terrain covers an 80×80 m patch and the
soil can be controlled by the user to assume various behavior, e.g., non-
deformable, deformable hard (silt-like), deformable soft (snow-like), etc.
To the best of our knowledge, there is no other open source, physics-based
engine that can be used to simulate off-road mobility of autonomous
agents operating on deformable terrains. The results reported herein can

1



Springer Nature 2021 LATEX template

2 End-to-end learning for off-road navigation

be reproduced with models and data available in a public repository [1].
Animations associated with the tests run are available online [2].

Keywords: Simulation, Reinforcement Learning, Off-road Autonomous
Vehicles, Deformable Terrain

1 Introduction

There are many applications in which controller design can benefit substan-
tially from the use of simulation. Off-road navigation is arguably one such
application. Indeed, it is difficult to test autonomous rovers, light robots, and
heavy-duty vehicles in off-road conditions for several reasons. Many times, they
do not exist at the time the controller is designed. If they do exist, it is costly
(in terms of time and money) to take them out in the field and test candidate
control policies. Even if this can be done in principle, it can be daunting since
a multitude of testing scenarios may be necessary. For instance, unlike on-road
driving, off-road navigation takes place in very unstructured environments, e.g,
rocky terrain, mud, sand, obstacles (ditches, fallen trees, etc.), snow, etc. In
addition to cost savings, shortening of design time, and ability to do exhaustive
testing, there are two other advantages for simulation use in controller design:
repeatability and safety. If a scenario is problematic, it can be recreated in sim-
ulation to gauge whether a better control policy addresses the issue at hand.
As for safety, simulation eliminates hazards (both to the human and hardware)
that are sometimes associated with physical testing. However, simulation is
not a silver bullet. Many times, control policies designed in simulation fail to
transfer to the real world owing to the so called simulation-to-reality gap [3].
It is also a source of frustration to anticipate when the gap is insurmount-
able, and when simulation is helpful. Enhancing the transferability attribute of
simulation-learned control policies represents an area of active research [4–6];
however, this rich topic falls outside the scope of this contribution.

Herein, we describe a physics-based simulation platform and demonstrate
it in conjunction with the task of producing an end-to-end policy for con-
trolling autonomous vehicle (AV) navigation directly from raw sensory data.
The AVs operate in hilly, off-road conditions with randomly placed obstacles
(rocks) obstructing safe navigation. Training is based on a curriculum learning
approach; the complexity of the environment is increased as the policy con-
verges. The training is exclusively done with non-deformable terrain since these
simulations run faster than real time [7]. The deformable terrain implementa-
tion used here is approximately 4-5× slower than the non-deformable terrain
simulation counterpart. As such, learning on deformable terrain is expensive.
The control policy derived is tested on deformable soils that have different
textures and soil deformation attributes. The deformable soils are of two cate-
gories: deformable but hard (silt-like) and deformable but soft (snow-like). The
end-to-end approach to navigation is certainly not new; see for instance [8, 9].



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 3

However, to the best of our knowledge, (a) this is the first example of off-road
navigation (driving control + reaching a goal) with reinforcement learning;
and (b) the simulation environment developed is the first open-source, physics-
based platform that brings together tracked/wheeled vehicle dynamics, sensor,
and terrain simulation.

Our goal is to demonstrate that off-road mobility of AVs can rely, in prin-
ciple (see the sim-to-real caveat above), on simulation for the development of
control policies and to report on tests that assess the effectiveness of these
policies. Thus, in Section 2 we provide an overview of similar ongoing efforts
in the simulation-in-robotics area. Section 3 provides an outline of the simula-
tion environment developed by this group. Section 4 presents the end-to-end
learning approach for off-road AV mobility. Simulation results are described
in Section 5. Concluding remarks and directions of future work round up the
contribution.

2 Related Work

This section provides a summary of the state of the art in simulation environ-
ments (see Subsection 2.1), and learning techniques for autonomous navigation
(see Subsection 2.2). The discussion of simulation environments is restricted
to those commonly used for training reinforcement learning algorithms.

2.1 Simulation Environments for Reinforcement Learning

Gazebo [10], one of the most broadly used simulators in robotics, has been
used for reinforcement learning by leveraging the open-source nature and tight
integration with the Robot Operating System (ROS). Gazebo exposes an
environment that wraps multiple dynamics engines and sensors. However, it
lacks specific support for vehicle modeling and deformable terrain for off-road
scenarios.

Widely used for “in-doors robotics” reinforcement learning, MuJoCo [11]
is a dynamics engine that supports Universal Robot Description Format
(URDF)-based modeling. MuJoCo does not support vehicle dynamics. The
sensing support is also limited due to the noise models applied to the sen-
sors, most of which are restricted to be dynamics-based and interoceptive.
An alternative to MuJoCo is PyBullet [12], which provides an interface to
generate the specific sensor data desired by the user. The strengths of PyBul-
let are in rigid-body dynamics and ease of use, making it a convenient
choice for Reinforcement Learning (RL) applications outside the realm of
autonomous vehicles. For AV simulation, CARLA [13], AirSim [14], LGSVL
[15], and Torcs [16] support vehicle simulation for training and testing of con-
trol algorithms. While these are vehicle-focused, they cannot perform off-road
simulation and have limited sensor fidelity. Torcs, which builds off a racing
game, provides limited support for sensing, allowing access to camera and
simplified lidar, with dynamic information available directly from the physics
engine. CARLA, LGSVL, and AirSim are designed for on-road applications



Springer Nature 2021 LATEX template

4 End-to-end learning for off-road navigation

and support an array of sensors. The sensors include basic distortions and
noise. Due to limited geometric fidelity and time-resolution of collision-based
ray-casting, the sensor data is typically overly clean or has obvious disconti-
nuities or modeling artifacts. None of these on-road simulation environments
support complex off-road navigation. CARLA and AirSim build off Unreal
Engine [17], while LGSVL is based on Unity [18]. Unreal and Unity are video
gaming engines that provide the aforementioned simulators with high quality
rendering and basic physics simulation tools. In turn, both Unreal and Unity
internally use NVIDA’s PhysX physics engine [19]. Vehicle dynamics are thus
simulated very quickly, as PhysX was designed for speed. The drawback is that
CARLA, LGSVL, AirSim all have the level of fidelity associated with video
gaming. For instance, tire models are basic and display a level of fidelity good
enough for gaming. Adding, for instance, new bushing elements to better cap-
ture suspension dynamics, or a more accurate terrain model is difficult and
not available with the PhysX capabilities exposed by Unreal and Unity.

2.2 Learning techniques

The use of Deep Reinforcement Learning (DRL) has met with great success
since its introduction [20]. In particular, DRL has found a niche in vision-
based robotic manipulation tasks. Robots controlled by DRL-trained neural
networks (NN) have been shown to solve complex tasks in unstructured envi-
ronments with [21] or without [22] the use of imitation learning. End-to-end
DRL approaches have also been successfully applied to on-road autonomous
driving. One of the major challenges in this area is the gap between RGB
images generated by simulators and real world camera images, which can cause
autonomous driving policies trained in simulation to perform poorly in the real
world. This has been addressed in various ways, e.g. using synthesized realistic
images [23] or tools to generate images directly from real-world sampling [24].
Sensor fusion with DRL techniques has shown promising results in controlling
small indoor robots with camera and lidar [25, 26]. RL in conjunction with
imitation learning has been used in off-road driving to teach a vehicle to race
quickly on a course [27]. However, to the best of our knowledge, there has been
no demonstration of an end-to-end, off-road driving policy capable of reaching
a target position while avoiding randomly placed obstacles on deformable soil
and hilly terrain.

3 Chrono Simulation Environment

The physics-based simulator used in conjunction with this work is called
Chrono. It is actively developed, is open source, and is released under a
permissive BSD3 license for unfettered use, change, and distribution [28].
A full description of the simulation platform falls outside the scope of this
document; for an overview, see [29]. Chrono provides support for multi-
body dynamics (multi-core), nonlinear finite element analysis (multi-core),



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 5

fluid solid interaction (GPU), granular dynamics (multi-core/GPU), terrame-
chanics (multi-core/GPU/MPI), sensing (GPU), and the simulation of large
collections of AVs running in one joint scenario (MPI). The hardware sup-
port includes multi-core CPUs via OpenMP, GPU computing via CUDA, and
distributed memory (clusters/supercomputers) via Message Passing Interface
(MPI). The four Chrono components relevant herein are: Chrono::Engine,
Chrono::Vehicle, terramechanics, and Chrono::Sensor. Chrono::Engine is the
solver that advances the simulation in time. Chrono::Vehicle provides support
for rapidly setting up and analyzing vehicles (tracked or wheeled) via a library
of templates for vehicle subsystems [30]. The terramechanics support comes in
three flavors: semi-empirical expeditious approaches [31], continuum represen-
tations [32], and discrete element method approaches (fully resolved granular
terrain) [33].

Setting up vehicle models quickly is facilitated via Chrono::Vehicle, which
provides vehicle subsystem templates such as tires, suspensions, steering mech-
anisms, drivelines, sprockets, track shoes, and powertrains. For instance,
there are 15 types of suspensions supported, e.g. double wishbone, multi-link,
MacPherson strut, leaf spring etc. There are several tire models available, e.g.,
Pacejka, Fiala, TMeasy. Chrono::Vehicle works in conjunction with a variety of
terrain models, ranging from rigid, to semi-empirical Bekker-Wong type mod-
els, and on to complex physics-based solutions that draw on either a granular
or a continuum representation of the soil.

Sensing support in Chrono is provided as an additional module that builds
on top of Chrono::Engine to provide measurement data from within the simu-
lation and virtual environment. Currently, there is support for RGB cameras,
lidar, GPS, and IMU [34]. The purpose of the Chrono::Sensor module is to
provide realistic data for training and testing autonomous controls. For GPS
and IMU, ground truth data, queried from Chrono::Engine is augmented to
introduce noise commonly found on accelerometers and gyroscopes [14] as well
as GPS receivers. For camera and lidar, the visual environment is ray-traced
using custom GPU kernels that model the acquisition process of the specific
sensor. The ray-traced data is then augmented to introduce noise and distor-
tion to model the true sensor output. All sensors are parameterized by their
update frequencies, noise characteristics, and lag.

The Chrono lidar model augments ground-truth data with noise (based on
the measurements of range, intensity, and angular precision) to produce the
final point cloud. The lidar leverages ray-tracing to create a point cloud based
on the visual scene. This, in combination with supersampling for beam diver-
gence, allows Chrono::Sensor to generate high-fidelity point clouds of complex
environments. The beam discretization model extends that proposed in [35]
to allow a user-defined number of rays per lidar beam. By incorporating beam
divergence, we can model multiple return modes and encountered objects. In
addition to beam divergence, the ray-tracing method allows the temporal sam-
pling of a scanning lidar to be based on modern motion blurring techniques
resulting in realistic and continuous distortions that are not possible with



Springer Nature 2021 LATEX template

6 End-to-end learning for off-road navigation

large time steps in video gaming collision detection systems employed by other
learning environments, e.g. [13, 14].

The implemented camera simulator introduces lens and image sensor mod-
els to improve the realism of the data. The camera is parameterized based on
the frequency, resolution, field of view, exposure time, and lag. Based on the
exposure time, motion blur that accounts for object and camera movement
is introduced. The camera lens model draws on work from [36] to allow for
wide angle lenses. The noise model is based on modified version of the EMVA
standard [37], which introduces intensity-dependent noise based on the image
sensor characteristics. Additional components of the image signal processor
(ISP) are in development since the ISP introduces additional sensing artifacts
such as compression, demosaicking, and color correction.

The Python API of Chrono, known as PyChrono, provides access to the
vast majority of Chrono API from Python, including Chrono::Vehicle and
Chrono::Sensor. This allows for a simulation to be directly interfaced to the
Python API of popular ML frameworks. By using the SWIG wrapper [38] to
directly interface with the C++ binaries, minimal overhead is introduced when
running a simulation from Python. As an example, large data from sensor
simulations (such as RGB images or lidar) are cast to NumPy arrays without
instantiating new memory by means of SWIG typemaps.

4 End-to-end learning approach

The control policy employed in this work is end-to-end: the NN takes as
inputs raw sensor data and directly outputs the control values for steering
and throttle. The policy is trained from scratch. The objective for the naviga-
tion algorithm is to control a John Deere Gator to reach a target destination
given by GPS coordinates. The algorithm uses a GPS and IMU that provide
the NN with the current vehicle location and orientation. The vehicle is also
equipped with a down-sampled RGB camera, which the network leverages in
order to avoid obstacles; i.e., rocks of various shapes, sizes, and textures. Since
the impact of the sensor models is outside the scope of this paper, all sensor
data is idealized with no noise.

For training, the environment consists of a 120×120 m patch of terrain on
which obstacles are randomly placed. The vehicle’s initial position is picked
randomly in a 80 m diameter circle while the goal is placed on the opposite
side of the same circle; in polar coordinates, given α the angle of the vehicle
initial position, the angle of the goal will be α + β with β randomly picked
in [π2 ,

3π
2 ]. The vehicle must navigate to within 10 m of the destination and

the reward is proportional to the vehicle’s approach speed. The episode is
terminated with a reward penalty if the vehicle hits an obstacle, goes outside
the terrain boundary, or the timeout is reached, while it is terminated with a
reward bonus if it reaches the goal.

The observation consists of a two-element tuple: an 80×45 pixel RGB image
and a five-element array containing the components (x,y) of the distance from



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 7

the goal (in the vehicle frame, based on GPS measurements), the vehicle ori-
entation (compass angle), the heading with respect to the goal, and the vehicle
speed. Based on these inputs, the policy controls the steering (-1 to 1) and the
throttle/brake value (-1 to 1, where a negative value implies braking).

To train the NN, we adopted the constrained version of the Proximal Pol-
icy Optimization (PPO) algorithm [39], using two separated NN for the actor
and the critic. PPO is known as one of the best performing DRL algorithms
for continuous control [6]. The NN model inputs come from the GPS, IMU,
and RGB camera. Through PyTorch [40], the NN model was implemented as
follows. A five-element array was fed to a fully connected layer into 10 neu-
rons, while the RGB image was processed by a CNN as in [20] through 3
Convolutional Layers of kernel size 8×8, 4×4 and 3×3 and stride 4, 2 and
1, respectively (no padding), then flattened into 768 features which were pro-
cessed by a fully-connected layer into 10 neurons. The output of the CNN and
the single fully-connected hidden layer were concatenated and then processed
through three fully-connected hidden layers, as shown in Fig. 1. All layers used
rectified linear unit (ReLU) activation function.

Fig. 1: Actor neural network architecture.

Given the GPS coordinates of the vehicle and the goal, along with the
orientation of the vehicle from the IMU, it is straightforward to evaluate the
distance between the vehicle and the objective. This being said, there are sev-
eral ways to pass this information to the NN as an input: directly feeding the
GPS coordinates of the vehicle and of the objective, the coordinate difference,
the relative distance in a frame oriented along the cardinal points or the dis-
tance in the local frame of the vehicle. The last has proven to be the most
effective, even though in principle the ML algorithm should be able to infer
the correlation. The direct global coordinate input approach proved to be inef-
ficient, as shown in Fig. 2. It can be seen that, in terms of convergence, simply
rotating the position of the goal with respect to the vehicle in the vehicle
reference frame (called local) dramatically improved the policies performance.



Springer Nature 2021 LATEX template

8 End-to-end learning for off-road navigation

Fig. 2: On flat terrain without obstacles, the algorithm converges immediately
when feeding the position of the goal rotated in the vehicle reference frame.
When the position is given in the global frame, training does not converge.

We adopted a curriculum learning approach [41], progressively increasing
the complexity of the task, as shown in Fig. 3. The first part of the training
was performed on flat terrain with a random number of obstacles (from 0 to
30). Once convergence was reached after approximately 200 policy updates,
the obstacle number was fixed at 30. After a visible drop off, convergence was
reached again quickly. Then, after 376 policy updates, the flat terrain was
replaced with hilly terrain (while keeping the same number of obstacles). The
agent initially struggled and many updates were necessary in order to con-
verge again. In the third and last stage of the training, the obstacle count was
increased to 50 and the terrain texture was randomized. Curriculum learning
was deemed necessary since convergence could not be directly reached from
scratch on hilly terrain. Investigating multiple training approaches, we found
that: (i) Irregularities in terrain height caused policies trained exclusively on
flat terrain to perform poorly; (ii) This problem can by solved by undergoing
further training on hilly terrain; and, (iii) The curriculum learning approach
(see Fig. 3) was instrumental in eventually handling the complex tasks, namely
hills with many random obstacles.

Training relied on the Adam algorithm [42] with a learning rate of 10−4.
The training set at each update included 6000 tuples (timesteps), fed by
1000 element mini-batches to the optimizer, which performed eight epochs
per update. Since Chrono is compatible with OpenAI gym [43] environments,
the dataset was collected by running six parallel episodes leveraging OpenAI
baselines [44] multiprocessing tools.



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 9

To complete the first phase, pertaining to navigation on a flat terrain with
sparse obstacles, the algorithm took 200 policy updates, each of which required
6000 steps for collecting samples over 6 parallel simulation environments. Con-
sidering that the frame rate was 10 fps (even though the physics was carried
out at 500 Hz) it comes out that it would take more than 33 real world hours
for the policy to converge (considering the use of 6 parallel environments, 200
updates, 1000 steps per update, and a 0.1,s time step). Given the massive
amount of samples needed, the computational overhead introduced by simu-
lating terrain deformation strongly increases the training time. In addition,
preliminary experiments did not always show a consistent improvement when
adding terrain deformation during the training: other factors, such as terrain
texture randomization, play a much important role. The feedback nature of
the policy can correct for deviation in response due to a different terrain, and
the agent has no means (in terms of perception) to fully estimate the traf-
ficability of the path ahead. This being said, thanks to recent improvements
in our deformable terrain simulation performance, we plan to investigate this
further in the future, possibly combined with additional sensing information
(e.g., wheel slip).

Fig. 3: Reward progression. Vertical lines represent the changes introduced
to make the environment more challenging. In order of occurrence, the dotted
lines mark: fix obstacle count at 30; change from flat to hilly terrain; and
increase of obstacle count to 50.



Springer Nature 2021 LATEX template

10 End-to-end learning for off-road navigation

5 Simulation Experiments

To demonstrate and analyze the capabilities of the control policy, we used a
model of the John Deere Gator utility vehicle driving on an 80×80 m patch of
terrain. The reduced scale of the test environment allowed for rapid evaluation
and inclusion of tests using deformable terrain based on the Soil Contact Model
(SCM) [31].

The Gator vehicle model is constructed by instantiating and combining
the appropriate subsystem templates from the Chrono::Vehicle library. In par-
ticular, it uses a single wishbone suspension in the front, connected to a
rack-and-pinion steering mechanism, and a rigid rear suspension, connected to
the rear-wheel driveline consisting of a conical gear and a differential. Power
is provided by an electrical motor (modeled with a simple linear torque-speed
curve). The Gator driveline contains no torque converter nor transmission box
and provides fixed gear rations for forward and reverse operation. The result-
ing Chrono model consists of 10 bodies, 11 kinematic joints, 2 translational
spring-damper force elements (for the front suspension), and 4 1D shaft ele-
ments (used in modeling the driveline) and has 14 degrees of freedom. The
total vehicle mass is 906.2 kg (note that this is a model of a Gator vehicle
instrumented for autonomous driving and as such includes the mass of an
instrumentation tower rigidly attached to the chassis).

Multibody systems in Chrono are modeled using a body-coordinate formu-
lation based on Newton-Euler equations, with orientation parameterized using
unit quaternions. For more details, as well as additional information on the
solver options available in Chrono, see [29, 45].

The deformable terrain model used in this study is SCM which relies on
the semi-empirical Bekker [46, 47] and Janosi-Hanamoto formulae [48]. The
two sets of deformable soil parameters used in this study are provided below
(see [31] for the SCM formulation and model parameters used herein).

SCM hard SCM soft
Kφ [N/mn+2] 5.3 · 103 2.0 · 105

Kc [N/mn+1] 1.0 · 103 0
n 0.793 1.1
c [Pa] 1.3 · 103 0
ψ [deg] 31 30
K [m] 0.012 0.010
ke [Pa/m] 4.0 · 108 4.0 · 107

r [Pa/m·s] 3.0 · 104 3.0 · 104

For all tests, the vehicle is placed at world location (-35,35); to be deemed
successful, it must navigate safely to within a 10 m radius of world location
(35,-35). This setup was a matter of convenience and is not a limitation of
the policy. Since training used a larger patch of 120×120 m, it is important
to note that parameters such as number of obstacles and height of terrain
cannot be compared directly with testing; this was done on purpose. For the
terrain patch, an equivalent number of obstacles to the 50 used in training



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 11

is approximately 22. Additionally, the maximum height difference of 10 m in
training is equivalent1 to a height of approximately 7.25 m on the testing
terrain. Furthermore, in testing, to prevent the vehicle from successfully navi-
gating purely along the diagonal straight toward the destination, five obstacles
were placed randomly near the diagonal to force non-trivial trajectories. Over-
all, the tests were conducted with a higher-complexity environment than that
used in training. They were designed to probe the robustness of the algorithm
and understand to what extent the policy could be used on never-before-seen
terrain. We looked at (i) increased levels of hilliness; (ii) increased number
of obstacles; and (iii) alterations of the soil including non-deformable, hard
deformable (silt-like), and soft deformable (snow-like).

Figure 4 shows a snapshot of one scenario: the soft deformable terrain used
for testing robustness; a capture of the image from the camera sensor used
by the NN; and the position of the vehicle along its current trajectory with
the obstacles and height map overlaid for context (in the height map, black
indicates valleys and white peaks).

Fig. 4: Snapshot of a scenario used for testing. Left: third-person perspective
of the vehicle; center: image from the camera’s view at the resolution used in
training 80×45 pixels; right: the current progress of the vehicle amount the
hills and obstacles corresponding to the images on left.

Figure 5 shows an example set of paths navigated by the Gator in the test
environment. In Fig. 5a, the vehicle avoids a sparse environment, limited to 20
obstacles. By increasing the obstacles to 50, as shown in Fig. 5b, the complexity
of the test environment forced the policy into a correspondingly complex path.
An example failure is illustrated in Fig. 5c where the vehicle did not reach
the destination owing to a collision. Any scenario where the vehicle collides
with an obstacle was deemed a failure, regardless of how directly the vehicle
collided with the obstacle. The last example, shown in Fig. 5d, demonstrates
the vehicle navigating a hilly terrain, based on a programmatically-generated
random height map.

In an attempt to assess the practicality of the vehicle’s chosen path, a Par-
ticle Swarm Optimization (PSO) algorithm [49] with global knowledge of the
environment was used to generate reference trajectories in the environment;
these were used in post-processing only, for comparison purposes. Figure 6a

1By ”equivalent” we mean the number-of-obstacles/surface ratio is the same; for terrain height
difference, ”equivalent” means that the maximum slope is the same.



Springer Nature 2021 LATEX template

12 End-to-end learning for off-road navigation

(a) (b) (c) (d)

Fig. 5: Example test scenarios: (a) 20 obstacles, (b) 50 obstacles, (c) failure
with 50 obstacles, (d) hilly terrain with 50 obstacles.

shows a comparison between the trained vehicle’s path and a trajectory gen-
erated using the PSO path planner. In this example, 40 obstacles were present
on a rigid flat terrain.

To quantify the end-to-end learned navigation, the primary metric is suc-
cess rate. This is simply a measure of the vehicle’s ability to reach the
destination without colliding with any obstacles. For this metric, any collision,
regardless of directness of collision, is considered a failure and the simula-
tion is terminated. In addition to the primary metric, the length of the path
is analyzed relative to the PSO path. Since the PSO path would generally
be able to find a shorter path than the trained algorithm, which only has
local information, the comparison is used to show that the path taken by the
trained algorithm is reasonable, and not simply a path that avoids obstacles
yet produces bizarre trajectories.

When testing the effect of hilliness on navigation, the maximum height
difference of the random height map was increased from 0 m (flat) to 12 m
in increments of 2 m. At each level, 200 simulations on random height maps
generated using simple noise were performed to gauge the success rate of the
algorithm. In all experiments, the terrain used one of the textures used in
training. The results are shown in Fig. 7. As expected, the trained network’s
ability to safely navigate the environment decreases with increased hilliness.
Additionally, as the number of obstacles is increased, the task becomes more
difficult; we note that tests conducted with 20 obstacles were the most similar
to the training environment.

To investigate the policy robustness and assess the relative importance
of including different mechanisms of terrain variability in the training set,
we estimated next the success rate for different terrain topographies and soil
properties, with varying numbers of obstacles, and using both terrain textures
that were included in the training test as well as entirely new textures. The
results of Fig. 8a correspond to tests in which different textures were used for
each soil type; however, the texture used for ‘Rigid’ terrain was one of those
included in the training set, while those used for the two SCM deformable
cases were not. In contrast, the results in Fig. 8b were generated using a single



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 13

texture (from the set of textures included in training) across all terrain and
soil types.

For a proper evaluation of these results, we note that (i) the deformable
‘SCM Hard’ soil properties model a relatively rigid terrain (that is, close in
behavior to the ‘Rigid’ type) and (ii) the terrain textures for ‘Rigid’ terrain in
Figs. 8a and 8b are different, although both coming from the set of textures
used in training. The trends shown here confirm the expected outcomes:

� First, they confirm the strong influence of terrain texture (for autonomous
navigation relying on camera sensors) and the fact that terrain texture is
much more important on uneven terrain where it represents a larger por-
tion of the background for each obstacle. This is best illustrated by the
differences in success rates for the ‘SCM Hard Hilly’ case in the two sets
of experiments. This is not observed for the ‘Rigid Hilly’ terrain since both
sets of experiments used textures included in the training process.

� As before, increased obstacle density results in lower success rate.
� On very soft soils and uneven terrain, the ensuing effects on vehicle mobility

(side slip while steering, increased longitudinal slip on sloped terrain, etc)
end up being the main performance limitation. This indicates that the cur-
rent policy, derived through training on rigid soil only, is not suitable for
this type of scenario. The goal of the current study was to assess the extent
to which such a policy is applicable and identify this limit.

The second metric, which compares the length of the chosen path to the
length of a path generated by the PSO, is discussed for a single environment
setup. This is shown in Fig. 9a for flat, rigid terrain with 50 obstacles, which is
more than double the obstacle density used in training. The length difference
is computed as length(PSOpath)− length(NNpath). These results show that
the mode of the distribution is around -5 m, meaning the NN path is most
often 5 m longer than the PSO path. While a direct comparison is not feasible
since the PSO takes into account global knowledge and does not make any
claims about optimality, the path taken by the NN appears to be moderately
close in length to a global planner. This means that the policy is appropriately
weighting the directness of the path as expected. Only successful paths were
included in the calculation of this metric.

To further understand and analyze the success rate of the algorithm, the
full set of collisions were evaluated based on the directness of collision. The
directness of collision was computed by measuring the overlap of the projection
of the vehicle and obstacle onto a plane perpendicular to the vehicle heading.
This metric quantifies scraping collisions near 0% and direct collisions near
100%. This percentage can be interpreted as the percent of the frontal area of
the vehicle that collided with the obstacle. While this cannot directly assign
severity to the collision, it can hint at the type of collisions experienced by
the policy. The distribution of results in Fig. 9b show that while the mode is
near 100%, there is also a significant portion of the collisions that have low
directness.



Springer Nature 2021 LATEX template

14 End-to-end learning for off-road navigation

6 Conclusion and Future Work

In this paper, we briefly describe the Chrono infrastructure, including sup-
port for vehicle dynamics, sensor simulation, and terramechanics, to allow
comprehensive off-road AV mobility studies and focus the study on end-to-
end learning as enabled by the Chrono environment which anchors both the
learning and testing phases. The end-to-end policy is used in flat and hilly
landscapes, with deformable terrain that can be hard (silt-like) or soft (snow-
like). We noted the following: policies learned on flat terrain are insufficient
for navigating hilly scenarios; policies learned on rigid terrain transfer quite
well to deformable terrain when the terrain is flat; the hillier the landscape,
the harder it is to navigate it (Fig. 8); the more obstacles are randomly placed
on the course, the less likely it is for the policy to see the vehicle through; the
control policy led to trip trajectories that came rather close to those generated
with PSO, a third party trajectory planning tool (Fig. 9a); there is a sizable
number of head-on collisions that point to room for improvement in the derived
policy (Fig. 9b). Note that the testing conditions, in terms of average number
of obstacles per unit area, were more harsh than the learning conditions.

Looking ahead, we plan to pursue several research thrusts and simulation
platform development avenues. One direction is to investigate more complex
control stacks that would combine the end-to-end with more traditional strate-
gies such as model predictive control. The current work should be expanded to
understand how tracked vehicles perform under similar conditions given that
their traction and turning radius differ significantly from their wheel counter-
parts. A recent reformulation of our SCM deformable soil algorithm resulted
in speedups of more than 50×, opening the door to real-time simulation on
deformable soil. This will allow for training on deformable soil which we expect
to result in more robust autonomous navigation. Not analyzed in this contri-
bution is the steering control input to the vehicle, which can often be noisy
based on the output of the NN. Finally, we plan to investigate approaches
that enhance the chance of simulation-derived policies transferring effectively
to the real world.

References

[1] UW-Madison Simulation Based Engineering Laboratory: Supporting
models, scripts, data. https://go.wisc.edu/arflqq (2021)

[2] UW-Madison Simulation Based Engineering Laboratory: Supporting sim-
ulations. https://go.wisc.edu/256xb9 (2021)

[3] Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of
simulation in evolutionary robotics. In: European Conference on Artificial
Life, pp. 704–720 (1995). Springer

[4] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.:

https://go.wisc.edu/arflqq
https://go.wisc.edu/256xb9


Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 15

Domain randomization for transferring deep neural networks from simu-
lation to the real world. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 23–30 (2017). IEEE

[5] Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff,
N., Fox, D.: Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience. In: 2019 International Conference on
Robotics and Automation (ICRA), pp. 8973–8979 (2019). IEEE

[6] Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B.,
Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider,
J., Sidor, S., Tobin, J., Welinder, P., Weng, L., Zaremb, W.: Learning
dexterous in-hand manipulation. The International Journal of Robotics
Research 39(1), 3–20 (2020). https://doi.org/10.1177/0278364919887447

[7] Negrut, D., Serban, R., Elmquist, A., Taves, J., Young, A., Tasora, A.,
Benatti, S.: Enabling Artificial Intelligence studies in off-road mobil-
ity through physics-based simulation of multi-agent scenarios. In: NDIA
Ground Vehicle Systems Engineering and Technology Symposium (2020)

[8] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

[9] Amini, A., Rosman, G., Karaman, S., Rus, D.: Variational End-to-End
Navigation and Localization (2018). http://arxiv.org/abs/1811.1011

[10] Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In: 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), vol. 4, pp. 2149–2154
(2004). Citeseer

[11] Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-
based control. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5026–5033 (2012). IEEE

[12] Matas, J., James, S., Davison, A.J.: Sim-to-Real Reinforcement Learning
for Deformable Object Manipulation (2018). https://arxiv.org/abs/1806.
07851

[13] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA:
An open urban driving simulator. In: Proceedings of the 1st Annual
Conference on Robot Learning, pp. 1–16 (2017)

[14] Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In: Field and Service
Robotics, pp. 621–635 (2018). Springer

https://doi.org/10.1177/0278364919887447
http://arxiv.org/abs/1811.1011
https://arxiv.org/abs/1806.07851
https://arxiv.org/abs/1806.07851


Springer Nature 2021 LATEX template

16 End-to-end learning for off-road navigation

[15] Rong, G., Shin, B.H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko,
M., Boise, E., Uhm, G., Gerow, M., Mehta, S., Agafonov, E., Kim,
T.H., Sterner, E., Ushiroda, K., Reyes, M., Zelenkovsky, D., Kim, S.:
LGSVL simulator: A high fidelity simulator for autonomous driving. In:
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–6 (2020). IEEE

[16] Espié, E., Guionneau, C., Wymann, B., Dimitrakakis, C.: TORCS –
The Open Racing Car Simulator. https://sourceforge.net/projects/torcs/
(2020)

[17] Epic Games: Unreal Engine. https://www.unrealengine.com. Accessed:
2021-11-23 (2020)

[18] Unity3D: Main Website. https://unity3d.com/. Accessed: 2021-11-23
(2016)

[19] NVIDIA: PhysX simulation engine. Available online at http://developer.
nvidia.com/object/physx.html (2019)

[20] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D., Riedmiller, M.A.: Playing atari with deep reinforcement learning.
CoRR abs/1312.5602 (2013) https://arxiv.org/abs/1312.5602

[21] Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunya-
suvunakool, S., Kram??r, J., Hadsell, R., de Freitas, N., Heess, N.:
Reinforcement and Imitation Learning for Diverse Visuomotor Skills
(2018)

[22] Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep
visuomotor policies. CoRR abs/1504.00702 (2015) https://arxiv.org/
abs/1504.00702

[23] You, Y., Pan, X., Wang, Z., Lu, C.: Virtual to real reinforcement learning
for autonomous driving. CoRR abs/1704.03952 (2017) https://arxiv.
org/abs/1704.03952

[24] Amini, A., Gilitschenski, I., Phillips, J., Moseyko, J., Banerjee, R.,
Karaman, S., Rus, D.: Learning robust control policies for end-to-end
autonomous driving from data-driven simulation. IEEE Robotics and
Automation Letters 5(2), 1143–1150 (2020)

[25] Bohez, S., Verbelen, T., Coninck, E.D., Vankeirsbilck, B., Simoens, P.,
Dhoedt, B.: Sensor Fusion for Robot Control through Deep Reinforcement
Learning (2017). http://arxiv.org/abs/1703.04550

[26] Patel, N., Choromańska, A., Krishnamurthy, P., Khorrami, F.: Sensor

https://sourceforge.net/projects/torcs/
https://www.unrealengine.com
https://unity3d.com/
http://developer.nvidia.com/object/physx.html
http://developer.nvidia.com/object/physx.html
{arXiv:1312.5602}
{arXiv:1504.00702}
{arXiv:1504.00702}
{arXiv:1704.03952}
{arXiv:1704.03952}
http://arxiv.org/abs/1703.04550


Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 17

modality fusion with CNNs for UGV autonomous driving in indoor envi-
ronments. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1531–1536 (2017)

[27] Pan, Y., Cheng, C., Saigol, K., Lee, K., Yan, X., Theodorou, E.A.,
Boots, B.: Agile Autonomous Driving Using End-to-End Deep Imitation
Learning (2017). http://arxiv.org/abs/1709.07174

[28] Project Chrono Development Team: Chrono: An Open Source Framework
for the Physics-Based Simulation of Dynamic Systems. https://github.
com/projectchrono/chrono. Accessed: 2022-01-10

[29] Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleis-
chmann, J., Taylor, M., Sugiyama, H., Negrut, D.: Chrono: An open
source multi-physics dynamics engine. In: Kozubek, T. (ed.) High Per-
formance Computing in Science and Engineering – Lecture Notes in
Computer Science, pp. 19–49. Springer, Cham (2016)

[30] Serban, R., Taylor, M., Negrut, D., Tasora, A.: Chrono::Vehicle template-
based ground vehicle modeling and simulation. Intl. J. Veh. Performance
5(1), 18–39 (2019)

[31] Tasora, A., Mangoni, D., Negrut, D., Serban, R., Jayakumar, P.:
Deformable soil with adaptive level of detail for tracked and wheeled
vehicles. International Journal of Vehicle Performance 5(1), 60–76 (2019)

[32] Hu, W., Rakhsha, M., Yang, L., Kamrin, K., Negrut, D.: Modeling
granular material dynamics and its two-way coupling with moving solid
bodies using a continuum representation and the SPH method. Com-
puter Methods in Applied Mechanics and Engineering 385, 114022 (2021).
https://doi.org/10.1016/j.cma.2021.114022

[33] Kelly, C., Olsen, N., Negrut, D.: Billion degree of freedom granular
dynamics simulation on commodity hardware via heterogeneous data-type
representation. Multibody System Dynamics 50, 355–379 (2020)

[34] Elmquist, A., Serban, R., Negrut, D.: A sensor simulation framework for
training and testing robots and autonomous vehicles. ASME Journal of
Autonomous Vehicles and Systems 1(2), 021001 (2021)

[35] Goodin, C., Doude, M., Hudson, C., Carruth, D.: Enabling off-road
autonomous navigation-simulation of lidar in dense vegetation. Electron-
ics 7(9), 154 (2018)

[36] Tang, Z., von Gioi, R.G., Monasse, P., Morel, J.-M.: A precision analysis of
camera distortion models. IEEE Transactions on Image Processing 26(6),
2694–2704 (2017)

http://arxiv.org/abs/1709.07174
https://github.com/projectchrono/chrono
https://github.com/projectchrono/chrono
https://doi.org/10.1016/j.cma.2021.114022


Springer Nature 2021 LATEX template

18 End-to-end learning for off-road navigation

[37] EMVA Standard: 1288, standard for characterization of image sensors and
cameras. European Machine Vision Association 3 (2010)

[38] Beazley, D.M.: SWIG: an easy to use tool for integrating scripting lan-
guages with C and C++. In: Proc. 4th Conf. on USENIX Tcl/Tk
Workshop, vol. 4. USA, p. 15 (1996)

[39] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal
policy optimization algorithms. CoRR abs/1707.06347 (2017) https://
arxiv.org/abs/1707.06347

[40] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation
in PyTorch. In: NIPS 2017 Workshop Autodiff (2017)

[41] Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning.
In: Proceedings of the 26th Annual International Conference on Machine
Learning. ICML ’09, pp. 41–48. Association for Computing Machinery,
New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553380.
https://doi.org/10.1145/1553374.1553380

[42] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2017) https://arxiv.org/abs/1412.6980 [cs.LG]

[43] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., Zaremba, W.: OpenAI Gym. CoRR abs/1606.01540 (2016)
https://arxiv.org/abs/1606.01540

[44] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford,
A., Schulman, J., Sidor, S., Wu, Y., Zhokhov, P.: OpenAI Baselines. https:
//github.com/openai/baselines

[45] Project Chrono: Chrono Documentation and API Reference. http://api.
projectchrono.org/. Accessed: 2021-11-24

[46] Bekker, M.G.: Introduction to Terrain-vehicle Systems. University of
Michigan Press, Ann Arbor, MI (1969)

[47] Wong, J.Y.: Theory of Ground Vehicles, 4th edn. John Wiley & Sons,
New York, N.Y. (2008)

[48] Janosi, Z., Hanamoto, B.: The analytical determination of drawbar pull
as a function of slip for tracked vehicles in deformable soils. In: Proc of
the 1st Int Conf Mech Soil–vehicle Systems. Turin, Italy (1961)

[49] Yarpiz: Path Planning using PSO in MATLAB.
https://www.mathworks.com/matlabcentral/fileexchange/

{arXiv:1707.06347}
{arXiv:1707.06347}
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
{arXiv:1412.6980}
{arXiv:1606.01540}
https://github.com/openai/baselines
https://github.com/openai/baselines
http://api.projectchrono.org/
http://api.projectchrono.org/
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab


Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 19

53146-path-planning-using-pso-in-matlab. Accessed: 2020-06-17

https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab


Springer Nature 2021 LATEX template

20 End-to-end learning for off-road navigation

(a) Example comparison between the
Gator’s path and PSO path.

(b) Example collision where the
directness of the impacts was 100%.

(c) Example collision where the
directness of the impacts was 34%.

Fig. 6: Example paths showing comparison with global path planner and
two levels of collision directness.



Springer Nature 2021 LATEX template

End-to-end learning for off-road navigation 21

Fig. 7: Success rate as function of hilliness and obstacle density on rigid
terrain.

(a) Using new (different) textures for
each scenario.

(b) Using same texture (from training
set) for all scenarios.

Fig. 8: Success rate as measure of policy robustness.



Springer Nature 2021 LATEX template

22 End-to-end learning for off-road navigation

(a) Difference in path length between
the PSO trajectory and vehicle path for

flat rigid terrain with 50 obstacles.

(b) Impact Directness on flat rigid
terrain for all obstacle configurations.

Fig. 9: Additional metrics analyzing path length and collision directness.


	Introduction
	Related Work
	Simulation Environments for Reinforcement Learning
	Learning techniques

	Chrono Simulation Environment
	End-to-end learning approach
	Simulation Experiments
	Conclusion and Future Work

