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Abstract. Let X be a compact complex manifold in the Fujiki class C. We study the
compactification of Aut0(X) given by its closure in Barlet cycle space. The boundary
points give rise to non-dominant meromorphic self-maps of X. Moreover convergence
in cycle space yields convergence of the corresponding meromorphic maps. There are
analogous compactifications for reductive subgroups acting trivially on AlbX. If X is
Kähler, these compactifications are projective. Finally we give applications to the action
of Aut(X) on the set of probability measures on X. In particular we obtain an extension
of Furstenberg lemma to manifolds in the class C.

Introduction

Let X be a compact complex manifold and assume that Aut0(X), the connected
component of Aut(X) containing the identity, is not trivial. It is interesting to
consider pointwise limits of sequences {gn} in Aut0(X). Even more interesting is
the fact that such limits often exist! We first met this phenomenon in the case of a
rational homogeneous space X = G/P . Fix an ample class on X and a Cartan in-
volution θ on G. Call self-adjoint the elements g ∈ G such that θ(g) = g−1. These
elements form a submanifold of G diffeomorphic to the symmetric space G/K,
where K = Fix(θ). The ample class allows to fix a particular Satake compacti-
fication of G/K. One can prove that if a sequence {gn} of self-adjoint elements
converges in the Satake compactification, then the maps gn : X → X converge
almost everywhere on X (with respect to smooth Lebesgue measures). The limit
map is a rational self-map of X and one can describe it rather explicitely, see [6,
§3.1]. In particular the pointwise limit of the maps gn exists, it is holomorphic on
a Zariski open subset of X and its image is contained in a proper subvariety of X.
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We later discovered that this phenomenon holds in greater generality. Assume
that X is a Kähler manifold and that a compact connected subgroup K ⊂ Aut0(X)
acts on X in a Hamiltonian way, i.e. with a momentum mapping. If ξ ∈ k and
x ∈ X, then the limit

lim
t→+∞

exp(itξ) · x (1)

always exists and defines a limit map, see e.g. [7, Prop. 5.18]. This map is not
continuous on the whole manifold X, but its restriction to a Zariski open subset
is continuous and holomorphic [7, §5.20]. If we set gn(x) := exp(itnξ) · x for
a sequence {tn} converging to +∞, then we observe the same phenomenon as
above: the pointwise limit of gn exists and is holomorphic on a Zariski open subset
of X. The proof of these facts relies heavily on the Linearization Theorem proved
in the papers [24], [25], [26, §14]. As is well-known the flow exp(itξ) in (1) is a
Morse-Bott flow. It is interesting to notice that using quite different methods one
can make sense of the limit for every Morse-Bott flow, see [23, 33].

In the present paper we study this phenomenon, that is the existence of the
limit, in full generality:

Question 1. Let X be a compact complex manifold and let {gn} be a sequence in
Aut0(X). For which x ∈ X does the limit

f(x) := lim
n→∞

gn · x

exist (up to passing to a subsequence)? What is the structure of the set of such
points? What can be said about the limit map f?

The basic idea of our approach is simply to replace a biholomorphism of X by
its graph. This idea goes back at least to Douady [15] and is of course common in
many areas of mathematics. In the study of biholomorphism groups this idea has
already been used very successfully by Barlet, Fujiki and Lieberman [17, 34, 3].

The graph of a biholomorphism is an analytic subvariety of X×X. Subvarieties
can be considered either as ideal sheaves, i.e. points in the Douady space (the
Hilbert scheme in the projective case), or as cycles, i.e. points in the Barlet cycle
space (the Chow scheme in the projective case). For our purposes the choice
between these two approaches is not fundamental.

The manifolds for which we can answer the question above are those in Fujiki
class C: this class contains by definition all the manifolds that are meromorphic
images of compact Kähler manifolds (see Definition 14 below). For these manifolds
the irreducible components of both Douady and cycle space are compact. Let
B(X) (respectively F (X)) denote the irreducible component of the diagonal in
the cycle space Cn(X ×X), where n = dimX (resp. in the Douady space of X ×
X). Thus B(X) (resp. F (X)) is an analytic compactification of Aut0(X). Some
instances of this compactification have already been considered in the literature.
For example Brion [11] has studied B(X) in great detail the case where X is
a rational homogeneous space. Using the compactness of B(X) we prove the
following result, which gives a rather complete answer to Question 1 for X in the
class C (see §2, especially Theorems 20 and 21).
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Theorem 2. Let X ∈ C and let {gn} be a divergent sequence in Aut0(X). Up to
passing to a subsequence there are a meromorphic map f : X 99K X and a proper
analytic subset A ⊂ X such that

(1) f is defined outside A;
(2) gn → f uniformly on compact subsets of X −A;
(3) f is not dominant, i.e. f(X) is contained in a proper subvariety of X.

An example of complex manifold not in the class C is provided by Hopf manifolds
[43]. We are able to show that for such manifolds our result fails, see Remark 8.

In §3 we consider reductive subgroups of Aut0(X). We recall several results from
Fujiki’s fundamental paper [17]. Fujiki used F (X) instead of B(X). We explain
that they are equivalent for our purposes. It follows that for every connected
complex reductive subgroup G ⊂ Aut0(X) that acts trivially on AlbX, the closure
G ⊂ B(X) is analytic. (The corresponding statement in F (X) was proved by
Fujiki.) This allows to refine (3) in Theorem 2: if the sequence {gn} lies in G, then
f(X) is contained in the fixed set of a positive-dimensional subgroup of G.

The compactification of a reductive G ⊂ Aut0(X) obtained in this way is quite
interesting in its own. If X is Kähler we are able to prove the following (see
Theorem 33).

Theorem 3. If X is a Kähler manifold and G ⊂ Aut0(X) is a connected complex
reductive subgroup, that acts trivially on AlbX, then the closure of G inside B(X)
is a projective variety.

In §4 we apply Theorem 2 to study the action of Aut0(X) on the set of proba-
bility measures on X. A famous lemma due to Furstenberg [21], which is used in
the proof of Borel density theorem, says (among other things) that a measure on
Pn whose stabilizer in PGL(n + 1,C) is non-compact, is supported on a union of
proper linear subspaces. The previous results allow to generalize this to any man-
ifold in C: a measure on X with non-compact stabilizer in Aut0(X) is supported
on a proper analytic subset (see Theorem 34).

Finally in Theorem 36 we give an application of the results obtained in the
paper to the map Fν , originally introduced by Bourguignon, Li and Yau [10] and
studied in [6, 7]. We are able to give a much shorter proof of one of the main
results in [7], although in a slightly less general setting.
Acknowledgements. The authors would like to thank Professor Barlet for help-
ing with cycle space, Professor Pirola for interesting discussions and Professor Dol-
gachev for turning their attention to the important paper [36]. They also thank
the referees for a very careful reading of the manuscript.

1. Notation and preliminaries

We start by recalling the basic definitions on meromorphic maps and some
elementary lemmata needed in the paper. See [4, 16, 22, 38] for more details.

Definition 4. Let X and Y be reduced complex spaces. A map τ : X → Y is
a proper modification if it is proper and there is an analytic subset T ⊂ Y with
empty interior such that
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(1) τ−1(T ) has empty interior and
(2) the restriction of τ to X − τ−1(T ) is a biholomorphism onto Y − T .

The center of τ is the intersection of all the analytic subset T ⊂ Y satisfying the
above condition. The exceptional set of τ is the inverse image of the center.

Definition 5. Let X and Y be reduced complex spaces. A meromorphic map of
X in Y is an analytic subset G of X × Y such that p := π1|G : G→ X is a proper
modification. If S ⊂ X is the center of p then f := π2 ◦ p−1 : X − S → Y is a
holomorphic map. We write f : X 99K Y . The set G is called the graph of f and
it is denoted by Γf . The image of f is π2(G) ⊂ Y . The meromorphic map f is
surjective if π2(G) = Y . The center of p is called the set of indeterminacy of f ,
denoted indet(f), and its complement is called the domain of definition of f . We
say that f is defined at x ∈ X if x lies in the domain of definition.

Remark 1. If τ : X → Y is a proper modification and Y is irreducible, then also
X is irreducible. In fact Y − T is irreducible and so is X − τ−1(T ). Moreover
X − τ−1(T ) is dense in X. As a corollary, if f : X 99K Y is a meromorphic map
with graph G, and X irreducible, then G is irreducible.

Lemma 6. Let X and Y be reduced and irreducible compact analytic spaces. Let
f : X 99K Y be a meromorphic map with graph G and set of indeterminacy S ⊂ X.
Then G is the closure of the graph of f : X − S → Y .

Proof. Since f : X − S → Y is a holomorphic map, its graph Γf is an analytic
subset of (X − S) × Y and it is biholomorphic to X − S. By the definition of
meromorphic map we have Γf = G − (S × Y ). Therefore Γf is Zariski open in
G. By the previous remark G is irreducible, so Γf is dense in G for the Hausdorff
topology.

Lemma 7. If X and Y are reduced and irreducible compact analytic spaces and
S ⊂ X is a proper analytic subset, a holomoprhic map f : X − S → Y is mero-
morphic if and only if the closure of its graph is an analytic subset of X × Y .

Proof. We already proved that the condition is necessary. To prove that it is
sufficient, assume that G := Γf is analytic in X × Y . Since G is compact the
map p := π1|G is proper. Moreover π1(G) = X, since π1(G) is compact and
contains X − S. Since X is irreducible, also Γf and G are irreducible. Finally
p−1(S) = G∩ (S×X) is a proper analytic subset of G, so it is nowhere dense. We
have proved that p : G→ X is a proper modification.

Lemma 8. Let X and Y be reduced and irreducible compact analytic spaces and
let f : X 99K Y be a meromorphic map. Let A ⊂ X be a proper analytic subset
containing indet(f). If W ⊂ X is an irreducible analytic subset which is not
contained in A, then f(W −A) has analytic closure in Y .

Proof. Let G ⊂ X × Y be the graph of f and let π1, π2 be the restrictions of the
projections:

G

X Y.

π1 π2

f
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Let π−1
1 (W ) = Z1 ∪ · · · ∪ Zr be the decomposition in irreducible components.

Since W is irreducible, we can assume π1(Z1) = W . We claim that π2(Z1) =
f(W −A). Indeed since W is irreducible, W − A is also irreducible. Since π1 is
a biholomorphism over X − A, also π−1

1 (W − A) ∼= W − A is irreducible. Hence
it is contained in a unique irreducible component of π−1

1 (W ), which is necessarily
Z1. This shows that π−1

1 (W − A) ⊂ Z1 − π−1
1 (A). The opposite inequality being

obvious, we get π−1
1 (W−A) = Z1−π−1

1 (A). Since Z1 is irreducible, π−1
1 (W−A) is

dense in Z1. So f(W −A) = π2π
−1
1 (W −A) = π2(Z1−π−1

1 (A)) is dense in π2(Z).
This means that the closure of f(W − A) is the set π2(Z1), which is analytic by
Remmert Proper Mapping Theorem.

Lemma 9. Let X and Y be reduced and irreducible compact analytic spaces and
let f : X → Y be a holomorphic map. Let B ⊂ Y be a proper analytic subset such
that for any y ∈ Y − B, the fibre f−1(y) consists of a single point. Then f is a
bimeromorphic map.

Proof. Define h : Y −B → X by h(y) := f−1(y). Let G ⊂ X×Y denote the graph
of f , which is an irreducible analytic subset of X×Y . The map t : X×Y → Y ×X,
t(x, y) := (y, x) is a biholomorphism, so also G′ := t(G) is analytic and irreducible
in Y ×X. The set G′−π−1

1 (B) is Zariski open in G′ and it coincides with the graph
of h. By Lemma 7 we conclude that h extends to a meromorphic map Y 99K X.
By construction we have hf = idX on X − f−1(B) (which is and nonempty and
dense in X) and fh = idY on Y −B. Therefore h is a meromorphic inverse to f .

We will need the following classical result (see e.g. [41, Cor. 1.20 p. 108] and
[13, p. 116]).

Theorem 10. Let X and Y be compact complex spaces and let f : X → Y be
a proper surjective holomorphic map. Assume that X and Y are reduced and
irreducible. Then there are Zariski open subsets Y 0 ⊂ Y and X0 ⊂ X such
that f(X0) = Y 0, both X0 and Y 0 are non-singular and f |X0 : X0 → Y 0 is a
submersion with fibres of dimension equal to dimX − dimY .

We now recall the basic definitions related to Barlet cycle space.

Definition 11. Let X be a reduced complex space. A n-cycle in X is a locally
finite sum Z =

∑
i niZi where ni ∈ N and Zi is an irreducible analytic subset of

X of dimension n.

The set of n-cycles in X will be denote by C loc
n (X). A cycle is compact if

the subsets Zi are compact and ni 6= 0 for only finitely many indices. The set
of compact n-cycles in X will be denote by Cn(X). It can be provided with
the structure of a Banach analytic set. The irreducible components have finite
dimension. A family of compact n-dimensional cycles in X parametrized by a
topological space S is a map f : S → Cn(X). We also denote the family by
{Ys := f(s)}s∈S . The family is called continuous if the corresponding map is
continuous. It is called analytic if S is a complex space and the map is holomorphic.

The universal family of compact n-cycles in X is the analytic family correspond-
ing to the identity map of Cn(X) [4, p. 367].
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An n-cycle Y on X has a well-defined multiplicity multx(Y ) at every point
x ∈ X [4, p. 446].

Let (Ys)s∈S be an analytic family of n-cycles on X. The set-theoretic graph of
the family is the analytic subset

|GS | := {(s, x) ∈ S ×X : multx(Ys) ≥ 1}. (2)

Let |GS | = ∪Gi be the decomposition in irreducible components. For each i the
function (s, x) 7→ multx(Ys) has a generic value ni on Gi. Then G :=

∑
i niGi is

the graph of the family. It is an n+ q-cycle on S ×X, where S is reduced and has
pure dimension q.

This cycle is compact for a continuous family of compact cycles {Ys}s∈S if and
only if S is compact.

Theorem 12 ( [4, Thm. 3.3.1 p. 448]). Let Ys =
∑
k ns,kZs,k be the decom-

position in irreducible components for a for very general s ∈ S. Then ns,k = ni if
{s} × Zs,k ⊂ Gi.

Theorem 13 ([4, Thm. 3.4.1 p. 449]). Let S be a normal complex space and
let G ∈ C loc

n+q(S ×X). Assume that the fibres of π : |G| → S have pure dimension
n and that π is proper. Then there is a unique analytic family of cycles whose
graph is G.

Definition 14. A complex manifold X is said to belong to the Fujiki class C if
there is a compact Kähler manifold Y and a surjective meromorphic map h : Y 99K
X. By Hironaka’s theorem one can assume that h is holomorphic. Moreover in
[44, 5] it is proven that h can be assumed to be bimeromorphic. For more details
see [18, §4.3],[43, 44, 5].

The following result due to Campana and Fujiki is fundamental for the whole
paper. See [4, p. 431] for a proof in the Kähler case and [19, 12] for the general
case.

Theorem 15. If X is a reduced complex space in class C, then any irreducible
component of Cn(X) is compact.

2. Limit maps for sequences in Aut0(X)

Let X be an n-dimensional compact connected complex manifold in the class C.
For f ∈ Aut0(X), let Γf ⊂ X ×X denote the graph of f . Since X is a connected
manifold, the graph is smooth connected submanifold, hence an irreducible analytic
subset. In particular Γf ∈ Cn(X ×X). This yields a map

j : Aut0(X)→ Cn(X ×X), j(f) := Γf . (3)

We denote by B0(X) the image of j and by B(X) the closure of B0(X) in Cn(X×
X). We will often identify f ∈ Aut0(X) with j(f) and consider Aut0(X) as a
subset of B(X). The idea of replacing f by its graph goes back to [15] and has
been used in [34] and [17]. Also the following Proposition has been proven in
[17, 34].
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Proposition 16. The map j is a holomorphic embedding, B(X) is an irreducible
component of Cn(X ×X) and ∂B(X) := B(X) − B0(X) is an analytic subset of
B(X).

Proof. To prove that j is holomorphic it is enough to prove that the family of cycles
(Γf )f∈Aut0(X) is analytic. Indeed Z := {(f, x, y) ∈ Aut0(X)×X×X : f(x) = y} is

a complex submanifold of Aut0(X)×X×X biholomorphic to Aut0(X)×X, hence
irreducible. By Theorem 13 it defines an analytic family of compact cycles, which
corresponds to the map j. The image of j is contained in a unique irreducible
component of Cn(X × X) that we denote by B(X). The rest is proven in [34,
Prop. 2.1].

It follows from Theorem 15 that B(X) is a compact irreducible analytic space.
In fact it belongs to class C [12, Cor. 3]. The inclusion B(X) ↪→ Cn(X × X)
corresponds to a family of n-cycles on X × X that we denote by {Yb}b∈B(X).
In other words {Yb}b∈B(X) is the restriction of the universal family of cycles to
B(X) ⊂ Cn(X ×X). Let GB(X) be the graph of the family {Yb}b∈B(X).

Lemma 17. For any b ∈ B(X) and any x ∈ X the intersection Yb ∩ ({x} × X)
is non-empty. It either contains a component of positive dimension or it reduces
to a single point. In the latter case this point is a smooth point of Yb, at which Yb
and {x} ×X is intersect transversally.

Proof. Since B(X) is connected, the homology class of Yb is constant for b ∈ B(X).
In particular it coincides with the homology class of the diagonal ∆, which is the
graph of the identity map of X. Setting for simplicity Fx := {x} × X, in the
homology ring of X ×X we have for b ∈ B(X)

[Yb] · [Fx] = [∆] · [Fx].

Since ∆ and Fx intersect only at (x, x) and the intersection is transverse, [∆]·[Fx] =
1 and therefore [Yb] · [{x}×X] = 1. It follows immediately that Yb ∩Fx 6= ∅. This
intersection is a compact analytic subset of X ×X. If there are no components of
positive dimension, then Yb ∩ Fx = {p1, . . . , pk}. So Yb and Fx intersect properly
and

1 = [Yb] · [Fx] =

k∑
i=1

I(pi, Yb, Fx, X ×X).

Since I(pi, Yb, Fx, X × X) ≥ 1, we conclude that k = 1, i.e. Yb ∩ Fx = {p1} and
also that I(p1, Yb, Fx, X ×X) = 1. It follows that both Yb and Fx are smooth at
p1 and that they are transversal, see [20, p. 137-138].

Given spaces X1, X2, . . . Xn we denote by πi and πi,j the natural projections

πi : X1 ×X2 × · · · ×Xn −→ Xi

πij : X1 ×X2 × · · · ×Xn −→ Xi ×Xj

Lemma 18. Assume that X ∈ C. Set

ψ := π12||GB(X)| : |GB(X)| −→ B(X)×X, ψ(b, x1, x2) := (b, x1).
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(i) The map ψ is onto.
(ii) The set Ω := {(b, x) ∈ B(X) × X : |ψ−1(b, x)| = 1} is Zariski open in

B(X)×X. (By |ψ−1(b, x)| we denote the cardinality of the fibre of ψ.)
(iii) The restriction ψ|ψ−1(Ω) : ψ−1(Ω) −→ Ω is a homeomorphism.
(iv) If (b, x) ∈ Ω, then there is an open neighbourhood U of x in X and a

holomorphic function ϕ : U → X such that Yb∩ (U ×X) coincides with the
graph of ϕ.

(v) B0(X)×X ⊂ Ω.
(vi) The set-theoretic graph |GB(X)| is irreducible and GB(X) = |GB(X)|.

(vii) For any b ∈ B we have Ω ∩ ({b} ×X) 6= ∅.
(viii) If b ∈ B(X) there is one and only one irreducible component Zb of Yb such

that π1(Zb) = X. This component has multiplicity 1 in Yb and it is the
graph of a meromorphic map fb : X 99K X.

Proof. Recall that |GB(X)| = {(b, x1, x2) ∈ B(X)×X ×X : (x1, x2) ∈ Yb}. So for
any x1 ∈ Yb

ψ−1(b, x1) = {b} × (Yb ∩ ({x1} ×X)) . (4)

Thus (i) follows directly from Lemma 17. Next set

Σ1(ψ) := {(b, x1, x2) ∈ |GB(X)| : dim(b,x1,x2) ψ
−1(b, x1) ≥ 1},

Since ψ is a proper holomorphic map between reduced complex spaces [4, Thm.
II.4.5.3 p. 179] ensures that Σ1(ψ) is an analytic subset of |GB(X)|. Since ψ
is proper, its image Z := ψ(Σ1(ψ)) is also an analytic set by Remmert Proper
Mapping theorem. Its complement Ω′ := B(X) × X − Z is Zariski open and it
contains exactly the points of B(X) × X whose fibre (for ψ) is 0-dimensional.
Using (4) and Lemma 17 we conclude that Ω′ = Ω. This proves (ii). Since X,
B(X) and |GB(X)| are compact Hausdorff spaces, the map ψ is closed. Hence
the same holds for the restriction ψ|ψ−1(Ω) : ψ−1(Ω) → Ω. Since this map is by
construction a continuous bijection of ψ−1(Ω) onto Ω, it is a homeomorphism.
This proves (iii). Let (b, x) ∈ Ω and assume Yb ∩ ({x} ×X) = {(x, x′)}. It follows
from Lemma 17 that Yb is smooth at (x, x′) and transverse to {x} × X. Hence
there is a neighbourhood V of (x, x′) in Yb such π1|V is a biholomorphism onto a
neighbourhood U ⊂ X of x. Set ϕ := π2 ◦ (π1|V )−1 : U → X. Then V = Γϕ. But
U ⊂ Ω, so V = Yb ∩ (U ×X). This proves (iv). (v) is obvious.

If b ∈ B0(X), then Yb has a unique component of multiplicity 1. Therefore the
definition (2) of GB(X) and Theorem 12 imply that GB(X) has a unique component
of multiplicity 1, i.e. (vi) holds.

If b ∈ B0(X) we have {b}∩X ⊂ Ω. Assume b ∈ ∂B(X). By (i) π1||Yb| : Yb → X
is onto. If every fibre had positive dimension, Theorem 10 would imply that
dim |Yb| ≥ dimX+1, which is absurd. So the fibre over some x ∈ X has dimension
0. By Lemma 17 (b, x) ∈ Ω. This proves (vii).

Let Yb =
∑r
i=1 niZi be the decomposition in irreducible components. Since

∪iπ1(Zi) = π1(|Yb|) = X, there is at least one index i, such that π1(Zi) = X. Set
T := {x ∈ X : (b, x) 6∈ Ω}. By (ii) T is an analytic subset of X and by (vii) it is a



MEROMORPHIC LIMITS OF AUTOMORPHISMS 9

proper subset. If x ∈ X−T , then there is exactly one y ∈ X such that (x, y) ∈ Yb.
Necessarily (x, y) ∈ Zi and x 6∈ π1(Zj) for j 6= i. This shows that the component
Zi is unique and also that π1(Zj) $ X for j 6= i. Denote by Zb the component
Zi. By Theorem 10 applied to p := π1|Zb

: Zb → X there are Zariski open subsets
Z0 ⊂ Zb and X0 ⊂ X, such that both Z0 and X0 are smooth and p : Z0 → X0 is
a local biholomorphism. We can assume that X0 ⊂ X − T . So p|Z0 is injective,
hence a biholomorphism. It follows that p : Zb → X is a modification with center
T , hence fb := π2 ◦ p−1 : X 99K X is a meromorphic map and the graph of fb
coincides with Zb by Lemma 6.

Remark 2. In general the map in (iii) is not necessarily a biholomorphism. The
point is that a bijective holomorphic is automatically biholomorphic only if the
target is weakly normal, see e.g. [4, p. 310-11 and p. 358]. So one can only
assert that ψ|ψ−1(Ω) is a biholomorphism on the weak normalization of B(X).
This kind of problem is quite common in the study of cycle spaces. Indeed the
weak normalization goes back to [2].

Definition 19. For b ∈ B(X) we will denote by Zb be the unique irreducible com-
ponent of Yb such that π1(Zb) = X. We will call Zb the meromorphic component
of Yb. We will denote by fb the meromorphic map such that Γfb = Zb.

We have b ∈ B0(X) iff fb ∈ Aut0(X). We also denote by Ab the set of points
x ∈ X such that ({x} ×X) ∩ Yb contains more than one point. This means that

{b} × (X −Ab) = Ω ∩ ({b} ×X). (5)

In other words, if Yb = Zb +
∑r
i=1 niZi, then

Ab := indet(fb) ∪
r⋃
i=1

π1(Zi).

The intersection Yb∩((X−Ab)×X) is the graph of the holomorphic map fb|X−Ab
.

Let M(X) denote the set of meromorphic self-maps of X. We have constructed a
map

Φ : B(X)→M(X), Φ(b) := fb. (6)

Remark 3. In general the map Φ is not injective: different points b, b′ ∈ ∂B :=
B(X) − B0(X) can have the same meromorphic components, i.e. Zb = Zb′ . The
fibres of the map (6) can be even of positive dimention. We describe such an
example for X = Pn based on the results of Brion [11, p. 621-622]. Set V = Cn+1

and X = Pn = P(V ). Fix a basis {v1, . . . , vn+1} of V . Let J = {j1 < · · · < jr} be
a subset of {1, . . . , n}. Define

V0 := span (v1, . . . , vj1),

Vi := span (vji+1, . . . , vji+1
), for 1 ≤ i < r,

Vr := span (vjr+1, . . . , vn+1),

V<k := ⊕
i<k

Vi, V>k := ⊕
i>k

Vi, for k = 0, . . . , r,

Z̃i = {(x, y, `) ∈ Pn × Pn × P(Vi) : x ∈ P(V<i + `), y ∈ P(V>i + `)},
for i = 0, . . . , r.
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Denote by π12 : Pn × Pn × P(Vi) −→ Pn × Pn the projection. Then the map

ρi := π12|Z̃i
: Z̃i −→ Zi := π12(Z̃i)

is a modification. Set

ΓJ :=

r∑
i=0

Zi ∈ Cn(X ×X).

We have π1(Zi) = X iff i = r and π2(Zi) = X iff i = 0. Thus the meromorphic
component of ΓJ is Zr. Since

Z̃r = {(x, y, y) ∈ Pn × P(Vr)× P(Vr) : x ∈ P(V<r + y)},
Zr = {(x, y) ∈ Pn × P(Vr) : x ∈ P(V<r + y)},

the meromorphic component Zr only depends on V<r and Vr and there are in-
finitely many cycles b ∈ B(X) sharing some meromorphic component.

Remark 4. The fibres of the map Φ in (6) give an equivalence relation ∼ on B(X)
and it would be nice to prove that the quotient of B(X) with respect to this
equivalence relation has the structure of complex analytic space. This is indeed
the case when X = Pn. In fact, as shown above, the meromorphic component
of a cycle ΓJ depends only on V<r e Vr. Moreover ΓJ coincides with the graph
of the projection onto P(Vr) with centre P(Vr). To get the whole of B(X) we
let GL(n + 1,C) act on the left and on the right on the various cycles ΓJ . In
this way we get the graphs of all the elements of P(Mn+1(C)). Thus in this case
B(X)/ ∼= P(Mn+1(C)). Unfortunately dealing with the general case seems rather
delicate. The fibres of Φ can be of different dimensions, by the previous remark.
So [30, Satz 1(b)] shows that in general the relation ∼ is not open. Therefore
to prove that B(X)/ ∼ is a complex space one cannot apply directly the main
theorem of [30], which says that the quotient of a seminormal complex space by
an open analytic relation is a complex space.

Remark 5. In a series of papers Neretin gave a new construction of compactifica-
tions of reductive groups and symmetric spaces. In particular he gave a compact-
ification of PGL(n + 1,C) via so-called hinges, see [36, 35]. This compactfication
is a semigroup and it coincides with the De Concini-Procesi compactification [14].
By Brion’s results [11] it also coincides with B(X) for X = Pn. It would be very
interesting to see if also for a general X the space B(X) or some compactification
related to it is a semigroup. This would be related to the philosophy put forward
at pages 1 and 9-11 of [37]. We hope to come back to these questions in the future.

Consider now the following action of Aut0(X) on X ×X:

g · (x, y) := (x, g · y).

This action induces a corresponding action on Cn(X×X): for Γ ∈ Cn(X×X) set

g · Γ := (idX ×g)∗Γ. (7)

This action preserves B(X).
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Theorem 20. For b ∈ ∂B(X) the stabilizer Aut0(X)b for the action (7) has

positive dimension. Moreover fb(X) = π2(Zb) ⊂ XAut0(X)b . In particular fb :
X 99K X is non-dominant.

Proof. The map j of (3) is equivariant with respect to the action of Aut0(X) on
itself by left multiplication and the action (7) on Cn(X ×X):

j(gh) = Γgh = g · Γh = g · j(h).

Thus B0(X) = j(Aut0(X)) is an orbit of Aut0(X). We know from Proposition 16
that B(X) is irreducible and that ∂B(X) := B(X) − B0(X) is a proper analytic
subset of B(X). Hence any irreducible component of ∂B(X) has dimension strictly
less than dimB(X). Since ∂B(X) is invariant by the action, it follows that for
b ∈ ∂B(X), dim Aut0(X) · b < dimB0(X) = dim Aut0(X), so dim Aut0(X)b > 0.

Denote by Yb the cycle corresponding to b and let Zb be the meromorphic
component. If g ∈ Aut0(X), then clearly π1(g · Γb) = π1(Γb). Thus for g ∈
Aut0(X)b, g · Zb = Zb.

Let Y := indet(fb) ⊂ X be the indeterminacy locus of fb : X 99K X. If
x ∈ X−Y , then ({x}×X)∩Zb = {(x, fb(x))}. If h ∈ Aut0(X)b, then h·(x, f(x)) =

(x, hf(x)) ∈ Zb, so hf(x) = f(x). This shows that fb(X − Y ) ⊂ XAut0(X)b .
Since Zb is the closure of {(x, y) ∈ (X − Y ) × X : y = fb(x)}, we conclude that

π2(Zb) ⊂ XAut0(X)b .
Finally, since Aut0(X)b has positive dimension, it is not the trivial subgroup,

so XAut0(X)b is a proper analytic subset of X. Therefore the image of fb is strictly
smaller than X.

Remark 6. A refinement of this theorem in the case of a reductive subgroup is
given by Theorem 32 below.

Theorem 2 in the Introduction follows from the previous theorem together with
the following one.

Theorem 21. Let X be a compact complex manifold in the class C. Let {bj} be a
sequence in B(X) converging to b ∈ B(X). Then fbj → fb uniformly on compact

subsets of X − Ab. In particular, if {gj} is a sequence in Aut0(X), passing to a
subsequence we can find b ∈ B(X) such that gj → fb uniformly on compact subsets
of X −Ab.

Remark 7. In general the set Ab is larger than the indeterminacy set of fb and
the convergence holds only on X − Ab. For example if X = P1 and gj is the map
gj(z) = j ·z, then fb maps every point of P1 to∞ and has no indeterminacy point,
but convergence does not hold at 0 ∈ Ab.

We start the proof with the following elementary observation.

Lemma 22. Let X and Y be topological spaces and let (Z, d) be a metric space.
Let h : X × Y → Z be a continuous map. Let {xn} be a sequence in X converging
to x̄ ∈ X. Set

fn(y) := h(xn, y), f̄(y) := h(x̄, y).

If Y is compact, fn → f̄ uniformly on Y .
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Proof. Fix ε > 0. Given y0 ∈ Y , continuity of h yields open neighbourhoods U of
x̄ in X and V of y0 in Y , such that d(h(x, y), h(x̄, y0)) < ε/2 for any (x, y) ∈ U×V .
Since Y is compact we can cover it with a finite number of neighbourhoods like
V , that is we can find a list {(Ui, Vi, yi)}ni=1 such that Ui is open in X, Vi is open
in Y , x̄ ∈ Ui, yi ∈ Vi, ∪iVi = Y and

d(h(x, y), h(x̄, yi)) <
ε

2
, ∀(x, y) ∈ Ui × Vi. (8)

Then W := ∩iUi is a neighbourhood of x̄, so there is n0 such that for any n ≥ n0,
xn ∈ W . If y ∈ Y , there is i such that y ∈ Vi. Hence for n ≥ n0 using twice (8)
we get

d(h(xn, y), h(x̄, y)) ≤ d(h(xn, y), h(x̄, yi)) + d(h(x̄, y), h(x̄, yi)) < ε.

Proof of Theorem 21. Fix a compact subset K ⊂ X −Ab. By (5) this means that
{b} ×K ⊂ Ω, so there is an open subset V ⊂ B(X) such that V ×K ⊂ Ω. There
is n0 such that bj ∈ V for n ≥ n0. Recall from Lemma 18 (iv) that ψ|ψ−1(Ω) is
a homeomorphism. In particular we can invert f := ψ|V×K . Hence we have a
well-defined map

h := π3 ◦ f−1 : V ×K −→ X.

By Lemma 21 h(bj , ·) → h(b, ·) uniformly on X (with respect to any metric in-
ducing the topology). But if n ≥ n0, {bj} × K ⊂ Ω, i.e. K ⊂ X − Abj . Hence
h(bj , ·) = fbj and h(b, ·) = fb. We have proved that fbj → fb uniformly on K.

Remark 8. It is important to notice that Theorem 21 does not hold without the
hypothesis X ∈ C. Consider the following example already studied in [43]. Set
W := C2 − {0} and choose α ∈ C with 0 < |α| < 1. Let α act on W by the
rule α · (x, y) := (αx, αy). Then Hα := W/〈α〉 is a Hopf surface and Aut(Hα) =
GL(2,C)/〈α〉. Set

g :=

(
1 0
0 α

)
,

and consider the sequence {gn} in Aut(Hα). Set E1 = {[x, y] ∈ Hα : x = 0} and
E2 = {[x, y] ∈ Hα : y = 0}. These are elliptic curves isomorphic to C/(Z + Za)
where exp(2πia) = α. It is easy to check that for p = [x, y] 6∈ E1 we have
gn(p) → ϕ(p) := [x, 0] ∈ E2. While for p = [0, y] ∈ E1, gn(p) = p. So the limit
exists for every p ∈ Hα. On the other hand the map ϕ : Hα − E1 → E2 is not
meromorphic. In fact call Γ its graph. We claim that Γ = Γ ∪ E1 × E2. It
is clear that Γ ⊂ Hα × E2 and that Γ is closed in (H − E1) × E2. Moreover if
([0, y], [u, 0]) ∈ E1 × E2, then

([αnu, y], ϕ([αnu, y])) = ([αnu, y], [u, 0])→ ([0, y], [u, 0]).

So E1×E2 ⊂ Γ. This proves that indeed Γ = Γ ∪ E1×E2. Now we show that Γ is
not analytic. Call π : W×W → Hα×Hα the projection. Fix p0 = ([0, y0], [u0, 0]) ∈
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E1×E2. Let U be a small neighbourhood of (0, y0, u0, 0) in W ×W such that π|U
is a biholomorphism. Then

π−1Γ ∩ U = ({(0, y, u, 0)} ∩ U) ∪
⋃
n∈Z

({(x, y, αnx, 0)} ∩ U),

which is not analytic. One can also deduce that Γ is not analytic from the fact
that E1 × E2 ⊂ Γ− Γ and dimE1 × E2 = dim Γ.

Remark 9. In the literature there are several notions of convergence for mero-
morphic maps, see for example [28, 29]. It would be interesting to compare the
convergence in B(X) with these notions of convergence. We leave this for further
inquiry.

3. Compactifications of reductive subgroups

In this section we consider complex reductive subgroups of Aut0(X). Since we
will only consider complex reductive subgroups, we will often refer to them simply
as reductive subgroups of Aut0(X).

Our goal is to construct compactifications of the connected reductive subgroups
of Aut0(X) that act trivially on AlbX. We will take advantage of Fujiki’s deep
work in [17]. We start by recalling some definitions introduced in that paper.

Let G be a connected complex Lie group. A meromorphic structure on G is
an analytic compactification G∗ (i.e. a compact analytic space G∗ containing G
as a dense open subset) such that the product map and the inversion extend as
meromorphic maps G∗ × G∗ 99K G∗ and G∗ 99K G∗. Two such structures G∗

and G∗∗ are equivalent if idG extends to a bimeromorphic map G∗ 99K G∗∗. An
equivalence class of meromorphic structures is called a meromorphic group. We
will denote a meromorphic group by G or G∗ or (G,G∗).

If G∗ is a meromorphic structure on G, a subgroup H ⊂ G is meromorphic if the
closure of H in G∗ is an analytic subset. If G∗∗ is another meromorphic structure
which is equivalent to G∗, then H is a meromorphic subgroup with respect to G∗

iff it is meromorphic with respect to G∗∗. To prove the last statement one uses
Lemma 8. Thus the notion of meromorphic subgroup depends only on the ambient
meromorphic group.

If G is a linear algebraic group over C, then it has a canonical meromorphic
structure given by taking a faithful representation of G → SL(V ) and letting G∗

be the closure of G inside P(EndV ). This structure is well-defined, i.e. does not
depend on the choice of the representation [17, Rmk. 2.3]. When G is endowed
with this structure we say that it is meromorphically linear.

If G is a connected complex Lie group with a meromorphic structure G∗ and X
is a compact complex space we say that an action σ : G×X −→ X of G on X is
meromorphic if σ extends to a meromorphic map G∗ ×X 99K X.

Proposition 23. Let (G,G∗) be a meromorphic group. Assume that G acts on
the compact complex spaces X and Y and that f : X 99K Y is a G-equivariant
bimeromorphic map. Then the action on X is meromorphic iff the action on Y is
meromorphic.
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Proof. Let X0 and Y 0 be Zariski open subsets such that f : X0 −→ Y 0 is a
biholomorphism. Equivariance is understood in the following sense: if x ∈ X0 and
g · x ∈ X0, then f(g · x) = g · f(x). Denote by σ : G ×X → X the action on X
and by τ : G× Y → Y that on Y . Set F := idG∗ ×f × f : G∗ ×X2 99K G∗ ×X2.
Consider the set Γ′ := {(g, x1, x2) ∈ G × X2 : x1, x2 ∈ X0, x2 = g · x1}. Since
Γ′ = Γσ ∩ (G×X0×X0), it is a Zariski open subset of Γσ. It is clearly non-empty
since (1, x, x) ∈ Γ′ for any x ∈ X0. Therefore it is dense in Γσ. The same holds
for Γ′′ = Γτ ∩ (G× Y 0 × Y 0): this is a dense Zariski open subset of Γτ . The map
F is defined on Γ′. The equivariance and the hypothesis on X0 and Y 0 imply that
F (Γ′) = Γ′′. Denote by W ′ the closure of Γσ in G∗×X ×X. If the action of G on
X is meromorphic, W ′ is an analytic subset of G∗ ×X ×X by Lemma 6. Since
Γσ is closed in G×X ×X, we have W ′ ∩ (G×X ×X) = Γσ ∩ (G×X ×X). Let
A be the complement of G × X0 × X0 in G∗ × X × X. A is an analytic subset
and it contains indet(F ). The set W ′ is irreducible and it is not contained in A.
So Lemma 8 implies that W ′′ := F (W ′ −A) is an analytic subset of G∗ × Y × Y .
But by the definition of Γ′ we have Γ′ = W ′−A. So W ′′ = Γ′′. But we know that
Γ′′ is dense in Γτ , so Γ′′ ⊂ Γτ ⊂ Γ′′. This finally shows that Γτ = W ′′ is analytic,
i.e. the action on Y is meromorphic.

Assume that X is a compact complex manifold. Let F (X) denote the irreducible
component of the Douady space D(X × X) containing the diagonal ∆. We let
F (X)red denote the reduction of F (X). We recall some fundamental results of
Fujiki.

Theorem 24 (Fujiki). If X ∈ C, then F (X)red is a meromorphic structure on
Aut0(X), called the natural meromorphic structure. Moreover there is an exact
sequence of meromorphic groups

0→ L(X)→ Aut0(X)
α−→ T (X)→ 0

where L(X) is meromorphically linear and T (X) is a torus.

See [17, Prop. 2.2 p. 231] and [17, Thm. 5.5]. If H ⊂ Aut0(X), we say that
H is a meromorphic subgroup with the natural structure if it is a meromorphic
subgroup of F (X)red, i.e. if H̄ is an analytic subset of F (X)red.

Let AlbX be the Albanese torus of X. Since AlbX is a compact torus, the
group A(X) := Aut0(AlbX) is simply the group of translations of AlbX. If
x0 ∈ X is fixed, one defines an Albanese map albX : X → AlbX with alb(x0) = 0
and a homomorphism

Aut(X) −→ Aut(AlbX), g 7→ Ag

such that albX ◦g = Ag ◦ albX for every g ∈ Aut(X) [1, p. 101]. The Jacobi
morphism ϕ∗ : Aut0(X) −→ A(X) is defined as the restriction of the morphism
g 7→ Ag to the connected components of the identity.

Proposition 25 ([17, Thm. 5.5 (2) p. 251]). If X ∈ C, then L(X) is a finite
index subgroup of kerϕ∗.
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Corollary 26. If X ∈ C and G ⊂ Aut0(X) is a connected subgroup, then G acts
trivially on AlbX if and only if G ⊂ L(X).

Corollary 27. If X is Kähler and K is a compact connected real Lie group that
acts holomorphically on X in Hamiltonian way, then G := KC is a meromorphic
subgroup of Aut0(X).

Proof. The assumption means that there are a Kähler form ω and a momentum
mapping µ : X −→ k∗ such that ω is K-invariant, µ is equivariant and d〈µ, v〉 =
iξvω, where 〈·, ·〉 denotes the pairing of k∗ and k and ξv is the fundamental vector
field corresponding to v ∈ k. It is well-known that K acts by biholomorphisms
[31, p. 93], that the inclusion K ⊂ Aut0(X) extends to an inclusion G := KC ⊂
Aut0(X) and that G acts trivially on AlbX, [27, Prop. 1].

Theorem 28 (Fujiki). Let X ∈ C and let G ⊂ Aut0(X) be a connected reductive
subgroup. Then G is meromorphic (with the natural structure) if and only if it
acts trivially on AlbX.

Proof. One implication is proved in [17, Lemma 3.8]. For the other assume that
G acts trivially on AlbX. By Corollary 26 G ⊂ L(X). By Theorem 24 L(X)
is a meromorphic subgroup of F (X)red and the meromorphic structure induced
from F (X)red (i.e. the natural structure) is equivalent to the linear one. Since
G is reductive, it is an algebraic subgroup of L(X). Hence it is a meromorphic
subgroup of L(X) with the natural structure and thus it is itself a meromorphic
subgroup of Aut0(X) with the natural structure. See [17, Prop. 6.10].

Proposition 29. If X is a compact complex manifold, then F (X)red is Aut0(X)-
equivariantly bimeromorphic to B(X).

Proof. The morphism from Douady space to cycle space restricts to a surjective
holomorphic map f : F (X)red −→ B(X), see [3, Thm. 8 p. 121]. This map
is obviously Aut0(X)-equivariant. The complex space Aut0(X) embeds in both
F (X)red and B(X). If we consider these embeddings as identifications, the map
f extends idAut0(X). In particular f is 1-1 over Aut0(X). By Lemma 9 f is
bimeromorphic.

Proposition 30. If G is a meromorphic subgroup with the natural structure, then
the closure of G in B(X) is an analytic subset.

Proof. Consider again the morphism from Douady space to cycle space f : F (X)red −→
B(X) as in Proposition 29. Denote by W the closure of G in F (X)red. By as-
sumption W is an analytic subset. By Remmert Proper Mapping Theorem f(W )
is an analytic subset of B(X). But it coincides with the closure of G in B(X).

Corollary 31. If X is Kähler and K is a compact connected real Lie group that
acts holomorphically on X in Hamiltonian way, then G := KC has analytic closure
in B(X).

Proof. By Corollary 27 G is meromorphic.

The next result is a refinement of Theorem 20.
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Theorem 32. Assume that X ∈ C and that G ⊂ Aut0(X) is a meromorphic
subgroup (in the natural structure). Let Ḡ denote the closure of G in B(X) and
set ∂G := Ḡ −G. Then ∂G ⊂ ∂B(X). Morever for b ∈ ∂G, the stabilizer Gb for
the action (7) has positive dimension and fb(X) ⊂ XGb .

Proof. Let j be the map defined in (3) and consider the action of Aut0(X) on
Cn(X × X) defined in (7). As usual we identify elements of Aut0(X) with their
image through j. So we consider G ⊂ Aut0(X) = B0(X) ⊂ B(X). By Proposition
30 Ḡ is an analytic subset of B(X). In particular G is closed in B0(X), so ∂G ⊂
∂B(X). To prove the second assertion, observe that G is an open orbit of itself in
Ḡ. By Proposition 16 Ḡ is irreducible and ∂G is a proper analytic subset of Ḡ.
Hence any irreducible component of ∂G has dimension strictly less than dimG.
Since ∂G is invariant by the action, it follows that for b ∈ ∂G, dimG ·b < dimG, so
dimGb > 0. Observing that Gb ⊂ Aut0(X)b and applying Theorem 20 concludes
the proof.

If X is Kähler, we can say something on the geometry of Ḡ. (Compare Theorem
3.)

Theorem 33. If X is a Kähler manifold and G ⊂ Aut0(X) is a connected reduc-
tive subgroup, that acts trivially on AlbX, then the closure of G inside B(X) is a
projective variety.

Proof. By Corollary 26 G ⊂ L(X). By Theorem 28 Ḡ is an analytic subset of
B(X). By a result of Varouchas [44] B(X) is a Kähler space, so the same is true
of Ḡ. Let π : Z → Ḡ be a G-resolution of Ḡ (see e.g. [32, p. 150]). Then π is
a projective, hence a Kähler morphism [9, Prop. 4.6 (4)]. Since Z is compact, it
follows from [9, Prop. 4.6 (2)] that it is Kähler. Thus Z is a Kähler G-almost
homogeneous manifold. We claim that G acts trivially on Alb(Z). Indeed G acts
on AlbZ and being connected it acts by translations. Now up to a finite cover
G = T o S with T = (C∗)r and S semisimple and connected. Any morphism
S → AlbZ is trivial, so S acts trivially. Each C∗-factor of T is algebraic in G and
hence is a meromorphic subgroup of G. As such C∗ acts meromorphically on X.
By [17, Prop. 2.2] it acts meromorphically also on F (X) and on F (X)red. Using
Propositions 23 and 29 we conclude that the action of C∗ on Z is meromorphic.
Hence every orbit has analytic closure [17, Lemma 2.4 (1)]. Fix z ∈ Z. The closure
of C∗ · z contains a closed orbit, i.e. a fixed point. So fixed points exists, hence C∗
acts trivially on AlbZ [42]. By [27, Prop. 2] and [39] we get that b1(Z) = 0 and
Z is projective. It follows that Ḡ is Moishezon, since it is bimeromorphic to the
projective manifold Z, see [40, p. 305]. But Ḡ is also Kähler. Being Moishezon
and Kähler Ḡ is in fact projective by [40, p. 310].

Remark 10. It would be interesting to know if B(X) is projective for any X ∈ C,
without the Kählerness assumption.

4. The action on the set of measures

If X is a compact manifold, denote by M(X) the vector space of finite signed
Borel measures on X endowed with the weak topology. Denote by P(X) ⊂M(X)
the set of Borel probability measures on X.
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The following theorem is a generalization of the so-called Furstenberg lemma,
which corresponds to the case X = Pn, see [21], [45, IV],[46, Lemma 3.2.1]

Theorem 34. Let X be a complex manifold in the class C. Let µ, ν ∈ P(X) and
let {gn} be a sequence in Aut0(X), such that gn · µ ⇀ ν. Then either {gn} has
compact closure in Aut0(X) or ν is supported on a proper analytic subset of X.

Proof. If {gn} is divergent in Aut0(X), we can extract a subsequence (that we still
denote by {gn}) converging to some b ∈ ∂B(X). By Theorems 21 and 20 we have

a) gn → fb uniformly on compact subset of X −Ab;
c) fb(X −Ab) ⊂ A′ := XAut0(X)b ( X.

Let Aj be the irreducible components of Ab and set aj := dimAj . For any fixed j
the cycles gn ·Aj belong - for any n - to the same irreducible component of Caj (X).
These components are compact by Theorem 15, so by passing to a subsequence
we can assume that gn · Aj → Âj for any j and for some Âj ∈ Caj (X). The
convergence as cycles implies the analogous convergence as closed subset of the
metric space X. [4, Cor. 2.7.13 p. 424]. Hence, writing Â := ∪jÂj , we have

c) gn ·A→ Â in the Hausdorff topology of closed subsets.

Write µ = µ1 + µ2 with µ1(X − A) = µ2(A) = 0. Since P(X) is compact in the
weak topology, up to passing to a subsequence we can assume that gn · µ1 ⇀ ν1

and gn · µ2 ⇀ ν2. Hence ν1 + ν2 = ν. We claim that

d) supp(ν1) ⊂ Â;
e) supp(ν2) ⊂ A′.

To prove (d) fix u ∈ C(X) such that supp(u) ∩ Â = ∅. Then there is ε > 0 such
that supp(u) ∩ (Â)ε = ∅. So supp(u) ∩ (gn ·A) = ∅ for large n. Now∫

X

u dν1 = lim
n→∞

∫
X

u d(gnµ1) = lim
n→∞

∫
X

u(gn · x) dµ1(x),

and

∫
X

u(gn · x) dµ1(x) =

∫
A

u(gn · x) dµ1(x),

since µ1 is concentrated on A. For large n the last integral vanishes, since u
vanishes on gn ·A. This proves (d).

To prove (e) fix u ∈ C(X) with supp(u) ∩A′ = ∅. As before∫
X

u dν2 = lim
n→∞

∫
X

u(gn · x) dµ2(x).

By (a) we have u(gn · x) → u(fb(x)) pointwise on X − A, hence µ2-a.e. Since
u ∈ L∞ we can apply Lebesgue Dominated Convergence Theorem to get∫

X

u dν2 =

∫
X

u(fb(x)) dµ2(x).

But fb(X − A) ⊂ A′ by (b). Since u ≡ 0 on A′, we conclude that
∫
X
u dν2 = 0.

So (e) also is proven. (d) and (e) together clearly imply that supp(ν) ⊂ Â∪A′, so
the theorem is proved.
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The following was already known in the special case X = Pn, see [46, Cor. 3.2.2,
p. 39].

Corollary 35. If ν ∈ P(X), then

i) either ν is not supported on a proper analytic subset, in which case Aut0(X)ν
is compact;

ii) or there is a proper irreducible analytic subset Y of X such that
a) ν(Y ) > 0,
b) the orbit O := Aut0(X)ν · Y = {g · Y |g ∈ Aut0(X)ν} is finite; in

particular a finite subgroup of Aut0(X)ν leaves Y invariant.

Proof. If ν is not supported on a proper analytic subset, the previous theorem
implies that Aut0(X)ν is compact. Thus (i) is clear. If ν is supported on a
proper analytic subset, then there are proper irreducible analytic subsets with
ν(Y ) > 0. Take Y to be one of minimal dimension. If g1 ·Y and g2 ·Y are distinct
elements of O, then ν(g1 · Y ∩ g2 · Y ) = 0. Otherwise some irreducible component
Z of this intersection has positive measure and dimZ < dimY . Moreover since
gi ∈ Aut0(X)ν we have ν(g1 · Y ) = ν(g2 · Y ). Since ν(X) = 1 the orbit must be
finite. The rest is clear.

Remark 11. We remark that in fact one might expect a better result: linear sub-
spaces of Pn can be characterized as fixed sets of subgroups of PGL(n+ 1,C). So
one might ask if the support of a measure with non-compact stabilizer is in fact
contained in the fixed set of a proper subgroup of Aut0(X). We leave this point
for further inquiry.

Another application concernes the construction of Hersch and Bourguignon-Li-
Yau that we now recall briefly, see [7, §§5-6] for more details. Let X be a compact
Kähler manifold and let K be a compact connected real Lie group acting almost
effectively on X with momentum mapping

µ : X → k∗.

If v ∈ k, set µv := 〈µ, v〉. Then µ is K-equivariant and dµv = ivXω. The action
of K extends to a holomorphic action of the complexification G := KC. Define
F : P(X)→ k∗ by the formula

F(ν) :=

∫
X

µ(x)dν(x).

As explained in [7] this map is a momentum mapping for the action of K on P(X),
in an appropriate sense.

Let E(µ) denote the convex hull of µ(X) ⊂ k∗ and let Ω(µ) denote the interior
of E(µ) as a subset of k∗. Finally set

Fν : G −→ k∗, Fν(a) := F(a · ν).

The following should be compared to Theorem 6.14 in [7].
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Theorem 36. Fix ν ∈ P(X) and assume that ν(A) = 0 for any proper analytic
subset A of X. Then Fν(G) = Ω(µ) and Fν : G→ Ω(µ) is a fibration with compact
connected fibres.

Proof. By Corollary 35 (i) the stabilizer Aut0(X)ν is compact, so also Gν is com-
pact. Therefore Theorem 6.4 in [7] implies that the map Fν is a smooth submer-
sion onto its image, which is an open subset of Ω(µ). To conclude it is enough
to check that Fν is proper as a map G → Ω(µ) (see [7, p. 1140] for details). Let
{gn} be a diverging sequence in G. Since E(µ) is compact, we can assume that
Fν(gn)→ ξ ∈ E(µ). We have to prove that ξ ∈ ∂E(µ). If Ḡ denotes the closure of
G in B(X) (which is compact), we can also assume gn → b for some b ∈ ∂G. Let ν0

be a fixed smooth probability measure, i.e. a measure given by a smooth volume
form which vanishes nowhere. By Theorem 6.14 of [7] (see also Definition 5.27 in
that paper) the map Fν0 : G −→ Ω(µ), Fν0(a) := F(a · ν0) is proper. Therefore up
to passing to a subsequence we can assume that Fν0(gn) converges to some point
θ ∈ ∂E(µ). And by Theorem 0.3 in [8], the convex body E(µ) has the property
that all its faces Ω(µ) = E(µ) are exposed (see [8, p. 426] for the definitions).
Therefore there exists a v ∈ k, such that v 6= 0 and 〈θ, v〉 = maxE(µ)〈·, v〉. On the
other hand Theorem 21 we have pointwise convergence gn → fb(x) on X − Ab.
Since ν0(Ab) = 0 and µv := 〈·, v〉 is bounded, the dominated convergence theorem
yields

〈Fν0(gn), v〉 =

∫
X

µv(gn · x)dν0(x)→
∫
X

µv(fb(x))dν0(x).

On the other hand 〈Fν0(gn), v〉 → 〈θ, v〉. Thus∫
X

µv(fb(x))dν0(x) = 〈θ, v〉 = max
E(µ)
〈·, v〉 = max

X
µv.

This shows that the equality µv ◦ fb = maxX µ
v holds ν0-almost everywhere on

X−Ab. Since this function is continuous, the equality holds in fact everywhere on
X − Ab. But since ν(Ab) = 0 by assumption, we can redo this computation with
ν instead of ν0:

〈Fν(gn), v〉q =

∫
X−Ab

µv(gn · x)dν(x)→
∫
X−Ab

µv(fb(x)) = max
X

µv.

Summing up we get 〈ξ, v〉 = maxvµ = maxE(µ)〈·, v〉. Therefore ξ (just as θ) lies in
the face Fv(E(µ)). In particular ξ ∈ ∂E(µ).
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