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Comprehensive insights from composition to functional
microbe-based biodiversity of the infant human gut microbiota
Gabriele Andrea Lugli 1, Leonardo Mancabelli2,3, Christian Milani1,3, Federico Fontana1, Chiara Tarracchini1, Giulia Alessandri1,
Douwe van Sinderen4, Francesca Turroni1,3 and Marco Ventura 1,3✉

During infancy, gut microbiota development is a crucial process involved in the establishment of microbe–host interactions which
may persist throughout adulthood, and which are believed to influence host health. To fully understand the complexities of such
interactions, it is essential to assess gut microbiota diversity of newborns and its associated microbial dynamics and relationships
pertaining to health and disease. To explore microbial biodiversity during the first 3 years of human life, 10,935 shotgun
metagenomic datasets were taxonomically and functionally classified. Microbial species distribution between infants revealed the
presence of eight major Infant Community State Types (ICSTs), being dominated by 17 bacterial taxa, whose distribution was shown
to correspond to the geographical origin and infant health status. In total, 2390 chromosomal sequences of the predominant taxa
were reconstructed from metagenomic data and used in combination with 44,987 publicly available genomes to trace the
distribution of microbial Population Subspecies (PS) within the different infant groups, revealing patterns of multistrain coexistence
among ICSTs. Finally, implementation of a metagenomic- and metatranscriptomic-based metabolic profiling highlighted different
enzymatic expression patterns of the gut microbiota that allowed us to acquire insights into mechanistic aspects of health-gut
microbiota interplay in newborns. Comparison between metagenomic and metatranscriptomic data highlights how a complex
environment like the human gut must be investigated by employing both sequencing methodologies and possibly supplemented
with metabolomics approaches. While metagenomic analyses are very useful for microbial classification aimed at unveiling key
players driving microbiota balances, using these data to explain functionalities of the microbiota is not always warranted.
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INTRODUCTION
The microbiota is represented by a complex community of
microorganisms that coexist with the host and may influence host
health. In mammals, the highest density of such microbial
populations can be found in the intestinal tract, where they form
a mix of autochthonous and allochthonous (or transient)
microorganisms, which are believed to be predominantly of
dietary origin1. During the first couple of months following birth,
the infant gut microbiota is characterized by low biodiversity,
being mainly populated by microorganisms belonging to the
Actinomycetota and Pseudomonadota phyla (formerly named
Actinobacteria and Proteobacteria)2. Being a member of the
former phylum, Bifidobacterium represents the dominant bacterial
genus of the healthy infant gut microbiota3,4. However, in the
period between weaning and 3 years of life, relative abundances
of members belonging to the Bacillota and Bacteroidota phyla
increase (formerly named Firmicutes and Bacteroides) while that
of Bifidobacterium diminishes, thereby shaping the infant gut
microbiota into a more complex and diverse ecosystem that will
accompany the host for the rest of its life4.
The infant gut microbial composition is influenced by many

factors, such as mode of delivery, diet, and gestational age5–7.
Comparison between natural- and cesarean section-delivered
infants has revealed many compositional differences in the gut
microbiota, with high prevalence of members of the genus
Lactobacillus and Prevotella in vaginally born babies8,9. This
highlights that bacteria that are naturally inherited by the

mother’s microbiota by vertical transmission represent, in humans
and many other mammalian species, the initiating event in early
life gut microbiota formation10. Conversely, preterm infants or
babies with severe health challenges often suffer from delayed
gut colonization by commensal bacteria with a higher load of
(opportunistic) pathogens, such as Staphylococcus, Enterococcus,
and Clostridium11.
The human gut microbiota possesses elaborate metabolic

digestion capabilities, being responsible for the degradation of
complex carbohydrates, fats/lipids, and proteins, which in turn
results in the production of a myriad of metabolites, which can be
used by the host and which may impact on host health12,13.
The current study aimed to explore genome variability of

bacterial taxa that constitute the infant gut microbiome employ-
ing an extensive collection of metagenomic data and related
metadata gathered from multiple studies across the globe and
corresponding to infants from birth until the age of 3 years. The
resulting collection of 10,935 metagenomic datasets allowed the
identification of key bacterial signatures of the infant microbiome
that correlate with distinct community-state types. A screening of
phylotypes, or, as recently defined, Population Subspecies (PS)14,
which allows the identification of genomically identical strains,
was performed among samples using thousands of metagenomi-
cally reconstructed genome sequences. Finally, metabolic recon-
struction of the enrolled infant microbiomes provided insights
into the functional signatures of these microorganisms that
dominate the infant gut during their first years of life, and that

1Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy. 2Department of Medicine and
Surgery, University of Parma, Parma, Italy. 3Microbiome Research Hub, University of Parma, Parma, Italy. 4APC Microbiome Institute and School of Microbiology, Bioscience
Institute, National University of Ireland, T12YT20 Cork, Ireland. ✉email: marco.ventura@unipr.it

www.nature.com/npjbiofilms

Published in partnership with Nanyang Technological University

1
2
3
4
5
6
7
8
9
0
()
:,;



appear to be correlated to health state, from a metagenomic and
metatranscriptomic perspective.

RESULTS
Detailed reconstruction of the infant gut bacterial
composition
A total of 10,935 publicly available datasets, retrieved from 40
cohorts from various geographical origins, were subjected to
microbial profiling based on short-read taxonomic classification
down to the species level (Supplementary Table 1). Collected data
were filtered based on a number of parameters as outlined in the
“Methods”, to allow removal of samples that did not meet DNA
quality standards required for the ensuing analyses.
A preliminary analysis was performed by considering all

assessed samples in order to identify macrolevel correlations
between samples based on their bacterial composition and
metadata (Supplementary Table 1). Beta-diversity investigation
represented through Principal Coordinate Analysis (PCoA) based
on Bray–Curtis dissimilarity index allowed the identification of
three major groups among the overall sample collection which
correlated with the host health status and lifestyle, i.e., healthy
infants (HI), preterm infants (PI), and rural infants (RI) (PERMANOVA
P value of <0.05) (Fig. 1). In this context, samples belonging to HI
group had been collected from healthy full-term infants belonging
to urbanized countries (n= 4255), while PI samples had originated
from preterm newborns and critically ill infants affected by
necrotizing enterocolitis (NEC) or CD55 deficiency with hyper-
activation of complement, angiopathic thrombosis, and severe
protein-losing enteropathy (CHAPLE syndrome) also belonging to
urbanized countries (n= 5353). Furthermore, RI samples represent
a healthy infant group whose members do not inhabit an
urbanized country (n= 1327). These findings therefore high-
lighted marked compositional differences of the gut microbiota
between each of the three identified groups.
Species richness distribution calculated through the number of

identified bacterial species with relative abundance higher than
0.05% revealed a difference in complexity between samples
belonging to each of the three infant host groups (ANOVA post
hoc P value < 0.05) (Fig. 1). These data corroborate previous
studies highlighting the reduced gut microbiota biodiversity of
preterm and sick infants when compared to healthy controls, as
well as studies that had revealed that the gut microbial
composition of newborns is different between urbanized and
rural settings, in both cases conforming this at species level what
had previously been observed at genus level15–18.
Taxonomic profiling at the species level was employed to

identify microorganisms that occur at the highest prevalence
among the assessed samples, revealing that Escherichia coli
(48.5%), Bifidobacterium longum (36.5%), and Enterococcus faecalis
(27.9%) are the most prevalent bacterial species, thus representing
core members of the infant gut microbiota (Table 1). As expected,
these species are known to be associated with early gut
microbiota development and were followed in prevalence order
by Bifidobacterium breve (24.6%) and Bifidobacterium bifidum
(21.3%). These findings indeed confirm that the infant gut
microbiota during the initial stages of life is harbored by various
species that belong to the genus Bifidobacterium4,19.

Delineating the core microbial species residing in the infant’s
gut
Recent studies of the infant gut microbiota have attempted to
identify specific infant enterotypes, also known as gut community-
state types (CSTs), by detecting distinct clusters of recurring
microbial taxa based on genus-level classification of the gut
microbiota5,20. The availability of a complete shotgun metage-
nomic database encompassing 10,935 infant gut microbiomes

allowed us to provide a detailed classification of microorganisms
at the species level (Supplementary Fig. 1). An investigation of
infant community-state types (ICSTs) was performed by cluster
analysis through hierarchical clustering (HCL) of the microbial
composition of the included samples (Fig. 2). In this context, only
clusters supported by at least 500 infants were investigated in
detail to maximize the robustness of these analyses. Moreover, to
identify ICSTs, only species that were identified at a prevalence
higher than 10% among infants were considered (see “Methods”)
(Table 1), and clusters were named according to the species that
was shown to be present at the highest relative abundance (Fig.
2). The resulting ICSTs were further validated by PCoA analysis and
PERMANOVA (P value < 0.05) (Fig. 3).
In silico analyses of the assessed samples allowed the

identification of eight ICSTs (Fig. 2), constituted by at least 500
infants, which were named based on the dominant species as
reported in Table 2, i.e., ICST-KL/VE (Klebsiella michiganensis/
Veillonella parvula), ICST-BI/EN (Bifidobacterium breve/Enterococcus
hormaechei), ICST-PR (Prevotella copri), ICST-BI (Bifidobacterium
longum), ICST-EN (Enterococcus faecalis), ICST-ST (Staphylococcus
epidermidis), ICST-KL (Klebsiella pneumoniae), and ICST-ES (Escher-
ichia coli). Notably, the ICST-PR (n= 1981) and ICST-BI (n= 2198)
were mainly represented by HI and RI (88% and 81%, respectively),
while ICST-BI/EN (n= 1216) represented samples from HI and PI in
essentially equal distribution (50% and 49%, respectively) (Fig. 2
and Supplementary Fig. 1). Interestingly, ICST-PR was populated
by multiple Prevotella species which, alongside Prevotella copri,
were identifiable as yet unclassified species. The remaining five
ICSTs were found to be predominantly represented by samples
from PI, i.e., ICST-ES (n= 1818), -EN (n= 980), -KL (n= 735), -ST
(n= 569), and -KL/VE (n= 873) (Fig. 2 and Supplementary Fig. 1).
Interestingly, all RI were distributed among ICST-PR, -BI, and -ES,
representing the most populated ICSTs in terms of the included
number of infant microbiome datasets (Fig. 2). This finding
suggests that the latter ICSTs represent pre-industrial infant gut
microbiomes21. Based on this notion, other identified ICSTs may
have been established more recently in infants of urbanized
countries representing industrialized gut microbiomes. Further-
more, microbiome compositional analysis revealed an association
with an apparent insurgence of opportunistic pathogens in
“modern” ICSTs, since they were mainly constituted by Enter-
ococcus faecalis, Klebsiella michiganensis, Klebsiella pneumoniae,
and Staphylococcus epidermidis.
The above-reported distributions revealed that ICST-PR and -BI

were dominated by disease-free infants representing healthy-
correlated ICSTs (Healthy-ICST) with a predominance of Bifidobac-
terium longum and Prevotella copri which have previously been
considered as commensal colonizers of the infant gut18,19.
Accordingly, ~90% of RI were distributed among the latter ICSTs,
thus being an integral part of Healthy-ICST (Fig. 2). On the other
hand, ICST-KL/VE, -EN, -ST, -KL, and -ES mainly represented PI
samples, ranging from 65% in ICST-ES to 87% in ICST-ST,
corresponding to preterm- and disease-associated ICSTs
(Unhealthy-ICST) that encompass high levels of opportunistic
pathogens. Furthermore, ICST-BI/EN does not appear to associate
with either of these two major host subdivisions as they represent
a mixed-ICST (Mixed-ICST) with more or less equal numbers of
healthy or preterm/sick babies.
Reported ICSTs were further validated by their species richness

distribution, supporting a difference in complexity between ICSTs
(ANOVA post hoc P value < 0.05) (Fig. 3). In detail, high microbial
biodiversity was reported for ICST-PR, -BI, and -BI/EN, corroborat-
ing the notion that a highly diverse infant gut microbiota is
correlated with the presence of species belonging to the genera
Prevotella or Bifidobacterium18,19. Conversely, ICST-EN, -ST, -ES, and
-KL, i.e., the Unhealthy-ICST, corresponding to premature or ill
infants, were characterized by lower microbial biodiversity, when
compared to the Healthy-ICST16, suggesting an association with
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antibiotic usage (based on metadata antibiotics had been
administered to 9% of infants belonging to the PI group;
Supplementary Table 1).

Distribution of the core microbial species based on infant
mode of delivery, feeding, antibiotic exposure, and age
Collected metadata allowed us to define a correlation between
core microbial species distribution in the infant gut and specific
factors, such as mode of delivery, feeding, antibiotic exposure, and
age. For example, comparing gut microbiomes of cesarean
(n= 672) and vaginally (n= 1012) delivered infants highlighted
statistically significant correlations of Bacteroides uniformis, Bacter-
oides fragilis, and Escherichia coli to the vaginal delivery
(Supplementary Table 2). On the other hand, Ruminococcus
gnavus, Veillonella parvula, Enterobacter hormaechei, Klebsiella
pneumoniae, and Enterococcus faecalis were found to be
significantly more abundant in the cesarean-delivered infants.
Interestingly, none of the Bifidobacterium and Prevotella species
were observed to correlate with the two delivery modes, resulting

only in a slight increase of Bifidobacterium bifidum and Bifidobac-
terium breve average abundance in vaginally delivered infants.
From a feeding perspective, formula-fed infants (supplied with a

breast milk substitute) (n= 276) positively correlate with Enter-
obacter hormaechei and Enterococcus faecalis, while several
microbial species were found to be significantly higher in
abundance among breast-fed (n= 372) and mixed-fed (supplied
with both breast milk and substitute) (n= 661) infants (Supple-
mentary Table 2). Specifically, the latter infants were characterized
by an increase of all four core bifidobacterial species represented
by Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium
bifidum, and Bifidobacterium pseudocatenulatum.
A similar profile was also observed analyzing infants receiving

an antibiotic therapy (n= 1082), and infants reported not being
treated with antibiotics (n= 948). In the former group, a
significant increase in relative abundance of Blautia wexlerae,
Staphylococcus epidermidis, and Enterococcus faecalis was observed
(Supplementary Table 2). In contrast, the microbiome of antibiotic-
free infants was associated with several health-related
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Fig. 1 Microbial biodiversity of healthy, ill/preterm, and rural infants. a Displays the principal coordinate analysis (PCoA) of the collected
infant samples represented in different colors by means of the three major groups. b Shows a box and whisker plot of the species richness
calculated through the number of observed bacterial species of the three groups. The bottom and top of the box represent the first and third
quartiles, and the band inside the box is the median. Moreover, the ends of the whiskers represent the 1.5 interquartile range of the sample.
Source data are provided as a Source Data file.
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microorganisms, such as Prevotella copri and the four breast-fed-
associated bifidobacterial species.
Finally, an investigation focusing on infant aging allowed

profiling microbiomes at infants at different ages, i.e., one
(3–365 days, n= 8343), two (366–730 days, n= 525), and 3 years
(732–1162 days, n= 143). This analysis revealed an expanded
microbial diversity of the gut microbiota of infants over the age of
one with an increased abundance of Blautia wexlerae, Bacteroides
uniformis, Bacteroides fragilis, and Prevotella copri (Supplementary

Table 2). Conversely, except for Ruminococcus gnavus, all other
core microbial species were significantly abundant in the first year
of life.
Altogether, our metadata analyses highlighted that the core

Bifidobacterium species were positively associated with the first
year of childhood in antibiotic-free and breast- or mixed-fed
infants (Supplementary Table 2). Notably, the mode of delivery
does not significantly affect the average abundance of bifidobac-
teria or Prevotella copri. Instead, the latter species was found to be
most abundant in 3-year-old infants, highlighting an opposite
trend with respect to bifidobacteria that were found to reduce in
relative abundance with increasing age. Furthermore, opportunis-
tic bacteria such as Klebsiella michiganensis and Klebsiella
pneumoniae tend to disappear beyond the age of one. The same
trend was observed for Staphylococcus epidermidis, which was
completely absent from the microbiome of infants older than 1
year, highlighting how the probable contamination of this species
from the mother’s skin does not longitudinally fit in the gut
environment.

Strain-specific variability of the infant gut microbiota
To trace the intraspecies variability of the 17 most abundant
microbial taxa identified amongst ICSTs, species-specific databases
were constructed encompassing 44,987 publicly available gen-
omes downloaded from the NCBI database (Supplementary Table
3). In addition, to enrich the latter databases, metagenomically
reconstructed genome sequences were included from 1,700 sam-
ples with the highest abundance of microbial core elements. In
this manner a total of 2390 genomes were reconstructed with a
completeness level higher than 50 %, together with a contamina-
tion level below 1.95% (see “Methods”). One or more unclassified
species of the Prevotella genus appeared to be present as a major
constituent of the ICST-PR, and indeed whole-metagenome
assemblies allowed the recovery of metagenomic contigs
corresponding to a single putative novel species. Among the 98
assembled genomes belonging to this putative novel taxon, 86
Prevotella sp. showed an average nucleotide identity (ANI) above
95%, thus highlighting an unclassified Prevotella species which
appears to be highly prevalent and abundant in the ICST-PR
(Supplementary Table 4). Interestingly, 97% of Prevotella spp.
genome sequences were reconstructed from RI metagenomes,
highlighting a correlation with the geographical metadata. None-
theless, the genome reconstruction and validation of this putative
novel species was also detected in three different studies
involving urbanized infants, thus confirming its presence in
Western world populations. Subsequently, validated Prevotella
sp. genomes were also included in the phylotype/PS profiling
together with bacterial genomes of 16 other predominant taxa
(Table 1). The collected 47,377 chromosomal sequences were
employed to build 17 non-redundant databases of species-specific
k-mers by clustering genomes with >99.8% of sequence identity,
allowing the identification of each species across the 10,935 infant
gut microbiomes and revealing their distribution at the PS level
among samples14.
As expected, the retrieved prevalence at species level confirmed

data obtained in the taxonomic assignment of the reads (Table 3
and Supplementary Fig. 1). Focusing on the phylotype/PS level,
among Healthy-ICST, the highest strain richness within a species
was predicted to belong to Prevotella copri and Prevotella spp.
(average of 2.5 and 2.9 PS, respectively), followed by Bifidobacter-
ium longum (average of 1.9 PS when present) (Table 3). In contrast,
among species belonging to the Unhealthy-ICST, the highest
strain richness was predicted to belong to Staphylococcus
epidermidis (1.9 PS when present), highlighting the impact of
cesarean section delivery routinely performed to mothers of
preterm infants populating Unhealthy-ICST and the correlated
contamination by skin-harbored bacteria on the gut microbiota of

Table 1. Prevalence of the infant gut microorganisms.

Species Number of
samples

Prevalence Prevalence as
major playera

Escherichia coli 5299 48.5% 24.0%

Bifidobacterium longum 3988 36.5% 19.1%

Enterococcus faecalis 3048 27.9% 14.5%

Bacteroides spp. 2808 25.7% 1.1%

Bifidobacterium breve 2692 24.6% 8.3%

Bifidobacterium bifidum 2330 21.3% 7.3%

Klebsiella michiganensis 2302 21.1% 5.9%

Bifidobacterium spp. 2282 20.9% 0.8%

Klebsiella pneumoniae 2088 19.1% 8.5%

Staphylococcus
epidermidis

1934 17.7% 9.2%

Veillonella spp. 1873 17.1% 2.1%

Clostridium spp. 1836 16.8% 1.0%

Veillonella parvula 1802 16.5% 6.7%

Bacteroides uniformis 1780 16.3% 4.0%

Ruminococcus gnavus 1686 15.4% 4.4%

Collinsella aerofaciens 1660 15.2% 2.1%

Bifidobacterium
pseudocatenulatum

1647 15.1% 3.5%

Blautia spp. 1587 14.5% 0.3%

Bacteroides fragilis 1543 14.1% 5.1%

Blautia wexlerae 1517 13.9% 3.3%

Phocaeicola vulgatus 1472 13.5% 1.9%

Flavonifractor plautii 1381 12.6% 1.3%

Parabacteroides distasonis 1374 12.6% 2.8%

Faecalibacterium spp. 1368 12.5% 1.2%

Phocaeicola dorei 1345 12.3% 2.6%

Enterobacter hormaechei 1342 12.3% 6.1%

Prevotella spp. 1297 11.9% 8.2%

Klebsiella spp. 1281 11.7% 0.0%

Prevotella copri 1278 11.7% 8.0%

Klebsiella variicola 1228 11.2% 2.6%

Veillonella atypica 1207 11.0% 2.8%

Klebsiella quasipneumoniae 1199 11.0% 2.4%

Streptococcus salivarius 1196 10.9% 1.9%

Ruminococcus spp. 1168 10.7% 0.1%

Streptococcus spp. 1168 10.7% 1.2%

Bifidobacterium
catenulatum

1143 10.5% 1.3%

Faecalibacterium
prausnitzii

1103 10.1% 0.7%

aPrevalence within samples when identified among the three most
abundant species.
Bold species possessed >10% Prevalence in conjunction than >3%
Prevalence as major player.
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infants, resulting in multiple Staphylococcus epidermidis PS
contaminants in 43.7% of the samples (Table 3). On the other
hand, the highest strain richness detected when multiple PS
coexist in the same environment belonged to Bifidobacterium
longum, retrieved in 34.7% of Healthy-ICST individuals harboring
two PS, and in 13.2% of Healthy-ICST members sharing three PS
(Table 3). In contrast, the highest value of strain richness detected
when at least two PS coexist in Unhealthy-ICST was represented
by Enterococcus faecalis in 12.4% of the samples. Thus, the wide-
ranging coexistence of multiple Bifidobacterium longum PS in
Healthy-ICST reflects a multistrain coexistence associated with HI,
being absent or undetectable in the microbiome of preterm/
unhealthy infants. The PS distribution between HI, PI, and RI was
also explored to validate the latter assumptions, showing several
different phylotype distributions (Supplementary Table 5). In this

regard, RI harbors the highest species richness of Prevotella copri
and Prevotella spp. (average of 2.7 and 3 PS, respectively), and the
highest strain richness was detected when multiple PS coexist in
the same environment (Bifidobacterium longum, retrieved in 38.8%
of RI individuals harboring two PS, and in 19.1% of RI members
sharing three PS). Thus, a large part of the Healthy-ICST PS
biodiversity observed for Bifidobacterium and Prevotella species
was corresponding to non-urbanized infants, exhibiting the
highest multistrain coexistence of multiple commensal bacteria
(Supplementary Table 5).
To identify associations between prevalent PS and ICSTs, a

network based on their relationships was produced (Fig. 4),
highlighting that 66% of the highly prevalent PS (five most
prevalent strains per species) were exclusive to either Healthy-
ICST, Unhealthy-ICST, or Mixed-ICST. Bacteroides fragilis, Blautia

ICST-KL/VE - Klebsiella michiganensis / Veillonella parvula

ICST-BI - Bifidobacterium longum

ICST-KL - Klebsiella pneumoniae

ICST-BI/EN - Bifidobacterium breve / Enterobacter hormaechei

ICST-EN - Enterococcus faecalis

ICST-ES - Escherichia coli

ICST-PR - Prevotella copri / Prevotella sp.

ICST-ST - Staphylococcus epidermidis

0.5
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S

T
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Preterm Infants (PI)

Rural Infants (RI)

Healthy Infants (HI)

Major players relative abundance

Fig. 2 Representation of the infant community-state types (ICSTs). The circular cladogram illustrates the eight ICSTs, highlighted in different
colors, obtained by means of hierarchical clustering (HCL) analysis based on the bacterial relative abundances between samples. Source data
are provided as a Source Data file.
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wexlerae, Klebsiella michiganensis, and Klebsiella pneumoniae PSs
showed the highest ICST specificity, with more than 80% being
highly prevalent in a single ICST. In contrast, Enterococcus faecalis,
Escherichia coli, and Staphylococcus epidermidis PS showed the
lowest ICST specificity (Fig. 4). Interestingly, 20 out of 175 analyzed
PS were identified in members of each infant group, of which
Escherichia coli PS (n= 3) was shown to be the most prevalent. In
contrast, Bacteroides uniformis, Bifidobacterium bifidum, Klebsiella
michiganensis, and Ruminococcus gnavus PS were shared between
the three main ICSTs, with no ICST-specific correlations (Fig. 4).
Notably, when investigating shared PS between HI, PI, and RI, the
number of PS dropped from 20 to 4, highlighting the existence of

a peculiar PS distribution within the gut microbiome of RI that was
absent in the urbanized population.
Altogether, the PS analysis revealed that Healthy-ICST,

Unhealthy-ICST, and Mixed-ICST showed a unique profile of highly
prevalent PS, indicating that a correlation exists between infant
health status and specific PS, and revealing patterns of multistrain
coexistence among particular ICSTs. Furthermore, the uniqueness
of the identified phylotypes was even more emphasized between
HI, PI, and RI, revealing a correlation between urbanization and PS.
Identified PS specificity uncovered how certain phylotypes are
directly correlated with host health and point to their potential
use as biomarkers.
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Metagenomic-based overview of the infant microbiota
metabolic capabilities
The infant gut metagenomic datasets used for microbial
taxonomic profiling were also explored to define their metabolic
capabilities. Thus, a detailed investigation based on the predicted
enzymatic activities of the infant gut microbiota was performed to
gain a precise view of the metabolic potential encoded by the
predicted ICSTs. Overall, 2062 different enzymes, classified based
on Enzyme Commission (EC) categories22, were identified across
the datasets using the Metacyc database as ref. 23. Data
consistency was then validated with a silhouette clustering
method, facilitating a matching exercise of microbiomes with a
similar enzymatic profile (EP) and unveiling two robust clusters
defined as EP1 and EP2 (Fig. 5).
Looking at the metadata, 62% of HI and 74% of RI samples were

assigned to EP1, while 81% of the PI-associated datasets were
shown to correspond to EP2, highlighting a distribution that
largely correlates with infant health status (Fig. 5). Even more
significant was the distribution of the eight ICSTs (as based on the
microbial community’s taxonomy) among two functional clusters
EP1 and EP2. Specifically, 98% and 97% of members of the ICST-KL
and ICST-ES, respectively, were allocated in EP2, followed by ICST-
KL/VE (77%) and ICST-BI/EN (63%) (Fig. 5). In contrast, 88% and
63% of members of the ICST-PR and ICST-BI, respectively, were
shown to correspond to EP1, disclosing a marked association
between Healthy-ICSTs with EP1 (78%) and Unhealthy-ICSTs in EP2
(80%) (Fig. 5).
A multivariable association analysis conducted by Maaslin2,

including multiple covariates (see “Methods”), was then applied to
investigate association between enzymatic reactions and EPs,
revealing a significant association of 586 enzymatic reactions to
EP1 and 876 to EP2 (Supplementary Table 6). The larger number of
enzymatic reactions in EP2 is explained by a higher number of
different enzyme families classified as oxidoreductases (69%),
transferases (57%), hydrolases (58%), lyases (66%), isomerases
(59%), and translocases (80%) when compared to EP1 (Fig. 5).
Generally, the microbiota of infants that fall into the EP2 seem to
possess a more extensive number of metabolic capabilities
correlating with the Unhealthy-ICST, which includes ICST-KL and
ICST-ES. This finding may be due to the much larger pangenome
of Escherichia (mean number of genes= 4648) and Klebsiella
(mean number of genes= 5153) when compared to the other
main ICSTs taxa, such as Bifidobacterium (mean gene no.= 1860)
and Prevotella (mean gene no.= 2460).
Statistically significant correlations between ICSTs and 495

enzymatic reactions associated to 142 key compounds known to
be associated with host health12,13 uncovered several routes in the
production and degradation of metabolites (Supplementary Table
7). Taurine and cadaverine production as well as the metabolism
of tryptophan and putrescine derivates were positively associated

with EP2 and Unhealthy-ICST, in particular ICST-KL and ICST-ES
(Supplementary Table 7), highlighting disease-associated micro-
organisms correlated with intestinal inflammation24–26. Additional
compounds associated with microbiome dysbiosis, such as
polyamines like 3-aminopropanal and N1-acetylspermidine, pro-
duction of L-carnitine, methanol, and succinate, were positively
correlated to EP227,28. As reported in Supplementary Table 7,
many other metabolites that are positively linked with host health
were shown to be unidirectionally correlated with EP2 instead of
EP1, being consistent with the high number of distinct enzyme
families associated with EP2.
Altogether, the metabolic pathway prediction of EP2 members

highlighted the expanded metabolic abilities of the Unhealthy-
ICST when compared to the Healthy-ICST, likely reflecting the
presence of opportunistic bacteria encoding an extensive enzy-
matic repertoire for metabolite production, including compounds
correlated with intestinal inflammation.

Metabolic abilities of the infant microbiota from a
metatranscriptomics perspective
Datasets of 1602 infant gut metatranscriptomes were assessed to
explore expression of predicted enzymatic activities (Supplemen-
tary Table 8). The infant gut transcriptomic data was processed as
previously reported for metagenomic data, with an additional
filtering step to remove sequences belonging to microbial rRNA
and tRNA genes. The silhouette clustering method matched
microbiomes with a similar transcriptomic enzymatic profile (TP),
unveiling three robust clusters defined as TP1, TP2, and TP3, not
corresponding to the previous subdivision in two EP as assessed
by the metagenomic enzymatic screening (Fig. 5).
Although the number of analyzed transcriptome samples is

substantially less than the metagenomic dataset used for the
enzymatic screening, the eight ICSTs were all well represented by
at least 65 samples allowing a transcriptome-based investigation
of ICST-specific or taxon-specific transcription profiles. Species
distribution was evaluated through microbial profiling based on
short-read taxonomic classification, and the ICST distribution was
based on the average abundance of the core microbiota.
Interestingly, no specific predominance of samples related to an
ICST was reported among TPs since none of the analyzed clusters
was overrepresented by ICSTs that form the Healthy-ICST or
Unhealthy-ICST (Fig. 5). This finding was in contrast with above-
reported sample distribution for the metagenomic enzymatic
profiling, which correlates with the distribution of the main
bacterial constituents.
A multivariate association analysis between TPs and the

associated (predicted) enzymatic functions highlighted that TP1
and TP2 represented 1262 and 1020 significant positive associa-
tions with EC numbers, respectively (Supplementary Table 9). In
contrast, TP3 revealed just 648 significant positive associations,

Table 2. Infant Community State Types (ICSTs) composition.

ICST Code Representative species Number of infants HI PI RI Correlation with host health

ICST-BI Bifidobacterium longum 2198 68% 19% 14% Healthy-ICST

ICST-PR Prevotella copri Prevotella spp. 1981 42% 12% 46% Healthy-ICST

ICST-ES Escherichia coli 1818 29% 65% 6% Unhealthy-ICST

ICST-BI/EN Bifidobacterium breve 1216 50% 49% 1% Mixed-ICST

Enterobacter hormaechei

ICST-EN Enterococcus faecalis 980 15% 85% 0% Unhealthy-ICST

ICST-KL/VE Klebsiella michiganensis 873 31% 69% 1% Unhealthy-ICST

Veillonella parvula

ICST-KL Klebsiella pneumoniae 735 17% 83% 0% Unhealthy-ICST

ICST-ST Staphylococcus epidermidis 569 13% 87% 0% Unhealthy-ICST
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Table 3. Population subspecies profiles.

Species N° strains
matched

Strains with
single hit

Strain richness Richness
(if present)

Richness (all) Prevalence

1× 2× 3× 4× 5×

Healthy-ICST

Bacteroides fragilis 157 13 24.7% 6.6% 0.3% 0.0% 0.0% 1.2 0.39 31.7%

Bacteroides uniformis 174 32 19.1% 4.6% 0.3% 0.0% 0.0% 1.2 0.29 24.0%

Bifidobacterium bifidum 163 12 29.8% 13.2% 0.4% 0.0% 0.0% 1.3 0.58 43.4%

Bifidobacterium breve 150 34 24.5% 7.6% 0.4% 0.0% 0.0% 1.3 0.41 32.5%

Bifidobacterium longum 388 90 22.1% 34.7% 13.2% 1.5% 0.1% 1.9 1.37 71.5%

Bifidobacterium
pseudocatenulatum

137 27 27.4% 4.4% 0.2% 0.0% 0.0% 1.2 0.37 32.0%

Blautia wexlerae 160 24 21.5% 6.9% 0.9% 0.1% 0.0% 1.3 0.38 29.4%

Enterobacter hormaechei 72 30 5.5% 1.0% 0.2% 0.1% 0.0% 1.2 0.08 6.8%

Enterococcus faecalis 114 43 11.8% 3.4% 1.1% 0.3% 0.0% 1.4 0.23 16.6%

Escherichia coli 1059 482 35.2% 19.5% 6.7% 1.3% 0.2% 1.6 1.00 62.8%

Klebsiella michiganensis 76 38 5.2% 0.6% 0.0% 0.0% 0.0% 1.1 0.06 5.7%

Klebsiella pneumoniae 233 107 10.3% 3.6% 0.6% 0.1% 0.0% 1.4 0.20 14.5%

Prevotella copri 96 8 7.5% 7.0% 6.3% 4.0% 2.4% 2.5 0.69 27.2%

Prevotella unknown species 59 1 3.0% 4.4% 5.9% 3.7% 2.4% 2.9 0.57 19.5%

Ruminococcus gnavus 176 31 22.7% 11.3% 2.0% 0.3% 0.0% 1.4 0.52 36.2%

Staphylococcus epidermidis 87 36 3.6% 2.1% 0.7% 0.4% 0.1% 1.7 0.12 6.8%

Veillonella parvula 86 12 12.9% 4.4% 0.4% 0.0% 0.0% 1.3 0.23 17.7%

Mixed-ICST

Bacteroides fragilis 67 37 7.3% 2.2% 0.1% 0.0% 0.0% 1.2 0.12 9.6%

Bacteroides uniformis 57 36 8.5% 0.4% 0.0% 0.0% 0.0% 1.0 0.09 8.9%

Bifidobacterium bifidum 123 42 16.5% 11.4% 0.1% 0.0% 0.0% 1.4 0.40 28.1%

Bifidobacterium breve 134 27 26.3% 19.8% 4.9% 0.2% 0.0% 1.6 0.81 51.2%

Bifidobacterium longum 204 98 14.7% 15.6% 3.1% 0.2% 0.0% 1.7 0.56 33.7%

Bifidobacterium
pseudocatenulatum

57 22 8.1% 2.4% 0.7% 0.2% 0.0% 1.4 0.16 11.4%

Blautia wexlerae 59 31 8.6% 1.6% 0.2% 0.0% 0.0% 1.2 0.12 10.3%

Enterobacter hormaechei 94 23 32.8% 10.0% 0.9% 0.7% 0.0% 1.3 0.58 44.3%

Enterococcus faecalis 95 36 33.5% 11.7% 2.1% 0.2% 0.1% 1.4 0.64 47.5%

Escherichia coli 291 175 25.5% 14.7% 3.0% 0.6% 0.2% 1.5 0.67 44.0%

Klebsiella michiganensis 36 14 8.5% 1.6% 0.0% 0.0% 0.0% 1.2 0.12 10.0%

Klebsiella pneumoniae 119 55 18.0% 5.9% 0.5% 0.0% 0.1% 1.3 0.32 24.5%

Prevotella copri 18 13 1.3% 0.5% 0.1% 0.1% 0.0% 1.5 0.03 2.0%

Prevotella unknown species 13 13 0.2% 0.3% 0.1% 0.0% 0.0% 1.9 0.01 0.6%

Ruminococcus gnavus 89 33 9.9% 7.2% 1.2% 0.0% 0.0% 1.5 0.28 18.4%

Staphylococcus epidermidis 73 23 17.5% 6.6% 3.0% 3.0% 0.8% 1.8 0.56 30.9%

Veillonella parvula 77 14 19.8% 5.0% 0.7% 0.0% 0.0% 1.3 0.32 25.6%

Unhealthy-ICST

Bacteroides fragilis 65 38 2.3% 0.3% 0.0% 0.0% 0.0% 1.1 0.03 2.6%

Bacteroides uniformis 72 42 3.2% 0.2% 0.0% 0.0% 0.0% 1.1 0.04 3.4%

Bifidobacterium bifidum 76 29 2.6% 0.9% 0.0% 0.0% 0.0% 1.3 0.04 3.5%

Bifidobacterium breve 91 33 4.2% 1.8% 0.1% 0.0% 0.0% 1.3 0.08 6.1%

Bifidobacterium longum 198 77 4.2% 4.4% 1.0% 0.1% 0.0% 1.7 0.17 9.8%

Bifidobacterium
pseudocatenulatum

37 19 1.8% 0.3% 0.0% 0.0% 0.0% 1.1 0.02 2.1%

Blautia wexlerae 44 19 1.9% 0.3% 0.0% 0.0% 0.0% 1.1 0.02 2.1%

Enterobacter hormaechei 92 27 10.0% 1.3% 0.0% 0.0% 0.0% 1.1 0.13 11.4%

Enterococcus faecalis 158 45 33.6% 12.4% 3.0% 0.4% 0.0% 1.4 0.69 49.4%

Escherichia coli 576 310 30.4% 9.3% 2.2% 0.5% 0.1% 1.4 0.59 42.7%

Klebsiella michiganensis 92 18 15.2% 2.4% 0.1% 0.0% 0.0% 1.2 0.20 17.7%

Klebsiella pneumoniae 257 78 19.7% 8.1% 1.9% 0.6% 0.0% 1.5 0.44 30.2%
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which may reflect the higher number of Healthy-ICSTs associated
with this TP when compared to TP1 and TP2. Likewise, the
metagenome enzymatic screening of EP1 revealed that the
Healthy-ICST was associated with a lower number of distinct
enzymatic reactions (Supplementary Table 6). Nonetheless, profil-
ing of significant correlations between ICSTs and the
transcriptome-based enzymatic reactions revealed an unexpected
pattern in the metatranscriptomics analysis, which did not appear
to be in agreement with metagenomics data.

The covariance assessment between ICSTs and 142 key
compounds impacting on human health revealed that the
majority of the positive correlations of ICSTs encompassing the
Unhealthy-ICST were not verified in metatranscriptomics data,
highlighting a differential expression with respect to the predicted
enzymatic capability of microbial taxa inhabiting the infant’s gut
(Supplementary Table 10). Furthermore, ICST members of the
Healthy-ICST were shown to exhibit a positive correlation with
respect to biosynthesis of amino acids, such as arginine, glycine,
aspartate, leucine, asparagine, and phenylalanine, and biosynth-
esis of alpha-ketoisovaleric acid, a precursor of valine. In addition,
quinolinic acid, deoxyxylulose-5-phosphate, two precursors for
vitamins, were also unidirectionally correlated with the Healthy-
ICST. These latter enzymatic reactions were not positively
correlated with Healthy-ICST in our enzymatic analysis based on
metagenomic data probably due to high gene redundancy of
pathogenic bacteria constituting the Unhealthy-ICST.
Despite the extensive metabolic ability as profiled by the

enzymatic metagenomic analyses of opportunistic bacteria
encompassing the Unhealthy-ICST (Supplementary Table 7), their
metatranscriptomes revealed a completely different enzymatic
profile (Supplementary Table 10). These results indicate that the
metagenomic data represent biochemical and functional potential
of the microbial species inhabiting the infant’s gut, while
metatranscriptomic data allowed us to reveal which genes play
an active role among these microbial communities. For example,
significant compounds associated with individual ICSTs, such as
deoxyxylulose-5-phosphate (ICST-PR), L-asparagine (ICST-BI), gly-
cerol (ICST-EN and ICST-ST), S-adenosylhomocysteine (ICST-KL),
4-hydroxyphenylpyruvic acid, and glutathione (ICST-ES) were
identified (Supplementary Table 10).

Limitations and potential applications of this study
One limitation of the present survey relates to the dataset
distribution. Since our metagenomic and metatranscriptomic
analyses rely on DNA sequenced from other studies, we can only
assume that the observed diversity in terms of microbial
distribution and enzymatic reactions represents a comprehensive
and true reflection of reality. This limitation is even more
substantial for the metatranscriptomic screening, which exhibits
less variability in terms of metadata included in this study. Future
infant gut microbiome investigations from additional countries
may expand the overall scientific scenario proposed by this study.
Furthermore, in this work, we focus our metagenomic and
metatranscriptomic analyses on 142 compounds that have
recently been correlated with human health. Many other
compounds have not been taken into consideration with as many
enzymatic reactions that may be useful to expand our knowledge
about host-microbe interactions. For example, these data can be
used to evaluate the carbohydrate metabolism of the microbiome
and its associated contribution to infant health, however,
validation of the inferred enzymatic profiles should be achieved
through additional in vitro experiments.

Table 3 continued

Species N° strains
matched

Strains with
single hit

Strain richness Richness
(if present)

Richness (all) Prevalence

1× 2× 3× 4× 5×

Prevotella copri 21 14 0.6% 0.0% 0.0% 0.0% 0.0% 1.1 0.01 0.6%

Prevotella unknown species 15 9 0.2% 0.1% 0.0% 0.0% 0.0% 1.4 0.00 0.3%

Ruminococcus gnavus 78 25 2.5% 1.5% 0.1% 0.0% 0.0% 1.4 0.06 4.2%

Staphylococcus epidermidis 133 27 21.5% 11.8% 6.1% 2.4% 2.0% 1.9 0.83 43.7%

Veillonella parvula 93 11 12.8% 5.2% 1.3% 0.1% 0.0% 1.4 0.28 19.5%
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Fig. 4 Network analysis based on the co-occurrence and co-
exclusion of Population Subspecies (PS). The three large circles
represent Healthy-ICST (H-ICST), Unhealthy-ICST (U-ICST), and
Mixed-ICST (M-ICST) groups, while each dot denotes different PS
belonging to one of the 17 dominant taxa. The bacterial scientific
names are indicated as abbreviations using the first two characters
of the genus and species names, e.g., BaFr Bacteroides fragilis, BiBi
Bifidobacterium bifidum, EsCo Escherichia coli, PrCo Prevotella copri.
Source data are provided as a Source Data file.
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A potential application of future metagenomic and metatran-
scriptomic analyses of the infant gut microbiota will be to
correlate the profiled metabolic pathways to specific clinical
outcomes. A detailed metabolic map derived from expressed
genes may guide appropriate treatment of infant patients through
a personalized medicine approach that is not only based on host
genetics but also on the patient’s corresponding microbiota.

DISCUSSION
In this work, we provided a comprehensive map of the gut
microbiota composition of infants encompassing more than ten
thousand datasets corresponding to healthy, preterm, and rural
infants. The analysis performed at species level revealed 17
bacterial players that are highly prevalent among the analyzed
samples and that make up eight statistically supported clusters
named infant community-state types (ICSTs). Bifidobacterium
longum and Prevotella copri were dominant in disease-free infants
representing ICSTs that were assigned a healthy status (Healthy-
ICST) together with a novel, yet unclassified species belonging to
the Prevotella genus. The high prevalence of this Prevotella spp. in
Healthy-ICST may reflect an unknown microorganism with an as
yet unknown, yet important role in infant health. In addition,
Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium
bifidum, and Bifidobacterium pseudocatenulatum were positively
associated with antibiotic-free and breast-fed infants who are less
than a year old of age, while the mode of delivery does not affect
the relative abundance of Bifidobacterium and Prevotella species.
Interestingly, while the relative abundance of bifidobacterial
species tends to decrease in infants older than 1 year, Prevotella
showed an opposite trend with its higher relative abundance in 3-
year-old infants, highlighting a shift to a more mature microbiota.
Notably, the Prevotella ICST distribution among infants shifts from
18% at the age of 1 year to 40% and 61% at 2 and 3 years of age,
respectively, unveiling the significance of Prevotella not only in RI,
but also in infants of urbanized countries. Furthermore, the
existence of the putative novel Prevotella species described above
was validated through its genome reconstruction from 86 infants
primarily correlating its occurrence in RI.
The genome reconstruction of several thousand microbial

genomes allowed an exploration at PS level, i.e., identifying
genomically distinct strains of a given species among samples,
and their distribution among ICSTs. Despite the fact that specific
taxa dominated each ICST, many species were distributed among
ICSTs at a lower abundance, allowing us to explore the biodiversity
of each species among samples. Interestingly, strain distribution
exposed a unique profile of prevalent PS between ICSTs, revealing
patterns of multistrain coexistence specifically associated with
either the Healthy-ICST or Unhealthy-ICST.
Reported ICST subdivision was further validated from an

enzymatic perspective, highlighting extensive metabolic capabil-
ities of the Unhealthy-ICST with respect to Healthy-ICST. The
screening showed how opportunistic pathogens can rely on their
enzymatic diversity to colonize the infant gut, while members of
the indigenous microbiota possess a more compact and
specialized enzymatic repertoire of genes. Nonetheless, the
reported metabolic capabilities represent only the genomic and
functional potential of these opportunistic pathogens since,
through metatranscriptomic investigation, a different enzymatic
expression pattern was revealed. Comparison between metage-
nomic and metatranscriptomic data highlights how a complex
environment like the human gut must be investigated by
employing both sequencing methodologies and possibly com-
plemented with a metabolomics approach. While metagenomics
analyses are very useful for microbial classification aimed at
unveiling key players driving microbiota balances, the use of these
data to understand the functional capabilities of the microbiota is
not always warranted. Metatranscriptomic analyses allowed us to

deduce enzymatic activities of microbial communities and provide
reliable predictions of the metabolic activities of a microbial gut
community, for example showing enhanced gene expression of
genes related to amino acid biogenesis and vitamin precursors in
Healthy-ICST.

METHODS
Metagenome dataset selection
In this project, 10,935 publicly available datasets retrieved from 40
cohorts from various geographical locations were obtained
through infant gut sequencing literature (Supplementary Table
1). To our best knowledge, at the time of writing of this
manuscript, the collected metagenomic data represented the
complete, publicly available biodiversity of the infant gut
microbiota. In detail, we selected datasets of shotgun microbial
profiling only, discarding all 16 S rRNA gene-related data, in an
effort to achieve a detailed and reliable profiling of the microbiota
at the species level. However, the selected datasets represented
fecal samples belonging to infants with ages ranging from a few
days following birth to 3 years. Therefore, no further exclusions
were made based on the gathered metadata information, such as
diet, type of birth, illness, probiotic, and antibiotic administration,
in order to obtain a complete picture of the infant’s gut microbial
biodiversity. Nonetheless, based on the collected metadata, three
major groups were delineated, i.e., full-term healthy infants (HI),
preterm newborns and critically ill infants (PI), and rural infants
who do not belong to an urbanized country (RI).

Taxonomic classification of the reads and whole-metagenome
assembly
To analyze high-quality sequenced data only, each dataset was
subjected to a filtering step removing low-quality reads (minimum
mean quality score 20, window size 5, quality threshold 25, and
minimum length 100) using the fastq-mcf script (https://
github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md).
Filtered reads were then collected and taxonomically classified
through the METAnnotatorX2 pipeline29, using the up-to-date
RefSeq (genome) database retrieved from the NCBI (https://
www.ncbi.nlm.nih.gov/refseq/). Filtered reads were then subjected
to whole-metagenome assembly using Spades v3.1530 with
default parameters and the metagenomic flag option (-meta)
together with k-mer sizes of 21, 33, 55, and 77. As mentioned
above, for the short reads, reconstructed contig sequences were
taxonomically classified based on their sequence identity using
megablast against the same RefSeq database31. ORFs of each
assembled genome were then predicted with Prodigal32 and
annotated utilizing the MEGAnnotator2 pipeline33. In all, the
METAnnotatorX2 pipeline was employed for various purposes,
from read filtering to taxonomic classification of the assembled
contigs29,34.

Infant community-state-type (ICST) prediction
Collected samples were subjected to hierarchical clustering (HCL)
analysis based on their bacterial composition at the species level
by means of Multiple Experiment Viewer (MeV) 4.8.1 software35.
Average relative abundance data of seventeen species that
displayed a prevalence between samples higher than 10% in
conjunction with a prevalence higher than 3% as a major player
(considering only the three most abundant species in each
sample) were used to build clusters (Table 1). Person correlation
was used as a distance metric based on the information of the
microbial species abundances. Obtained data was represented by
a cladogram that allowed the identification of eight ICSTs in the
infant population screened in this project. The reference name
attributed to each ICST was defined using the first two letters of
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the genus of those species with an average abundance higher
than 10%, e.g., ICST-BI/EN is based upon Bifidobacterium breve and
Enterobacter hormaechei (Fig. 2).

Genome sequence selection of main ICST constituents
Complete and partial genomes of 44,987 bacterial strains were
retrieved from the NCBI public database representing all
sequenced genomes of the main ICST constituents. Furthermore,
genome sequences of 16 reference strains was used to discard
strains that do not belong to the actual species by using the 94%
average nucleotide identity (ANI) threshold employing the soft-
ware fastANI36. Using this approach, each bacterial strain
employed in genomic analyses was verified avoiding misclassified
microorganisms. Amino acid sequences of predicted proteins by
the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) system
were then used for further genomic analyses37. Finally, the quality
of reconstructed genomes from whole-metagenome assemblies
was estimated for completeness and contamination using
CheckM38.

Metagenome tracing of main ICST constituents
Complete and partial genome sequences retrieved from NCBI
together with those reconstructed from metagenomes were used
to trace their presence among the 10,935 publicly available
datasets collected in this study. First, to gather genomes with the
highest average chromosomal coverage, 1700 samples in which
the relative abundance of a single main ICST constituent was
higher than 30% were subjected to WMS assembly using the
METAnnotatorX2 pipeline29. Next, reconstructed genomes of main
ICST constituents were selected based on statistics (completeness
>50% and contamination <1.95%) retrieved using the CheckM
software38. The contamination level cut-off of 1.95% was
estimated by means of standard deviation (Whisker Range SD,
Coef 1) using as input the contamination data collected from the
44,987 bacterial chromosome sequences retrieved from the NCBI
public database, while the completeness cut-off of 50% was
chosen arbitrarily to guarantee an adequate amount of genetic
material to perform the analysis. Then, the distribution of each
taxon was investigated using StrainGE software with a k-mer size
of 2339. In detail, to select unique database representatives
between 47,377 chromosomal sequences was used a k-mer-based
clustering method at clustering genomes with an average
nucleotide identity (ANI) higher than approximately 99.8%.
Nonetheless, each reconstructed genome was previously vali-
dated using the 94% average nucleotide identity (ANI) threshold
employing the software fastANI36, including the 2390 recon-
structed genomes from the 10,935 publicly available datasets and
the 44,987 downloaded genome sequences from NCBI.

Functional profiling of main ICST constituents
Metagenomic datasets were screened against the MetaCyc
metabolic database composed of 18,973 metabolites to retrieve
each attributable enzymatic reaction23. The Enzyme Commission
(EC) numbers were conferred to each nucleotide sequence by
using Diamond40 in association with the METAnnotatorX2 pipe-
line29. Similarly, metatranscriptomic datasets of infant micro-
biomes were processed using an additional filtering step aiming in
removing sequences belonging to rRNA and tRNA genes of the
microbiota through BWA41 and a custom database including each
sequence retrieved from the NCBI database29. The selection of 142
compounds was evaluated after detailed literature search efforts
aimed at collecting health-related compounds that the gut
microbiota can produce or metabolize. Subsequently, each
screened EC has been associated with a predicted enzyme
contained in a metabolic pathway (detailed in the MetaCyc
Database), producing one or more compounds of interest.

Statistical analysis
Bacterial abundance at the species level was validated by one-way
ANOVA analysis. Post hoc analyses were performed using Tukey’s
HSD (honestly significant difference) test. Furthermore, PERMA-
NOVA analysis was performed using 1000 permutations to
estimate P values of differences among infant samples in PCoA
analyses. The hierarchical clustering analysis (HCA) of samples was
performed using OriginPro graphing and analysis 2021 (https://
www.originlab.com/2021), employing the Bray–Curtis matrix and
Pearson correlation as a distance metric and the sum square of
distances and furthest neighbor for clustering methods. The
optimal number of clusters was defined through a Silhouette
analysis. Moreover, multivariate analyses were performed through
MaAsLin2 software42.

DATA AVAILABILITY
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