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Abstract 

In this work, a refined inter-element diffuse fracture theoretical model, based on a cohesive finite element 

approach, is proposed for concrete and other quasi-brittle materials. This model takes advantage of a novel 

micromechanics-based calibration technique for reducing the artificial compliance associated with the 

adopted intrinsic formulation. By means of this technique, the required values for the elastic stiffness 

parameters to obtain nearly invisible cohesive interfaces are provided. Furthermore, the mesh-induced 

toughening effect, essentially related to the artificial crack tortuosity caused by the different orientations of 

the inter-element cohesive interfaces, is numerically investigated by performing comparisons with an 

additional fracture model, newly introduced for the purpose of numerical validation. These comparisons 

are presented to assess the reliability and the numerical accuracy of the proposed fracture approach. 
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Nomenclature: C , homogenized moduli tensor, 
(UT) (G) (LD), ,C C C , homogenized moduli tensor for uniform traction (UT), 

general (G) and linear displacement (LD) boundary conditions; 
iso

C , isotropic moduli tensor closest to C ;


C , angularly 

averaged homogenized moduli tensor; CDIM , controlled diffuse interface model; d , scalar damage function; DIM , diffuse 

interface model; E , Young’s modulus of the bulk; E , overall Young’s modulus; Ee , percentage variation of the overall Young’s 

modulus; Ce , percentage deviation of the homogenized moduli; G , tangential modulus of the bulk; G , overall tangential 

modulus; 2DG , homogenized planar shear modulus; I II,G G , modal components of the energy release rate; I II,c cG G , mode-I and 

mode-II fracture energies; ai , anisotropy index; ci , compliance index; K , second-order secant interfacial constitutive tensor; 

0K , second-order elastic interfacial constitutive tensor; ,n sK K , normal and tangential interfacial cohesive stiffness parameters; 
0 0,n sK K , normal and tangential interfacial elastic stiffness parameters; 2DK , homogenized planar bulk modulus; meshL , mesh 

size; RVEL , RVE size; Q , proper orthogonal transformation tensor; ER , reduction of the Young’s modulus; GR , reduction of 

the tangential modulus; R , reduction of the Poisson’s ratio; RVE, representative volume element; SIM , single interface model; 

coht , cohesive traction vector; coh coh,n st t , normal and tangential components of the cohesive traction vector; u , displacement 

jump between the crack faces;  , dimensionless cohesive softening parameter;  , tangential-to-normal displacement jump 

ratio;  , mesh topology factor; h

d , internal mesh boundaries; m , mixed-mode displacement jump; 0

m , effective displacement 

jump at damage onset; f

m , effective displacement jump at total decohesion; max

m , maximum effective displacement jump during 

deformation history; ,n s  , normal and tangential components of the displacement jump; 0 0,n s  , normal and tangential 
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displacement jumps at damage onset in pure mode-I and mode-II, respectively;  , prescribed macro-strain tensor;  , 

dimensionless interfacial normal stiffness;  , Poisson’s ratio of the bulk;  , overall Poisson’s ratio;  , tangential-to-normal 

stiffness ratio of the interface;  , dimensionless RVE size;   , normal stress component;  , macro-stress tensor; max , normal 

critical interface stress;  , shear stress component; max , tangential critical interface stress; d , dissipated fracture energy. 

 

1. INTRODUCTION 

Several construction materials exhibit a quasi-brittle mechanical response at common spatial scales (i.e. 

laboratory and building scales), associated with the development of a fracture process zone (FPZ) before 

the occurrence of strain localization. In detail, their fracture behavior is characterized by a gradual transition 

from an initial diffuse damaged state, in which several micro-cracks grow and interact with each other, to 

a complete localized damaged state, leading to the nucleation and subsequent propagation of macroscopic 

cracks. With the aim of analyzing crack propagation in such materials, both discrete and smeared crack 

models have been widely used in the literature1. 

In discrete fracture modeling, both linear and nonlinear fracture mechanics models have been used in the 

literature for crack analysis of concrete and other quasi-brittle materials. Since Linear Elastic Fracture 

Mechanics (LEFM) models assume that the energy dissipation is confined within a vanishing region located 

in front of a macroscopic crack tip, they have been successfully applied to large concrete structures like 

dams2. Another well-known application of LEFM for concrete structures is the prediction of the pull-out 

test, as confirmed by some recent numerical works (see, for instance, Piccinin et al.3). In more general 

situations, NLFM models are mandatory to capture the typical size-effects in concrete4. As a matter of fact, 

the real FPZ extension cannot be neglected in common small- and medium-sized structures. Among all the 

NLFM models, cohesive zone models (CZMs) are the most used for concrete-like materials5. 

Within a finite element setting, two main strategies can be found in the literature for simulating cohesive 

fracture, i.e. inter-element and intra-element models. In the first approach, cohesive cracks are constrained 

to be extended between the finite elements, whereas in the latter, cohesive cracks propagate across them. 

Inter-element crack propagation is usually accounted for by using cohesive interface elements of the so-

called intrinsic type, inserted prior to the simulation along predefined crack locations. Thus, such a 

modeling has been extensively used in the presence of a priori-known crack paths, like in debonding 

problems usually experienced in composite materials6-13. On the contrary, in the case of unknown crack 

patterns, interface elements of the so-called extrinsic type are inserted during the simulation in an adaptive 

manner, after introducing specific insertion criteria into the model14,15. Such a modeling usually requires 

highly time-consuming remeshing operations, which can be reduced if local remeshing strategies are 

developed (see, for instance, Kuutti and Kolari16). Furthermore, due to remapping of the stresses and strains 

(and, eventually, of the damage variables), remeshing may cause thermodynamically inadmissible healing 

of previously cracked regions, posing severe uniqueness problems in the occurrence of crack branching. 



3 
 

Intra-element fracture approaches have been widely used to simulate crack initiation and propagation along 

unknown crack paths (or patterns) without requiring any remeshing. According to these approaches, the 

propagating discontinuities are embedded by introducing a kinematic enrichment either at the element level, 

as in the strong discontinuity approach (SDA)17, or at the node level (equipped with additional degrees of 

freedom), as in the partition of unity finite element method (PUFEM)18, the extended finite element method 

(XFEM)19, the phantom node method (PNM)20, and the cohesive segment method (CSM)21. 

In contrast to discrete fracture models, in smeared crack approaches the fracture energy is distributed over 

the continuum22-24. As is well known, the strain softening injected in the constitutive response locally leads 

to a change in the character of the governing partial differential equations. This change inevitably leads to 

an ill-posed boundary value problem (BVP), thus rendering such approaches susceptible to localization 

instabilities (and spurious mesh sensitivities if these continua are approximated by finite element 

models)25,26. These theoretical and numerical difficulties have been tackled in the literature by introducing 

into the material model some localization limiters, assuring the energy dissipation to be confined within a 

band across the ideal discontinuity line. Different localization limiters have been proposed in the literature, 

such as crack band models27, fracture energy-based regularization techniques28, and the more rigorous 

nonlocal continuum models, including integral29, strain gradient30, and micropolar31-32 models. 

It is recognized that regularized smeared crack models are reliable in predicting the load-carrying capacity 

of quasi-brittle materials in the strain softening regimes without sensible mesh-dependency issues, but they 

are not able to capture crack initiation, growth, coalescence and branching, because their essential features 

are inevitably lost in the smoothing process. Therefore, they are not suitable for crack analyses in concrete-

like structures, unless special post-processing methods are introduced to extract crack geometries33. 

An interesting method able to overcome the main limitations of both discrete and smeared crack approaches 

is the cohesive finite element method, based on an inter-element fracture representation, by which multiple 

cracking in quasi-brittle materials is handled in a natural way. The advantages of this approach are twofold. 

Firstly, it is an efficient and readily implementable approach for predicting crack initiation and propagation 

along non-prescribed paths within a standard displacement-type finite element setting, without injecting 

any enriched kinematics into the solid elements, unlike intra-element techniques. Secondly, it preserves the 

discrete nature of fracture processes, resulting in a very good capability of capturing the real crack patterns. 

The cohesive finite element method takes inspiration from a series of seminal works about the simulation 

of intergranular fracture in polycrystalline materials34-36, in which interface elements of the intrinsic type 

were inserted at the grain boundaries prior to the simulation. In Xu and Needleman37, the cohesive approach 

was further extended to model crack propagation along arbitrary paths in homogeneous brittle elastic media, 

by inserting interface elements along all the mesh boundaries. However, such an approach, being the first 

application of the cohesive finite element method in the literature, inevitably led to mesh dependency issues, 

in terms of lack of spatial convergence for arbitrary crack paths (see Papoulia et al.38 for a discussion). 
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The mesh dependency of the cohesive finite element method is experienced even in the elastic range, mainly 

due to the artificial compliance increase associated with the insertion of springs with finite stiffness between 

all the bulk finite elements. Such a dependency may be alleviated by calibrating the initial cohesive stiffness 

parameters as functions of the adopted mesh size, as suggested by many authors39-43,7. Nevertheless, to the 

best knowledge of the authors, the cohesive finite element method could not be fully exploited because the 

reliability of the associated numerical results is negatively affected by the absence of a sound strategy for 

controlling and/or reducing such mesh dependency effects under general boundary and loading conditions. 

To this end, in this paper a refined version of the inter-element cohesive methodology recently introduced 

by some of the authors44, is presented under the name of diffuse interface model (DIM). Unlike the 

previously proposed approach, the present model is capable to handle mesh-dependency issues in the elastic 

range in a rigorous manner. 

The main aspect of novelty with respect to 44 is the adoption of a new micromechanics-based calibration 

approach for the stiffness parameters of the cohesive interfaces. This approach, whose aim is to control the 

above-discussed mesh-induced artificial compliance, results from the synergistic application of fracture 

mechanics concepts and the well-established homogenization techniques (see, for instance, 45-51 to have an 

overview about the latter ones). The adopted numerical homogenization scheme has allowed the analytical 

results found in 41,43 to be extended to more general mesh and loading configurations. 

Furthermore, the DIM approach is also validated in the nonlinear range, by investigating the toughening 

effect induced by the mesh, which is unavoidable and essentially related to the artificial crack tortuosity. 

To this end, a novel fracture model is introduced for the purpose of comparison, obtained by adjusting the 

position of the mesh nodes, such that the inter-element boundaries are forced to lie along a predefined main 

crack path. This reference model is used to assess the reliability and the accuracy of the DIM approach. 

 

2. THEORETICAL BACKGROUND 

In the section, the theoretical formulation of the adopted cohesive finite element method will be briefly 

presented, with reference to the special case of planar elasticity. Subsequently, the mesh-induced elastic 

compliance effects will be investigated. Finally, a novel calibration criterion for the initial cohesive stiffness 

parameters will be presented, relying on a rigorous numerical micromechanical approach. 

2.1. The cohesive finite element method: variational formulation 

The description of the cohesive finite element approach is split in two steps. In the first one, the variational 

formulation for a fractured continuum is reported by considering an a priori-known crack path. In the second 

one, this formulation is extended to unknown crack locations. Both variational formulations are presented 

in the following, assuming, without loss of generality, small displacements and negligible inertial forces. 
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Fig. 1. Equilibrium problem for a 2D fractured body: (a) schematic representation of the body; (b) 

representation of the crack and related notations. 

The first variational formulation refers to the problem of the fractured body depicted in Fig. 1a, containing 

a single discontinuity line, representing an existing crack lying on a path which is known a priori. Let   

be the region occupied by the body, defined as a bounded open set in 2R . Its boundary   is supposed to 

be Lipschitz continuous and divided into the subsets N  and D , where Neumann and Dirichlet boundary 

conditions are imposed, respectively, such that N D  =  and the measure of D  is greater than zero 

to avoid arbitrary rigid-body motions. Such a fractured body is subjected to a system of body forces f  in 

 , and of surface forces t  on N , whereas a prescribed displacement u  is applied on D . The embedded 

discontinuity line, denoted by d , is the union of the two (positive and negative) crack faces, referred to as 

d

+  and d

−  (see Fig. 1b). The adopted cohesive formulation implies that the cohesive tractions coh

+
t  and coh

−
t

, acting respectively on the positive and negative sides of the given discontinuity, are self-balanced. 

The material response of the bulk phase is assumed to be linearly elastic and isotropic, so that the only 

nonlinearity source is the constitutive behavior of the cohesive crack, which can be expressed by a traction-

separation law of the kind ( )coh =t K u u , relating the cohesive traction coh coh

− =t t  to the displacement 

jump between the crack faces, defined as 
+ −= −u u u , via the second-order constitutive tensor K . In the 

absence of direct cross coupling between normal and tangential modes, such a tensor can be expressed in 

terms of the normal and tangential cohesive stiffness parameters, denoted by nK  and sK , respectively: 

 ( ) ( ) ( )( )n sK K=  + − K u u n n u I n n . (1) 

Such a cohesive interface behaves as a bed of nonlinear springs acting on the normal and tangential 

components of the displacement jump, i.e. n = u n  and s = u s , where n  and s  are the unit normal 

and tangent vectors to d

− , respectively (see Fig. 1b). 

By means of standard variational arguments, the quasi-static equilibrium problem of such a body can be 

formulated as a nonlinear BVP expressed in the following weak form: find Uu  such that: 
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 ( ) ( )
\ \

 :  d  d  d  d      
d d d N

s s V
     

  +   =  +       C u v K u u v f v t v v , (2) 

where C  is the elasticity tensor, the double-dot symbol denotes the inner product of two second-order 

tensors, s  is the symmetric part of the gradient operator, u  and v  are the (unknown) displacement field 

and the arbitrary virtual displacement field, respectively, belonging to the following sets: 

 
( ) 
( ) 

1

1

such that \  and 

such that \  and 

D

D

d

d

U H

V H





=    =

=    = 0

u u u u

v v v

, (3) 

where ( )1 \ dH    is the Sobolev space of degree one defined over the bulk phase, and the backslash 

symbol stands for the set difference. It is useful to observe that the second term appearing on the left-hand 

side of Eq. (2) represents the virtual work of the cohesive tractions over the discontinuity line. 

The second variational formulation discussed here, upon which the cohesive finite element method is based, 

is written for a spatial discretization of the given body. To this end, a planar tessellation of   is considered, 

2h R  , which is not constrained by the presence of the existing discontinuity line d . It follows that d

, representing the exact crack path, must be approximated as a set of cohesive segments h

d , restricted to 

lie along the nearest inter-element boundaries (see Fig. 2a). 

 
Fig. 2. Schematic representation of the BVP for a cracked discretized body with: (a) cohesive interfaces 

approximating the exact crack path; (b) cohesive interfaces approximating all the potential crack paths. 

If the crack path is not known a priori, all the internal mesh boundaries can be regarded as discontinuity 

lines, and replaced by zero-thickness interfaces h

d  inserted a priori between all the adjacent bulk elements 

of h  (see Fig. 2b). The associated BVP expressed in weak form reads as: find h hUu  such that: 

 ( ) ( )
\ \

 :  d  d  d  d      
h h h h h h

d d d N

h h h h h h h h h

s s V
     

  +   =  +       C u v K u u v f v t v v , (4) 

where the superscript h  refers to the discretized counterparts of the quantities appearing in Eq. (2). In this 

formulation, h  and h

d  have the following definitions: 
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1 1

;      \
e en n

h h h h h

e d e

e e= =

 
 =   =   

 
, (5) 

where h

e  is a generic finite element with boundary h

e , h

e  represents its closure, i.e. h h h

e e e =   , and 

the union operator acts over all the en  finite elements of the given discretization. 

It is worth noting that, in this case, h

d  is no longer coincident with the actual cracks, but represents the set 

of all potential lines for crack propagation. The set of actual cracks, characterized by a nonlinear behavior, 

is denoted by h h

c d   . As a matter of fact, the remaining (uncracked) interfaces \h h

d c   behave as linear 

elastic springs, whose initial stiffness components ( )0 h

n nK K= = 0u  and ( )0 h

s sK K= = 0u  play the 

role of penalty parameters to enforce the inter-element continuity, without having a physical meaning. 

2.2. Investigation of the mesh-induced compliance effects 

For quasi-brittle materials, where damage is usually localized around existing macro-cracks, only a small 

percentage of the cohesive interfaces may be regarded as active, whereas the remaining are worthless. In 

addition, due to the adoption of an intrinsic cohesive model, these unnecessary interfaces negatively affect 

the mechanical response of the body by seriously reducing its overall material stiffness. As a matter of fact, 

since the initial cohesive stiffness must be kept finite, the insertion of the interface elements along all the 

internal mesh boundaries inevitably leads to an artificial reduction in stiffness even at the elastic stage. 

 
Fig. 3. Mesh-induced artificial compliance in a rectangular plate: (a) overall elastic behavior in the 

normal direction; (b) overall elastic behavior in the tangential direction. 

The longitudinal stiffness reduction induced by the presence of diffuse cohesive interfaces can be analyzed 

by considering a simple specimen, already used by Klein et al.39, consisting in a rectangular plate subjected 

to a uniaxial tensile stress   (see Fig. 3a). This plate, whose length is denoted by L , is discretized into N  

equally sized quadrilateral elements with linearly elastic behavior and N  zero-thickness interface elements. 

The length of each bulk element, denoted by meshL , is equal to L N . Moreover, E  and 0

nK  denote the 

Young’s modulus of the bulk material and the initial normal stiffness of the cohesive interface, respectively. 

The total elongations of the bulk and interface elements are bL L E =  and 
0

c n
L N K = , respectively. 
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It follows that the uniaxial strain   of the plate can be computed as ( ) ( )0

b c nL L L L E N K L  + = +

, leading to the following expression for the overall elastic modulus, ( )01 1 ( )nE E N LK = = + . 

Finally, the ratio between the overall and bulk longitudinal moduli, regarded as a measure of the material 

stiffness reduction due to the presence of undamaged cohesive interfaces, reads as: 

 
0 0

mesh

1 1

1 1
n n

NE E

LK L K

E

E
= =

+ +
. (6) 

By analyzing Eq. (6), it can be verified that the stiffness reduction can be decreased either by decreasing 

the cohesive interface density N L  (i.e. increasing the mesh size meshL ), or increasing the initial normal 

cohesive stiffness 0

nK . However, both meshL  and 0

nK  must be chosen such that the dimensionless quantity 

0
mesh n

E

L K
 is not excessively high, to avoid spurious traction oscillations, due to the ill-conditioning of the 

resulting numerical problem. Such oscillations ultimately may cause incorrect crack patterns, as already 

noted by de Borst et al.42. The resulting induced additional compliance is inversely proportional to the 

adopted finite element size meshL , so that the solution is found to diverge as the mesh is refined due to the 

varying overall elastic properties. Such an effect should be made negligible, by controlling the initial normal 

stiffness, i.e. by suitably calibrating its value as a function of the adopted mesh size. To this end, rather than 

fixing directly the value for 0

nK , it is preferable to calibrate the dimensionless normal stiffness 

0

meshnK L E = , which incorporates the mesh size effects, in terms of the imposed reduction for the 

longitudinal modulus 1ER E E=  . By using Eq. (6), it follows: 

 
1

E

E

R

R
 =

−
. (7) 

Once the parameter   is computed by using Eq. (7) for a chosen ER , the initial normal stiffness 0

nK  of the 

cohesive interface can be found as a function of the adopted mesh size meshL . 

In a similar manner, the artificial reduction in the tangential stiffness can be investigated by considering the 

same plate subjected to a pure shear stress   (see Fig. 3b). Following the above-described approach, the 

ratio between the overall and bulk tangential moduli can be expressed as: 

 
0 0 0

mesh mesh

1

1 1 1 1

1 1 1 1
s s n

NG G G G
ELK L K L K

G

G 

= = = =
+ + + +

, (8) 
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having introduced a new dimensionless parameter, 0 0

s nK K =  , i.e. the ratio between the tangential and 

normal initial stiffness coefficients of the interface. This parameter is derived from Eq. (8) after prescribing 

a reduction for the tangential modulus, 1GR G G=  , which in general is different from ER : 

 
( )

1

2 1 1

G

G

R

R


 
=

+ −
, (9) 

with   the Poisson’s ratio of the bulk phase. Interestingly, it can be noted that imposing the restriction 

E GR R= , i.e. prescribing the same reduction for both E  and G , leads to the following result: 

 
( )

1

2 1

G

E



= =

+
, (10) 

implying that the ratio 0 0

s nK K =  uniquely depends on the Poisson’s ratio of the bulk phase. 

It is useful to highlight that Eqs. (6) and (8) may be regarded as inverse rules of mixtures for E  and G , 

respectively, thus providing lower-bounds, according to the well-known Reuss approximation applied to a 

laminate made of bulk and cohesive layers. It follows that Eqs. (7) and (10) can be rigorously applied for 

calibrating 0

nK  and 0

sK  only in the unrealistic case of aligned cohesive interfaces. To obtain “invisible” 

cohesive interfaces in more general situations, different semi-empirical lower bounds for   have been 

proposed in the literature. For instance, Turon et al.7 recommended values of   larger than 50 to ensure an 

apparent loss of stiffness less than 2% for delamination analyses in composites. Moreover, Espinosa and 

Zavattieri40 observed that, if 10   is used, the elastic wave speeds in isotropic media is not affected by 

the presence of an embedded interface. A rigorous calibration criterion has been firstly introduced by Tomar 

et al.41. With reference to the 2D case, such a criterion arises from an energy equivalence condition between 

a discrete system made of bulk and interface elements arranged in a cross-triangle quadrilateral mesh and 

its equivalent homogeneous system, under three different (uniaxial, biaxial and pure shear) uniform loading 

conditions. Assuming plane stress conditions and 0 0 1s nK K = = , the following criterion for   is obtained: 

 ( )1 2
1

E

E

R

R
 = +

−
, (11) 

which has the same form as Eq. (7) but predicts greater values for the initial elastic stiffness at fixed ER , 

due to the different spatial distribution of cohesive interfaces. 

Furthermore, a more general criterion has been proposed by Blal and coworkers43, based on an analytical 

micromechanical approach which uses a Hashin-Shtrikman estimate to compute the overall elastic stiffness 

of a medium with embedded cohesive interfaces. Such a criterion can be regarded as a generalization of the 

criterion (11) to the 3D case, and to any type of external loading conditions and mesh topologies. The key 
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principle is to consider the cohesive interfaces for a given mesh as a collection of uniformly distributed 

penny-shaped inclusions embedded in a continuous matrix and to obtain the overall properties of the 

resulting composite material as a closed-form function of bulk properties and mesh parameters (i.e. mesh 

topology and size). Under the assumption of isotropic overall constitutive behavior of this composite, the 

two dimensionless stiffness parameters   and   can be computed by using the following relations: 

 
( )

1 2
,      2

3 1 2 1 1 3

E

E

R

R

 
 

 

−
= =

− − +
, (12) 

obtained in 43 by enforcing the same reduction for both the moduli E  and G . This restriction, implying no 

reduction of the Poisson’s ratio, i.e.  = , guarantees the positive definiteness of the overall strain energy 

and is reasonable for hydrostatic loading, as discussed in 51. The dimensionless parameter   appearing in 

the first of Eqs. (12) depends on the mesh topology. Moreover, it is worth noting that the relations (12) 

have been also applied to planar meshes in 43. In the case of cross-triangle quadrilateral meshes,   has been 

found to be ( )2 1 2+  with the mesh size meshL  coinciding with the side length of the square cell, whereas 

for an isotropic Delaunay triangulation, it has been derived the following estimate: 

 
4

3.6485
32 2

3 3



=  , (13) 

after having defined meshL  as the edge length of an equivalent regular tessellation made of equilateral 

triangles (see 43 for additional details). 

Unfortunately, such an approach, as most of analytical homogenization models, can only give estimates for 

the effective properties, and the adopted simplifying hypotheses are usually associated with unacceptable 

accuracy levels for real situations of practical interest. Therefore, a novel numerical homogenization 

scheme, described in Section 2.3, is proposed, aimed at enhancing the predictions obtained from Eq. (12). 

2.3. A numerical micromechanical approach for the alleviation of mesh-induced compliance 

In this section, a novel numerical micromechanical approach for the calibration of the initial (elastic) 

cohesive stiffness parameters is presented, able to increase the accuracy of the existing semi-empirical and 

analytical approaches discussed in Section 2.2. Inspired by the works of Blal and coworkers43, we follow 

the idea that the bulk material with embedded cohesive interfaces may be regarded as a two-phase 

composite with either random or regular microstructure, depending on the topology of the finite element 

mesh. As a consequence, the overall elastic properties of such an assembly can be obtained by applying a 

sound micromechanical approach, based on the concept of representative volume element (RVE). Without 

loss of generality, the proposed homogenization framework will be presented in the case of planar elasticity. 
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In the case of a periodically structured mesh, a repeating cell (RC) is adopted as a clearly defined RVE (see 

Fig. 4a), whereas if an unstructured mesh is considered, the RVE is chosen as a volume containing a very 

large (mathematically infinite) set of bulk elements and embedded cohesive interfaces equipped with 

statistically homogeneous and ergodic properties (see Fig. 4b). In the former case, the RVE size RVEL  turns 

to be coincident with the mesh size meshL , whereas in the latter case, the condition mesh RVEL L  must hold. 

 
Fig. 4. Representative volume element (RVE) of a cohesive finite element assembly: (a) repeating cell 

(RC) for periodically structured meshes; (b) RVE for unstructured meshes. 

It is well known that, if the RVE is composed of linearly elastic constituents, the following general 

inequalities involving the homogenized moduli tensor C  hold (see, for instance, 53 and references therein): 

 (UT) (G) (LD): : : C C C       (14) 

for the same prescribed macro-strain  , meaning that the homogenized moduli tensor (G)
C  obtained for 

general boundary conditions is always comprised between the lower and upper limit tensors, corresponding 

to uniform traction (UT) and linear displacement (LD) boundary conditions, respectively. 

For elastic stiffness calibration purposes, we are interested in the lower bound (UT)
C , being associated with 

the greatest predicted value of moduli reduction among all the alternative boundary conditions. In the 

following, the numerically derived homogenized moduli will refer to this type of BCs. 

In a two-dimensional (plane stress or strain) setting, the linearly elastic constitutive relation between the 

averaged stress and strain tensors, denoted by   and  , can be expressed in the following matrix form: 

 

11 1111 1122 1112 11

22 2211 2222 2212 22

12 1211 1222 1212 122

C C C

C C C

C C C

 

 

 

    
    

=    
        

. (15) 

Owing to the assumed major symmetry of C , to solve for all the six independent components, three BVPs 

must be specified, by considering two uniaxial and a shear macro-strain paths in the 1 2x x  plane. 
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Once the homogenized moduli tensor C  is derived, representing the overall elastic properties of the 

discretized continuum with embedded interfaces prior to damage onset, the mesh-induced artificial 

compliance effect can be investigated by using a suitable compliance index, defined as follows: 

 ci
−

=
C C

C
, (16) 

C  being the elastic tensor of the bulk phase, and the symbol  denoting the conventional Euclidean norm 

of the enclosed tensor. This compliance index represents a measure of the distance between the overall 

moduli tensor and the elasticity tensor of the bulk phase, and therefore the condition 1ci  represents a 

necessary requirement for the cohesive/bulk aggregate to approximate the original continuum. 

It is worth noting that the homogenized moduli tensor C  is anisotropic in general, and the anisotropy level 

is expected to be dependent on the mesh topology as well as on the adopted values for the initial cohesive 

stiffness parameters 0

nK  and 0

sK  (or their dimensionless counterparts   and  ). In order to measure the 

anisotropy induced by the presence of embedded interfaces, the following anisotropy index is introduced: 

 

iso

isoai
−

=
C C

C
, (17) 

where iso
C  is the isotropic moduli tensor closest to C . A second requirement for the invisibility of 

embedded interfaces is that the condition 1ai  remains valid, after choosing 0

nK  and 0

sK . Requirements 

for both indexes (16) and (17) will be verified a posteriori in the simulations, as shown in Section 4.2. 

The problem of determining iso
C  can be regarded as a particular version of the more general problem of 

finding the closest approximation of an elasticity tensor with arbitrary material symmetry to an elasticity 

tensor with given symmetry, which has been largely investigated. Several metrics have been proposed in 

the literature to determine the distance between two arbitrary elasticity tensors (see, for instance, 54). The 

most widely used metric is the Euclidean metric, denoted by ( )1 2 1 2,Ed = −C C C C . Accordingly, a good 

candidate for such an equivalent isotropic elasticity tensor is the projection of the homogenized moduli 

tensor C  onto the class isoC  of isotropic elasticity tensors, computed by using the distance Ed , such that: 

 ( )
* iso

*Arg min ,iso

E
C

d


=
C

C C C . (18) 

Equivalently, the closest isotropic homogenized 2D moduli, i.e. the planar bulk modulus 2DK  and shear 

modulus 2DG  can be obtained by the following double minimization problem: 
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 ( ) ( )( )
* *
2D 2D

* * *

2D 2D 2D 2D
,

, Arg min , ,E
K

K d K


 = C C  (19) 

with respect to the unknowns *

2DK  and *

2DG , leading to the following expressions: 

 
( ) ( )

( ) ( )

iso iso

2D 1111 1122 1111 2222 1122

iso iso

2D 1111 1122 1111 2222 1122 1212

1 1
2

2 4

1 1
2 4

2 8

K C C C C C

G C C C C C C

= + = + +

= − = + − +

, (20) 

which can be regarded as the 2D counterpart of the relations for 3D elasticity reported in 54. It is worth 

noting that these isotropized moduli do not depend on the moduli 1112C  and 2212C . 

Then, the planar bulk modulus 2DK  can be expressed as a function of the homogenized Young’s modulus 

E  and Poisson’s ratio  , as follows: 

 2D

2

      plane stress       plane stress
'

     '      '
2(1 ')    plane strain   plane strain

11

E
E

K E E



 




 
 

= = = 
−   −−

. (21) 

According to Eq. (21) one must specify either plane-strain or plane-stress states to express the planar bulk 

modulus, whilst 2DG  is equal to the usual shear modulus G , either in plane-strain or plane-stress elasticity: 

 
2D

2(1 )

E
G G


= =

+
. (22) 

The isotropized overall moduli tensor 
iso

ijklC  can be alternatively derived by using an angular averaging 

technique, which leads to perfectly equivalent results as the minimization problem (18). With reference to 

planar elasticity, the homogenized (anisotropic) moduli tensor ijklC  can be analytically averaged over the 

single polar angle  , using a proper orthogonal transformation ijQ  with the following matrix representation: 

  
cos sin

sin cos

 

 

 
=  

− 
Q . (23) 

In the 2D setting, the angularly averaged overall moduli tensor 


C  is then: 

 ( )
2

0

1
     , , , 1,2

2
ijkl mnpq mi nj pk ql

mnpq

C C Q Q Q Q d m n p q






= =  . (24) 
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It can be easily shown that 


C  turns to be isotropic and coincides with the closest isotropic homogenized 

moduli tensor iso
C , whose matrix representation (in Voigt notation) is: 

 

( )

iso iso

1111 1122

iso iso iso

1122 1111

iso iso1
1111 11222

0

0

0 0

C C

C C

C C

 
 

  =   
 

−  

C . (25) 

Assuming that the anisotropy index (17) is much smaller than one, meaning that homogenized medium 

remains almost isotropic, the artificial compliance associated with the embedded cohesive interfaces can 

be measured by considering iso
C  rather than C . Therefore, instead of the compliance index (16), the moduli 

reductions ER E E=  and R  =  have been used in the present work to calibrate the stiffness parameters 

of the embedded cohesive interfaces. Once these reductions are fixed, the resulting system of nonlinear 

equations to be solved in the two unknown   and   takes the following form: 

 
( )

( )

,

,

E ER R

R R 

 

 

=


=
. (26) 

Some general results concerning the calibration of the cohesive stiffness parameters in the case of random 

mesh configurations will be reported in Section 4.1. 

 

3. DESCRIPTION OF THE DIFFUSE INTERFACE MODEL 

Multiple crack initiation and propagation in concrete-like structures is accounted for via a diffuse interface 

model (DIM), based on the cohesive finite element method presented in Section 2.1. The main advantage 

of this approach is that no mesh updates are required, unlike for many classical discrete crack approaches. 

A fundamental preprocessing operation for the adopted inter-element fracture approach is the construction 

of the cohesive/volumetric finite element mesh. This operation, performed automatically by exploiting the 

advanced scripting capabilities of the adopted numerical environment55, will be detailed in the companion 

Part II paper56. The mechanical behavior of the embedded interfaces is governed by an isotropic damage 

cohesive law ( )coh 01 d= −t K u , written in the matrix form as follows: 

 ( )
coh 0

coh 0

0
1

0

nn n

ss s

t K
d

t K





     
= −    

    
, (27) 

the subscripts n  and s  referring to the normal and tangential directions, respectively. It is worth noting 

that the off-diagonal stiffness terms are zero in the assumed constitutive law, meaning that the dilatancy 

effects are totally neglected. The scalar damage variable d  appearing in Eq. (27) possesses the following 
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linear-exponential evolution law, already used in 44, involving the (mixed-mode) effective displacement 

jump 
2 2

m n s  = +  (with the symbol  denoting the positive part of the enclosed quantity): 

 
( )

max 0

max 0

00
0 max

max

max

0 for 

1 exp

1 1 for 
1 exp

1 for 

m m

m m

f

m m fm
m m m

m

f

m m

d

 

 


 
  

 

 

 


    −
− −    −    

= − −    
− −  

  
 

 

, (28) 

where 0

m  and f

m  are the effective displacement jumps at damage onset and total decohesion, respectively, 

max

m  denotes the maximum value attained by the effective displacement jump over the entire loading 

history, and   is a dimensionless material parameter influencing the rate of damage evolution with max

m . 

The mixed-mode crack initiation is governed by a stress-based quadratic interaction criterion (valid only 

for 0n  ), leading to the following definition for 0

m : 

 

( ) ( )

2
0 0 0

2 2
0 0

1
m n s

s n


  

 

+
=

+
, (29) 

where 0 0

maxn nK =  and 0 0

maxs sK = , max  and max  denoting the normal and tangential critical interface 

stresses, whereas s n  =  is the ratio between the tangential and normal displacement jumps. 

The mixed-mode crack propagation is governed by the following linear power law criterion (also valid only 

for 0n  ), involving the two in-plane modal components IG  and IIG  of the energy release rate: 

 I II

I II

1
c c

G G

G G
+ = , (30) 

IcG  and IIcG  being the mode-I and mode-II fracture energies, respectively. The energy release rates 

corresponding to total decohesion in mixed mode are (see 6 for additional details about their derivation): 

 
( )

( )
( )
( )

( )

( )
( )

( )
( )

( )

0
2

0 0 0

I 2

2 0
2

0 0 0

II 2

2 1

2 1 1

2 1

2 1 1

fn
m m m m

fs
m m m m

eK
G

e

eK
G

e










   

 


   

 

 + −
 = + −
 + −
 

 + −
 = + −
 + −
 

. (31) 
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By inserting Eq. (31) into Eq. (30), and solving the equation with respect to f

m , the mixed-mode 

displacement jump corresponding to total decohesion is obtained as: 

 
( )

( )
( ) ( )

( )

12 0 2 0
0

0

I II

1 2 1 2 1
1

2 1 1

f n s
m m

m c c

e eK K

G Ge e

 

 

  
 

 

−  − + + − 
  = + − − 

 + − −     

. (32) 

When 0n  , a pure mode-II fracture occurs (i.e. I 0G = ), and the related crack advancement criterion 

reads as II IIcG G= . The mode-II energy release rate corresponding to total decohesion is: 

 ( )
( )
( )

( )
0

2
0 0 0

II

2 1

2 1

fs
s s s s

eK
G

e






   



 + −
 = + −
 −
 

. (33) 

By equating the expression (33) to IIcG , and solving with respect to f

s , the mode-II displacement jump 

corresponding to total decohesion is found as: 

 
( )

( )
( )
( )

0II

0 0

1 2 12
1

2 1 1

f c
s s

s s

e eG

Ke e

 

 

 
 

 

  − + −
  = − −

 + − −   

. (34) 

It is worth noting that the adopted cohesive law cannot predict damage under pure compression, and does 

not incorporate any friction model. Moreover, interpenetration is prevented by adding a unilateral contact 

constraint enforced via a penalty method, which adopts the value 0

nK  as regularization parameter. 

 

4. NUMERICAL VALIDATION OF THE DIFFUSE INTERFACE MODEL 

In this section, the adopted diffuse interface model is validated in both linear and nonlinear regimes. In 

particular, in Section 4.1, the elastic stiffness parameters for obtaining invisible cohesive interfaces are 

obtained using the micromechanical approach described in Section 2.3. In Section 4.2, a further analysis of 

both compliance and anisotropy levels for the resulting overall homogenized moduli is given. Finally, in 

Section 4.3, the mesh-induced toughening effect during crack propagation is investigated by comparing the 

present model with other mesh-independent fracture approaches, explicitly introduced as the reference. 

4.1. Calibration of the initial cohesive stiffness parameters 

Here, some general results are reported concerning the elastic calibration of diffuse interface model (DIM), 

described in Section 3, with reference to planar unstructured meshes, plane stress and uniform traction 

boundary conditions. The numerical homogenization technique presented in Section 2.3 is adopted to obtain 

the present results. It is worth recalling that this type of boundary conditions is chosen, since it provides the 

smallest overall moduli among those that satisfy the Hill-Mandel’s condition, associated with the greatest 



17 
 

estimated artificial compliance. It follows that, under general boundary conditions, the resulting loss of 

stiffness induced by the embedded interfaces is assured to be always smaller than the prescribed one. 

In detail, a circular RVE with diameter RVED L=  is considered, consisting in a Delaunay triangulation with 

en  three-node finite elements and embedded four-node interface elements (the insertion procedure will be 

detailed in the companion Part 2 paper56). This RVE can be intended as the sample of a polycrystalline 

material with randomly distributed triangular grains and elastic grain boundaries. Although this RVE has 

not the space-filling property of usual tetragonal and hexagonal RVEs, it is chosen to avoid preferential 

directions for the mesh generation, by virtue of the absence of corners. The characteristic (average) mesh 

size meshL , coinciding with the edge length of an equivalent equilateral triangulation, can be expressed as: 

 
2

mesh
3e

D
L

n


= . (35) 

and should be much smaller than RVEL  for the homogenized moduli to be correctly computed. In order to 

determine the mesh size meshL  to be used for homogenization purposes, different mesh resolutions are 

considered, with number en  of finite elements varying from 110 to 8364. These preliminary numerical 

computations are addressed to a concrete-like material with bulk elastic constants 30 GPaE =  and 0.2 =

, whose cohesive interfaces are calibrated by preliminarily assigning 1 = . Fig. 5a shows the results of the 

mesh sensitivity analysis in terms of convergence of the overall Young’s modulus E , for different values 

of   belonging to a wide range, as a function of the dimensionless parameter RVE meshL L = , which is a 

proper measure of the distance between the RVE scale and the finite element scale. The mesh associated 

with 36.5 = , shown in Fig. 5b, is chosen for obtaining the following numerical homogenization results, 

being the coarsest mesh assuring a percentage variation of the overall Young’s modulus E , defined as: 

 ref

ref

100E

E E
e

E

−
=  , (36) 

smaller than 1% compared to the finest mesh resolution (corresponding to the reference value ref 67.9 =

), for any considered value of  . It is also verified that this mesh density is sufficient to achieve a numerical 

accuracy of about 1% on the statistical fluctuations associated with many RVE realizations. These results, 

obtained by statistical analyses similar to those performed in 57, are not reported for the sake of brevity. 
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Fig. 5. Mesh convergence analysis for homogenization purposes: (a) percentage variation of the overall 

Young’s modulus vs dimensionless RVE size; (b) adopted mesh configuration for the calibration of the 

cohesive interface model (having RVE mesh 36.5L L = = ). 

 

Fig. 6. Tangential-to-normal stiffness ratio as a function of the Poisson’s ratio: comparisons between the 

present results, in terms of both numerical and closed-form according to Eq. (37), and those found in 43. 

Once the RVE size is found, the calibration of the elastic stiffness parameters of the embedded interfaces 

is performed by solving the system (26) for the couple ( ),   in an iterative manner, after prescribing 

suitable values to ER  and R . It is found that the choice 1R =  (no reduction of the Poisson’s ratio) allows 

the dependence of R  on   to be practically neglected, coherently with what has been predicted by Eq. 

(10). It follows that the ratio   between the tangential and normal stiffness parameters can be regarded as 

a function of only the Poisson’s ratio of the bulk phase, whose numerically derived behavior is shown in 

Fig. 6. Moreover, the following closed-form solution has been found, also depicted in Fig. 6, having the 

best fit of the numerically derived points: 

 
1

1 3






−
=

+
, (37) 
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which can be regarded as the 2D counterpart (under plane stress conditions) of the latter of Eqs. (12), which 

was derived in 43 for the 3D case (although also applied to planar elasticity problems). It is interesting to 

note that, in contrast to what is predicted by the latter of Eqs. (12), also reported in Fig. 6 for comparison 

purposes, the tangential-to-normal stiffness ratio to be assigned according the proposed calibration method 

is always smaller than one (this limit value is reached for 0 = ). Moreover, for incompressible materials 

(i.e. 0.5 = ), the present result predicts no vanishing behavior for  . 

 

Fig. 7. Dimensionless normal stiffness vs Young’s modulus reduction chart. 

By introducing Eq. (37) in the first of Eqs. (26), it follows that   can be found as a function of the desired 

reduction ER  and of the given Poisson’s ratio. Several numerical computations have been performed to 

create the chart shown in Fig. 7, which is valid for any isotropic and linear elastic material with 0 0.5   

subjected to a plane stress state. This chart numerically confirms the qualitative behavior of the first of Eqs. 

(12), being characterized by 0lim 0ER→ =  and lim 1ER→ = , but provides more reliable results for greater 

Poisson’s ratios. As a matter of fact, the first of Eqs. (12) loses its meaning for perfectly incompressible 

materials, predicting an infinite cohesive stiffness for any reduction of the Young’s modulus. 

The most useful part of this chart is the top one, extracted and reported in the same Fig. 7, referring to 

values of ER  greater than 0.95 (assuming a stiffness reduction of 5% admissible for engineering purposes). 

The value of   assuring a prescribed threshold value of ER  is the abscissa of the intersection point between 

the horizontal line passing through this threshold and the curve associated with the given Poisson’s ratio. 

4.2. Evaluation of the mesh-induced compliance and anisotropy levels 

To assess the general validity of the proposed calibration methodology, a numerical investigation of both 

compliance and anisotropy levels induced by the mesh is performed, by computing the two indices (16) 

and (17), introduced in Section 2.3, for different values of both   and   within the considered ranges. 
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As shown in Table 1, the variation of the Poisson’s ratio has a limited influence on the compliance index 

ci , which tends to slightly increase for increasing values of   at fixed  . Contrarily, as expected, ci  is 

strongly affected by the elastic stiffness of the cohesive interface, providing unacceptable compliance 

increments (greater than 5%) for values of   smaller than 20, regardless of the adopted Poisson’s ratio. 

The variation of the anisotropy index ai  within the same ranges of independent variables is reported in 

Table 2. As expected, for any value of  , a decrease of the stiffness parameter   leads to an increase of 

the mesh-induced anisotropy level, which, however, does not exceed 1%. This value confirms the 

effectiveness of the proposed micromechanical calibration with respect to the desired isotropy requirement. 

It is useful to highlight that the preliminary numerical results reported in Figs. 6 and 7 and in Tables 1 and 

2 are valid for any isotropic material with Poisson’s ratio ranging from 0 to 0.5. In the particular case 

0.2 = , which is typical for concrete, further numerical results are presented, aimed at better investigating 

the mesh-induced effects on the homogenized moduli. 

Fig. 8 shows the behavior of the (plane stress) homogenized moduli for the given cohesive finite element 

assembly as a function of the normal stiffness parameter of the embedded interfaces. All the moduli are 

normalized with respect to the Young’s modulus of the bulk. It can be noted that for any value of  , the 

cohesive finite element assembly preserves its isotropy, thus assuring the same loss of stiffness in each 

direction. This effect is essentially due to the adopted (isotropic) mesh topology, for which the embedded 

cohesive interfaces are randomly placed without introducing any preferential orientation into the model. 

Table 1. Compliance index as a function of both the bulk Poisson’s ratio and the dimensionless normal 

stiffness of the cohesive interface. 

   

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

  

0.001 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 

0.002 0.9988 0.9989 0.9989 0.9990 0.9991 0.9991 0.9992 0.9992 0.9993 0.9994 0.9994 

0.005 0.9971 0.9972 0.9974 0.9975 0.9977 0.9978 0.9980 0.9981 0.9983 0.9984 0.9985 

0.01 0.9942 0.9945 0.9948 0.9951 0.9953 0.9956 0.9959 0.9962 0.9965 0.9968 0.9971 

0.02 0.9884 0.9890 0.9896 0.9902 0.9907 0.9913 0.9919 0.9925 0.9930 0.9936 0.9942 

0.05 0.9716 0.9730 0.9744 0.9758 0.9772 0.9786 0.9800 0.9814 0.9828 0.9842 0.9856 

0.1 0.9448 0.9474 0.9500 0.9527 0.9553 0.9580 0.9607 0.9634 0.9661 0.9689 0.9716 

0.2 0.8954 0.9001 0.9048 0.9096 0.9145 0.9194 0.9244 0.9294 0.9345 0.9397 0.9449 

0.5 0.7741 0.7829 0.7919 0.8012 0.8107 0.8204 0.8303 0.8405 0.8510 0.8617 0.8727 

1 0.6316 0.6434 0.6557 0.6685 0.6818 0.6956 0.7100 0.7250 0.7407 0.7571 0.7743 

2 0.4618 0.4745 0.4880 0.5023 0.5174 0.5335 0.5506 0.5689 0.5884 0.6094 0.6318 

5 0.2557 0.2656 0.2762 0.2878 0.3004 0.3141 0.3292 0.3457 0.3641 0.3845 0.4073 

10 0.1467 0.1532 0.1603 0.1682 0.1768 0.1864 0.1971 0.2091 0.2227 0.2381 0.2559 

20 0.0792 0.0830 0.0872 0.0919 0.0970 0.1028 0.1094 0.1168 0.1253 0.1352 0.1468 

50 0.0333 0.0349 0.0368 0.0389 0.0412 0.0439 0.0468 0.0503 0.0542 0.0589 0.0644 

100 0.0169 0.0178 0.0188 0.0198 0.0211 0.0224 0.0240 0.0258 0.0279 0.0303 0.0333 

200 0.0085 0.0090 0.0095 0.0100 0.0106 0.0113 0.0121 0.0131 0.0141 0.0154 0.0169 

500 0.0034 0.0036 0.0038 0.0040 0.0043 0.0046 0.0049 0.0053 0.0057 0.0062 0.0068 

1000 0.0017 0.0018 0.0019 0.0020 0.0021 0.0023 0.0025 0.0026 0.0029 0.0031 0.0034 
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Table 2. Anisotropy index as a function of both the bulk Poisson’s ratio and the dimensionless normal 

stiffness of the cohesive interface. 

 
  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

  

0.001 4.548E-3 4.389E-3 4.217E-3 4.031E-3 3.832E-3 3.620E-3 3.396E-3 3.161E-3 2.918E-3 2.669E-3 2.414E-3 

0.002 4.545E-3 4.386E-3 4.214E-3 4.029E-3 3.830E-3 3.618E-3 3.394E-3 3.160E-3 2.917E-3 2.668E-3 2.413E-3 

0.005 4.537E-3 4.379E-3 4.207E-3 4.023E-3 3.824E-3 3.613E-3 3.390E-3 3.157E-3 2.914E-3 2.665E-3 2.411E-3 

0.01 4.523E-3 4.366E-3 4.196E-3 4.012E-3 3.815E-3 3.605E-3 3.383E-3 3.150E-3 2.909E-3 2.661E-3 2.408E-3 

0.02 4.496E-3 4.342E-3 4.174E-3 3.992E-3 3.797E-3 3.589E-3 3.369E-3 3.138E-3 2.898E-3 2.652E-3 2.400E-3 

0.05 4.417E-3 4.269E-3 4.107E-3 3.932E-3 3.743E-3 3.541E-3 3.327E-3 3.102E-3 2.867E-3 2.626E-3 2.379E-3 

0.1 4.292E-3 4.153E-3 4.002E-3 3.836E-3 3.657E-3 3.464E-3 3.259E-3 3.043E-3 2.817E-3 2.583E-3 2.343E-3 

0.2 4.061E-3 3.940E-3 3.806E-3 3.658E-3 3.496E-3 3.320E-3 3.132E-3 2.932E-3 2.721E-3 2.502E-3 2.276E-3 

0.5 3.497E-3 3.414E-3 3.319E-3 3.210E-3 3.088E-3 2.953E-3 2.804E-3 2.642E-3 2.470E-3 2.287E-3 2.095E-3 

1 2.840E-3 2.793E-3 2.735E-3 2.666E-3 2.585E-3 2.492E-3 2.387E-3 2.269E-3 2.140E-3 2.000E-3 1.850E-3 

2 2.064E-3 2.047E-3 2.024E-3 1.991E-3 1.950E-3 1.900E-3 1.839E-3 1.769E-3 1.689E-3 1.599E-3 1.500E-3 

5 1.134E-3 1.137E-3 1.136E-3 1.132E-3 1.123E-3 1.109E-3 1.090E-3 1.065E-3 1.035E-3 9.986E-4 9.564E-4 

10 6.472E-4 6.525E-4 6.562E-4 6.579E-4 6.573E-4 6.543E-4 6.486E-4 6.401E-4 6.287E-4 6.141E-4 5.963E-4 

20 3.482E-4 3.523E-4 3.557E-4 3.580E-4 3.594E-4 3.595E-4 3.585E-4 3.560E-4 3.522E-4 3.469E-4 3.401E-4 

50 1.459E-4 1.480E-4 1.498E-4 1.512E-4 1.523E-4 1.529E-4 1.530E-4 1.527E-4 1.518E-4 1.505E-4 1.486E-4 

100 7.416E-5 7.527E-5 7.624E-5 7.705E-5 7.767E-5 7.809E-5 7.827E-5 7.823E-5 7.794E-5 7.742E-5 7.666E-5 

200 3.738E-5 3.796E-5 3.847E-5 3.890E-5 3.923E-5 3.947E-5 3.959E-5 3.960E-5 3.950E-5 3.928E-5 3.895E-5 

500 1.503E-5 1.526E-5 1.547E-5 1.565E-5 1.579E-5 1.589E-5 1.595E-5 1.596E-5 1.593E-5 1.585E-5 1.573E-5 

1000 7.525E-6 7.644E-6 7.750E-6 7.839E-6 7.911E-6 7.962E-6 7.992E-6 8.000E-6 7.986E-6 7.949E-6 7.891E-6 

 

 

Fig. 8. Homogenized moduli for a cohesive finite element assembly (plane stress assumption and 0.2 = ) 

as a function of the normal stiffness parameter of the embedded interfaces (dashed lines refer to the 

corresponding bulk moduli). 

A deeper investigation of the mesh-induced anisotropy associated with the DIM approach is provided by 

computing the effective moduli for several mesh orientations in the 1 2x x  plane. The rotated moduli *
C  are 

computed applying the transformation (23) to the moduli C  referring to the 1 2x x  directions: 

For each considered orientation and for different values of the normal stiffness parameter, the percentage 

deviation of the overall moduli with respect to their angularly averaged counterpart has been computed as: 

 

*

100
ijkl ijkl

C

ijkl

C C
e

C





−
=  , (38) 
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ijklC

 being obtained by means of Eq. (24). The numerical computed deviations for the principal moduli, 

reported in Fig. 9, are always very small (in the worst case less than 0.5%), thus further confirming the 

effectiveness of the proposed calibration methodology with respect to the desired isotropy property. As 

expected, this deviation tends to decrease for increasing values of the stiffness parameter. Interestingly, it 

can be noted also that the deviation for the macroscopic moduli 1122 2211C C=  and 1212C are always negligible 

for any value of  , meaning that, even in the presence of soft embedded elastic interfaces, the shear 

constitutive response preserves its perfect isotropy. It is worth noting that the present numerical outcomes 

refer to the (isotropic) Delaunay mesh depicted in Fig. 5b. The adoption of different meshes, without 

isotropic properties, would probably introduce a more evident dependency of the homogenized moduli on 

the mesh orientation, but this investigation is outside of the scopes of the present work. 

 

Fig. 9. Percentage deviation of the homogenized moduli with respect to their angularly averaged 

counterpart vs mesh orientation for different values of the normal stiffness parameter  . 
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4.3. Investigation of the mesh-induced toughening effect 

The numerical simulations reported here are conducted to validate the adopted diffuse interface model in 

the nonlinear range, with reference to concrete-like structures subjected to mode-I loading conditions. To 

this end, the simply supported notched beam subjected to a three-point bending test, already analyzed in 58, 

is considered. The geometric configuration and the boundary conditions of the simulated beam are depicted 

in Fig. 10, the beam height H  being set equal to 0.2 m. Moreover, in order to reduce the computational 

cost of the numerical simulations, the cohesive elements are inserted only in a circular region with radius 

0.24r H=  placed ahead the notch. A suitable mesh refinement has been performed inside this region, using 

a uniform (isotropic) Delaunay tessellation and imposing a maximum edge length of 4 mm, which results 

in an average mesh size of about 2.63 mm. 

 

Fig. 10. Geometry and boundary conditions for the three-point bending test. 

The Young’s modulus and the Poisson’s ratio of the bulk are equal to 30 GPa and 0.18, respectively, whilst 

the cohesive properties of the embedded interfaces, required by the mixed-mode constitutive law described 

in Section 3, are reported in Table 3. In particular,   has been set equal to 5, which is a suitable value for 

concrete. More sophisticated calibration methodologies for the inelastic cohesive parameters have been 

proposed in the literature, such as the data reduction procedure proposed in 59 or the probabilistic parameter 

calibration adopted in 60, but an accurate inverse identification of these parameters starting from the 

available experimental outcomes is out of the scopes of the present work, mainly focused on the validation 

of a numerical fracture framework rather than a specific cohesive constitutive model. 

Table 3. Material parameters for the cohesive interfaces. 

0

nK  [N/mm3] 
0

sK  [N/mm3] max  [MPa] max  [MPa] IcG  [N/m] IIcG  [N/m]   

1.185e6 6.306e5 3.33 3.33 124 124 5 

 

In particular, the initial normal and shear stiffness parameters 0

nK  and 0

sK  have been set to assure, for the 

given mesh size, no reduction of the Poisson’s ratio, according to the condition (37), and a reduction of the 

Young’s modulus of 2%, according to the chart reported in Fig. 7. The corresponding dimensionless 

stiffness parameters, obtained by graphical linear interpolation, are 0.532 =  and 104.0 = . 

For this numerical example, the normal and shear critical stresses, max  and max , are set equal to each 

other, as well as the mode-I and mode-II fracture energies. This assumption allows the mesh-induced 
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strengthening and toughening effects associated with the crack growth in artificial local mixed-mode 

conditions to be notably reduced. 

In this section, a detailed investigation of the toughening effects induced by the mesh has been performed 

by comparing the present DIM approach, sketched in Fig. 11a with two comparison models. The first 

comparison model, termed single interface model (SIM) and already used for comparison purposes in 44, is 

characterized by the presence of cohesive elements arranged along the vertical direction, assuring a 

collinear propagation of the existing notch (see Fig. 11b). The second comparison model, referred to as 

controlled diffuse interface model (CDIM), is introduced here for the first time, representing a further aspect 

of novelty of the present work. Such a model, used in combination with the SIM configuration, is conceived 

to gain a deeper insight into the reasons for the mesh-induced artificial toughening effects experienced by 

the DIM approach. In the CDIM approach, a given subset of cohesive interface elements is constrained to 

lie along the symmetry line of the considered circular region (see Fig. 11c). Such a model is obtained 

starting from an isotropic Delaunay mesh generated using an additional control edge aligned with the 

vertical direction, coinciding with the self-similar growth direction for the preexisting crack. 

 

Fig. 11. Cohesive element distribution in three interface models: (a) diffuse interface model (DIM); (b) 

single interface model (SIM); (c) controlled diffuse interface model (CDIM). 

Both SIM and CDIM mesh configurations are characterized by the same average size of the embedded 

cohesive elements as in the DIM configuration. The resulting Delaunay meshes for the three above-

described models, sketched in Fig. 12, are composed of three-node plane stress triangular elements for the 

bulk and four-node zero-thickness for the cohesive elements. Furthermore, all the meshes include a 

transition zone to guarantee a graded size variation outside the considered critical region. 

The numerical simulations associated with these three models have been performed under quasi-static 

loading conditions, adopting a Newton-Raphson solution algorithm in combination with a displacement 

control scheme with increments of 5e-3 mm. 

By keeping the SIM configuration as the reference, a comparison between these three models is reported 

in terms of both load versus mid-span deflection and dissipated fracture energy versus crack mouth opening 

displacement (CMOD) curves, shown in Fig. 13. The dissipated fracture energy d  has been computed as 
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the difference between the work of the applied load P  and the stored elastic strain energy, both computed 

at the current displacement  . 

 

Fig. 12. Delaunay meshes used for the three-point bending test: (a) DIM; (b) SIM; (c) CDIM. 

 

Fig. 13. Comparison between DIM, SIM and CDIM approaches in terms of global structural response: (a) 

load versus mid-span deflection curve; (b) dissipated fracture energy versus CMOD curve. 

Coherently with what has been observed in 44, the DIM approach predicts a slightly stronger structural 

response, compared to the SIM approach due to the artificial toughening effect induced by the mesh. In 

particular, as can be deduced from Fig. 13a, the DIM approach leads to a systematic overestimation of the 

load-carrying capacity predicted by the SIM, at both peak and post-peak regimes, as confirmed by the 

divergent behaviors of the associated dissipated fracture energy, shown in Fig. 13b. Nevertheless, the peak 
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load predicted by the DIM approach, of about 0.79 kN, presents a relative error with respect to the reference 

(i.e. SIM) approach, of only 3.5%, judged to be acceptable for engineering purposes, thus validating the 

numerical accuracy of the proposed fracture methodology. 

The crack path numerically predicted by the DIM approach, shown in Fig. 14a, although forced to lie along 

the inter-element mesh boundaries, appears to be globally in good accordance with the self-similar crack 

propagation, taken as the reference one. Moreover, the presence of secondary cracks branching off of the 

main crack is highlighted. 

The second comparison model, i.e. the controlled diffuse interface model (CDIM), has been specifically 

introduced to understand if the above-mentioned toughening effect is due to the occurrence of secondary 

cracking or to the jagged path of the main propagating crack. Interestingly, by analyzing again Fig. 13, it 

can be noted that the global structural response obtained by means of the CDIM approach is practically 

coincident with that obtained using the reference SIM configuration, in terms of both load versus mid-span 

deflection and dissipated fracture energy versus CMOD curves. 

 

Fig. 14. Main crack path and damage variable map for secondary cracks: (a) DIM; (b) CDIM. 

Furthermore, as can be easily observed in Fig. 14b, the main crack path predicted by the CDIM 

configuration is perfectly aligned with that prescribed by the SIM approach owing to the presence of vertical 

control edges. However, the appearance of secondary cracks is still experienced, even if localized within a 

narrower band with respect to the DIM case. 

It follows that the nucleation of small secondary cracks in the neighborhood of the main crack tip, as 

predicted by the present diffuse interface model, has only a negligible influence on the numerically 

predicted structural behavior, and specifically on the estimated fracture properties. As a consequence, the 

toughness increase associated with the DIM configuration is not due to the appearance of such secondary 

cracks, but rather to the tortuosity of the main crack induced by the randomly placed internal boundaries of 

the adopted unstructured mesh. 
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More generally, it can be concluded that the simulation of crack localization phenomena in quasi-brittle 

media, being accompanied by an elastic unloading in the surrounding material, is not sensibly altered by 

the presence of cohesive elements scattered outside the localization zone. Such a result, rigorously verified 

for the CDIM configuration (see Fig. 14b), can be likely extended to the DIM approach, provided that the 

real crack path is well approximated by the mesh boundaries. 

 

5. CONCLUSIONS 

In this paper, an enhanced inter-element fracture theoretical model for the nonlinear analysis of quasi-brittle 

materials subjected to multiple cracking has been proposed, based on a cohesive finite element approach. 

This model possesses some advantages over most of the existing fracture approaches, since it preserves the 

discrete nature of cracking phenomena, unlike smeared crack and damage models, and, at the same time, 

does not require a great implementation effort, unlike X-FEM techniques and other sophisticated intra-

element approaches. 

The adopted fracture approach, which is a refined version of that introduced by some of the authors in 44, 

exploits a novel calibration methodology for the elastic parameters of embedded cohesive interfaces, 

relying on a numerical micromechanical model, aimed at reducing the well-known artificial compliance 

issues experienced in classical intrinsic approaches. 

In the first part of this paper, after that the theoretical formulation is presented, some general results are 

provided using the proposed calibration methodology. In particular, two charts are obtained for calibrating 

the normal and tangential elastic stiffness coefficients of the embedded interfaces, as functions of both the 

Poisson’s ratio of the bulk and the admitted reduction in the Young’s modulus. These charts are valid for 

any isotropic and homogeneous material whose nonlinear response can be effectively modeled with any 

cohesive approach. However, it is worth noting that the proposed cohesive approach could be extended to 

the case of anisotropic and heterogeneous media in a straightforward manner, without any modification in 

the general formulation, thus confirming its applicability to a very large class of real-life materials. 

In the second part of this paper, the attention has been devoted to the systematic investigation of mesh-

induced toughening effects for the adopted fracture approach. Indeed, these effects inevitably lead to an 

overestimation of the overall structural strength at both peak and post-peak regimes. To this end, a novel 

comparison model has been introduced, named controlled diffuse interface model, aimed at investigating 

the capability of the adopted diffuse interface model to predict self-similar crack propagation under pure 

mode-I loading conditions. The numerical results have demonstrated that, although the well-known lack of 

crack path convergence is experienced, only a little overestimation of the predicted crack length is found 

(of about 5%), being strictly related to the mesh-induced tortuosity of the main crack. 
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Encouraged by the accuracy of the present results concerning the simulation of a single propagating crack, 

we have proceeded to incorporate the adopted fracture model within a more sophisticated numerical model 

for studying multiple cracking in plain and reinforced concrete structures. The related results will be 

presented in the companion Part II paper56. 
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