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Abstract
In view of a better understanding of the geometry of scalar flat Kähler metrics, this
paper studies two families of scalar flat Kähler metrics constructed by Hwang and
Singer (Trans Am Math Soc 354(6):2285–2325, 2002) on Cn+1 and on O(−k). For
the metrics in both the families, we prove the existence of an asymptotic expansion
for their ε-functions and we show that they can be approximated by a sequence of
projectively induced Kähler metrics. Further, we show that the metrics on Cn+1 are
not projectively induced, and that the Burns–Simanca metric is characterized among
the scalar flat metrics on O(−k) to be the only projectively induced one as well as
the only one whose second coefficient in the asymptotic expansion of the ε-function
vanishes.

Keywords Scalar flat Kähler manifolds · Kähler immersions · TYCZ expansion

Mathematics Subject Classification 32H02 · 53C07 · 53C42

1 Introduction and Statement of theMain Result

An important open problem in Kähler geometry consists in characterizing projectively
induced metrics in view of the properties of their curvatures. A Kähler metric g on a
complex manifold M is said to be projectively induced if there exists a local Kähler
immersion into the complex projective space CPN , that is if for any p ∈ M there
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exists an open set U ⊂ M , p ∈ U , and a holomorphic function f : U → CPN ,
such that f ∗gF S = g. Here, we denote by gF S the Fubini–Study metric, i.e., if
[Z0 : · · · : Z N ] are homogeneous coordinates on CPN and (z1, . . . , zN ) are affine
coordinates on U0 = {Z0 �= 0}, gF S is described on U0 by the Kähler potential
log(1 + |z1|2 + · · · + |zN |2). Observe that we allow N to be infinite, where CP∞ is
the quotient of l2(C) \ {0} by the usual equivalent relation.

Many examples of projectively induced metrics can be constructed by taking the
pull-back of the Fubini–Study metric on holomorphic submanifolds ofCPN , although
it is more difficult to find projectively induced metrics with prescribed curvature. For
example, Hulin in [9] proved that the scalar curvature of a compact Kähler–Einstein
manifold Kähler immersed intoCPN is forced to be positive. Observe that if a compact
manifold admits a Kähler immersion in CP∞ then it is also a Kähler submanifold of
CPN for some finite N , as the immersion is given by a basis of the space of global
holomorphic sections of a suitable holomorphic line bundle, that when the manifold is
compact is always finite dimensional. Although this holds true only for global Kähler
immersions, in fact the flat torus is an example of compact manifold that is locally
projectively induced in CP∞ but does not admit any Kähler immersion in CPN for
finite N , as follows by Calabi’s rigidity Theorem in [4, Th. 9] (see also [16] for an
overview of Calabi’s work). Recently in [1], Arezzo, Li, and Loi proved that there are
not Ricci–flat submanifolds of CPN with N < ∞. It is still an open question if there
exists a Ricci–flat (nonflat) Kähler submanifold of CP∞. It is important to emphasize
that when the ambient space is taken to be infinite dimensional the situation could
be much different, for example in [15] Kähler-Einstein submanifolds of CP∞ with
negative scalar curvature are given. In [13], Loi, Salis, and Zuddas conjectured that
the flat metric is the only example of projectively induced Ricci–flat metric and they
validate the conjecture when the metric is radial and the immersion is stable (see also
[17, 18, 22] for other results in the same context).

A very little is known for constant scalar curvature Kähler metrics. In the finite
dimensional context, it is conjectured by Loi, Salis, Zuddas in [14] that the only
projectively induced constant scalar curvature Kähler metrics lie on flag manifolds
(actually their conjecture includes also extremal Kähler metrics). The Burns–Simanca
metric on the blow–up ofC2 at one point is an example of scalar flat (nonflat) complete
projectively induced Kähler metric, as shown by Cannas Aghedu and Loi in [6]. The
Burns–Simanca metric actually satisfies a stronger assumption than to be projectively
induced, namely it admits a regular quantization.

A geometric quantization (L, h) of a n-dimensional Kähler manifold (M, ω) con-
sists of an hermitian holomorphic line bundle L over M such that the first Chern class
of L is represented by ω and its curvature Ric(h) := −i∂∂̄ log h satisfies Ric(h) = ω.
LetH be the space of global holomorphic sections of L and denote by 〈·, ·〉h the scalar
product:

〈s, s〉h :=
∫

M
h(s(x), s(x))

ωn

n! .
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When H �= {0} (condition that is always satisfied when M is compact), we can take
an orthonormal basis {s j } j=0,...,d of H, and define a function on M by

εg(x) :=
d∑

j=0

h(s j (x), s j (x)). (1.1)

In literature, this ε-function was first introduced under the name of η-function by
Rawnsley in [21], later renamed as θ -function in [3] followed by the distortion function
of Kempf [12] and Ji [11], for the special case of Abelian varieties and of Zhang [24]
for complex projective varieties. The geometric quantization (L, h) of (M, ω) is said
to be regular if εαg is constant for all large enough α ∈ Z+ (when M is noncompact,
α is not necessarily an integer). Observe that in this case one considers the geometric
quantizations given by (Lα, hα) such that Ric(hα) = αω. We also say that the metric
is regular. Regular metrics enjoy the properties of being projectively induced Kähler
metrics of constant scalar curvature. More precisely, for large enough α, one can
construct a holomorphic map Fα : M → CPdα , (dα ≤ +∞), called the coherent
states map, by

Fα : M → CPdα ; x �→ [s0(x) : · · · : sdα (x)].

which satisfies (see e.g., [2]):

F∗
α (ωF S) = αω + i

2
∂∂ log εαg. (1.2)

In particular, one has that when εαg is constant, Fα is a holomorphic and isometric
immersion.

Further, in view of Zelditch work [23], when M is compact, the function εαg admits
an asymptotic expansion (the so-called Tian-Yau-Catlin-Zelditch expansion):

εαg(x) ∼
∞∑
j=0

a j (x)αn− j ,

where a0(x) ≡ 1 and the a j (x), j = 1, 2, . . . are smooth functions on M depending on
the curvature and on its covariant derivatives at x of g. For this asymptotic expansion
it is meant that, for every integers l, r and every compact K ⊆ M ,

∣∣∣∣∣∣

∣∣∣∣∣∣εαg(x) −
l∑

j=0

a j (x)αn− j

∣∣∣∣∣∣

∣∣∣∣∣∣
Cr

≤ C(l, r , K )

αl+1 , (1.3)
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for some constant C(l, r , K ) > 0. In particular, Lu [19] computed the first three
coefficients, and the first two reads:

{
a1 = 1

2σg

a2 = 1
3	σg + 1

24

(
|Rg|2 − 4|Ricg|2 + 3σ 2

g

)
,

(1.4)

where σg , Ricg and Rg denote, respectively, the scalar curvature, the Ricci tensor,
and the curvature tensor of g, and the norms are taken with respect to g. When M is
noncompact, the existence of such an expansion (known as Engliš expansion) is not
guaranteed and only partial results are given (see Sect. 6 for details). Further, in [8],
Engliš computed the a j ’s coefficients obtaining the same results as Lu. All the a j ’s
coefficients of regular metrics are constant. The Burns-Simanca metric shares with
the flat metric the property of presenting all the coefficients a j ’s equal to zero [6].

Even if the metric is not regular, the existence of an asymptotic expansion for the
ε function has important geometric consequences. In particular, it turns out that the
coherent statesmap via (1.2) allows to approximate aKählermetric g with projectively
induced ones (see Lemma 5 in Sect. 6).

In this paper,we study families of scalar flatmetrics constructed viaCalabi ansatz on
the total space of a hermitian line bundle over Kähler–Einstein manifolds by Andrew
D.Hwang andMichaelA. Singer in [10]. The necessary hypotheses for the existence of
scalar flatmetrics include the so-called sigmaconstancy, condition that is automatically
satisfied by polarized Kähler manifolds, which is the case we are interested in. In
particular, we consider the following families:

(A) the 1-parameter family of nontrivial scalar flat Kähler metrics gβ on Cn+1, β < 0
(described in Sect. 4);

(B) the scalar flat metrics gk on O(−k) for integers k > 0 (described in Sect. 5).

Observe that the metrics gk in (B) reduce to the Burns–Simanca metric for k = 1,
and to the Ricci–flat Eguchi–Hanson metric for k = 2.

The first result of this paper is the following:

Theorem 1 Let gβ be the Kähler metric on Cn+1 arising from Hwang–Singer con-
struction. Then, cgβ is not projectively induced for any value of c > 0 and β < 0, but
it can be approximated by a sequence of projectively induced metrics.

Our second result characterizes the Burns–Simanca metric among the Hwang–
Singer family gk on O(−k). More precisely, we prove the following:

Theorem 2 Let gk be the Kähler metric arising from Hwang–Singer construction on
O(−k). Then, gk is projectively induced if and only if its second coefficient vanishes
identically, that is if and only if it is the Burns–Simanca metric on the blow-up of C2

at one point. Moreover, gk can be approximated by a sequence of projectively induced
metrics.

The paper is organized as follows. In Sect. 2, we recall what we need about Hwang-
Singer construction restricted to polarized Kähler–Einstein manifolds. In Sect. 3, we
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give an overview of Calabi’s criterion, deriving a necessary condition for the Hwang-
Singer metrics to be projectively induced. Sections 4 and 5 are devoted, respectively,
to the description of Hwang-Singer metrics on Cn+1 and O(−k). Section6 contains
the existence results for the ε-function associated to the Hwang-Singer metrics on
Cn+1 and O(−k), and for its asymptotic expansion, and the proofs of theorems 1
and 2. Finally, the appendix includes some computations regarding the a2 coefficient.

2 Momentum Construction

A technique to produce complete Kähler metrics with good curvature properties is
known as Calabi ansatz, firstly introduced by Calabi in [5] and later adopted by
several authors. Hwang and Singer generalized this construction on the total space of
an hermitian holomorphic line bundle π : L → M with “σ -constant curvature” over a
Kähler manifold (M, gM ). In this section, we summarize Hwang–Singer construction,
restricting our attention to the case of polarized manifolds, where these hypotheses
are automatically satisfied.

Let π : (L, h) → (M, ωM ) be a polarized hermitian holomorphic line bundle with
curvature form γ = −i∂∂ log h ∈ 2(M) such that γ = βωM over a Kähler–Einstein
manifold of complex dimension n, that is ρM = λωM , where ρM is the Ricci form
associated to gM . This method, also known as momentum construction, gives rise to
bundle-adapted metrics on L , that is Kähler metrics gϕ,β whose Kähler form arises
from the Calabi ansatz

ωϕ,β = π∗ωM + 2i∂∂ f (t),

where t is the logarithm of the norm function defined by h and f : (−∞,+∞) →
[0,+∞) is an increasing and strictly convex function of one real variable whichmakes
ωϕ,β positive definite.

In a coordinate chart U ⊂ M over which L is trivial, i.e., π−1(U ) ∼= U ×C, there
exists a local coordinate system z̃ = (z, ξ) = (z1, . . . , zn, ξ) for L where ξ = ρeiθ is a
fiber coordinate and z = (z1, . . . , zn) are pullbacks of coordinates on M , i.e., if q ∈ M
is a point with coordinates z, then every point in the fiber π−1(q) can be described by
coordinates z̃. In such a chart, there is a smooth positive function h : U ⊂ M → R

such that

t := log ||z̃|| = 1

2
log

(
|ξ |2h(z)

)
.

As explained in [10], to simplify the construction of scalar flat Kähler metrics on
L , it is advantageous to change coordinates. Setting

τ = f ′(t), ϕ(τ ) = f ′′(t),
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so that f satisfies the differential equation

{
f ′′(t) = ϕ(τ)

f ′(0) = μ0 > 0,

the Kähler metric ωϕ,β reads as

ωϕ,β = π∗ωM − τπ∗γ + 1

ϕ
dτ ∧ dcτ, (2.1)

and along the fiber Lx over x ∈ M restricts to

ωϕ,β |fiber = ϕ(τ)

|ξ |2 dξ ∧ dξ .

The explicit expression for the profile function ϕ for scalar flat polarized metrics is

ϕ(τ) = 2

(1 − βτ)n

(
τ + λ

(
(1 − βτ)n+1 − (1 − βτ) + βnτ

)
β2(n + 1)

)
. (2.2)

Observe that the factor (1 − βτ)n arises as the determinant of the endomorphism
Id − τB, since B := ω−1

M γ = β Id for γ = βωM .

Remark 1 The function f ′ : (−∞,+∞) → (0,+∞) is an increasing and surjective
function (see Prop. 1.4. in [10]). In particular,

lim
t→−∞ f ′(t) = 0.

Remark 2 The derivatives of the function f (t) are expressed recursively in the variable
τ as

f (n)(t) = ϕ(τ)( f (n−1)(t))

for n ≥ 3. In particular, we have

f ′′′(t) = ϕ(τ)ϕ′(τ ),

f (iv)(t) = ϕ(τ)(ϕ(τ)ϕ′′(τ ) + (ϕ′(τ ))2).
(2.3)

Proposition 1 Let c > 0 be a positive real number. If f is a solution for the ODE
y′′ = ϕ(y′) with ϕ given by (2.2), then f̂ := c f is a solution to y′′ = ϕ̂(y′), where we
denote with ϕ̂ the profile function with parameters β̂ = β

c and λ̂ = λ
c .
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Proof It follows by noticing that

ϕ(y′) = 2

(1 − β
c (cy)′)n

(
1

c
(cy)′ + 1

c2
λ
(
(1 − β

c (cy)′)n+1 − (1 − β
c (cy)′) + n β

c (cy)′
)

β2

c2
(n + 1)

)

= 1

c

2

(1 − β̂(cy)′)n

(
y′ + λ̂

(
(1 − β̂(cy)′)n+1 − (1 − β̂(cy)′) + β̂n(cy)′

)
β̂2(n + 1)

)
.

Thus,

cϕ(y′) = 2

(1 − β̂(cy)′)n

(
y′ + λ̂

(
(1 − β̂(cy)′)n+1 − (1 − β̂(cy)′) + β̂n(cy)′

)
β̂2(n + 1)

)
.

��
In this setting [10, Theorem B] by Hwang and Singer, reads

Theorem 3 Let π : (L, h) → (M, ωM ) be a polarized hermitian holomorphic line
bundle over a complete Kähler–Einstein manifold (M, ωM ) such that γ = βωM , with
β < 0. Then, the metric gϕ,β on the total space of L is a complete scalar flat Kähler
metric. Moreover, the metric gϕ,β is Ricci–flat if and only if ρM = −γ .

Remark 3 For γ = 0, we have local product metrics since they are bundle-adapted
metrics on flat-bundles, see ( [10], Remark 1.6).

3 Calabi’s Criterion Applied to g',ˇ

In this section, we recall what we need on Calabi’s criterion for projectively induced
metrics and compute the diastasis function for our metrics.

Let (CPN , gFS) be the complex projective space of dimension N ≤ ∞ endowed
with the Fubini-Study metric. Let [Z0 : · · · : Z N ] be homogeneous coordinates and
(z1, . . . , zN ) the respective affine coordinates on the coordinate chartsU j = {Z j �= 0}
defined by zk := Zk

Z j
. A Kähler potential for gFS on U0 is

φFS(z) = log

(
1 +

N∑
j=1

|z j |2
)

.

In [4], Calabi gives a criterion for a real analytic Kähler manifold (M, g) to admit
a holomorphic and isometric (from now on Kähler) immersion into a complex space
form in terms of the diastasis function associated to the metric g. Here, we consider
only the case when the ambient space is the complex projective space CPN , that is
when the metric is projectively induced, which is the one we deal with. Observe that
it is not restrictive to assume the manifold to be real analytic, since a metric induced
by the pull-back through a holomorphic map of the real analytic Fubini-Study metric
is forced itself to be real analytic. The diastasis function can be viewed as a particular
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Kähler potential defined as follows. Fix a coordinates system (z1, . . . , zn) on a chart
U ⊂ M and let φ : U → R be a Kähler potential for g on U . By duplicating the
variables z and z, the Kähler potential φ onU can be complex analytically extended to
a function φ̃ : W → R on a neighborhood W of the diagonal in U × U . The diastasis
function is defined by

D(z, w) := φ̃(z, z) + φ̃(w,w) − φ̃(z, w) − φ̃(w, z). (3.1)

Denote by p ∈ U the point of coordinates w0. Observe that fixing w = w0, the
diastasis Dp(z) := D(z, w0) is a Kähler potential for g on U .

The Calabi’s criterion is the following:

Theorem 4 (Calabi’s criterion [4]) Let (M, g) be a Kähler manifold. An open neigh-
borhood of a point p ∈ M admits a Kähler immersion into CPN if and only if the
∞ × ∞ hermitian matrix of coefficients (b jk) defined by

eDp(z) − 1 =
∞∑

j,k=0

b jk(z − p)m j (z − p)mk (3.2)

is positive semidefinite of rank at most N .

Let now (M, ωM ) be a Kähler-Einstein manifold with Einstein constant λ, that is
ρM = λωM . As described in Sect. 2, the momentum construction gives a 1-parameter
family of scalar flat Kähler metrics ωϕ,β on the polarized line bundle (L, h) described
by the Kähler potential:

�(z, ξ) = �(z) + 4 f

(
1

2
log[|ξ |2h(z)]

)
, (3.3)

where we can take as � the diastasis function for ωM , centered at z = 0. We now
describe the diastasis function for the metrics gϕ,β and give a necessary condition
for these metrics to be projectively induced, which follows directly by applying the
Calabi’s criterion to them.

By (3.1), the diastasis function associated to ωϕ,β , centered at p = (0, s) with
s ∈ R+ is

D(z, ξ)|p = �(z) + 4 f

(
1

2
log

(
|ξ |2h(z)

))
+ 4 f

(
1

2
log s2

)

−4 f

(
1

2
log(ξs)

)
− 4 f

(
1

2
log(ξs)

)
, (3.4)

where we set h(0) = 1.
In particular, for the fiber metric, we have
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Dp(ξ)|fiber = 4 f

(
1

2
log

(
|ξ |2

))
+ 4 f

(
1

2
log s2

)
− 4 f

(
1

2
log(ξs)

)
− 4 f

(
1

2
log(ξs)

)
.

(3.5)

Proposition 2 Let c > 0 be a positive real number. Then, the metric c ωϕ,β = ω
ϕ̂,β̂

,

where ϕ̂ is the profile function defined by (2.2)with parameters β̂ := β/c and λ̂ := λ/c.

Proof Observe that

cωϕ,β = cωM + 2i∂∂c f (t),

and cωM is a Kähler–Einstein metric with Einstein constant λ
c . Conclusion follows

since by Proposition 1 f̂ = c f is a solution to y′′ = ϕ̂(y′). ��
Remark 4 We note that if g is a scalar flat projectively induced Kähler metric, then its
(scalar flat) multiples cg may not be so. If the base manifold is Kähler–Einstein with
Einstein constant λ, we find a close connection between the parameters c and λ (as in
the previous proposition). Namely, it turns out that varying the parameter c over the
positive real line corresponds to construct the Hwang–Singer metrics on the same line
bundle over a rescaled Kähler-Einstein manifold with Einstein constant λ

c . Thus, it is
equivalent to study the metric cωϕ as c varies and the metric ωϕ as λ varies in the base
manifold.

Lemma 1 In the notation above, a necessary condition for the metric ωϕ,β to be
projectively induced is that

n (λ + 2β) ≥ −4. (3.6)

Proof By Calabi’s Criterion Theorem 4, since ∂4(eDp −1)
∂ξ2∂ξ2

|p is an element on the diag-

onal of the matrix (b jk) in (3.2), a necessary condition for the metric ωϕ,β to be
projectively induced is that

∂4(eDp − 1)

∂ξ2∂ξ2
|p

= 1

s4

(
1

4
f (4)

(
log s2

2

)
− f (3)

(
log s2

2

)
+ 2 f ′′

(
log s2

2

)2

+ f ′′
(
log s2

2

))
≥ 0. (3.7)

By (2.3) and since ϕ(τ) > 0 for every τ ∈ R+, (3.7) is equivalent to

4 + 8ϕ(μ0) − 4ϕ′(μ0) + ϕ′(μ0)
2 + ϕ(μ0)ϕ

′′(μ0) ≥ 0,
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where μ0 := f ′
(
log s2

2

)
, i.e.,

(2 − ϕ′(μ0))
2 + ϕ(μ0)

(
8 + ϕ′′(μ0)

) ≥ 0,

that is

ϕ′′(μ0) ≥ −8 − (2 − ϕ′(μ0))
2

ϕ(μ0)
. (3.8)

By the definition of ϕ (2.2),

ϕ′(μ0) =
2

(
(n + 1)β + λ

(
1 − (1 − βμ0)

n) +
(
(β2 + 1)(n2 − 1) + λ((1 − βμ0)

n)
)

μ0

)

(n + 1)β(1 − βμ0)
n+1 ,

ϕ′′(μ0) = 2n

(1 − βμ0)
n+2 (λ + 2β + (n − 1)β(β + λ)μ0) .

Since we can choose s > 0 arbitrarily small, then (3.8) must hold for μ0 → 0 (see
Remark 1). It is not hard to see that as μ0 → 0,

(2 − ϕ′(μ0))
2

ϕ(μ0)
→ 0,

and

ϕ′′(μ0) → 2n (λ + 2β) .

Thus, (3.8) implies

n (λ + 2β) ≥ −4,

as wished. ��

Remark 5 Considering the j-th derivatives ∂2 j (eDp −1)
∂ξ j ∂ξ j |p, we get sharper necessary

conditions for the metric gϕ,β to be projectively induced. However, such conditions
will always depend on the choice of β and λ.

Remark 6 When β = −λ, the metric gϕ,β is Ricci-flat. In this case, condition (3.6)
gives that gϕ,β is not projectively induced for anyλ > 4

n . This estimate can be improved

to λ ≥ 1 also for n = 2, 3, and 4, by computing the 4-th derivative ∂8(eDp −1)
∂ξ4∂ξ4

|p,

evaluated at μ0 = 1
100λ . Further, observe that when n = 1, gϕ,β is the Eguchi–Hanson

metric on CP1, which has been proven to be not projectively induced in [18]. As
before, observe that such condition can be improved considering higher derivatives
but will always depend on the choice of λ, as in the above remark.
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4 Hwang–Singer Metrics onCn+1

Let (M, ωM ) = (Cn, ω0), where ω0 is the canonical flat metric, i.e., ω0 = i
2∂∂̄||z||2.

The momentum construction in this case gives a 1-parameter family of scalar flat
Kähler metrics ωϕ,β on Cn+1 described by the Kähler potential (see 3.3):

�(z, ξ) := ||z||2 + 4 f

(
1

2
log

[
|ξ |2e− β

2 ||z||2]) , (4.1)

obtained setting h(z) = e− β
2 ||z||2 in (3.3), for β < 0, so that γ = −i∂∂̄ log h(z) =

β i
2∂∂̄||z||2 = βωM and by (3.4) the diastasis function for ωϕ,β centered at (z, ξ) =

(0, s) reads

D(s,0)(z, ξ) = ||z||2 + 4 f

(
1

2
log

[
|ξ |2e− β

2 ||z||2
])

+ 4 f

(
1

2
log s2

)
− 4 f

(
1

2
log [ξs]

)

−4 f

(
1

2
log

[
ξ̄s

])
. (4.2)

The profile function obtained setting λ = 0 in (2.2) is given by

ϕ(τ) = 2τ

(1 − βτ)n
, (4.3)

for τ ∈ [0,+∞).
In order to prove the first part of Theorem 1, i.e., that (Cn+1, cωϕ,β) is not projec-

tively induced for any c and β, let us first show how to drop the dependence on the
parameters β and c.

Lemma 2 Up to an affine change of coordinates on Cn, the metric cωϕ,β on Cn+1 is
equivalent to ωϕ,−1.

Proof Let us first deal with β. The metric ωϕ,−1 is obtained by a momentum construc-
tion on (Cn, ω0) with profile ϕ(τ) = 2τ

(1+τ)n . Perform a change of coordinates on Cn

by setting z′ = 1√−β
z. Then,

ω0 = i

2
∂∂̄||z||2 = −β

i

2
∂∂̄||z′||2,

Observe that while in the z coordinates γ = −ω0, in the coordinates z′, γ = βω0.
The determinant of the endomorphism Id − τB (see Sect. 2 after formula (2.2)), that
in the z coordinates was (1 + τ)n , now in z′ reads (1 − βτ)n . Thus, the change of
coordinates transforms the metric ωϕ,−1 on Cn+1 in the metric ωϕ,β .
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Let us now prove that the multiplication ofωϕ,−1 by c > 0 is equivalent to consider
ωϕ,− 1

c
. By (4.1), a Kähler potential for cωϕ,−1 is given by

c�(z, ξ) = c||z||2 + 4c f

(
1

2
log

[
|ξ |2e

1
2 ||z||2]) .

Performing a change of coordinates z′ = √
cz, we get

c�(z′, ξ) = ||z′||2 + 4c f

(
1

2
log

[
|ξ |2e

1
2c ||z′||2]) .

Conclusion follows observing that by Proposition 1, if f satisfies the ODE given by
ϕ(τ) = 2τ

(1+τ)n , then c f satisfies the ODE given by ϕ(τ) = 2τ
(1+ 1

c τ)n . ��

5 Hwang–Singer Metrics on Line Bundles OverCP1

Let L be a holomorphic line bundle over CP1 endowed with the Fubini-Study metric
normalized so that λ = 1, that is, in affine coordinates z = Z1

1
2 Z0

on U0 = {Z0 �= 0}

ωFS = i

2
∂∂ 4 log

(
1 + 1

4
|z|2

)
.

Since L is a holomorphic line bundle over CP1, then L is of the form O(−k), k ∈ Z.
The natural hermitianmetric on the line bundleO(−1) onCP1 is given by restricting

the hermitian metric of C2 to each fiber l = Lx ⊂ C2. So if {U0, U1} is a cover of
CP1 with

Uα = {Zα �= 0} , α = 0, 1,

then

hα = |Z0|2 + |Z1|2
|Zα|2 , α = 0, 1.

So, on each open set Uα , if we take z as local coordinate, we have

h(z) = 1 + 1

4
|z|2.

For k > 0, the line bundles O(−k) := O(k)∗ = O(1)∗ ⊗ · · · ⊗ O(1)∗ inherit natural
hermitian structures given by

hk(z) =
(
1 + 1

4
|z|2

)k

.
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The curvature form is then

γ = −i∂∂ log

(
1 + 1

4
|z|2

)k

= −k

2
ωFS

and the line bundle is polarized, with λ = 1 and β = − k
2 , with k a positive integer.

So the profile 2.2 reads

ϕk(τ ) = 2τ + τ 2

1 + k
2τ

,

and the momentum construction gives a 1-parameter family ωk := ω
ϕ,− k

2
of scalar

flat Kähler metrics on the polarized line bundle O(−k) described by the potentials

�(z, ξ) = 4 log

(
1 + 1

4
|z|2

)
+ 4 f

(
1

2
log

[
|ξ |2

(
1 + 1

4
|z|2

)k
])

. (5.1)

Remark 7 For k = 0, the metric ωk reduces to the local product metric on CP1 × C,
see Remark 3.

In the proof of Theorem 2, we need the following lemma.

Lemma 3 The metric ωk on CP1 is not projectively induced for any k ≥ 3.

Proof Let p ∈ O(−k) be the point of coordinates (s, 0) and let Dp be the diastasis
function for the metric ωk as in (3.5). The fourth derivative of eDp − 1 evaluated at p
is given by

∂8(eDp − 1)

∂ξ4∂ξ4
|p

= 1

s8

(
+ 24 f ′′4 + 216 f ′′3 + f ′′′(3 f (5) − 45 f (4) − 66) + (18 f (4) − 216 f ′′′ + 242) f ′′2

+ 1

64
( f (8) − 24 f (7) + 232 f (6) − 1152 f (5) + 136( f (4))2 + 3088 f (4))

+( f (6) − 18 f (5) + 125 f (4) + 36 f ′′′2 − 396 f ′′′ + 36) f ′′ + 114 f ′′′2
)(

log s2

2

)
,

123



160 Page 14 of 23 S. Cristofori, M. Zedda

that written in terms of ϕ(μ0) with μ0 = f ′
(
log s2

2

)
, up to the multiplication by the

positive constant 1
s8
, reads 1

64ϕ(μ0)A(ϕ(μ0)), with (to simplify the notation we drop
the dependence from μ0 in ϕ(μ0) and its derivatives):

A(ϕ(μ0)) = ϕ(6)ϕ5 + ((ϕ′)3 − 12(ϕ′)2 + 44ϕ′ − 48)2 + ϕ(ϕ′) − 2)(−8(193ϕ′′ + 968)

+ (ϕ′)3(57ϕ′′ + 392) − 2(ϕ′))2(255ϕ′′ + 1624) + 4ϕ′(383ϕ′′ + 2200)) + 2ϕ2(16(−36ϕ(3)

+ 29(ϕ′′)2 + 250ϕ′′ + 432) + 61ϕ(3)(ϕ′)3 + 2(ϕ′)2(96(9 − 2ϕ(3) + 45(ϕ′′)2 + 436ϕ′′)+
− 4ϕ′(−203ϕ(3) + 102(ϕ′′)2 + 936ϕ′′ + 1728)) + 2ϕ3(17(ϕ′′)3 + 196(ϕ′′)2

+ 2ϕ(4)(19(ϕ′)2 − 66ϕ′ + 58) + 64ϕ(3)(5ϕ′ − 9) + 12(ϕ(3)(8ϕ′ − 15) + 48)ϕ′′ + 768)

+ ϕ4(15(ϕ(3))2 + 8ϕ(5)(2ϕ′ − 3) + ϕ(4)(26ϕ′′ + 64)),

since ϕ(μ0) is positive, the sign of
∂8(eDp −1)

∂ξ4∂ξ4
|p is the same as that of A(ϕ(μ0)). From

(2.2), we get

ϕ
( j)
k (τ ) = (−1) j+1 8 j !(k − 1)k j−2

(2 + kτ) j+1 ,

that substituted into the expression of A(ϕ(μ0)) gives

μ3
0

273(2 + kμ0)12
Pk(μ0),

where Pk(μ0) is the polynomial in μ0:

Pk(μ0) = 105 − 113k + 48k2 − 8k3 +
12∑

s=1

qs(k)μs
0,

for given qs(k) that are not relevant for our analysis. Since μ0 can be chosen small
enough in [0,+∞) taking s → 0, the sign of A(ϕ(μ0)) is the same as the sign of
Pk(μ0) for positive values of μ0. Conclusion follows by noticing that

lim
μ0→0

Pk(μ0) = 105 − 113k + 48k2 − 8k3,

and the right hand side is negative for any k ≥ 3. ��

6 Asymptotic Expansion of!',ˇ and Proofs of Theorems 1 and 2

Throughout this section, let us write (X , ωϕ,β) for either X = Cn+1 or X = O(−k).
Let L̂ be a holomorphic line bundle over X and let hL̂ be an hermitianmetric on L̂ such

that Ric(ĥ) = ωϕ,β . Notice that such an (L̂, ĥ) exists if and only if ωϕ,β is integral. In
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our case, this occurs since the base metric ωM is an integral form and

[ωϕ,β ] = [π∗ωM + 2i∂∂ f (t)] = [π∗ωM ],

where π : L → M is the projection given in Sect. 2 (here M = Cn or CP1). Consider
the tensor power (L̂α, ĥα) and let Hα be the space of global holomorphic sections
of L̂α . In order to define the ε-function for (X , ωϕ,β), we first need to show that
Hα �= {0}.
Lemma 4 In the notation above, 1 ∈ Hα for either X = (Cn+1, ωϕ,β) or X =
(O(−k), ωk)).

Proof Observe that by formula (2.21) in [10], we have

ωn+1
ϕ,β

(n + 1)! = ϕQ det(gM )
1

|ξ |2
(

i

2

)n+1

dξ ∧ d ξ̄

n∏
j=1

dz j ∧ dz̄ j .

where Q is the determinant of the endomorphism Id − τB, as after equation (2.2) of
the profile.

Let us deal first with the case X = Cn+1. In this case, Hα is the weighted Hilbert
space of global holomorphic functions overCn+1 that are L2 limited in norm, namely:

Hα =
{

u ∈ Hol(Cn+1)|
∫
Cn+1

|u|2e−α�
ωn+1

ϕ,β

(n + 1)! < +∞
}

,

where � is given by (4.1).
Due to Lemma 2, we can set β = −1. In order to prove that 1 ∈ Hα , it is enough

to check the convergence of the integral:

∫
Cn+1

e−α(||z||2+4 f (t))) 2 f ′(t)
|ξ |2

(
i

2

)n+1

dξ ∧ d ξ̄

n∏
j=1

dz j ∧ dz̄ j

= πn+1
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
e−α(

∑
j r j +4 f (t̂))) 2 f ′(t̂)

r0
dr0

n∏
j=1

dr j ,

(6.1)

where we set polar coordinates ξ := ρ0eiθ0 , z j := ρ j eiθ j and r j := ρ2
j , j = 0, . . . , n,

and we denote t̂ = 1
2 (log r0 + 1

2

∑
j r j ). The function under the integral is positive

and smooth, since ϕ(t)
|ξ |2 → g00 as |ξ |2 → 0, so its integral converges inside any closed

ball of ray R > 0 centered at the origin. Thus, it is enough to check that the integral
outside the ball is finite. Using that the function under the integral is positive and that

e−α(
∑

j r j +4 f (t̂))) 2 f ′(t̂)
r0

≤ e−α(4 f (t̂))) 2 f ′(t̂)
r0

= − 1

α

d

dr0
e−4α f (t̂),
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we have, ∫ ∞

R
· · ·

∫ ∞

R

∫ ∞

R
e
−α

(∑
j r j +4 f (t̂)

)
) 2 f ′(t̂)

r0
dr0

n∏
j=1

dr j

≤ − 1

α

∫ ∞

R
· · ·

∫ ∞

R

∫ ∞

R

d

dr0
e−4α f (t̂)dr0

n∏
j=1

dr j

= 1

α

∫ ∞

R
· · ·

∫ ∞

R
e
−4α f

(
1
2 log R+ 1

4

∑
j r j

) n∏
j=1

dr j .

(6.2)

The last integral in (6.2) converges at least for α > n/4 and for a large enough R,
since

e−4α f ( 12 log R+ 1
4

∑
j r j )) ≤ 4n

r4α/n
1 · · · r4α/n

n

.

More precisely, since f is an increasing function and ∂2

∂r2j
f = 1

4 f ′′ > 0, there exists

R ∈ R such that for r j > R, j = 1, . . . , n,

f

⎛
⎝1

2
log R + 1

4

∑
j

r j

⎞
⎠ ≥ f

(
1

4
r j

)
≥ log

(
1

4
r j

)
,

thus

f

⎛
⎝1

2
log R + 1

4

∑
j

r j

⎞
⎠ ≥ 1

n

n∑
j=1

log

(
1

4
r j

)
.

Let us now deal with X = O(−k) over CP1. In this case, it is enough to check the
convergence of the following integral over the chart U0 × C � C2:

∫
C2

e−4α f (t)

(
1 + 1

4 |z|2
)4α+2

2 f ′(t) + f ′(t)2

|ξ |2
(

i

2

)2

dξ ∧ d ξ̄ ∧ dz ∧ dz̄

= π2
∫ ∞

0

∫ ∞

0

e−4α f (t̂)

(
1 + 1

4r1
)4α+2

2 f ′(t̂) + f ′(t̂)2

r0
dr0dr1,

where we set polar coordinates ξ = ρ0eiθ0 , z1 = ρ1eiθ1 , r j := ρ2
j , j = 0, 1, and set

t̂ := 1
2 log r0 + k

2 log(1 + 1
4r1). As before, since the function we are integrating is

smooth on any closed ball of ray R > 0 (since ϕ(t)
|ξ |2 → g00 as |ξ |2 → 0), we reduce

to check that the integral converges outside such ball. First observe that

I1 :=
∫ ∞

R
−e−4α f (t̂(r0)) f ′(t̂(r0))

r0
dr0 = 1

2α

∫ ∞

R

d

dr0
e−4α f = 1

2α

[
e−4α f

]∞
R

< ∞
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and

I2 :=
∫ ∞

R

∫ ∞
R

e−4α f (t̂)

(
1 + 1

4r1
)2

2 f ′(t̂)
r0

dr0dr1 = − 1

α

∫ ∞
R

∫ ∞
R

1(
1 + 1

4r1
)2

d

dr0
e−4α f dr0dr1

= − 1

α

∫ ∞
R

1(
1 + 1

4r1
)2

[
e−4α f

]∞
R

dr1 = 1

α

∫ ∞
R

e−4α f (t̂(r1))

(
1 + 1

4r1
)2 dr1 < ∞.

So, since α > 0, we have

∫ ∞

R

∫ ∞

R

e−4α f (t̂)

(
1 + 1

4r1
)4α+2

2 f ′(t̂) + f ′(t̂)2

r0
dr0dr1

=
∫ ∞

R

∫ ∞

R

e−4α f (t̂)

(
1 + 1

4r1
)4α+2

2 f ′(t̂)
r0

dr0dr1

+
∫ ∞

R

∫ ∞

R

e−4α f (t̂)

(
1 + 1

4r1
)4α+2

f ′(t̂)2

r0
dr0dr1

≤ I2 +
∫ ∞

R

∫ ∞

R

e−4α f (t̂)

(
1 + 1

4r1
)2

f ′(t̂)2

r0
dr0dr1.

It remains to check that

I :=
∫ ∞

R

∫ ∞

R

e−4α f (t̂)

(
1 + 1

4r1
)2

f ′(t̂)2

r0
dr0dr1

converges. Integrating by parts, since

e−4α f (t̂)

(
1 + 1

4r1
)2

f ′(t̂)2

r0
= − 2

kα

d

dr1
e−4α f (t̂) f ′(t̂)

r0
(
1 + 1

4r1
) .

we get

I = − 2

kα

∫ ∞

R

∫ ∞

R

d

dr1
e−4α f (t̂) f ′(t̂)

r0
(
1 + 1

4 r1
)dr0dr1

= − 2

kα

{∫ ∞

R

[
e−4α f f ′

r0
(
1 + 1

4 r1
)
∣∣∣∣
∞

R
− 1

r0

∫ ∞

R
e−4α f f ′′ k

8 − f ′
4(

1 + 1
4 r1

)2 dr1

]
dr0

}

= − 2

kα

{
I1(

1 + 1
4 R

) − k

8

∫ ∞

R

∫ ∞

R

e−4α f f ′′

r0
(
1 + 1

4 r1
)2 dr1dr0 + 1

8

∫ ∞

R

∫ ∞

R

2 f ′e−4α f

r0
(
1 + 1

4 r1
)2 dr1dr0

}
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= − 2

kα

{
I1(

1 + 1
4 R

) − k

8

∫ ∞

R

∫ ∞

R

e−4α f (2 f ′ + ( f ′)2)
r0

(
1 + 1

4 r1
)2 (

1 + k
2 f ′)dr1dr0 + I2

8

}

≤ − 2

kα

{
I1(

1 + 1
4 R

) − k

8

∫ ∞

R

∫ ∞

R

e−4α f (2 f ′ + ( f ′)2)
r0

(
1 + 1

4 r1
)2 dr1dr0 + I2

8

}

= − 2

kα

{
I1(

1 + 1
4 R

) − k

8
I2 − k

8
I + I2

8

}
(6.3)

where in the second equality we used that

lim
r1→+∞

f ′e−4α f(
1 + 1

4r1
) = 0

as follows by applying de l’Hopital and using that f ′′ = 2 f ′+ f ′2
1+ k

2 f ′ . Further the inequality

follows by (1 + k
2 f ′) > 1, since f ′ is a positive function. From (6.3), we obtain

(
1 − 1

4α

)
I ≤ C

for a suitable constant C ∈ R. In particular, I converges at least for α > 1
4 . ��

Unlike the compact case, for a noncompact manifold, it is not guaranteed in general
the existence of the Engliš expansion of the function εkg and only partial results in
this direction are known (see e.g., [7] for the case of strongly pseudoconvex bounded
domains in Cn with real analytic boundary). In [20, Theorem 6.1.1], X. Ma and G.
Marinescu state sufficient conditions for the expansion to exist in a very general con-
text.Aversion of their theoremadapted to our setting reads as follows (cf. [17, Theorem
7]):

Theorem 5 Let (X , g, ω) be a complete Kähler manifold and let (L̂, ĥ) be an hermitian
line bundle on X. Then, εαg admits an asymptotic expansion in α with coefficients given
by 1.4 provided there exist constants l > 0 and c > 0 such that

i RL̂ > l ω, i Rdet > −c ω, |∂ω|g < c, (6.4)

where Rdet denotes the curvature of the connection on det(T 1,0X) induced by g and

RL̂ the curvature of the connection on L̂ induced by the hermitian metric ĥ.

In the following theorem, we prove that conditions (6.4) hold for Hwang–Singer
metrics based on a Kähler–Einstein polarized manifold. Recall that from [10] Section
2, the Ricci form ρϕ of ωϕ,β is given by

ρϕ = π∗ρM + 1

2Q
(ϕQ)′(τ )π∗γ − 1

2ϕ

[
1

Q
(ϕQ)′

]′
dτ ∧ dcτ,
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thus, when ωM is polarized, we have

ρϕ = π∗(λωM ) + 1

2Q
(ϕQ)′(τ )π∗(βωM ) − 1

2ϕ

[
1

Q
(ϕQ)′

]′
dτ ∧ dcτ

= (
λ + β

2Q
(ϕQ)′

)
π∗ωM − 1

2ϕ

[ 1
Q

(ϕQ)′
]′

dτ ∧ dcτ.

(6.5)

Theorem 6 Let ωϕ,β be the Hwang–Singer metric on a polarized line bundle over a
Kähler–Einstein manifold with integral Kähler form. Then, if Hα �= {0}, the Engliš
expansion of the function εαgϕ,β exists and the coefficients a j are given by 1.4.

Proof Let us check that conditions (6.4) hold for ωϕ,β . The first condition is satisfied
for l ∈ (0, 1) since

i RL̂ = −i∂∂ log ĥ = −i∂∂ log e− 1
2� = ωϕ,β,

while the third condition is satisfied for every positive c > 0, since ∂ωϕ,β = 0, being
the metric Kähler. Let us now deal with the second condition. We want to show that
there exists a positive c > 0 such that the form given by

i Rdet + cωϕ,β = ρϕ + cωϕ,β

is positive. Thus, using 6.5 and 2.1, it is sufficient to show that there exists c > 0 such
that

(
λ + β

2Q
(ϕQ)′ + c(1 − τβ)

)
ωM +

(
− 1

2ϕ

[ 1
Q

(ϕQ)′
]′ + c

ϕ

)
dτ ∧ dcτ > 0.

Being λ ≥ 0 and ϕ > 0, we show that there exists c > 0 such that

{
β
2Q (ϕQ)′ + c(1 − τβ) > 0

− 1
2

[ 1
Q (ϕQ)′

]′ + c ≥ 0,

namely, we want a positive c that satisfies

{
c > − β

2Q (ϕQ)′ 1
1−τβ

c ≥ 1
2

( 1
Q (ϕQ)′

)′
.

Since 1
1−τβ

≤ 1, we reduce to prove that

(ϕQ)′

Q
,

(
(ϕQ)′

Q

)′
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are limited functions, proving the existence of such a c. Using the expression of the
profile function 2.2 and since Q(τ ) = (1 − βτ)n , we get

(ϕQ)′

Q
= 2λ

β(1 − βτ)n
− 2λ

β
+ 2

(1 − βτ)n

< −2λ

β
+ 2

(1 − βτ)n

< −2λ

β
+ 2,

and

(
(ϕQ)′

Q

)′
= 2n(β + λ)

(1 − βτ)n+1 ≤ 2n(β + λ),

concluding the proof. ��
From the existence of an asymptotic expansion of the ε-function, it follows that

the metric can be approximated by a sequence of projectively induced ones in the
following way (cf. [17, Corollary 9]).

Lemma 5 Let (M, g) be a polarized Kähler manifold such that the 1 ∈ H, where
H is the weighted Hilbert space of holomorphic functions on M limited in norm.
Then, the ε-function associated to g exists and, if it admits an asymptotic expansion
whose coefficients are given by (1.4), then g can be approximated by a sequence of
projectively induced Kähler metrics.

Proof Denote by ω the Kähler form associated to g. Let Fα : M → CPdα be the
coherent states map, i.e., Fα(x) = [σ0(x) : · · · : σ j (x) : . . . ], where {σ j } j=0,1,... is an
orthonormal basis ofH such that σ0 ≡ 1. SinceH �= {0}, we can define the ε-function
for g by (1.1), and we have

F∗
α ωF S = αω + i

2
∂∂ log εαg.

By (1.3), since a0 = 1, we have that limα→∞ 1
α

F∗
α gF S = g. ��

Remark 8 Observe that the assumption 1 ∈ H is needed to define the coherent states
map. When M is a compact polarized Kähler manifold, the existence of Fα is guaran-
teed by Kodaira’s Theorem. In the noncompact case, one can always define the map
Fα for example when g is regular, i.e., when εαg is constant. In this case, (1.1) implies
that for each x ∈ M there exists a nonvanishing σ j (x).

We are now in the position of proving Theorem 1.

Proof of Theorem 1 By Lemma 2, we can reduce ourselves to prove that ωϕ,β is not
projectively induced for a given value of β. By Lemma 1, a necessary condition for the
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metric ωϕ,β on Cn+1 to be projectively induced is that βn ≥ −2. Thus, it is enough
to set β < − 2

n .
The second part follows by Lemma 4, Theorem 6, and Lemma 5. ��
Let us now complete the proof of Theorem 2.

Proof of Theorem 2 By Lemma 3, ωk is not projectively induced for any k ≥ 3. For
k = 2, ω2 is the Eguchi-Hanson metric on the canonical line bundle O(−2), that is
not projectively induced as shown by Loi, Zedda, Zuddas in [18]. For k = 1, ω1 is the
Burns-Simanca metric that is projectively induced as shown by Cannas Aghedu and
Loi in [6]. The second part follows by Lemma 4, Theorem 6, and Lemma 5. Finally,
a direct computation (see Appendix A below) gives

a2 = −2(k − 1)
(
k2τ − 2kτ − 2

)
(kτ + 2)6

,

that is identically zero if and only if k = 1, concluding the proof. ��
Remark 9 In [6], Cannas Aghedu and Loi showed that the Simanca metric g1 is pro-
jectively induced, and this implies that any of its integer multiples kg1 also are. We
note here that these are the only possible multiples that can be Kähler immersed in
CP∞. In fact, by momentum construction, the Simanca metric on O(−1) arises as a
metric on a line bundle overCP1. In particular,CP1 is a Kähler submanifold ofO(−1)
(obtained setting the fiber coordinate ξ = 0) and the Fubini–Study form is not integral
when multiplied by a noninteger factor.
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Appendix A: Computations of a2

We compute here the a2 coefficients for the metrics ωϕ,β in the case where the base
manifold M is the complex projective line CP1, completing the proofs of Theorem 2.

From (5.1), the metric gk reads

gk =
⎛
⎝

k2|z|2 f ′′(t)+8k f ′(t)+16
(|z|2+4)2

kz f ′′(t)
ξ(|z|2+4)

kz f ′′(t)
ξ(|z|2+4)

f ′′(t)
|ξ |2

⎞
⎠ .
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It follows that

det(gk) =
(
1 + k

2τ
)
ϕ(τ)

|ξ |2 (
1 + 1

4 |z|2
) ,

and

g−1
k =

⎛
⎝

(|z|2+4
)
2

8(k f ′(t)+2) − kξ z
(|z|2+4

)
8(k f ′(t)+2)

− kzξ
(|z|2+4

)
8(k f ′(t)+2)

|ξ |2(k2|z|2 f ′′(t)+8k f ′(t)+16
)

8 f ′′(t)(k f ′(t)+2)

⎞
⎠ .

The norms of the Riemann and Ricci tensors are

|R|2 = 1

16

(
f (4)(t)2

f ′′(t)4
+ f (3)(t)4

f ′′(t)6
− 8(k3 f (3)(t) − 2k f ′(t) − 4)

(k f ′(t) + 2)3
+ 8k4 f ′′(t)2

(k f ′(t) + 2)4

− 16k2 f ′′(t)
(k f ′(t) + 2)3

− 2 f (3)(t)2 f (4)(t)

f ′′(t)5
+ 4k2 f (3)(t)2

f ′′(t)2(k f ′(t) + 2)2

)
,

and

|Ric|2 = 1

16

(
16

(k f ′(t) + 2)2
+ f (3)(t)4

f ′′(t)6 + 2k4 f ′′(t)2
(k f ′(t) + 2)4

− 8k2 f ′′(t)
(k f ′(t) + 2)3

− 2 f (3)(t)2 f (4)(t)

f ′′(t)5

+ 4k2 f (3)(t)2

f ′′(t)2(k f ′(t) + 2)2
+ 2k f (3)(t) f (4)(t)

f ′′(t)3(k f ′(t) + 2)
− 2k(k f (4)(t) + 4 f (3)(t))

f ′′(t)(k f ′(t) + 2)2
+ f (4)(t)2

f ′′(t)4 +

− 2k f (3)(t)3

(k f ′(t) + 2) f ′′(t)4

)
.

By (2.3) with ϕ(τ) = 2τ+τ 2

1+ k
2 τ

, the a2 coefficient for the metrics ωk on O(−k) is given

by

a2 = −2(k − 1)
(
k2τ − 2kτ − 2

)
(kτ + 2)6

. (A.1)

Remark 10 A similar computation for the Hwang–Singer metric on Cn+1 gives:

a2(0, 1) = β2

4(1 − βτ)2(n+2)

(
β2n4τ2 + n(β22nτ2 + 2β(2n + 4)τ + 2n − 4) + 2n(1 − β2τ2)

+ βn3τ(β(2n − 2)τ + 4) + βn2τ(β(2n − 3)τ + 2
(
2n + 2

)
)
)
.
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