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Abstract

We consider nonuniformly elliptic variational problems and give optimal con-
ditions guaranteeing the local Lipschitz regularity of solutions in terms of the
regularity of the given data. The analysis catches the main model cases in the
literature. Integrals with fast, exponential-type growth conditions as well as in-
tegrals with unbalanced polynomial growth conditions are covered. Our crite-
ria involve natural limiting function spaces and reproduce, in this very general
context, the classical and optimal ones known in the linear case for the Poisson
equation. Moreover, we provide new and natural growth a priori estimates whose
validity was an open problem. Finally, we find new results also in the classical
uniformly elliptic case. Beyond the specific results, the paper proposes a new ap-
proach to nonuniform ellipticity that, in a sense, allows us to reduce nonuniform
elliptic problems to uniformly elliptic ones via potential theoretic arguments that
are for the first time applied in this setting. © 2019 the Authors. Communica-
tions on Pure and Applied Mathematics is published by the Courant Institute of
Mathematical Sciences and Wiley Periodicals, Inc.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 945

1 Introduction and Results
In this paper we prove regularity theorems and estimates for solutions to nonuni-

formly elliptic problems. Roughly speaking, these involve elliptic equations whose
rate of ellipticity might change depending on the solution itself. The operators we
are considering mostly stem from variational problems and, as such, they arise
when considering the Euler-Lagrange equation of functionals of the type

(1.1) w 7! F .wI�/ WD
Z
�

�F .Dw/ � f w�dx;

where � � R
n is an open subset and n � 2. In this case the nonuniform ellipticity

of the integrand F.�/ corresponds to the fact that the ratio between the highest
and the lowest eigenvalue of the elliptic tensor @2F.´/ can become unbounded
when j´j ! 1; see also (1.13) below. Nonuniform ellipticity is ubiquitous and
appears in several different contexts, often motivated by geometric and physical
problems [23, 37, 56, 63, 64]. It is a classical topic in the field of partial differential
equations. In the context of the calculus of variations its study has been carried out
systematically in a series of remarkable papers of Marcellini [44–47].

A classical regularity issue for minimizers u of (1.1) is to find sharp criteria on
f implying Du 2 L1loc. This problem has been widely studied and understood, but
only in the uniformly elliptic case. On the contrary, in the nonuniformly elliptic
case the issue has remained essentially untouched since the usual uniformly elliptic
methods do not seem to apply. The aim of this paper is now twofold:

� To identify minimal conditions on f in order to guarantee that minimizers
to (1.1) are locally Lipschitz-continuous, thus filling a remarkable gap in
the literature.

� To introduce a new potential theoretic approach allowing us to reduce in
a natural way the treatment of nonuniformly elliptic problems to the one
of uniformly elliptic ones. This technique yields optimal and new local
estimates when f � 0 and also when applied to the standard uniformly
elliptic case.

Let us summarize the present situation. A number of recent results (see [1, 15–
17, 24, 35, 36] and references) are concerned with the issue of determining optimal
conditions on f ensuring that solutions to uniformly elliptic equations of the type

(1.2) � div.za.jDuj/Du/ D f

are locally Lipschitz-continuous. Equation (1.2) is considered in these papers un-
der the uniform ellipticity assumption

(1.3)
�1 < ia � za0.t/t

za.t/ � sa <1 for every t > 0

zaW .0;1/! �0;1/ is of class C 1
loc.0;1/:
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946 L. BECK AND G. MINGIONE

A prominent example in this context is given by the nonhomogeneous p-Laplacian
equation, i.e.,

(1.4) � div.jDujp�2Du/ D f ; p > 1:

This is the Euler-Lagrange equation of the functional (1.1) when taking F.´/ �
j´jp=p. Solutions to equations of the type in (1.2) are local minimizers of the
functional

(1.5) w 7!
Z
�

�A.jDwj/ � f w�dx; A.t/ WD
Z t

0

za.s/s ds for t > 0;

which is defined on the Orlicz-Sobolev function space W 1;A.�/, i.e., the space of
all functions w 2 W 1;1.�/ such that A.jDwj/ 2 L1.�/. Cianchi and Maz0ya
[15, 16] consider precisely this setting. Assumptions (1.3) imply that A.�/ satisfies
the so-called �2-condition; i.e.,

(1.6) A.2t/ � c.ia; sa/A.t/

holds for every t > 0 (see [15, prop. 2.9]). Moreover, fast-growth conditions (such
as A.t/ � exp.t/) are immediately ruled out here, in the sense that (1.3) also
implies that t iaC2 . A.t/ . tsaC2 holds for t sufficiently large. Apart from the
specific assumptions considered, all the above-mentioned contributions assert that
a sufficient condition on f to have Du 2 L1loc is that f belongs to the Lorentz
space L.n; 1/.�/. This amounts to requiring that

(1.7) kf kL.n;1/.�/ WD
Z 1

0

��fx 2 �W jf .x/j > �g��1=n d� <1:

Such a condition turns out to be optimal in the linear case za.�/ � 1. This is es-
sentially the nonlinear extension of a classical, linear, and sharp result of Stein [59],
asserting the local Lipschitz continuity of solutions to the Poisson equation 4u 2
L.n; 1/. In this respect, notice that the strict inclusionsLnC" � L.n; 1/ � Ln hold
for every " > 0. Indeed, the original result of Stein states that a function whose gra-
dient belongs to L.n; 1/ is continuous; the assertion for the Poisson equations then
follows recalling that Lorentz spaces are interpolation spaces and using classical
Calderón-Zygmund theory. Also notice that solutions to 4u 2 Ln are in general
not locally Lipschitz-continuous. For basic issues of optimality we refer to [13].
A remarkable feature of condition (1.7) is that it is independent of the operator in
question [1,20,35]. In particular, it is independent of the exponent p when looking
at (1.4). These results strongly rely on the uniform ellipticity of the operators; i.e.,
(1.3) is assumed to be in force. No counterpart of any similar local Lipschitz result
is available in the general nonuniformly elliptic case, even when assuming higher
integrability on f .

In this paper we prove that condition (1.7) is sufficient for Lipschitz continuity
in the nonuniformly elliptic setting too. This actually holds when n > 2; we give a
similar borderline characterization when n D 2. We cover the main relevant exam-
ples of nonuniformly elliptic functionals appearing in the literature. For instance,
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 947

we are able to treat functionals as in (1.1) with fast growth conditions [12,23,40,46]
such as

(1.8) w 7!
Z
�

�exp.exp.� � � exp.jDwjp/ � � � // � f w�dx; p � 1;

for which the 42-condition (1.6) fails, as well as functionals with polynomial but
yet unbalanced growth conditions, as those satisfying so-called .p; q/-growth con-
ditions, i.e.,

(1.9) j´jp . F.´/ . j´jq C 1; 1 < p < q:

These have been pioneered by Marcellini [44, 45] (see also [5, 7–10, 21, 39, 40, 53,
63] for some special cases). Typical examples in this case are given by anisotropic
variational integrals as

(1.10)
w 7!

Z
�

�
.maxfjDwj � d; 0g/p C

nX
iD1

jDiwjqi � f w

�
dx

1 < p; q1; : : : ; qn; d � 0;

or by perturbations of functionals with standard p-growth conditions as

(1.11) w 7!
Z
�

�jDwjp log.eC jDwj/ � f w�dx; p > 1:

In this paper we treat both the scalar and the vectorial case, i.e., when minimizers
and competitors are scalar-valued and vector-valued maps. We are going to present
the results in the following sections, while here we recall the natural notion of
(local) minimizer adopted in the present setting.

DEFINITION 1.1. A function u 2 W
1;1

loc .�IRN / is a local minimizer of the func-
tional F in (1.1) with f 2 Ln

loc.�IRN / if, for every open subset z� b �, we
have F .uI z�/ < 1 and if F .uI z�/ � F .wI z�/ holds for every competitor
w 2 uCW

1;1
0 . z�IRN /.

In the vectorial case N > 1 in (1.1), by f w we still denote the scalar product
between f and w. In Definition 1.1 we have started with f 2 Ln

loc.�IRN /, so
that by Sobolev embedding it follows thatf u 2 L1

loc.�/, and we conclude with
F.Du/ 2 L1

loc.�/. Notice that, as described above, the Ln-integrability of f is
not a restrictive assumption, as we are interested in the local Lipschitz continuity
of minimizers.

We also remark that, in this setting, the focal point of regularity is the Lipschitz
continuity. Indeed, once minimizers are known to be locally Lipschitz regular,
the equation becomes uniformly elliptic at infinity and classical methods apply;
see [34], provided suitable assumptions are satisfied. The results of this paper
are now presented in the following sections. We first start with special but rele-
vant instances, i.e., functionals with .p; q/-growth conditions and functionals with
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948 L. BECK AND G. MINGIONE

exponential-type growth, in Sections 1.1 and 1.2, respectively. Starting from Sec-
tion 1.3 we shall then present our results in full generality. For the notation used in
this paper we refer to Section 2 below.

1.1 Nonuniform Ellipticity at Polynomial Rates
We start considering functionals with .p; q/-growth as in (1.9), where the inte-

grand F WRn ! R is assumed to be a convex function that is locally C 2-regular in
R
n n f0g and satisfies the growth and ellipticity conditions

(1.12)

8�<
�:
�.j´j2 C �2/p=2 � F.´/ � �.j´j2 C �2/q=2 C�.j´j2 C �2/p=2;

.j´j2 C �2/j@2F.´/j � �.j´j2 C �2/q=2 C�.j´j2 C �2/p=2;

�.j´j2 C �2/.p�2/=2j�j2 � h@2F.´/�; �i;
for every choice of ´; � 2 R

n such that j´j 6D 0 and for exponents 1 � p � q.
Here 0 < � � 1 � � are fixed ellipticity constants and � 2 �0; 1� serves to
distinguish the so-called degenerate case (� D 0) and nondegenerate case (� > 0).
Assumptions (1.12) allow the ellipticity ratio

(1.13) R.´/ WD highest eigenvalue of @2F.´/
lowest eigenvalue of @2F.´/

. .j´j2 C �2/.q�p/=2 C 1

to become unbounded for p < q as j´j ! 1, and, therefore, the Euler-Lagrange
equation of F , that is, � div @F.Du/ D f , is nonuniformly elliptic. Under the
assumptions in (1.12) it is known that sufficient [44, 45] and necessary [28, 45]
conditions for regularity of minimizers are of the type q=p < 1 C o.n/, where
limn!1 o.n/ D 0. This controls the rate of nonuniform ellipticity quantified in
(1.13). Different expressions for o.n/ have been derived. For instance, in [45] the
bound

(1.14)
q

p
< 1C 2

n

is shown to guarantee the local Lipschitz continuity of minimizers of F when
p � 2, � D 1, and f 2 L1. In the uniformly elliptic case p D q the assump-
tions in (1.12) coincide with the classical ones considered by Ladyzhenskaya and
Ural0tseva [37], otherwise they are known as .p; q/-growth conditions and have
been the object of intensive investigation; see, for instance, [2, 9, 10, 18, 19, 26, 38,
44, 45, 48, 58]. As it is natural, conditions as (1.14) also play a role in our setting,
as shown in the following:

THEOREM 1.2 (Scalar .p; q/-estimates). Let u 2 W
1;1

loc .�/ be a local minimizer
of the functional F in (1.1) under assumptions (1.12) with 1 < p � q and n > 2.
Assume

(1.15)
q

p
< 1Cmin

�
2

n
;
4.p � 1/

p.n � 2/

�
and f 2 L.n; 1/.�/:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 949

Then Du is locally bounded in �. Moreover, the local a priori estimate

kDukL1.B=2/ � c

�«
B

F.Du/dx C kf k
p

p�1

L.n;1/.B/

� 1
p

C c

�«
B

F.Du/dx C kf k
p

p�1

L.n;1/.B/

� 2
.nC2/p�nq

C ckf k
4

4.p�1/�.n�2/.q�p/

L.n;1/.B/

(1.16)

holds for a constant c � c.n; p; q; �;�/ whenever B b � is a ball. When p �
2�4=.nC2/ or when f � 0, condition (1.15) can be replaced by condition (1.14).

When applied to special situations, (1.15) reproduces several known and classi-
cal estimates. In the familiar case of the p-Laplacian equations in (1.4), we then
take p D q and � � 0 so that (1.16) reduces to the following optimal local esti-
mate (see, for instance, [34, 36] and related references):

(1.17) kDukL1.B=2/ .

�«
B

jDujp dx
� 1

p

C kf k
1

p�1

L.n;1/.B/
:

In turn, when f � 0, this is the classical L1 � Lp estimate for p-harmonic
functions; see [43]. Again for f � 0 and p � q as in (1.14), estimate (1.16)
reduces to Marcellini’s basic estimate, proved in [45, theorem 3.1] for � D 1 and
q � p � 2 as in (1.14), that is, to

(1.18) kDukL1.B=2/ .

�«
B

F.Du/dx

� 2
.nC2/p�nq

C 1:

In the vector-valued case uW� ! R
N , N > 1, similar results hold provided a

radial structure is assumed on the integrand. This is precisely the statement of the
next

THEOREM 1.3 (Vectorial .p; q/-estimates). Let u 2 W
1;1

loc .�IRN / be a local min-
imizer of the functional F in (1.1) under assumptions (1.12) with 1 < p � q and
n > 2. Assume

(1.19)
q

p
< 1Cmin

�
1

n
;
2.p � 1/

p.n � 2/

�
and f 2 L.n; 1/.�IRN /;

and that there exists a C 1
loc�0;1/ \ C 2

loc.0;1/-regular function zF W �0;1/ !
�0;1/ such that F.´/ D zF .j´j/ for every ´ 2 RN�n: Finally, assume that

(1.20) t 7!
zF 0.t/

.t2 C �2/
p�2
2 t

is nondecreasing:

Then Du is locally bounded in � and an estimate similar to (1.16) holds. More-
over, assuming p � 2 in (1.20) gives that (1.19) can be relaxed to (1.15).
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950 L. BECK AND G. MINGIONE

Theorems 1.2 and 1.3 deal with the case n > 2 (as in [14, 15, 17, 33] in the
uniformly elliptic setting). When n D 2 we consider a condition different from
(1.7) and involving the Orlicz space L2(Log L)�.�/, � � 0. This space is defined
via

(1.21) f 2 L2(Log L)�.�/ W�
Z
�

jf j2 log�.1C jf j/dx <1:

This is an example of Orlicz spaces (see Section 2 below for the relevant def-
initions). Its borderline character is explained by the strict inclusions L2C" �
L2(Log L)� � L2, for every "; � > 0. Moreover, while solutions to 4u 2 L2C"
are C 1-regular, they are in general not locally Lipschitz when 4u 2 L2. A cor-
responding borderline condition is given by 4u 2 L2(Log L)�.�/ for � > 1,
ensuring that Du is locally bounded. We reproduce almost the same borderline
result by requiring � > 2.

THEOREM 1.4. Let u 2 W
1;1

loc .�/ be a local minimizer of the functional in (1.1)
under assumptions (1.12) with 1 < p � q and n D 2. Assume

(1.22) q < 2p and f 2 L2(Log L)�.�/ for some � > 2:

Then Du is locally bounded in �.

Correspondingly, in the vectorial case we have the following:

THEOREM 1.5. Let u 2 W
1;1

loc .�IRN / be a local minimizer of the functional in
(1.1) under assumptions (1.12) with 1 < p � q and n D 2. Assume

(1.23) q <
3p

2
and f 2 L2(Log L)�.�IRN / for some � > 2;

and that there exists a C 1
loc�0;1/ \ C 2

loc.0;1/-regular function zF W �0;1/ !
�0;1/ such that F.´/ D zF .j´j/ for every ´ 2 RN�n: Finally, assume that (1.20)
is in force. Then Du is locally bounded in �. When p � 2, assumption (1.23) can
be relaxed to (1.22).

Remark 1.6. The local Lipschitz regularity results of Theorems 1.2 and 1.4 ex-
tend to minimizers of the functional in (1.10) by taking q � maxfq1; : : : ; qng and
considering the bounds in (1.15)–(1.22). In this case it is sufficient to apply Theo-
rem 1.9 below with T � 2d . Estimates similar to the one in (1.16) hold.

1.2 Nonuniform Ellipticity at Fast Rates
Here we deal with nonpolynomial growth conditions. The simplest example we

have in mind is given by the functional

(1.24) W 1;1.�IRN / 3 w 7!
Z
�

exp.jDwjp/dx; p � 1I

see, for instance, [23, 40, 46]. More generally, with fpkg being a sequence of real
numbers such that p0 > 1, pk > 0 for every k 2 N, we inductively define the
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 951

functions ek W �0;1/! R as

(1.25)

(
ekC1.t/ WD exp�.ek.t//pkC1 �;
e0.t/ WD exp.tp0/:

For every integer k � 0, we consider the variational integral

(1.26) W 1;1.�IRN / 3 w 7! Ek.w/ WD
Z
�

�ek.jDwj/ � f w�dx:

The functional in (1.8) is a special instance of those displayed in (1.26). Because
of the radial structure of the integrand, the following result holds directly in the
vectorial case with uW�! R

N for N � 1.

THEOREM 1.7 (Exponential estimates). Let k � 0 be an integer number and let
u 2 W

1;1
loc .�IRN / be a local minimizer of the functional Ek in (1.26).

� If f 2 L.n; 1/.�IRN / and n > 2, then Du is locally bounded in �.
� When n D 2 the same conclusion holds provided f 2 L2(Log L)�.�IRN /

for some � > 2.
� Finally, when f � 0, the local estimate

(1.27) kDukL1.B=2/ � c e�1k

�«
B

ek.jDuj/dx
�
C c

holds for a constant c � c.n;N; k; p0; : : : ; pk/ and for every ball B b �.

When f � 0, Marcellini [46–48] proved that Du 2 L1loc for the functionals in
(1.26); see [23, 40] for special cases. Instead, the natural growth estimate (1.27)
is new. This is linked to the novel approach to Lipschitz estimates we give here,
which is an alternative to Marcellini’s and Lieberman’s and that provides sharper
estimates than those available in the literature. Moreover, such an approach could
be used to give alternative proofs also in the settings of Lieberman [39–41] and
Simon [56].

To describe the progress, let us specify the estimate (1.27) to the simplest model
case, namely the functional in (1.24). We here get the natural growth estimate

(1.28) kDukp
L1.B=2/

� c log
�«

B

exp.jDujp/dx
�
C c with c � c.n;N; p/

for any local minimizer u 2 W 1;1.�/ of the functional (1.24). This estimate par-
allels the one for p-harmonic functions in (1.17) (when f � 0) in that it exhibits
the correct growth in the right-hand side. On the other hand, the best Lipschitz
estimate for local minimizers of (1.24) available in the literature up to now was
in [46–48] and read as

kDukL1.B=2/ � c"

�«
B

exp.jDujp/dx
�1C"

C c" for every " > 0:

This bound exhibits a loss of an exponential scale with respect to (1.28). The situ-
ation worsens when considering faster growth conditions as in (1.8). The estimates
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952 L. BECK AND G. MINGIONE

in (1.27)–(1.28) are special occurrences of a general result that will be described in
Theorem 1.16 below.

Another interesting class of exponential-type functionals is given by the follow-
ing anisotropic version of the one in (1.24), this time obviously considered in the
scalar case only:

(1.29) w 7! Ea.w/ WD
Z
�

�
exp.A0jDwjp/C

nX
iD1

exp.Ai jDiwjp/ � f w

�
dx;

where here it is p > 1 and 0 < A0 � A1 � � � � � An. When f � 0, this functional
falls in the realm of those in [47, theorem 2.1]. Marcellini’s assumptions, that
is, [47, (11)–(14)], prescribe that

(1.30)
An

A0
< 1C 2

n

holds, and this implies the local Lipschitz continuity of (scalar) minimizers (com-
pare with (1.15)). The same result actually holds when f 2 L.n; 1/.�/ for the
functional (1.29).

THEOREM 1.8. Let u 2 W
1;1

loc .�/ be a local minimizer of the functional Ea in
(1.29). Assume that f 2 L.n; 1/.�/ holds when n > 2 together with condition
(1.30). Then Du is locally bounded in �. When n D 2 the same conclusion holds
provided f 2 L2(Log L)�.�/ holds for some � > 2.

1.3 General Growth Conditions
In the scalar case N D 1, Theorems 1.2–1.8 are relevant special occurrences

of more comprehensive results, namely, Theorems 1.9 and 1.11 below. These are
devised to cover a large number of model problems, and therefore their formula-
tion involves a generous set of different parameters. Ellipticity is described via
two locally bounded and measurable functions g1; g2W .0;1/ ! �0;1/, aimed
at controlling the lower and the upper eigenvalues of @2F.´/, respectively, when
j´j � T and for a fixed number T > 0. They are assumed to be continuous on
�T;1/ and such that g1.T /; g2.T / > 0; their behavior on .0; T /will be essentially
irrelevant in what follows. As a minimal requirement on g1.�/; g2.�/, we assume
that �T;1/ 3 t 7! g2.t/=g1.t/ and t 7! g1.t/t are almost nondecreasing and
nondecreasing, respectively. This means that

(1.31) T � s � t H) g2.s/

g1.s/
� ca

g2.t/

g1.t/
and g1.s/s � g1.t/t ;

holds for some constant ca � 1. Notice that the second condition in (1.31) implies
that g1.t/ > 0 whenever t � T ; in turn, this and the first condition imply that
g2.t/ > 0 for t � T as well. The ellipticity/convexity properties of the integrand
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 953

´ 7! F.´/ can be now described via g1.�/ and g2.�/ as follows:

(1.32)

8���<
���:
´ 7! F.´/ � 0 is convex;
´ 7! F.´/ is C 2-regular on fj´j > T g;
j@2F.´/j � g2.j´j/ for every ´ 2 Rn with j´j > T ;

g1.j´j/j�j2 � h@2F.´/�; �i for every ´; � 2 Rn with j´j > T :

Finally, the necessary match between ellipticity (1.32) and coercivity properties of
´ 7! F.´/ is described via parameters � and �0; namely, we assume that

(1.33)

8�<
�:
�.t2 C �2/�=2 � g1.t/ for t � T for some � > �1;�R j´j
T g1.s/s ds

��0 � F.´/ for j´j � T for some 1
2
< �0 � 1

with  WD �0.� C 2/ > 1;

where � > 0 and 0 � � � 1 are fixed constants. We then have the following:

THEOREM 1.9 (General scalar estimates). Let u 2 W
1;1

loc .�/ be a local minimizer
of the functional in (1.1) under the assumptions (1.31)–(1.33) for n > 2. Assume
f 2 L.n; 1/.�/ and that the inequality

(1.34)
g2.t/

g1.t/
�

cb min
��Z t

T

g1.s/s ds

� 2�0��

n

;

�
1

t1=�1

Z t

T

g1.s/s ds

� 4�1
n�2

�
C c0b

holds for every t � T , for some � with 0 < � � 2�0, and some fixed positive
constants �1 < 1 and cb � 1. Then Du is locally bounded in �. Moreover, for
every ball B b �, the estimateZ kDukL1.B=2/

T

g1.s/s ds

� c

�«
B

F.Du/dx C kf k


�1

Ln.B/
C T  C �

� 1
�0

C c

�«
B

F.Du/dx C kf k


�1

Ln.B/
C T  C �

� 2
�

C ckf k
�C2
�C1

L.n;1/.B/
C ckf k

1
1��1

L.n;1/.B/
C c.T C �/kf kL.n;1/.B/

(1.35)

holds for a constant c depending only on n, �, � , ca, cb , � , �0, and �1, but other-
wise independent of T . Finally, when f � 0, assumption (1.34) can be replaced
by the weaker assumption

(1.36)
g2.t/

g1.t/
� cb

�Z t

T

g1.s/s ds

� 2�0��

n

C cb 8t � T:
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954 L. BECK AND G. MINGIONE

In view of (1.32), the nonuniform ellipticity ratio R.´/ in (1.13) can be esti-
mated as R.´/ . g2.j´j/=g1.j´j/ for j´j > T; and indeed (1.32)–(1.33) reduce to
(1.12) with the choices in (6.1) below; compare with Section 6 below. In this re-
spect, the main assumption (1.34) serves to bound the growth of R.´/ with respect
to j´j. It reduces to (1.15) in the case of Theorem 1.2. Moreover, when f � 0 our
assumptions essentially reduce to those considered by Marcellini [47] in the scalar
case; see also Section 6.6 below. The local estimate (1.35) might seem somehow
involved, but it is actually the most general one in this setting. It provides optimal a
priori estimates when applied to relevant model cases, via the tuning of the param-
eters �0, �1, � , � , and �. Indeed, all the estimates in (1.16), (1.17), (1.18), (1.27),
and (1.28) can be generated as particular cases of (1.35). The parameter �0 de-
scribes the interplay between ellipticity (1.32)4 and coercivity (1.33)2 via (1.34);
in most of the model cases it is �0 D 1. The number T bounds the set where
the functional loses its ellipticity properties. If Du belongs to fj´j > T g, then
regularity is implied by ellipticity (1.32)4. Otherwise, there is nothing to prove.
The shape of (1.35), which trivializes when kDukL1.B=2/ � T , reflects this fact.
For assumptions (1.33) (with the parameter � ), see the comments in Remark 1.12
below.

Remark 1.10. The structure assumptions (1.32)–(1.33) cover the case of uniform
ellipticity (1.3)–(1.5) by taking g1.�/ � g2.�/ � za.�/; see (6.18) below. In partic-
ular, in (1.33) they are � D ia, �0 D 1, and any choice of T > 0 is possible. For
this we refer to Theorem 1.15 below and its proof in Section 6.5.

As anticipated in Theorem 1.4, the corresponding two-dimensional version of
Theorem 1.9 involves the Orlicz space L2(Log L)� and it is contained in the fol-
lowing:

THEOREM 1.11 (General two-dimensional scalar estimates). Let u 2 W
1;1

loc .�/ be
a local minimizer of the functional in (1.1) under the assumptions (1.31)–(1.33) for
n D 2. Assume that f 2 L2(Log L)�.�/ for some � > 2 and that the inequality

(1.37)
g2.t/

g1.t/
� cb

�Z t

T

g1.s/s ds

� 2�0��

2

C cb 8t � T

holds for cb � 1, where � is such that 0 < � � �0. Then Du is locally bounded
in �. Moreover, for every � 2 .0; �/ the estimateZ kDukL1.B=2/

T

g1.s/s ds

� c

�«
B

F.Du/dx C kf k


�1

L2.B/
C T  C �

� 2
���

C ckf k
�C2C�
�C1

L2(Log L)�.B/
C c�.T C �/kf kL2(Log L)�.B/�

1C� C c

(1.38)
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 955

holds for every ball B b � with radius R � 1=2, where c � c.�; �; ca; cb; �;

�0; �; �/ is a constant that is independent of T .

Remark 1.12 (42 and r2 conditions). A main point in this paper is the treatment
of functionals that necessarily satisfy the 42-condition in (1.6), as in (1.8). A
condition that is in some sense dual to the one in (1.6) is the so-calledr2-condition.
This means, by using the notation (1.6), that

(1.39) A.2t/ � .2C "/A.t/ for some " > 0

holds for every t > 0. This implies that the function A.�/ has superlinear growth,
i.e., t z . A.t/, where z D log.2C "/= log 2 > 1. Indeed, condition (1.39) serves
to rule out so-called nearly linear growth and therefore functionals of the type

(1.40) w 7!
Z
�

jDwj log.1C jDwj/dx:

See, for instance, the results in [27, 48] for related regularity results.
The theorems in this paper, while considering the case where (1.6) fails, fall in

the realm of (1.39). Assumptions (1.33) automatically rule out functionals as in
(1.40). On the other hand, problems in approaching nearly linear growth condi-
tions as in (1.40) appear by looking at the bound (1.15), where q=p ! 1 when
p ! 1. Providing a general theory going beyond the validity of (1.39) is an inter-
esting issue that will be treated in forthcoming work. We refer to [3, 4] and related
references for results in this direction.

1.4 The Vectorial Case
In the vectorial case N > 1 it is well-known that minimizers of functionals as

in (1.1) can develop singularities [51, 60]. This already occurs in the uniformly
elliptic setting and when f � 0, and is a genuinely vectorial phenomenon. The
best one can do in the general case is to look for singular sets dimension estimates;
cf. [32]. However, a radial structure F.´/ D zF .j´j/ as in Theorem 1.3 rules out
singularities, as initially noticed by Uhlenbeck [61] (see also Ural0ceva [62]). In
this case the Euler-Lagrange equation of the functional (1.1) reads as

(1.41) � div a.Du/ D f with a.´/ D za.j´j/´; where za.j´j/ WD
zF 0.j´j/
j´j ;

for every ´ 2 RN�n such that j´j 6D 0. This will be essentially the new assumption
we consider in the vectorial case that works beside the usual convexity of F . The
other ones we consider to prove a vectorial version of Theorem 1.9 are, up to a
suitable reformulation, essentially the same, and actually simpler. The ellipticity
properties of the mapping ´ 7! @2F.´/ can still be described via the two control
functions g1.�/; g2.�/ as in (1.31)–(1.32), while, differently from the scalar case,
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956 L. BECK AND G. MINGIONE

(1.33) can be replaced by

(1.42)

8�<
�:
t 7! za.t/

.t2 C �2/
�2
2

is nondecreasing on .0;1/ for some  > 1;

�.t2 C �2/
�2
2 � g1.t/ for t � T ;

where � > 0 and 0 � � � 1 are fixed constants. The number  here plays the role
of � C 2 in (1.33)1, according to (1.33)2, as we are going to take taking �0 D 1 in
comparison to (1.33). The main result in the vectorial case, and actually containing
all the precise assumptions, is the following:

THEOREM 1.13 (General vectorial estimates). Let u 2 W
1;1

loc .�IRN / be a lo-
cal minimizer of the functional in (1.1), and assume that there exists a function
zF W �0;1/! �0;1/ of class C 1

loc�0;1/ \ C 2
loc.0;1/ such that

(1.43) F.´/ D zF .j´j/ 8´ 2 RN�n

holds. Moreover, assume that (1.31)–(1.32) and (1.42) hold together with

(1.44)
g2.t/

g1.t/
�

cb min

(�Z t

T

g1.s/s ds

� 2��
.1C#/n

;

�
1

t1=�1

Z t

T

g1.s/s ds

� 4�1
.1C#/.n�2/

)
C cb;

for every t � T , where � 2 .0; 2�, 1= � �1 < 1, cb � 1. The number # is such
that # D 0 if  � 2 in (1.42) (and, consequently, t 7! zF 0.t/=t is nondecreasing)
and # D 1 otherwise.

� If f 2 L.n; 1/.�IRN / and n > 2, then Du 2 L1loc.�IRN�n/. Moreover,
estimate (1.35) holds with �0 D 1 and � D  � 2; the constant c depends
only on n, N , �, ca, cb ,  , � , �1, and za.1/.

� If f � 0, then the same result holds replacing (1.44) by

(1.45)
g2.t/

g1.t/
� cb

�Z t

T

g1.s/s ds

� 2��
.1C#/n

C cb; 8t � T:

� If n D 2, assume f 2 L2(Log L)�.�IRN / for some � > 2. Then Du 2
L1loc.�IRN�n/ holds replacing (1.44) by (1.45) and estimate (1.38) holds
for every � 2 .0; �/, where � � 1 and � D  �2. The constant c here also
depends on �.

Notice that the convexity of F coming from (1.32)1 implies that za.�/ is non-
negative (see (5.4) below). Assumption (1.42) is natural and is satisfied by the
p-Laplacian system (1.4) by taking za.t/ � tp�2,  � p > 1 and � � 0; it holds
for  D ia C 2 > 1 for the case of (1.2) and (1.5) when (1.3) is assumed. In the
setting of .p; q/-growth conditions from Section 1.1, the fact that t 7! zF 0.t/=t is
nondecreasing typically corresponds to the case p � 2. When no information is
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 957

available on t 7! zF 0.t/=t and f � 0 and/or  < 2, the required bound becomes
q=p < 1 C 1=n, and it coincides with the known bounds when p < 2; see [26].
In comparison with Theorem 1.9, here we are taking 1= � �1 < 1 rather than
�1 2 .0; 1/; this is by no means restrictive as in this setting we try to take �1 as
close to 1 as possible since this is going to weaken the main assumption (1.44).
When dealing with functionals with fast growth, in most of the cases it happens
that t 7! za0.t/ and  � 2. In that case we often have that g1.t/ � za.t/ and (1.42)2
follows from (1.42)1 with � � za.T /=.T 2 C �2/.�2/=2; see (5.6) below. See also
Section 6 below for several examples in this respect.

Remark 1.14. When f � 0, comparing Theorems 1.9 and 1.13 and those of Mar-
cellini [45–48] reveals that the main model examples considered in our and Mar-
cellini’s papers can be covered by both theories. However, there are some differ-
ences and a somewhat detailed comparison is attempted in Section 6.6 below.

1.5 Uniform Ellipticity Revisited
Theorem 1.13 also yields new results in the standard uniformly elliptic case

(1.2), when looking at vectorial problems.

THEOREM 1.15 (Natural growth estimates with 42-condition). Let u 2 W
1;1

loc .�I
R
N / be a local minimizer of the functional in (1.5). Assume that the uniformly

ellipticity condition (1.3) holds and that f 2 L.n; 1/.�IRN / for n > 2. Then
Du 2 L1loc.�IRN�n/ and the estimate

(1.46) kDukL1.B=2/ � cA�1
�«

B

A.jDuj/dx
�
C cA�1

�
kf k

iaC2
iaC1

L.n;1/.B/

�
C c2

holds for every ball B b �, for constants c; c2 depending only on n, N , ia, sa, and
za.1/. When n D 2 a similar result holds assuming that f 2 L2(Log L)�.�IRN /

for some � > 2. In the case it is

(1.47) i2 WD lim inf
t!0

za.t/
t ia

> 0;

then we can take c2 D 0 in (1.46) and the constant c depends also on i2.

Theorem 1.15 and estimate (1.46) extend the results of Baroni [1] and Lieber-
man [39] to the nonhomogeneous vector-valued case and also provides a local ana-
logue to the global bounds of Cianchi and Maz0ya [15, 17]. Estimate (1.46) is the
best possible estimate in this setting. Testing it in the p-Laplacian case (1.4), where
za.t/ � tp�2, ia D sa D p� 2, and i2 D 1, we get back the optimal local estimate
in (1.17). The situation in which A.�/ does not satisfy the 42-condition (1.6) is
more delicate, and it is treated in the next section.

 10970312, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21880 by U

niversity D
egli Studi D

i Parm
a Settore B

iblioteche, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



958 L. BECK AND G. MINGIONE

1.6 Natural Estimates When the�2-Condition Fails
Optimal growth estimates of the form in (1.27), (1.28), and (1.46) are natural

when considering general functionals defined in Orlicz spaces as

(1.48) w 7!
Z
�

A.jDwj/dx;

when, typically, A.�/ is an N -function (see Section 2 and (2.4) below for the def-
inition). Such estimates are known to hold in several cases, but only provided the
so-called �2-condition (1.6) is satisfied (this is not the case for functionals as in
(1.24)–(1.26)). Their validity has remained a delicate open question otherwise.
The next theorem fills this gap in the general case and, in fact, it implies estimates
(1.27) and (1.28) when applied to the functionals in (1.26).

THEOREM 1.16 (Natural growth estimates when the 42-condition fails). Let u 2
W

1;1
loc .�IRN / be a local minimizer of the functional in (1.48) such that the function

AW �0;1/! �0;1/ is C 1
loc�0;1/\C 2

loc.0;1/-regular. Assume that for some T >

0 the integrand F.´/ WD A.j´j/ satisfies (1.31)–(1.32) and (1.42) (with za.t/ D
A0.t/=t ), and that (1.45) holds, where # D 0 if  � 2 and # D 1 otherwise.
Moreover, assume that

(1.49) A.t/ � �

�Z t

T

g1.s/s ds

�
C� 8t � T

holds for some � � 1 and that there exist three constants �; c� ; d� > 1 such that

(1.50) A�1.t�/ � c�A
�1.t/C d� holds for every t � A.T /:

Then, for every ball B b �, the local a priori estimate

(1.51) kDukL1.B=2/ � cA�1
�«

B

A.jDuj/dx
�
C cA�1.c/

holds for a constant c depending only on n, N , �, �, � , c� , d� , ca, cb ,  , � , T ,
and A0.1/, with the convention that A�1.t/ D T for every t 2 �0; A.T /�.

Comments are in order. Condition (1.49) says that the problem is well-posed
in the Orlicz space generated by functions that are asymptotically equivalent to
t 7! R t

g1.s/s ds; see Section 2 below for the precise definitions. Condition
(1.50) exactly relates to the typical situation where the �2-condition on A.�/ fails.
As a matter of fact, assumption (1.50) is satisfied by integrands with fast growth
conditions but fails when tested on integrands with polynomial growth. From the
assumptions it follows that t 7! A.t/ is increasing, and therefore invertible, on
�T;1/; the inverse A�1.�/ is defined only on �A.T /;1/. For this reason, estimate
(1.51) makes sense only under the specification that A�1.t/ D T on �0; A.T /�.
Notice that in Theorem 1.16 we are not necessarily considering a function A.�/
that is an N -function in the sense of Section 2 below.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 959

1.7 Existence and Regularity Results
Our methods can be used to prove existence and regularity results for Dirichlet

problems, not necessarily arising from integral functionals, of the type

(1.52)

(
� div a.Du/ D f in �;

u � u0 on @�;
u0 2 W 1;p.q�1/

p�1 .�/:

Here we additionally assume that � is a bounded and Lipschitz regular domain
of Rn. The vector field aWRn 7! R

n is assumed to be C 1-regular outside the
origin and such that

(1.53)

8��<
��:
ja.´/j C .j´j2 C �2/1=2j@a.´/j
� �.j´j2 C �2/.q�1/=2 C�.j´j2 C �2/.p�1/=2;

�.j´j2 C �2/.p�2/=2j�j2 � h@a.´/�; �i;
hold, as in (1.12), for every choice of ´; � 2 Rn with ´ 6D 0, exponents 1 � p � q,
ellipticity constants 0 < � � 1 � L, and 0 � � � 1. Marcellini’s by-now classical
result [45] states the existence of locally Lipschitz-continuous solutions to (1.53)
assuming that f 2 L1.�/. This can be upgraded to the following optimal version:

THEOREM 1.17 (Existence of locally Lipschitz solutions). With 1 < p � q, n > 2,
and under assumptions (1.19) and (1.53), there exists a solution u 2 W

1;1
loc .�/ \

W 1;p.�/ to the Dirichlet problem in (1.52). Moreover, the a priori estimate

kDukL1.B=2/ � c
D

jBj C c

�
D

jBj
� p

p�.q�p/n

C ckf k
1

p�1

L.n;1/.B/

C ckf k
2

2.p�1/�.q�p/.n�2/

L.n;1/.B/

(1.54)

holds for every ball B b �, where c � c.n; p; q; �;�/, and

(1.55) Dp WD
Z
�

.jDu0j2 C 1/
p.q�1/
2.p�1/ dx C cj�jkf kp=.p�1/

Ln.�/
:

When n D 2 and f 2 L2(Log L)�.�/ holds for some � > 2, again Du is locally
bounded in � and an estimate similar to (1.54) holds upon replacing kf kL.n;1/.B/
by kf kL2(Log L)�.B/.

We notice that in the case when p D q and � coincides with a ball B , estimate
(1.54) gives

kDukp
L1.B=2/

.

«
B

.jDu0jp C 1/dx C kf kp=.p�1/
L.n;1/.B/

;

which is the usual a priori local estimate for the Dirichlet problems; see [36] and
compare with (1.17).
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960 L. BECK AND G. MINGIONE

1.8 Technical Novelties
The approach of this paper departs from previous ones on nonuniformly elliptic

equations, as it is based on potential theoretic-type arguments, and it is new already
in the homogeneous case f � 0. To briefly explain it, we consider Theorem 1.9.
The main new idea is that, by taking the so-called second variation equation, the
Euler-Lagrange equation of the functional in (1.1) can be treated as if it were uni-
formly elliptic. This is achieved by controlling the ellipticity ratio R.Du/ in (1.13)
by g2.M/=g1.M/, where M � kDukL1 ; see Section 4.2 below. To such an
equation we apply a delicate iteration argument coming from nonlinear potential
theory [31, 52], and that in turn finds its origins in the insights of De Giorgi [22].
This is in Lemma 3.1 below.

Notice that such potential theoretic-type arguments work well when applied
to uniformly elliptic equations; that’s why we perform the uniformization proce-
dure mentioned above. The drawback is that all the constants involved depend on
g2.M/=g1.M/. For this reason, Lemma 3.1 is devised to carefully track the quan-
titative dependence of the final constants on the various parameters involved in the
iteration. This subtle dependence surprisingly plays a crucial role as it allows us to
control the way energy estimates are affected by the quantity g2.M/=g1.M/. This
leads to the final estimate (1.16) via an iteration argument; see Lemma 4.8. The
delicate interplay between Lemmas 3.1 and 4.8 eventually gives back the bounds
(1.14) and (1.30) known for the case f � 0. As for the right-hand side f , we
notice that Lemma 3.1 leads us to consider a nonlinear potential of f , that is, the
one defined in (2.2). As explained in Section 2 below, this potential plays a role
similar to that of the standard Riesz potential [36]. Accordingly, it easily allows
us to exploit the assumed regularity properties of f and derive the corresponding
implied estimates on Du.

It is worth emphasizing that the above line of proof only works at the level of
a priori estimates, that is, by assuming that Du is locally bounded and differen-
tiable. To eventually overcome this point and commute a priori estimates in real
regularity results, the whole procedure must be embedded in a delicate approxima-
tion scheme; see Section 4.1 below. This is aimed at approximating the original
functional with more regular ones satisfying growth and ellipticity conditions com-
patible with those in (1.32) and (1.34). A different type of approximation is needed
when dealing with vector-valued minimizers in Theorem 1.13. In this case the ap-
proximating functionals exhibit a polynomial behavior at infinity, and some less-
known regularity properties of minimizers of functionals with polynomial growth
must be employed. These are listed and partly proved in the final Section 8.

2 Lorentz Spaces, Orlicz Spaces, and Nonlinear Potentials; Notation
Let us start with some notation. In this paper we denote by � � R

n an open
domain; additional restrictions can be considered. Since our estimates will be local,
we shall always assume, w.l.o.g., that � is also bounded. We denote by c a general
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 961

constant larger than 1. Different occurrences from line to line will be still denoted
by c. Special occurrences will be denoted by c1, c2, or zc or something similar.
Important dependencies on parameters will be as usual emphasized by putting them
in parentheses. We shall denote by N the set of positive integers and set N0 WD
N [ f0g. As usual, we denote by Br.x0/ WD fx 2 R

n W jx � x0j < rg the open
ball with center x0 and radius r > 0; when it is clear from the context, we omit
denoting the center, i.e., Br � Br.x0/. When not otherwise stated, different balls
in the same context will share the same center. We shall also denote B1 D B1.0/

if not differently specified. Finally, with B being a given ball with radius r and �

being a positive number, we denote by �B the concentric ball with radius � r and
by B=� � .1=�/B . In denoting several function spaces like Lp.�/ and W 1;p.�/,
we shall denote the vector-valued version by Lp.�IRk/ and W 1;p.�IRk/ in the
case the maps considered take values in Rk , k 2 N. We shall often abbreviate
Lp.�IRk/ � Lp.�/ and W 1;p.�IRk/ � W 1;p.�/. With B � R

n being
a measurable subset with bounded positive measure 0 < jBj < 1, and with
gWB ! R

k , k � 1, being a measurable map, we shall denote the integral average
of g over B by

.g/B �
«

B
g.x/dx WD 1

jBj
Z

B
g.x/dx:

For the rest of the paper we shall keep the following notation:

(2.1) H.t/ WD .t2 C �2/1=2; H".t/ WD �t2 C .�C "/2�1=2;

for t > 0, � 2 �0; 1�, " 2 .0; 1�. The role of the constant � will be clear from the
context; it will usually be the number introduced in (1.12), (1.33), etc.

We next fix some notation that will be especially useful in the vectorial case.
We denote by fe�gN�D1 and feignjD1 standard bases for RN and Rn, respectively;
we shall always assume n � 2 and N � 1. The general second-order tensor
of size .N; n/ as � D ��i e

� 
 ei is identified with an element of RN�n (here
we use the standard convention on the sum of repeated indices). The Frobenius
product of second-order tensors ´ and � is defined as h´; �i D ´�i �

�
i ; it follows

that h�; �i D j�j2, and in the rest of the paper we shall use the classical Frobenius
norm for matrices and tensors. We shall sometimes use the symbol h � ; � i also to
denote the scalar product in Rn. The gradient of a map u D u�e� is thus defined
as Du D @xiu

�e� 
 ei ; and the divergence of a tensor � D ��i e
� 
 ei as div � D

@xi �
�
i e

�. When dealing with the integrands of the type F WRN�n ! �0;1/ of
the type considered in Section 1, we interpret the second differential of @2F.´/
as a fourth-order tensor defined as @2F.´/ D @

´
�

j

@´�
i
F.´/.e� 
 ei /
 .e� 
 ej /

whenever ´ 2 RN�n.
We now describe a relevant nonlinear theoretic potential quantity that will play a

crucial role in our estimates, with related function spaces. The modified nonlinear
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962 L. BECK AND G. MINGIONE

Riesz potential of a map g 2 L2
loc.R

nIRk/ is defined as

(2.2) Pg1 .x0; R/ WD
Z R

0

�
%2
«
B%.x0/

jgj2 dx
�1=2d%

%

for x0 2 R
n and R > 0. The potential Pg1 . � ; R/ plays in the present context the

role of the (truncated) Riesz potential, which is instead defined by

Ig1 .x0; R/ WD
Z R

0

jgj.B%.x0//
%n�1

d%

%
D
Z R

0

1

%n

Z
B%.x0/

jgjdx d%;

provided the argument function g is at least locally L1-regular. This can be easily
seen by using the Hölder inequality to estimate

Ig1 .x0; R/ D jB1j
Z R

0

«
B%.x0/

jgjdx d% � jB1jPg1 .x0; R/:

The potential in (2.2) is actually a nonlinear one. This is the right one to use
when dealing with a large class of problems, from degenerate elliptic and parabolic
ones to fully nonlinear equations; see, for instance, [20,33] and references therein.
The potential Pg1 defines an operator whose behavior is well-known in various
function spaces. Here we concentrate on the Lorentz space L.n; 1/ defined via
(1.7) when n > 2, and, in the two-dimensional case n D 2, on the Orlicz space
L2(Log L)�, which is defined via condition (1.21). Specifically, with BR.x0/ �
R
n we have that Pg1 .x0; R/ � c.n/kgkL.n;1/.BR.x0// holds (see, for instance, [33,

lemma 2.3 and lemma 2.4] for a proof of this fact), so that

(2.3)
Pg1 . � ; R/


L1.BR/

� ckgkL.n;1/.B2R/ holds for every ball BR � R
n:

For the corresponding estimates in L2(Log L)� we need a few more prelimi-
naries. We recall that AW �0;1/ ! �0;1/ is called an N -function provided it is
convex, and it is such that

(2.4) A.0/ D 0; lim
t!0

A.t/

t
D 0; and lim

t!1
A.t/

t
D1:

In this case its convex conjugate defined by zA.t/ WD supfst � A.s/ W s � 0g, for
every t � 0; is again an N -function. With � � R

n, the Orlicz space LA.�/ is
defined as the vector space of measurable mapswW�! R

k such that the following
Luxemburg norm is finite:

(2.5) kwkLA.�/ WD inf
�
� > 0 W

Z
�

A

� jwj
�

�
dx � 1

�
:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 963

This is a Banach space. We refer to [55] for more on such spaces. The main
information we need is the following:

(2.6)

����
Z
�

wv dx

���� � 2kwkLA.�/kvkL zA.�/

and k1BkL zA.�/
D 1

. zA/�1.jBj�1/
;

for every ball B � �. The first relation appearing in the above display is the
so-called Hölder inequality in Orlicz spaces. The second relation in (2.6) is a
straightforward consequence of the definition in (2.5). Obviously, to determine
the space LA, only the asymptotic behavior of A.�/ matters. We are here interested
in the special case A.t/ � Ap;�.t/ WD tp log�.1 C t /, for � > 2 and p � 1, with
notation LA � Lp(Log L)�. It is now straightforward to show that

(2.7) kjgj2kL(Log L)�.�/ � 2�kgk2L2(Log L)�.�/:

Indeed, let us take �s > 0 such that
R
�.jgj2=�2s / log�.1C jgj=�s/dx � 1. Then,

with K � 1, we haveZ
�

� jgj
K�s

�2
log�

�
1C

� jgj
K�s

�2�
dx �

Z
�

� jgj
K�s

�2
log�

�
1C jgj

K�s

�2
dx

� 2�

K2

Z
�

jgj2
�2s

log�
�
1C jgj

�s

�
dx � 1;

provided we take K2 D 2�. This shows (2.7).
Concerning zA1;�.t/, it is easy to see from the definition of the convex conjugate

that it is for all t � 0 nonnegative and that the supremum is in fact attained for
some s � exp.t1=�/ (otherwise the term st �A1;�.s/ is negative); hence we obtain
zA1;�.t/ � t exp.t1=�/ � exp..1 C �/t1=�/ DW A�.t/ for every t � 0, and thus

also A �1
� .t/ � zA�11;�.t/ holds for all t � 1. Therefore, whenever B% � � � R

2 is
a ball with radius % < 1=

p
� , we conclude via the second relation in (2.6) that

(2.8) k1B%kL zA1;� .�/
D 1

. zA1;�/�1.jB%j�1/
� 1

.A�/�1.jB%j�1/
� c

log�.1=%/

for a constant c D c.�/. To proceed, we estimate�Z
B%

jgj2 dx
�1=2 (2.6)�

p
2.kjgj2kL(Log L)�.B%/k1B%kL zA1;� .�/

/1=2

(2.7)� c.kgk2L2(Log L)�.B%/
k1B%kL zA1;� .�/

/1=2

(2.8)�
ckgkL2(Log L)�.B%/

log�=2.1=%/
:
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964 L. BECK AND G. MINGIONE

Let us now consider a map g 2 L2
loc.R

2IRk/, where we assume that g 2
L2(Log L)�.B/ for every ball B � R

2. For an arbitrary ball BR.x0/ � R
2 with

R < 1=
p
� , we then find

Pg1 .x0; R/ D
Z R

0

1p
�

�Z
B%.x0/

jgj2 dx
�1=2d%

%

� ckgkL2(Log L)�.BR.x0//

Z R

0

d%

% log�=2.1=%/
;

where the integral on the right-hand side blows up when � & 2. Therefore, we
finally conclude with the following inequality that holds for all � > 2 whenever
BR � R

2 is a ball with radius R � 1=2:

(2.9) Pg1 .x0; R/ � c.�/kgkL2(Log L)�.B2R/ for every x0 2 BR and R � 1
2
;

where c.�/!1 when � & 2.

3 A Nonlinear Iteration
Here we shall exploit in detail some nonlinear potential theoretic arguments de-

veloped by Kilpeläinen and Malý [31], who originally obtained pointwise potential
estimates building on the fundamental iteration scheme of De Giorgi [22]. The ver-
sion proposed here is instead closer to the one given in [33]. For related estimates
and approaches, we also refer to [34, 35, 52]. The main emphasis here is on the
precise dependence of the various constants involved. This will eventually lead to
recovering the precise bounds appearing in Theorems 1.2 and 1.9 (see Section 4.2
below).

LEMMA 3.1. Let BR0
.x0/ � R

n, n � 2, � 2 .0; 1=2/ and let v 2 W 1;2.BR0
.x0//

be nonnegative, and f 2 L2.Rn/; assume that there exist positive constants
M1;M2; cm with M1 � 1 and a number k0 � 0 such that for all k � k0 and
every ball Br.x0/ � BR0

.x0/ the inequalityZ
Br=2.x0/

jD.v � k/Cj2 dx �
cmM

2
1

r2

Z
Br .x0/

.v � k/2C dx

C cmM
2
2

Z
Br .x0/

jf j2 dx
(3.1)

holds. Here we have denoted .v�k/C WD maxfv�k; 0g. If x0 is a Lebesgue point
of v, then

v.x0/ � k0 C cM
1Cmaxf�;n�22 g
1

�«
BR0 .x0/

.v � k0/
2
C dx

�1=2

C cM
maxf�;n�22 g
1 M2Pf1 .x0; 2R0/

(3.2)

holds for a constant c, which depends only on n and cm when n > 2 and on � and
cm when n D 2.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 965

PROOF. We start by defining a strictly decreasing sequence of radii frj gj2N0
,

via setting rj WD 2�jR0 for every nonnegative integer j (so that r0 D R0), and a
sequence of numbers fWj gj2N0

, via

Wj WD rj

�«
Brj .x0/

jf j2 dx
�1=2

for j 2 N0. Next we recursively define a nondecreasing sequence of numbers
fkj gj2N0

, with k0 as in the statement, and a sequence of numbers fVj gj2N0
in the

following way: for each j 2 N we set

(3.3) Vj WD
�«

Brj .x0/

.v � kj /
2
C dx

�1=2

and choose the successor kjC1 such that

(3.4) kjC1 D kj C Vj

�

for some � > 0 to be determined later. By the above definition we have VjC1 �
2n=2Vj , and therefore

(3.5) kjC2 � kjC1 � 2
n
2 .kjC1 � kj /

for each j 2 N0. We now recall the classical Sobolev inequality and for this, with
� 2 .0; 1=2/ as in the statement, we set

(3.6) 1 < � WD
(

n
n�2 if n > 2;

1C 1
�

if n D 2:

Also using (3.1), we write�«
BrjC1 .x0/

.v � kj /
2�
C dx

� 1
�

� cr2jC1
«
BrjC1 .x0/

jD.v � kj /Cj2 dx C c

«
BrjC1 .x0/

.v � kj /
2
C dx

� cM 2
1

«
Brj .x0/

.v � kj /
2
C dx C cM 2

2 r
2
j

«
Brj .x0/

jf j2 dx

for a constant c depending only on � and cm. On the other hand, we have in view
of (3.3)

.kjC1 � kj /
��1
� .VjC1/

1
� D .kjC1 � kj /

��1
�

�«
BrjC1 .x0/

.v � kjC1/2C dx

� 1
2�

�
�«

BrjC1 .x0/

.v � kj /
2.��1/.v � kjC1/2C dx

� 1
2�

�
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966 L. BECK AND G. MINGIONE

�
�«

BrjC1 .x0/

.v � kj /
2�
C dx

� 1
2�

:

Combining the estimates in the last two displays yields

(3.7) .kjC1 � kj /
��1
� .VjC1/

1
� � c0.�; cm/.M1Vj CM2Wj /:

This is precisely the starting point of the iteration scheme, for which the ultimate
goal is to show that in the limit j ! 1 the sequence fVj gj2N0

vanishes, while
the sequence fkj gj2N0

remains bounded. This in turn will imply boundedness of v
with a corresponding estimate (provided that x0 is a Lebesgue point). Concerning
a suitable choice of � > 0 from (3.4) (which shall be independent of the index j ),
we first assume that

(3.8) kjC2 � kjC1 � 1

2
.kjC1 � kj /

holds. By definition of the sequence fkj gj2N , we then deduce from (3.4) and (3.7)
the estimate

(3.9)

2�
1
� �

1
� .kjC1 � kj / � �

1
� .kjC1 � kj /

��1
� .kjC2 � kjC1/

1
�

� .kjC1 � kj /
��1
� .VjC1/

1
�

� c0M1�.kjC1 � kj /C c0M2Wj :

Therefore, if

2�
1
� �

1
� D 2c0M1�; i.e., � WD 2�

�C1
��1 c

� �
��1

0 M
� �
��1

1 ;

then (3.9) reduces with (3.5) to

kjC2 � kjC1 � 2
n
2 .kjC1 � kj / � c1M

1
��1

1 M2Wj

for some constant c1 still depending only on � and cm. This last inequality holds
provided (3.8) is satisfied. Consequently, we may work in any case with the in-
equality

kjC2 � kjC1 � 1

2
.kjC1 � kj /C c1M

1
��1

1 M2Wj

for all j 2 N0. Summing up the above inequalities, we infer first

1X
jD0

.kjC2 � kjC1/ � k1 � k0 C 2c1M
1

��1

1 M2

1X
jD0

Wj
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 967

and then, telescoping, we get

(3.10)

lim
j!1

kj D
1X
jD0

.kjC2 � kjC1/C k1

� k0 C 2.k1 � k0/C 2c1M
1

��1

1 M2

1X
jD0

Wj

� k0 C 2

�
V0 C 2c1M

1
��1

1 M2

1X
jD0

Wj

� k0 C c2M
�

��1

1 V0 C c2M
1

��1

1 M2

1X
jD0

Wj

with c2 depending only on � and cm.
Next, we estimate the latter sum (setting r�1 WD 2R0) in terms of the potential

of f via

(3.11)

1X
jD0

Wj D
1X
jD0

rj

�«
Brj .x0/

jf j2 dx
�1=2

D
1X
jD0

Z rj�1

rj

d%

�«
Brj .x0/

jf j2 dx
�1=2

� 2
n
2

1X
jD0

Z rj�1

rj

�
%2
«
B%.x0/

jf j2 dx
�1=2 d%

%

� 2
n
2

Z 2R0

0

�
%2
«
B%.x0/

jf j2 dx
�1=2 d%

%
D 2

n
2 Pf1 .x0; 2R0/:

If Pf1 .x0; 2R0/ is finite (otherwise, there is nothing to prove), then fkj gj2N0
is a

nondecreasing, bounded sequence and consequently converges. In turn, by (3.4)
this allows us to conclude the convergence Vj & 0 as j ! 1. Then, since x0 is
a Lebesgue point for v, we have

v.x0/ D lim
j!1

«
Brj .x0/

v dx � lim sup
j!1

 «
Brj .x0/

v2 dx

!1=2

� lim
j!1

Vj C lim
j!1

kj

D lim
j!1

kj
.3.10/� k0 C c2M

�
��1

1 V0 C c2M
1

��1

1 M2

1X
jD0

Wj :
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968 L. BECK AND G. MINGIONE

In order to estimate the right-hand side in the last display we use the definition of
V0 in (3.3) and (3.11), thereby concluding the proof of the lemma by recalling the
definition of � in (3.6). �

4 Scalar Estimates and Theorems 1.9 and 1.11
Here we give the proofs of Theorems 1.9 and 1.11; therefore, in Section 4 we

shall consider the corresponding assumptions to be in force. The proof goes in
several steps, which are described in Sections 4.1–4.4. We notice that some of the
forthcoming lemmas also hold in the two-dimensional case n D 2, and this will
be emphasized in the corresponding statements. In the same way, we shall keep a
level of generality that is larger than the one needed in the proof of Theorem 1.9;
this will be useful when proving Theorem 1.13 later on. Upon setting f � 0

outside �, in the following we can assume that f 2 L.n; 1/.Rn/; in particular, we
have f 2 L2.Rn/.

4.1 Approximation Tools Without the�2-Condition
In this section we build up a family of integrands fF"g aimed at approximating

the original integrand ´ 7! F.´/ considered in (1.1) with globally C 2-regular and
strictly convex integrands. This means we are aiming at correcting the potential
lack of strict convexity and smoothness of ´ 7! F.´/ on the set fj´j � T g ex-
pressed in condition (1.32)3. The first idea would be to take a smoothed version
F" of F via convolution with "-mollifiers. However, this strategy might not work
immediately since it would not be completely clear how to get uniform estimates of
the type in (1.32) on the approximation functionals. Therefore, we take a different
path and modify ´ 7! F.´/ essentially only on the set fj´j � T g. The details are
as follows.

We start by choosing a number ST such that

(4.1) T < ST � T Cminf1; T g;
where T is the number fixed in (1.31)–(1.33). We then consider a family of stan-
dard, nonnegative, smooth, and radially symmetric mollifiers f�"g" so that

(4.2) � 2 C1
0 .B1/; k�kL1 D 1; �".x/ WD "�n�.x="/;

while in the following we shall always consider numbers " that satisfy

(4.3) 0 < " <
minfg2.T /T; ST � T g

8
p
n.1C ca/

DW x"0 < 1:

Here the constant ca is the one appearing in (1.31). We remark that the right-
hand side in the above display is indeed positive, which comes from the fact that
g1.T /; g2.T / > 0, which is one of the initial assumptions on g1.�/; g2.�/. Fur-
thermore, we take a cutoff function � 2 C1

0 .�0; xT /I �0; 1�/ such that � � 1 on
�0; .T C ST /=2� and j�0j2 C j�00j � 400=.ST � T /2.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 969

Now, we set up the construction of the C 2-regular and strictly convex inte-
grands. To this end, we define the new integrand

L.´/ � zL.j´j/ WD
q
j´j2 C 1 � 1;

which has linear growth at infinity and is strictly convex. Moreover, it satisfies

(4.4)
j�j2

.j´j2 C 1/3=2
� h@2L.´/�; �i and j@2L.´/j � 2

p
np

j´j2 C 1

for every choice of ´; � 2 Rn. Finally, for every " as in (4.3), we define

(4.5) F".´/ WD �.j´j/ xF".´/C �1 � �.j´j/�F .´/C "L.´/

where

(4.6) xF".´/ WD .F � �"/.´/ D
Z
B1

F.´C "y/�.y/dy

is the standard mollification of ´ 7! F.´/ via �". Hence, each approximated
integrand F" is a regularized version of the original integrand F in BT (where it is
only known to be convex and thus locally Lipschitz-continuous), and it coincides
with F C "L.�/ outside of BST , which ensures a quantified strict convexity also
in BT . Since by (1.32) we also have that ´ 7! F.´/ is locally C 2-regular outside
BT , we therefore have the following:

LEMMA 4.1. Let F WRn ! R be the integrand of Theorem 1.9 with n � 2, and let
fF"g"2.0;x"0/ be the family of integrands introduced in (4.5). The following proper-
ties hold:

(4.7)

8���<
���:
F" is strictly convex and globally C 2-regular;
F" � F C "L on fj´j � ST g ;
F" ! F uniformly on compact sets of Rn;

@F" ! @F uniformly in the annulus .T C ST /=2 � j´j � ST :
Notice that all the properties in (4.7) are a straightforward consequence of the

definitions except for the convexity of F". This will be proved in Lemma 4.2 below,
together with a quantitative estimate. For every " 2 �0; 1� we further define

(4.8) g2;".t/ WD g2.t/C 2
p
n"p

t2 C 1
for every t > 0:

We now want to derive the growth and ellipticity conditions satisfied by the regu-
larized integrands F" in terms of the functions g1.�/; g2;".�/, especially in compar-
ison to those satisfied by the original integrand F , that is, to (1.32). We have the
following:

LEMMA 4.2. Let F WRn ! R be the integrand of Theorem 1.9 with n � 2, and
let fF"g"�x"0 be the family of integrands introduced in (4.5), where ST is defined in
(4.1) and x"0 is defined in (4.3). There exists a positive number

(4.9) x" � x"�g1.�/; g2.�/; F .�/; @F.�/; T; ST ; ca; �; �; �0� < x"0 < 1
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970 L. BECK AND G. MINGIONE

such that, if 0 < " < x", then the following growth and ellipticity properties hold:

(4.10)

8�<
�:
j@2F".´/j � g2;".j´j/ on fj´j � ST g;
g1.j´j/j�j2 � h@2F".´/�; �i on fj´j � ST g for every � 2 Rn;

"

.1CjST j2/3=2 j�j
2 � h@2F".´/�; �i on fj´j < ST g for every � 2 Rn:

Moreover, the following coercivity properties hold:

F".´/ � F.´/

� ��0

.� C 2/�0

�
.j´j2 C �2/=2 � .T 2 C �2f /=2

�
on fj´j � ST g:(4.11)

Finally, we also have

(4.12) F".´/ � 2F.´/C .ST  C 1/C sup
j�j�2ST

F.�/ for all ´ 2 Rn:

PROOF. We initially consider positive numbers " such that " < x"0, with x"0 as
defined in (4.3); further restrictions will be made later. We start with the proof
of the inequalities (4.10)1;2. In these cases we work on the set fj´j � ST g, where
F" � F C "L. It follows by (1.32)3 and (4.4) that for every " < x"0 it holds that

j@2F".´/j � j@2F.´/j C "j@2L.´/j � g2;".j´j/ provided j´j � ST ;
that is, (4.10)1. Next, via (1.32)4 and (4.4), we have

g1.j´j/j�j2 � h@2F.´/�; �iC"h@2L".´/�; �i D h@2F".´/�; �i provided j´j � ST
for every � 2 R

n, that is, (4.10)2. In order to prove estimate (4.10)3, we first
observe the identity

(4.13)

@2F".´/ D "@2L.´/C �.j´j/@2 xF".´/C �1 � �.j´j/�@2F.´/

C 2�0.j´j/ ´j´j 
 �@ xF".´/ � @F.´/�

C �00.j´j/� xF".´/ � F.´/�
´

j´j 

´

j´j
C �0.j´j/

j´j � xF".´/ � F.´/�

�
In � ´

j´j 

´

j´j
�
;

where In denotes the identity n � n matrix. Recalling that by our assumptions we
have that g1.�/ is continuous on �T;1/ with g1.T / > 0, we then introduce the
positive quantities

Ki;" WD inf
.TCST /=2�j´j�ST

R
B1

g1.j´C "yj/�.y/dy
g1.j´j/

> 0

and
Ki WD inf

.TCST /=2�j´j�ST
g1.j´j/ > 0:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 971

By the continuity of g1.�/, we have Ki;" ! 1 as "! 0. Therefore, we can choose
a positive number x"1 � x"1.g1.�/; g2.�/; T; ST ; ca/ < x"0 such that

(4.14) 0 < " < x"1 H) Ki;" � 1=2:

From the definitions in (4.6) and (1.32)4, it follows that

(4.15)
Z
B1

g1.j´C "yj/�.y/dyj�j2 � h@2 xF".´/�; �i

holds for all ´; � 2 R
n with j´j � .T C ST /=2. Notice that here we have again

employed the fact that " � x"0 � . xT �T /=8, which ensures j´C"yj > T whenever
j´j � .T CST /=2 and jyj � 1 so that we can use (1.32)4 with ´ replaced by ´C "y

for the estimate from below in (4.15). For the same reason we deduce from (1.33)2
that Z

B1

�Z j´C"yj

T

g1.s/s ds

��0
�.y/dy � xF".´/

holds for all ´ 2 R
n with j´j � .T C ST /=2. With these prerequisites, we now

come to the proof of (4.10)3 for all ´; � 2 R
n such that .T C ST /=2 � j´j � ST .

By using again (4.4) and (4.15) in the identity (4.13), and with xT �T � T coming
from (4.1), we find

h@2F".´/�; �i � "h@2L.´/�; �i C �.j´j/h@2 xF".´/�; �i C �1 � �.j´j/�h@2F.´/�; �i

� 105

.ST � T /2

���@ xF".´/ � @F.´/
��C �� xF".´/ � F.´/

���j�j2
� "j�j2
.j´j2 C 1/3=2

C �.j´j/
Z
B1

g1.j´C "yj/�.y/dy j�j2

C �1 � �.j´j/�g1.j´j/j�j2

� 105

.ST � T /2

���@ xF".´/ � @F.´/
��C �� xF".´/ � F.´/

���j�j2
� "j�j2
.j´j2 C 1/3=2

CminfKi;"; 1gKij�j2

� 105

.ST � T /2

���@ xF".´/ � @F.´/
��C �� xF".´/ � F.´/

���j�j2:
With x"1 determined according to (4.14), we can now define another positive

number x"2 � x"1 by choosing it—by means of (4.7) and depending on g1.�/;
g2.�/; F .�/; @F.�/; T; ST ; ca—in such a way that

105

.ST � T /2
sup

.TCST /=2�j´j�ST

���@ xF".´/ � @F.´/
��C �� xF".´/ � F.´/

���

� 1

2
Ki

.4.14/� minfKi;"; 1gKi
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972 L. BECK AND G. MINGIONE

holds for all " 2 .0; x"2�. Therefore, we conclude with

(4.16)
"j�j2

.j´j2 C 1/3=2
� h@2F".´/�; �i for .T C ST /=2 � j´j � ST

and every � 2 R
n. In the remaining case, when j´j � .T C ST /=2, we have

�.j´j/ D 1, and since xF" is C 2-regular and convex, we have

"j�j2
.j´j2 C 1/3=2

4.4� "h@2L.´/�; �i

� h@2F".´/�; �i for j´j � .T C ST /=2;
(4.17)

every � 2 Rn and all " 2 .0; x"0/. Now (4.10)3 follows by taking into account both
inequalities (4.16) and (4.17). Next, the assertion (4.11) follows immediately by
(1.33) (recall that �0 � 1) in combination with F" � F C "L on fj´j � ST g stated
in (4.7)2. Finally, with the help of the definition of L.�/, the last claim (4.12) is
obvious for j´j � ST , while for j´j > ST it follows from (4.7)2 and (4.11) provided
we take " < x" � x".�; �; �0/ � x"2. This finally determines the number x" appearing
in (4.9), and with the specified dependence on the constants in that display (that
also takes into account the dependence on the constants of the previously defined
numbers x"0, x"1, and x"2). The proof of the lemma is complete. �

Remark 4.3. By the properties verified in Lemmas 4.1 and 4.2, and in particular
by (4.7)2 and (4.12), it trivially follows that, for any given w 2 W

1;1
loc .�/, we have

F.Dw/ 2 L1
loc.�/ if and only if F".Dw/ 2 L1

loc.�/.

We conclude this section with yet another technical lemma concerning the prop-
erties of the newly defined function g2;".�/. Specifically, together with the original
function g1.�/, the function g2;".�/ is found to satisfy suitable versions of the as-
sumptions (1.31) and (1.34) from Theorem 1.9.

LEMMA 4.4. For every " 2 .0; x"0/ as in (4.3) the following statements are true:

� The functions �T;1/ 3 t 7! g2;".t/=g1.t/ and t 7! g1.t/t are almost
nondecreasing and nondecreasing, respectively, in the sense that

(4.18) T � s � t H) g2;".s/

g1.s/
� 2ca

g2;".t/

g1.t/
and g1.s/s � g1.t/t:

� If (1.34) is in force for n > 2, then also the following inequality holds for
every choice of t and ST such that t � ST � T :

g2;".t/

g1.t/
� 25cb min

(�Z t

ST
g1.s/s ds

� 2�0��

n

;

�
1

t1=�1

Z t

ST
g1.s/s ds

� 4�1
n�2

)
C 25cb;ST

(4.19)
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 973

where

cb;ST WD cb C cb
�
g1.ST /ST .ST � T /

� 2�0��
n

C cb
�
g1.ST /ST 1�1=�1.ST � T /

� 4�1
n�2 ;

(4.20)

and therefore cb;ST ! cb as ST ! T in the case � < 2�0, and cb;ST ! 2cb
when � D 2�0.

� If (1.36) holds, then the following inequality holds for every choice of t
and ST such that t � ST � T :

(4.21)
g2;".t/

g1.t/
� 4cb

�Z t

ST
g1.s/s ds

� 2�0��

n

C 4cb;ST

where cb;ST D cbCcb�g1.ST /ST .ST �T /�.2�0��/=n and therefore cb;ST ! cb

as ST ! T in the case � < 2�0, and cb;ST ! 2cb when � D 2�0.
� For every t � T it holds that

(4.22)
g1.t/

g2;".t/
� 1:

PROOF. Since t 7! g1.t/t is nondecreasing on �T;1/ by assumption (1.31),
we first observe

T � s H) g1.s/ � g1.T /T

s
� g1.T /Tp

s2 C 1
:

Similarly, since t 7! g2.t/=g1.t/ is almost nondecreasing by again (1.31) in com-
bination with the above inequality, we have

(4.23) T � s H) g2.s/ � 1

ca

g2.T /

g1.T /
g1.s/ � 1

ca

g2.T /Tp
s2 C 1

:

Therefore, for T � s � t , we can estimate

g2;".s/

g1.s/
D

g2.s/C 2
p
n"p

s2C1
g1.s/

.4.3/�
g2.s/C 1

ca

g2.T /Tp
s2C1

g1.s/

.4.23/� 2
g2.s/

g1.s/

.1.31/� 2ca
g2.t/

g1.t/
�
2ca

h
g2.t/C 2

p
n"p

t2C1

i
g1.t/

D 2ca
g2;".t/

g1.t/
;

which proves (4.18). Notice that in fact we have proved that

(4.24) T � s H) g2;".s/

g1.s/
� 2

g2.s/

g1.s/
:

As a consequence, we immediately arrive at the claims (4.19) and (4.21), which fol-
low straightaway from (1.34) and (1.36), respectively, by recalling that t 7! g1.t/t

is nondecreasing. The final claim (4.22) follows directly from the observation that
by (1.32)3;4 with j´j D t � T we have g1.t/=g2.t/ � 1. �
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974 L. BECK AND G. MINGIONE

4.2 A Priori Estimates Using Additional Regularity
Again in the setting and under the assumptions of Theorem 1.9, in this section

we consider the special situation in which we have a regular (weak) solution u 2
W

1;1
loc .B/ of the equation

(4.25) � div a.Du/ D f in B � R
n; f 2 L1.Rn/;

where B is a fixed ball and the vector field aWRn ! R
n is C 1-regular and satisfies

the following assumptions:

(4.26)

8�<
�:
j@a.´/j � g2;".j´j/ on fj´j � ST g;
g1.j´j/j�j2 � h@a.´/�; �i on fj´j � ST g for every � 2 Rn;

@a.´/ is strictly positive definite on fj´j � ST g:
Here the function g1.�/ is from our original setup, g2;".�/ is as defined in (4.8),

and we take " as in (4.3), so that, in particular, this gives us that the results of
Lemma 4.4 are available. Indeed, we shall use (4.18) repeatedly. The number
ST > T is the one initially chosen in (4.1). Before going on, it will be useful to
work, for every T0 � T , with the integral function GT0 W �0;1/! �0;1/ defined
as

(4.27) GT0.t/ WD
Z maxft;T0g

T0

g1.s/s ds so that lim
t!1GT0.t/ D1:

We then have the following:

LEMMA 4.5 (Caccioppoli-type inequality). Let u 2 W
1;1

loc .B/ be a weak solution
to (4.25) under the assumptions (4.26) and n � 2. Moreover, assume that @a.´/ is
symmetric, i.e.,

(4.28) @´iaj .´/ D @
j́
ai .´/ for all ´ 2 Rn and i; j 2 f1; : : : ; ng:

Let Br.x0/ b B be another ball and M be such that kDukL1.Br .x0// � M and
ST �M . Then, for each k � 0, the inequality

(4.29)

Z
Br=2.x0/

��D.GST .jDuj/ � k/C
��2 dx

� c

r2

�
g2;".M/

g1.M/

� Z
Br .x0/

.GST .jDuj/ � k/2C dx

C cM 2

Z
Br .x0/\fGST .jDuj/>kg

jf j2 dx

holds for a constant c depending only on ca, but otherwise independent of M , k,
T , ST , and ".
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 975

PROOF. We first observe that under the assumptions considered, that is (4.26),
we find numbers x�; xL depending only on M , ST , and a.�/ such that

(4.30) j@a.´/j � xL and x�j�j2 � h@a.´/�; �i

provided j´j � ST CM , where

xL D max
j´j�STCM

j@a.´/j and x� WD min
j´j�STCM;�2Rn

h@a.´/�; �i
j�j2 :

Notice that xL is finite since a.�/ is C 1-regular and (4.26)1 is in force. Moreover,
x� > 0 by (4.26)2;3 and the positivity of g1 on fs 2 �ST ; ST CM�g. Since we assume
kDukL1.Br .x0// �M , standard regularity theory applies and it follows that

(4.31)

8�<
�:
u 2 W 2;2.Br.x0//;

u 2 C 1;�.Br.x0// for some � 2 .0; 1/;

a.Du/ 2 W 1;2.Br.x0/IRn/:

For this see, for instance, [26, 34]. We can therefore differentiate the equation
(4.25). This means that, whenever s 2 f1; : : : ; ng, we have that

(4.32)
Z
B

h@a.Du/DDsu;D'idx D �
Z
B

fDs' dx

holds for every choice of ' 2 C1
0 .Br.x0// and for every ' 2 W

1;2
0 .Br.x0// with

compact support in Br.x0/. In the identity (4.32) we now choose ' � 's WD
�2.GST .jDuj/ � k/CDsu, k � 0, where � 2 C1

0 .Br.x0/; �0; 1�/ is a localization
function satisfying 1Br=2.x0/ � � � 1Br .x0/ and jD�j � 4=r . By the regularity
properties of u in (4.31), ' is an admissible test function. Notice that by the very
definition in (4.27) it follows, in particular, that kDukL1.Br .x0// � xT implies that
's D 0. Furthermore, we have

D's D �2.GST .jDuj/ � k/CDDsuC �2DsuD.GST .jDuj/ � k/C
C 2�.GST .jDuj/ � k/CDsuD�;

(4.33)

and whenever GST .jDuj/ > k (which is only possible for jDuj > ST ), then there
holds

D.GST .jDuj/ � k/C D D�GST .jDuj/� D g1.jDuj/
nX

sD1
DsuDDsu

and g1.jDuj/ > 0:
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976 L. BECK AND G. MINGIONE

Using the identities in the last two displays, from (4.32) with ' � 's and summing
over s 2 f1; : : : ; ng, we get

(4.34)

nX
sD1

Z
B

h@a.Du/DDsu;DDsui.GST .jDuj/ � k/C�2 dx

C
Z
B

�g1.jDuj/��1

� h@a.Du/D.GST .jDuj/ � k/C;D.GST .jDuj/ � k/Ci�2 dx

D
nX

sD1

Z
B

h@a.Du/DDsu; .GST .jDuj/ � k/CDDsui�2 dx

C
nX

sD1

Z
B

h@a.Du/DDsu;DsuD.GST .jDuj/ � k/Ci�2 dx

D �2
nX

sD1

Z
B

h@a.Du/DDsu;D�iDsu.GST .jDuj/ � k/C� dx

�
nX

sD1

Z
B

fDs's dx

D �2
Z
B

�g1.jDuj/��1h@a.Du/D.GST .jDuj/ � k/C;D�i

� .GST .jDuj/ � k/C� dx

�
nX

sD1

Z
B

fDs's dx:

By the assumed symmetry on @a in (4.28), we can apply the Cauchy-Schwarz
inequality to estimate the first integral on the right-hand side from above via

(4.35)

� 2

Z
B

�g1.jDuj/��1
@a.Du/D.GST .jDuj/ � k/C;D�
�
.GST .jDuj/ � k/C� dx

� 1

2

Z
B

�g1.jDuj/��1

� 
@a.Du/D.GST .jDuj/ � k/C;D.GST .jDuj/ � k/C
�
�2 dx

C 8

Z
B

�g1.jDuj/��1h@a.Du/D�;D�i.GST .jDuj/ � k/2C dx:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 977

Combining (4.34) and (4.35), reabsorbing terms, and using (4.26) (recall that
.GST .jDuj/ � k/C > 0 implies in particular jDuj > ST ), we then deduceZ

B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
� c

Z
B

�
g2;".jDuj/
g1.jDuj/

�
.GST .jDuj/ � k/2CjD�j2 dx

C 2

nX
sD1

Z
B

jf jjDs'sj dx:

(4.36)

Recalling (4.33), for the latter integral the Young inequality yields

2

nX
sD1

Z
B

jf jjDs'sjdx

� 1

2

Z
B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
C c

Z
B\fGST .jDuj/>kg

.GST .jDuj/ � k/2CjD�j2 dx

C c

Z
B\fGST .jDuj/>kg

jf j2��g1.jDuj/��1.GST .jDuj/ � k/C C jDuj2	�2 dx:
We notice that all the terms in the above display make sense as g1.t/ > 0 for
t � T , and all the terms are evaluated only where jDuj > ST > T . Moreover, we
observe from (4.18)

GST .t/ D
Z t

ST
g1.s/s ds � g1.t/t

Z t

ST
ds D g1.t/t.t � ST / � g1.t/t

2

for all t � ST so thatZ
B\fGST .jDuj/>kg

jf j2��g1.jDuj/��1.GST .jDuj/ � k/C C jDuj2	�2 dx
� 2

Z
B\fGST .jDuj/>kg

jf j2jDuj2�2 dx:

Gathering the content of the last four displays and reabsorbing terms once again,
we findZ

B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
� c

Z
B

�
g2;".jDuj/
g1.jDuj/ C 1

�
.GST .jDuj/ � k/2CjD�j2 dx

C c

Z
B\fGST .jDuj/>kg

jf j2jDuj2�2 dx;
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978 L. BECK AND G. MINGIONE

where c is an absolute constant. By estimating (when jDuj � ST )�
g2;".jDuj/
g1.jDuj/ C 1

�
.4.18/� 2ca

�
g2;".M/

g1.M/

�
C 1

.4.22/� 3ca

�
g2;".M/

g1.M/

�
and taking into account the properties of the localization function �, we conclude
with (4.29), and the proof of the lemma is complete. �

A corresponding version of the Caccioppoli-type inequality, with different con-
stants, holds if the symmetry assumption (4.28) on @a.�/ is dropped.

LEMMA 4.6. Let u 2 W
1;1

loc .B/ be a solution to (4.25) under the assumptions
(4.26), with n � 2. Let Br.x0/ b B be another ball and M be such that
kDukL1.Br .x0// �M and ST �M . Then, for each k � 0, the inequality

(4.37)

Z
Br=2.x0/

��D.GST .jDuj/ � k/C
��2 dx

� c

r2

�
g2;".M/

g1.M/

�2 Z
Br .x0/

.GST .jDuj/ � k/2C dx

C cM 2

Z
Br .x0/\fGST .jDuj/>kg

jf j2 dx

holds for a constant c depending only on ca, but otherwise independent of M;k; T ,
ST , and ".

PROOF. The proof follows that given for Lemma 4.5, with some minor modifi-
cations due to the fact that (4.28) is not in force here. We proceed as for Lemma 4.5
and arrive at (4.34). At this point we directly use assumption (4.26)1 in order to
estimate the right-hand side. The outcome isZ

B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
� 2

Z
B

g2;".jDuj/
g1.jDuj/ jD.GST .jDuj/ � k/Cj.GST .jDuj/ � k/CjD�j� dx

C
nX

sD1

Z
B

jf jjDs'sj dx:

Using the Young inequality and reabsorbing terms yieldsZ
B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
� c

Z
B

�
g2;".jDuj/
g1.jDuj/

�2
.GST .jDuj/ � k/2CjD�j2 dx

C c

nX
sD1

Z
B

jf jjDs'sjdx:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 979

The last integral can be then treated as for Lemma 4.5—see (4.36) and subsequent
estimates—which leads toZ

B

�
g1.jDuj/.GST .jDuj/ � k/CjD2uj2 C ��D.GST .jDuj/ � k/C

��2��2 dx
� c

Z
B

��
g2;".jDuj/
g1.jDuj/

�2
C 1

�
.GST .jDuj/ � k/2CjD�j2 dx

C c

Z
B\fGST .jDuj/>kg

jf j2jDuj2�2 dx:

From this inequality, the assertion (4.37) follows as for Lemma 4.5. �

As a consequence of the Caccioppoli-type inequalities (4.29) and (4.37), we can
now give a first quantitative L1-estimate for the gradient, still formulated in terms
of the intrinsic function GST defined in (4.27).

LEMMA 4.7. Let u 2 W
1;1

loc .B/ be a solution to (4.25) under the assumptions
(4.26), with n � 2. Let � 2 .0; 1=2/ be a number, letBR0

.x0/ b B be another ball,
and M be such that kDukL1.BR0 .x0//

�M and ST �M . Then the inequality

(4.38)

GST .jDu.x0/j/

� k C c

�
g2;".M/

g1.M/

�� 1C#
2

�
.1Cmaxf�;n�22 g/

�
�«

BR0 .x0/

.GST .jDuj/ � k/2C dx

�1=2

C c

�
g2;".M/

g1.M/

�� 1C#
2

�
maxf�;n�22 g

MPf1 .x0; 2R0/

holds for every k � 0, where the constant c depends only on n and ca when n > 2

and on � and ca when n D 2 (but is independent of M , k, T , ST , and "). Then the
number # is such that # D 0 in the case where the symmetry assumptions (4.28)
are in force and # D 1 otherwise.

PROOF. Using (4.29) and (4.37), we are able to verify (3.2) with the obvious
choices v � GST .jDuj/, M1 WD �g2;".M/=g1.M/�.1C#/=2 � 1, and M2 WD M ,
and for a proper constant cm that depends only on ca; at this point the claim (4.38)
follows directly by (3.2) from Lemma 3.1. Notice that Lemma 3.1 applies, as by
(4.31) we have that every point x0 2 B is actually a Lebesgue point for Du and
therefore also for GST .jDuj/. �

We can finally conclude with the first basic a priori estimate. For this, recall the
notation introduced in (2.1).
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980 L. BECK AND G. MINGIONE

LEMMA 4.8. Let u 2 W
1;1

loc .B/ be a solution to (4.25) under the assumptions
(4.26) and (4.28) and with n � 3. Let fF"g be the family of approximating inte-
grands introduced in Lemma 4.2 (and recall that (1.31), (1.33), and (1.34) hold
as in the statement of Theorem 1.9 for some � 2 .0; 2�0� and �1 2 .0; 1/). Let
BR b B be a ball and denote fBR WD 1BRf so that fBR 2 L2.Rn/. Then the
inequality

(4.39)

GST .kDukL1.BR=2//

� c

�«
BR

F".Du/dx

� 2
�

C c

�«
BR

F".Du/dx

� 1
�0

C c
P

fBR
1 . � ; R/

 1
1��1

L1.BR/
C c

P
fBR
1 . � ; R/

 �C2�C1

L1.BR/

C cH.ST /
P

fBR
1 . � ; R/


L1.BR/

holds for a constant c � c.n; �; �; ca; cb;ST ; �; �0; �1/. The constant cb;ST was
defined in (4.20) and cb was introduced in (1.34).

PROOF. The main ingredient in the proof is the local a priori estimate (4.38)
that is going to be applied under the symmetry assumption (4.28) with # D 0.
Indeed, later on we shall use Lemma 4.8 with the choice a.�/ � @F", where fF"g is
the family of approximating integrands introduced in Section 4.1 (see Lemmas 4.1
and 4.2); this justifies the assumption made here that @a is symmetric. However,
for the first part of the proof we shall keep formally .1C #/=2 D 1=2 and general
dimensions n � 2, as this will give us the opportunity to use some computations
made here for later proofs. It is sufficient to consider the case kDukL1.BR=2/ � ST ;
otherwise, (4.39) is trivial by the very definition of GST .�/.

To proceed and use Lemma 4.7 in a proper way, with BR denoting the ball
from the statement of Lemma 4.8, let us observe that we can immediately localize
everything to BR, so that we can consider u 2 W 1;1.BR/ as a solution to the
equation � div a.Du/ D f D fBR in BR, so that Lemma 4.7 applies with f
replaced by fBR and B � BR. To begin the proof, we now consider concentric
balls BR=2 b Bs b Bt b BR, a point x0 2 Bs , and R0 D t � s such that
BR0

.x0/ � Bt . We then apply estimate (4.38) with k D 0 and � 2 .0; 1=2/,
thereby obtaining via kDukL1.BR0 .x0//

� kDukL1.Bt / DM

GST .jDu.x0/j/

� c

�
g2;".kDukL1.Bt //

g1.kDukL1.Bt //

�� 1C#
2

�
.1Cmaxf�;n�22 g/

�
�«

BR0 .x0/

�GST .jDuj/�2 dx
�1=2

C c

�
g2;"

�kDukL1.Bt /

�
g1
�kDukL1.Bt /

� �
�
1C#
2

�
maxf�;n�22 g

kDukL1.Bt /P
fBR
1 .x0; 2R0/ �
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 981

� c

.t � s/n=2

�
g2;".kDukL1.Bt //

g1
�kDukL1.Bt /

� �
�
1C#
2

�
.1Cmaxf�;n�22 g/

�
�Z

Bt

�GST .jDuj/�2 dx
�1=2

C c

�
g2;".kDukL1.Bt //

g1.kDukL1.Bt //

�� 1C#
2

�
maxf�;n�22 g

� kDukL1.Bt /

P
fBR
1 . � ; 2.t � s//


L1.Bt /

with c depending only on n and ca (and also on � when n D 2). By definition of
GST .�/ and since y 7! GST .y/ is nondecreasing, we further estimate by means of
(1.33)2

Z
Bt

�GST .jDuj/�2 dx

�
Z
Bt\fjDuj>ST g

�Z jDuj

ST
g1.y/y dy

�2
dx

� �GST .kDukL1.Bt //�
2��0

Z
Bt\fjDuj>ST g

�Z jDuj

ST
g1.y/y dy

��0
dx

� �GST .kDukL1.Bt //�
2��0

Z
Bt

F".Du/dx;

(4.40)

where we have also used (4.7)2. Combining the last two inequalities and recalling
that the point x0 2 Bs is arbitrary, we then have

(4.41)

GST .kDukL1.Bs//

� c

.t � s/n=2

�
g2;".kDukL1.Bt //

g1
�kDukL1.Bt /

� �
�
1C#
2

�
.1Cmaxf�;n�22 g/

� �GST .kDukL1.Bt //�
1��0

2

�Z
BR

F".Du/dx

� 1
2

C c

�
g2;".kDukL1.Bt //

g1.kDukL1.Bt //

�� 1C#
2

�
maxf�;n�22 g

� kDukL1.Bt /

P
fBR
1 . � ; 2.t � s//


L1.Bt /

;

with c depending now in addition on �.
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982 L. BECK AND G. MINGIONE

Recalling that � C 2 � 1 and the notation in (2.1), we have

(4.42)

�H.kDukL1.Bs// �H.ST /��C2

� �H.kDukL1.Bs//�
�C2 � �H.ST /��C2

� � C 2

�

Z kDukL1.Bs/

ST
g1.y/y dy D � C 2

�
GST

�kDukL1.Bs/

�
;

which is a consequence of (1.33)1. We now specialize to the case n > 2, which
is the one of interest for Theorem 1.9, and notice that in this case we have that
1C maxf�; .n � 2/=2g D n=2. Recalling that here # D 0, we may now combine
the estimates (4.41) and (4.42) and bound the right-hand side of (4.41) via (4.19)
and kDukL1.Bt / � H.kDukL1.Bt //. In this way we find

(4.43)

GST .kDukL1.Bs//C �H.kDukL1.Bs// �H.ST /��C2

� c

.t � s/n=2

�
GST .kDukL1.Bt //

�1��=4�Z
BR

F".Du/dx

�1=2

C c

.t � s/n=2

�
GST

�kDukL1.Bt /

��1��0=2�Z
BR

F".Du/dx

�1=2

C c
�
GST

�kDukL1.Bt /

���1P
fBR
1 . � ; 2.t � s//


L1.Bt /

C c
�
H
�kDukL1.Bt /

� �H
�ST ��P

fBR
1 . � ; 2.t � s//


L1.Bt /

C cH
�ST �P

fBR
1 . � ; 2.t � s//


L1.Bt /

;

with c � c.n; �; �; ca; cb;ST /. We next apply the Young inequality four times to
estimate the first four terms on the right-hand side of (4.43), with conjugate ex-
ponents .4=.4 � �/; 4=�/, .2=.2 � �0/; 2=�0/, .1=�1; 1=.1 � �1//, and finally
.� C 2; .� C 2/=.� C 1//; the outcome is

(4.44)

GST .kDukL1.Bs//C �H.kDukL1.Bs// �H.ST /��C2

� 1

2
GST .kDukL1.Bt //C

1

2
�H.kDukL1.Bt // �H.ST /��C2

C c

.t � s/2n=�

�Z
BR

F".Du/dx

� 2
�

C c

.t � s/n=�0

�Z
BR

F".Du/dx

� 1
�0

C c
P

fBR
1 . � ; R/

 1
1��1

L1.BR/
C c

P
fBR
1 . � ; R/

 �C2�C1

L1.BR/

C cH.ST /
P

fBR
1 . � ; R/


L1.BR/

;
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 983

where c � c.n; �; �; ca; cb;ST ; �; �0; �1/. We are now able to apply Lemma 4.9
below with the obvious choice

(4.45) �.y/ WD GST .kDukL1.By//C �H.kDukL1.By// �H.ST /��C2 � 0

for y 2 �R=2;R�: This completes the proof of Lemma 4.8 by establishing the claim
(4.39) with the asserted dependencies of the constants. �

The following lemma, which has been used in the above proof, is a standard
variant of a classical iteration result [29, chap. 6, lemma 6.1].

LEMMA 4.9. Let �W �R=2;R� ! R be a nonnegative, bounded function. Assume
that for all s; t such that R=2 � s < t � R it holds that

�.s/ � 1

2
�.t/C a1

.t � s/1
C a2

.t � s/2
C b

for some nonnegative constants a1; a2; b and nonnegative exponents 1 � 2.
Then the following inequality holds with c � c.1/:

�.R=2/ � c
h a1

R1
C a2

R2
C b

i
:

4.3 A Theorem of Bousquet and Brasco Revisited
In this section we restate a nice result of Bousquet and Brasco [6] concerning

the existence of Lipschitz solutions to variational problems satisfying the so-called
bounded slope condition. The restatement below follows from the original formu-
lation of the main result in [6] and is adapted to the special case we are considering.
We include some details for the sake of completeness.

THEOREM 4.10 ([6, Main Theorem]). Consider the Dirichlet minimization prob-
lem

min
w2u0CW 1;1

0
.B/

Z
B

�F .Dw/ � f w�dx

where B � R
n is a ball, n � 2, u0 2 C 2.B/, and f 2 L1.B/. Furthermore,

we assume that the integrand F WRn ! R satisfies (1.32)1;2 and (1.32)4 for a
function g1W �0;1/! R such that (1.33)1 holds. Then the problem admits at least
one solution and every solution u satisfies Du 2 L1.BIRn/.

PROOF. Notice that the assumption u0 2 C 2.B/ ensures that u0 satisfies the
bounded slope condition on B; see [29, chap. 1, theorem 1.1]. It is therefore suffi-
cient to check that the assumptions of [6, Main Theorem] are satisfied; we therefore
adopt the terminology of [6]. For this purpose, we first observe that u0j@B satis-
fies, for some K � 0, the bounded slope condition of rank K. Second, we need to
verify that the following type of strictly uniform convexity condition

(4.46)
�F.´1/C .1 � �/F.´2/ � F.�´1 C .1 � �/´2/

� �.1 � �/�1.j´1j C j´2j/j´1 � ´2j2
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984 L. BECK AND G. MINGIONE

holds for all � 2 �0; 1� whenever the segment �´1; ´2� lies in fj´j > T g for some
T > 0 and a function �1W �0;1/! �0;1/ satisfying t�1.t/!1 when t !1.
Indeed, we can take T from (1.32) and �1.t/ � .t2 C �2/�=2, where �; � are
from (1.33). To see (4.46), we introduce the vectors x� WD �´1 C .1 � �/´2,
x�1.t/ WD t´1C .1� t /x� , and x�2.t/ WD t x� C .1� t /´2 and observe that the segment
�x�1.t/; x�2.t/� lies in �´1; ´2� � fj´j > T g for all t 2 �0; 1�. Thus, we have

(4.47)

�F.´1/C .1 � �/F.´2/ � F.�´1 C .1 � �/´2/

D ��F.´1/ � F.x�/� � .1 � �/�F.x�/ � F.´2/�

D �.1 � �/

Z 1

0

h@F.t´1 C .1 � t /x�/dt; ´1 � ´2i

� �.1 � �/

Z 1

0

h@F.t x� C .1 � t /´2/dt; ´1 � ´2i

D �.1 � �/

Z 1

0

Z 1

0

�t .1 � �/C .1 � t /��

� h@2F.sx�1.t/C .1 � s/x�2.t//.´1 � ´2/; ´1 � ´2ids dt
� �.1 � �/

Z 1

0

Z 1

0

�t .1 � �/C .1 � t /��

� g1.sx�1.t/C .1 � s/x�2.t//ds dt j´1 � ´2j2

� ��.1 � �/

Z 1

0

Z 1

0

�t .1 � �/C .1 � t /��

� �jsx�1.t/C .1 � s/x�2.t/j2 C �2
��=2

ds dt j´1 � ´2j2:
Observe that the estimation in the last line is a consequence of assumptions (1.32)4
and (1.33)1 and of the fact that T < jsx�1.t/C .1 � s/x�2.t/j � j´1j C j´2j for all
s 2 �0; 1�. Finally, using a standard algebraic inequality (see, for instance, [30])
and that � > �1, we conclude with

�F.´1/C .1 � �/F.´2/ � F.�´1 C .1 � �/´2/

� ��.1 � �/

c.�/
�.j´1j C j´2j/2 C �2��=2j´1 � ´2j2;

which is precisely the strict convexity condition (4.46) with the choice �1.t/ D
�.t2 C �2/�=2=c.�/. Again, since � > �1, it then follows that t�1.t/ ! 1
when t ! 1. We are therefore able to apply [6, Main Theorem], which yields
the boundedness of u in W 1;1.B/ in terms of a constant depending only on n, T ,
�, � , ku0kC2.B/, kf kL1 , and B . We finally note that, from the computation in
(4.47), it follows, whenever ´1; ´2 2 R

n are such that �´1; ´2� \ R
n n BT 6D ¿,

there exists a set C � �0; 1� with positive measure such that

� 2 C H) �F.´1/C .1 � �/F.´2/ � F.�´1 C .1 � �/´2/ > 0:

The proof is complete. �
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 985

4.4 Passage to the Limit and Proof of Theorem 1.9
We are now ready to complete the proof of Theorem 1.9. With u 2 W

1;1
loc .�/

being the local minimizer from the statement of Theorem 1.9, as observed immedi-
ately after Definition 1.1, we have that F.Du/ 2 L1

loc.�/. Then, as a consequence
of (4.11), this implies that u 2 W

1;
loc .�/. Now, let B b � be a fixed ball. We

take a sequence f"mg of positive numbers such that "m ! 0 as m ! 1 and
"m < minfdist.B; @�/; jBj1=n; x"g < 1 for all m 2 N, where x" is the number in-
troduced in (4.9) in Lemma 4.2. We consider the usual family of mollifiers f�"g in
(4.2) and take the regularized functions

(4.48) xum.x/ WD .u � �"m/.x/ WD
Z
B1

u.x C "my/�.y/dy

for m 2 N. The sequence fumg is bounded in W 1; .B/. We then define, for
every m 2 N, fm.x/ WD minfmaxff .x/;�mg; mg, so that fm 2 L1.B/ and
jfmj � minfjf j; mg, and we consider the functional

(4.49) Fm.wIB/ WD
Z
B

�Fm.Dw/ � fmw�dx;

where Fm WD F"m is the regularized integrand that was introduced in (4.5) and
described in Lemmas 4.1 and 4.2. Note that Fm is defined for everyw 2 W 1;1.B/.
With  WD �0.� C 2/ > 1 as defined in (1.33), we look at the variational Dirichlet
problem

(4.50) min
w2xumCW 1;1

0
.B/

Z
B

�Fm.Dw/ � fmw�dx:

This problem is of the type considered in Theorem 4.10, which in fact ensures the
existence of a globally Lipschitz-continuous solution um. As a consequence, it is
a distributional solution to the Euler-Lagrange equation

(4.51) � div @Fm.Dum/ D fm; um 2
�xum CW

1;1
0 .B/

� \W 1;1.B/:

In what follows, we prove that the sequence fumg is uniformly bounded in
W

1;1
loc .B/ with suitable uniform local estimates. Finally, we pass to the limit

m ! 1, recovering in the end a minimizer xu of the original functional F in
(1.1), which coincides with the original minimizer u for large values of the gra-
dients Du and Dxu, and for which we additionally have established the desired
W 1;1-estimate. Let us denote by � the Sobolev conjugate of  in the sense that
� D n=.n � / if  < n and � D 2n=.n � 1/ otherwise. Hölder and Sobolev
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986 L. BECK AND G. MINGIONE

inequalities then give

(4.52)

«
B

jfm.um � xum/jdx

�
�«

B

jfmjn dx
�1=n�«

B

jum � xumj
n

n�1 dx

�1�1=n

�
�«

B

jfmjn dx
�1=n�«

B

jum � xumj
�

dx

�1=�

� c.n; /kfmkLn.B/

�«
B

jDum �Dxumj dx
�1=

� ckfmkLn.B/

�
�«

B

Fm.Dum/dx C
«
B

Fm.Dxum/dx C ST  C �
�1=

;

with a constant c depending only on n; �; �0, and � , and where in the last line we
have used (4.11) (with " � "m). Since Fm.�/ is convex, the Jensen inequality gives

(4.53)
Z
B

Fm.Dxum/dx �
Z
BC"mB1

Fm.Du/dx:

Notice that the right-hand side is finite by Remark 4.3) so that by the Young in-
equality we find

(4.54)

«
B

jfm.um � xum/jdx
� ckfmkLn.B/

�
�«

B

Fm.Dum/dx

C jB C "mB1j
jBj

«
BC"mB1

Fm.Du/dx C ST  C �
�1=

� 1

2

«
B

Fm.Dum/dx C jB C "mB1j
jBj

«
BC"mB1

Fm.Du/dx

C ckf k


�1

Ln.B/
C cST  C c� ;

with a constant c depending only on n, �, � , �0, and  . To proceed, we notice that
the minimality of um and inequalities (4.53) and (4.54) yield«
B

Fm.Dum/dx

�
«
B

Fm.Dxum/dx C
«
B

fm.um � xum/dx �

 10970312, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21880 by U

niversity D
egli Studi D

i Parm
a Settore B

iblioteche, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 987

� jB C "mB1j
jBj

«
BC"mB1

Fm.Du/dx C
«
B

jfm.um � xum/jdx

� 1

2

«
B

Fm.Dum/dx C c

«
BC"mB1

Fm.Du/dx C ckf k


�1

Ln.B/
C cST  C c� ;

where in the last inequality we have also used that "m � jBj1=n. Reabsorbing
terms we arrive at

(4.55)
«
B

Fm.Dum/dx � c

«
BC"mB1

Fm.Du/dxC ckf k


�1

Ln.B/
C cST  C c� ;

for a constant c depending only on n, �, � , and  . Next, let us fix another ball BR
of radius R and with BR b B . Thanks to (4.51), which is of the type in (4.25)–
(4.26) by Lemmas 4.1 and 4.2, and keeping in mind the Lipschitz regularity of um,
we are in the setting of Section 4.2. We can therefore apply to um the a priori
estimates stated there. By Lemma 4.8 in combination with the estimate in (2.3)
and the previous inequality (4.55), we deduce

(4.56)

GST .kDumkL1.BR=2//

� c

� jBj
jBRj

�«
BC"mB1

Fm.Du/dx C kf k


�1

Ln.B/
C ST  C �

�� 2
�

C c

� jBj
jBRj

�«
BC"mB1

Fm.Du/dx C kf k


�1

Ln.B/
C ST  C �

�� 1
�0

C ckf k
1

1��1

L.n;1/.BR/
C ckf k

�C2
�C1

L.n;1/.BR/
C cH

�ST �kf kL.n;1/.BR/:
The constant c depends only on n, �, � , ca, cb;ST , � , �0, and �1. Notice that we
have applied (2.3) in order to estimateP

fBR
1 . � ; R/


L1.BR/

� ckfBRkL.n;1/.B2R/ D ckf kL.n;1/.BR/:

Let us collect what we have established so far. We first notice that, by (4.12),
the sequence fkFm.Du/kL1.BC"mB1/g is bounded. Therefore, by (4.55), the se-
quence fkFm.Dum/kL1.B/g is also bounded. In turn, this implies that the sequence
fumg is bounded in W 1; .B/ via (4.11). Moreover, by (4.56) and the fact that
GST .t/! 1 as t ! 1, we also have boundedness of fumg in W 1;1.BR=2/. As
a consequence, we conclude that, up to a not-relabeled subsequence, there exists
xu 2 uCW

1;
0 .B/ such that

(4.57)

8�<
�:
um * xu weakly in W 1; .B/;

um ! xu strongly in Ln=.n�1/.B/;
um * xu weakly-� in W 1;1.BR=2/:
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988 L. BECK AND G. MINGIONE

Since the integrand ´ 7! F.´/ is convex, we then infer that

(4.58)
Z
B

F.Dxu/dx � lim inf
m!1

Z
B

F.Dum/ dx:

On one hand, the boundedness of fDumg in L .B/ and the linear growth of the
integrand L give "m

R
B L.Dum/dx ! 0 as m ! 1. Therefore, by (4.7)2, we

can compute

lim
m!1

Z
B

�Fm.Dum/ � F.Dum/�dx

D lim
m!1

Z
B\fjDumj�ST g

�Fm.Dum/ � F.Dum/�dx

C lim
m!1 "m

Z
B

L.Dum/dx D 0;

where we have employed the fact that by construction the convergence Fm ! F

is uniform on compact sets; see (4.7)3. Using the last identity together with (4.58)
we conclude with Z

B

F.Dxu/dx � lim inf
m!1

Z
B

Fm.Dum/dx:

On the other hand, since we have um ! xu as well as xum ! u strongly in
Ln=.n�1/.B/ and fm ! f strongly in Ln.B/, we also get, relying once again on
the minimality of um, (4.53), and (4.7), that

F .xuIB/ � lim inf
m!1 Fm.umIB/ � lim inf

m!1 Fm.xumIB/

� lim
m!1

Z
BC"mB1

Fm.Du/dx � lim
m!1

Z
B

fmxum dx D F .uIB/:

The minimality of u then implies

(4.59) F .uIB/ D F .xuIB/;
while we also record the obvious identity

(4.60) lim
m!1

Z
BC"mB1

Fm.Du/dx D
Z
B

F.Du/dx:

Let us continue by recalling a standard convexity argument (see, for instance,
[6, 47]), reported here for the sake of completeness. Setting w� WD .1 � �/uC �xu
for � 2 �0; 1�, we get F .w� IB/ � .1 � �/F .uIB/ C �F .xuIB/ by convexity,
which in turn yields F .w� IB/ D F .uIB/ via (4.59) and thusZ

B

F.Dw� /dx D
Z
B

�
.1 � �/F.Du/C �F.Dxu/�dx:

Since ´ 7! F.´/ is convex, we even get the pointwise equality of the integrands

(4.61) F.Dw� / D .1 � �/F.Du/C �F.Dxu/ a.e. in B:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 989

We now take a point x with equality for all rational � 2 �0; 1�. If one of the two vec-
torsDu.x/ andDxu.x/ does not belong to xBT , then we concludeDu.x/ D Dxu.x/,
since otherwise a nonempty subsegment of �Du.x/;Dxu.x/� would lie in Rn n xBT ,
where we have strict convexity of F (see, for instance, the computation (4.47)),
and this would be in contradiction to the equality in (4.61) for a suitable rational
� 2 .0; 1/. Hence, for a.e. x 2 B we have

(4.62) either Du.x/ D Dxu.x/ or maxfjDu.x/j; jDxu.x/jg � T :

We finally want to let m ! 1 in (4.56). By the fact that s 7! g1.s/s in nonde-
creasing on �T;1/ by assumption and by ST > T , the map s 7! GST .s/ is convex
on the same set. For this reason, for any q > 1, also the function ´ 7! �GST .j´j/�q
is still convex, so that, by lower semicontinuity of convex integral functionals with
respect to the weak convergence in Sobolev spaces, we get�«

BR=2

�GST .jDxuj/�q dx
�1=q

� lim inf
m!1

�«
BR=2

�GST .jDumj/�q dx
�1=q

:

Therefore, since GST .�/ is nondecreasing and continuous on .0;1/, we first find

�«
BR=2

�GST .jDxuj/�q dx
�1=q

� lim inf
m!1 GST .kDumkL1.BR=2//

and then, letting q !1, we conclude with

GST .kDxukL1.BR=2// � lim inf
m!1 GST .kDumkL1.BR=2//:

Using this information in (4.56), as well as the convergence in (4.60), we first let
m!1, and then with ST ! T we finally obtain

GT .kDxukL1.BR=2//

� c

� jBj
jBRj

�«
B

F.Du/dx C kf k


�1

Ln.B/
C T  C �

�� 2
�

C c

� jBj
jBRj

�«
B

F.Du/dx C kf k


�1

Ln.B/
C T  C �

�� 1
�0

C ckf k
1

1��1

L.n;1/.BR/
C ckf k

�C2
�C1

L.n;1/.BR/
C cH.T /kf kL.n;1/.BR/;

where we have also used the definition of cb;ST in (4.20) and c � c.n; �; �; ca;

cb; �; �0; �1/. Using this last inequality in combination with (4.62) and the defini-
tion of GT .�/ in (4.27), we then obtain (1.35) by taking BR concentric with B and
eventually letting BR ! B . In order to finish the proof of Theorem 1.9, it only
remains to justify the last assertion concerning (1.36). To this end, it is sufficient
to note that the need for the full assumption (1.34) only enters when f 6D 0. In the
case when f D 0, the last term in the last line of (4.41) does not appear and we do
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990 L. BECK AND G. MINGIONE

not need the inequality (coming from (4.19))

g2;".t/

g1.t/
. cb

�
1

t1=�1

Z t

ST
g1.s/s ds

� 4�1
n�2

C cb;ST

to estimate it. �

4.5 Regularity in Two Dimensions and Theorem 1.11
The proof of Theorem 1.11 is a modification of the one given for Theorem 1.9

above and proceeds essentially unchanged up to estimate (4.42) in the proof of
Lemma 4.8. Then differences arise. Taking into account (4.42) and recalling the
notation in (2.1), that we deal with the case # D 0, and that now we have n D 2,
estimate (4.41) now reads, for a constant c � c.�; ca; �/ and � 2 .0; 1=2/ to be
chosen later, as

(4.63)

GST .kDukL1.Bs//C �H.kDukL1.Bs// �H.ST /��C2

� c

t � s

"
g2;"

�kDukL1.Bt /

�
g1
�kDukL1.Bt /

�
# 1C#

2
.1C�/

� �GST
�kDukL1.Bt /

��1��0
2

�Z
BR

F".Du/dx

� 1
2

C c

�
g2;".kDukL1.Bt //

g1.kDukL1.Bt //

� 1C#
2

�

� �H.kDukL1.Bt // �H.ST /�P
fBR
1 . � ; 2.t � s//


L1.Bt /

C c

�
g2;".kDukL1.Bt //

g1.kDukL1.Bt //

� 1C#
2

�

H.ST /P
fBR
1 . � ; 2.t � s//


L1.Bt /

:

In view of (4.21) (which replaces (4.19) and was used before in the proof of Theo-
rem 1.9, and that is in force here since in the two-dimensional case we are assuming
(1.37)), recalling that here it is # D 0, we then get

GST .kDukL1.Bs//C �H.kDukL1.Bs// �H.ST /��C2(4.64)

� c

t � s
�GST .kDukL1.Bt //�

�
1C�
2

�
.�0��

2 /C1�
�0
2

�Z
BR

F".Du/dx

� 1
2

C c

t � s
�GST .kDukL1.Bt //�

1��0
2

�Z
BR

F".Du/dx

� 1
2

C
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 991

C c�GST .kDukL1.Bt //�
�
2 .�0��

2 /

� �H.kDukL1.Bt // �H.ST /�P
fBR
1 . � ; R/

L1.Bt /

C c�H.kDukL1.Bt // �H.ST /�P
fBR
1 . � ; R/

L1.Bt /

C c�GST .kDukL1.Bt //�
�
2 .�0��

2 /H.ST /P
fBR
1 . � ; R/

L1.Bt /

C cH.ST /P
fBR
1 . � ; R/

L1.Bt /

with c � c.�; �; ca; cb;ST ; �/. As prescribed in the statement of Theorem 1.11, we
fix � 2 .0; �/ and then take � 2 .0; 1=2/ sufficiently small in order to have

(4.65) ��� � .1C�/��2��0 �
�
1C �

2

��
�0 � �

2

�
C1��0

2
� 1� � � �

4
:

By possibly choosing � smaller, we may also assume that

(4.66) 0 <
�

2

�
�0 � �

2

��1C �

�

�
<
�

2

�
�0 � �

2

��� C 2

� C 1

��
� C 2C �

�

�
� 1

2

(recall it is � > �1). The choice in the last two displays determines the value of
� � �.�; �; �; �0/ and therefore the value of the constant c in inequality (4.64).

Taking (4.65)–(4.66) into account, recalling the definition of the function � in-
troduced in (4.45), and using Young inequality repeatedly (compare with (4.44)),
we find

�.s/ � 1

2
�.t/

C c

.t � s/
4

���

�Z
BR

F".Du/dx

� 2
���

C c

.t � s/
2
�0

�Z
BR

F".Du/dx

� 1
�0

C c
P

fBR
1 . � ; R/

 �C2C��C1

L1.BR/
C c

h
H.ST /

P
fBR
1 . � ; R/


L1.BR/

i1C�
C c;

where c depends only on �, � , ca, cb;ST , � , �0, and � , but can be taken otherwise
independently of xT and ". We are now in position to use Lemma 4.9 as in the proof
of Lemma 4.8; this yields

(4.67)

GST .kDukL1.BR=2//

� c

�«
BR

F".Du/dx

� 2
���

C c
P

fBR
1 . � ; R/

 �C2C��C1

L1.BR/

C c
h
H.ST /

P
fBR
1 . � ; R/


L1.BR/

i1C�
C c;
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992 L. BECK AND G. MINGIONE

where we have also used that 2=.� � �/ � 1=�0 and where the constant c still
has the same dependencies. This last estimate is the two-dimensional analogue of
(4.39); from this point on, the rest of the proof follows the one for Theorem 1.9
(from Section 4.3 on) with minor variants, most importantly, with (2.9) used in-
stead of (2.3) in order to control the Riesz potential term of f . This finally leads to
the assertion (1.38) by again using Young’s inequality. Note that we are also using
that, as � � �0 � 1, we have 2=.� � �/ � 1C � .

5 Vectorial Estimates and Theorem 1.13
The proof breaks down to three different steps, distributed through Sections 5.1–

5.3. We first find a suitable approximation of the original problem, this time via
functionals with polynomial growth. Then, in the second step, we prove uniform
a priori estimates for the gradient. In both steps the structure assumption (1.43) is
essential. Finally, we combine the local a priori estimates and the approximation
method to recover the local Lipschitz regularity result for the original minimizer.

Notice that, by replacing zF by zF � zF .0/, in the rest of the proof we can as-
sume without loss of generality that zF .0/ D 0; notice also that zF 0.0/ D 0

follows by (1.42)1. From now on, we assume that all the assumptions of Theo-
rem 1.13 are in force; moreover, as in the case of the proof of Theorem 1.9, we
shall assume with no loss of generality that f 2 L.n; 1/.RnIRn/ for n > 2 and
f 2 L2(Log L)�.RnIRN / when n D 2. We refer the reader to the notation about
tensors fixed in Section 2.

5.1 Approximation in the Vectorial Case
Here we implement an approximation scheme that plays, in the vectorial case,

the role of the one developed in Section 4.1 in the scalar case. Indeed, as in Sec-
tion 4.1, given the original integrand ´ 7! F.´/ from Theorem 1.13, we construct
an approximating family fF"g of integrands with standard growth and ellipticity
conditions that is uniformly converging to F on compact subsets. The main point
is that the integrandsF" must share the structure property in (1.43), so we shall con-
struct a family f zF"g such that F".´/ WD zF".j´j/ for some zF"W �0;1/! �0;1/. The
functions zF" will be locally C 1, but only piecewise C 2-regular; this will involve
additional technical complications. For approximation methods in this setting, see
also [46, 48].

To start with the construction of the approximating integrands, let us note that
from the notation introduced in (1.41) we have

(5.1)
@a.´/ D @.za.j´j/´/ D za.j´j/IN�n C za0.j´j/j´j´
 ´

j´j2 ;

´ 2 RN�n; j´j 6D 0;
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 993

and (recalling the free assumption zF .0/ D 0)

(5.2) F.´/ D zF .j´j/ where zF .t/ WD
Z t

0

za.s/s ds:

The symbol IN�n here denotes the fourth-order tensor

(5.3) IN�n D �ij ��� .e
� 
 ei /
 .e� 
 ej /

for i; j 2 f1; : : : ; ng, �; � 2 f1; : : : ; N g, where � denotes the usual Kronecker’s
symbol. Using (5.1)–(5.2) and applying (1.32)4 and (1.32)1 for �?´ and for � k ´,
respectively, we find

(5.4)

8�<
�:
za.j´j/ � g1.j´j/ for every ´ 2 RN�n with j´j > T ;

za.j´j/C za0.j´j/j´j � g1.j´j/ for every ´ 2 RN�n with j´j > T ;

za.j´j/ � 0 for every ´ 2 RN�n with j´j > 0;

and, analogously, by means of (1.32)3, we get

(5.5)

(
za.j´j/ � g2.j´j/
za.j´j/C za0.j´j/j´j � g2.j´j/

for every ´ 2 RN�n with j´j > T :

Notice that an immediate consequence of assumption (1.42) is

(5.6)

8��<
��:
t � T H) z�.t2 C �2/

�2
2 � za.t/;

z� WD za.T /
.T 2 C �2/

�2
2

(5.4)1� g1.T /

.T 2 C �2/
�2
2

(1.42)2� �:

In the following we use a parameter " such that 0 < " < minf1; T g=4. We now
start to construct the approximating family of integrands by introducing

(5.7) �" D �C "; T" WD T C 1

"
;

and za"W �0;1/! �0;1/ as

(5.8) za".t/ WD

8�������<
�������:

za."/
."2 C �2"/

�2
2

.t2 C �2"/
�2
2 if 0 � t < ";

za.t/ if " � t < T";

za.T"/
.T 2

" C �2"/
�2
2

.t2 C �2"/
�2
2 if T" � t:

Notice that, thanks to (1.42)1, this function is nondecreasing when  � 2. Then,
for t > 0, we define

(5.9) F".´/ WD zF".j´j/ where zF".t/ WD
Z t

0

za".s/s ds C "L;".t/
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994 L. BECK AND G. MINGIONE

and

(5.10) L;".t/ WD 1



��
t2 C �2"

�=2 � �"
� D Z t

0

�
s2 C �2"

��2
2 s ds;

so that, in view of (1.42) and (5.2)–(5.5), it follows that

(5.11)

8����������<
����������:

zF" 2 C 1
loc�0;1/ \W

2;1
loc �0;1/ \ C 2

loc.�0;1/ n f"; T"g/;

t 7!
zF 0
".t/

t
; za" 2 W

1;1
loc �0;1/ \ C 1

loc.�0;1/ n f"; T"g/;
F" is strictly convex;

t 7! zF .t/; t 7! zF".t/ are nondecreasing;

F" ! F uniformly on compact subsets of RN�n:

The above definitions then lead to introducing the related control functions g1;".�/
and g2;".�/ as

(5.12) g1;".t/ WD g1

8�������<
�������:

g1."/

."2 C �2"/
�2
2

.t2 C �2"/
�2
2 if 0 < t < ";

g1.t/ if " � t < T";

g1.T"/

.T 2
" C �2"/

�2
2

.t2 C �2"/
�2
2 if T" � t;

and

(5.13) g2;".t/ WD g2

8��������<
��������:

"
g2."/

."2 C �2"/
�2
2

C "

#
.t2 C �2"/

�2
2 if 0 < t < ";

g2.t/C ".t2 C �2"/
�2
2 if " � t < T";"

g2.T"/

.T 2
" C �2"/

�2
2

C "

#
.t2 C �2"/

�2
2 if T" � t ;

respectively, where the constants g1 and g2 are defined by

(5.14) minf1;  � 1g DW g1 � 1 � g2 WD 4
p
NnC 4:

We then have the following analogue of Lemma 4.2:

LEMMA 5.1. Let F WRn ! R be the integrand of Theorem 1.13 and fF"g the
family of integrands introduced in (5.9), with 0 < " < minf1; T g=4. Then there
exists a constant �" � 1 such that the following growth and ellipticity properties
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 995

hold:

(5.15)

8����<
����:

j@2F".´/j � g2;".j´j/ on fj´j > T g with j´j ¤ T";

g1;".j´j/j�j2 � h@2F".´/�; �i on fj´j > T g with j´j ¤ T";

j@2F".´/j � �".j´j2 C �2"/
�2
2 on fj´j 62 f"; T"gg;

"g1.j´j2 C �2"/
�2
2 j�j2 � h@2F".´/�; �i on fj´j 62 f"; T"gg;

for every � 2 RN�n and g1 as defined in (5.14). Moreover, the following inequali-
ties hold on fj´j > T g:

F.´/ �
Z j´j

T

g1.s/s ds; F".´/ �
Z j´j

T

g1;".s/s ds;(5.16) 8��<
��:
F.´/ � �



�
.j´j2 C �2/=2 � .T 2 C �2/=2

�
F".´/ � �

21C
�
.j´j2 C �2/=2 � .T 2 C �2/=2

�
;

(5.17)

�H".t/�
 � �H".T /�

 � 21C

g1�

Z t

T

g1;".s/s ds for t � T ;(5.18)

where � has been introduced in (1.42) and H" in (2.1). Finally, if  � 2 in (1.42),
then t 7! zF 0

".t/=t is nondecreasing on �0;1/.

PROOF. By the definition in (5.9) and recalling the notation in (5.3), we first
notice that the @2F".´/ exists provided j´j 62 f"; T"g, with

@2F".´/ D

8���������<
���������:

.j´j2 C �2"/
�2
2

"
za."/

."2 C �2"/
�2
2

C "

#
D.´/ if j´j < ";

@2F.´/C ".j´j2 C �2"/
�2
2 D.´/ if " < j´j < T";

.j´j2 C �2"/
�2
2

"
za.T"/

.T 2
" C �2"/

�2
2

C "

#
D.´/ if T" < j´j;

where

D.´/ WD IN�n C . � 2/
´
 ´

j´j2 C �2"
8´ 2 RN�n:

Then, (5.15)1;2 follows directly from (1.32), the definitions in (5.12)–(5.13) and
(5.4)–(5.5), and (5.14). As for (5.15)3;4, these again follow from the explicit ex-
pression of @2F".´/ in the above display; in particular, using (1.42)1, we see that
(5.15)3 holds for any �" such that

�" � g2 max

(
za.T"/

.T 2
" C �2"/

�2
2

; sup
"�j´j�T"

j@2F.´/j
.j´j2 C �2"/

�2
2

)
C g2";
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996 L. BECK AND G. MINGIONE

and the constant g2 is as defined in (5.14). The two inequalities in (5.16) are a
straightforward consequence of (5.4) and of the definitions in (5.7)–(5.8), (5.9),
and (5.12).

For the proof of (5.17)1 it is sufficient to estimate

(5.19) F.´/ �
Z j´j

T

za.s/s ds (5.6)� z�
Z j´j

T

.s2 C �2/
�2
2 s ds

and recall that z� � � by (5.6). Concerning (5.17)2, the proof is as in (5.19) for the
case j´j < T". In the case j´j � T", we estimate via the positivity of L;".j´j/,
(5.7)–(5.8), and (5.6)

F".´/ �
Z T"

T

za.s/s ds C za.T"/
.T 2

" C �2"/
�2
2

Z j´j

T"

�
s2 C �2"

��2
2 s ds

� z�
Z T"

T

.s2 C �2/
�2
2 s ds C z� .T

2
" C �2/

�2
2

.T 2
" C �2"/

�2
2

Z j´j

T"

�
s2 C �2"

��2
2 s ds

� � min

(
1;
.T 2

" C �2/
�2
2

.T 2
" C �2"/

�2
2

) Z j´j

T

.s2 C �2/
�2
2 s ds;

so that (5.17)2 follows via elementary estimations (recall that " < T=4). Argu-
ing in a similar way, and using the definition in (5.12) and (1.42)2, we get that
21Cg1;".s/ � g1�.s

2C�2"/
.�2/=2 for s � T , so that (5.18) follows after integra-

tion. Finally, observe that the last assertion concerning the fact that t 7! zF 0
".t/=t is

nondecreasing is a straightforward consequence of the fact that  � 2 and the def-
initions in (5.8)–(5.9) (recall that  � 2 in (1.42) implies that t 7! zF 0.t/=t D za.t/
is itself nondecreasing). The proof of the lemma is now complete. �

Furthermore, we need another technical lemma; the peculiar notation concern-
ing the number c� below is motivated by later applications (see Section 5.3 below).

LEMMA 5.2. For every " such that 0 < " < minf1; T g=4, the following statements
hold:

� There exists a constant c � c.za.1/; �; / such that

(5.20) F".´/ � c
�
F.´/C T  C �"

�
for all ´ 2 RN�n:

� For every positive number c� there exists x" � x".c� / < minf1; T g=4 such
that if 0 < "1 � "2 < x", then

(5.21)
jF"1.´/ � F"2.´/j � c�L;"1."1/C L;"2."2/�C "1L;"1.j´j/

C "2L;"2.j´j/C c"2;

holds whenever j´j � c� , where L;" has been defined in (5.10) and c �
c.za.1/; /.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 997

PROOF. We start with the proof of (5.20); in the following we shall repeatedly
use the fact that the functions t 7! zF .t/ and t 7! zF".t/ are nondecreasing. For
j´j � ", by the definitions in (5.7)–(5.8) we have

(5.22)

F".´/ � zF"."/

� 2

Z "

0

za."/.s2 C �2"/
�2
2 s

."2 C �2/
�2
2

ds C "

Z "

0

.s2 C �2"/
�2
2 s ds

(1.42)� 2

"
za.1/

.1C �2/
�2
2

C 1

#Z "

0

.s2 C �2"/
�2
2 s ds

� c./�za.1/C 1��" ;

so that the assertion follows in this case. Next, for " < j´j � T", by recalling that
za.�/ � 0, by the above inequality, (5.2), and (5.7)–(5.8), we find

F".´/ �
Z j´j

"

za.s/s ds C "L;".j´j/C zF"."/ � F.´/C c.za.1/; /�j´j C �"
�
:

It remains to treat the case when j´j � T". Since the previous estimate in particular
implies zF".T"/ � c.za.1/; /�F.´/C j´j C �


" �, we find similarly to the above

F".´/ D
Z j´j

T"

za.T"/.s2 C �2"/
�2
2 s

.T 2
" C �2"/

�2
2

ds C "L;".j´j/C zF".T"/

� c./

Z j´j

T"

za.s/s ds C c
�
F.´/C j´j C �"

�
� c.za.1/; /�F.´/C j´j C �"

�
:

Notice that we have also used (1.42)1 to estimate

za.T"/.s2 C �2"/
�2
2

.T 2
" C �2"/

�2
2

� c./za.s/

when T" � s. Employing once again (5.17)1, the proof of (5.20) is then complete.
We next show (5.21). For this, we consider x" > 0 with x" < minf1; T g=4 such
that Tx" > c� . By the very definition in (5.8) we notice that za"1.t/ D za"2.t/ for
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998 L. BECK AND G. MINGIONE

"2 � t � c� . Therefore, for c� � j´j � "2, as for (5.22) we get

(5.23)

jF"1.´/ � F"2.´/j

� 2

Z "1

0

za."1/.s2 C �2"1/
�2
2 s

."21 C �2/
�2
2

ds C
Z "2

"1

za.s/s ds

C 2

Z "2

0

za."2/.s2 C �2"2/
�2
2 s

."22 C �2/
�2
2

ds C "1L;"1.j´j/C "2L;"2.j´j/

� cza.1/
Z "1

0

.s2 C �2"1/
�2
2 s ds C cza.1/

Z "2

"1

.s2 C �2/
�2
2 s ds

C cza.1/
Z "2

0

.s2 C �2"2/
�2
2 s ds C "1L;"1.j´j/C "2L;"2.j´j/:

Thus, (5.21) easily follows in this case, also recalling (5.10). If j´j � "1, by simply
estimating (look also at the previous display),

jF"1.´/ � F"2.´/j
� jF"1.´/j C jF"2.´/j

� cza.1/
Z "1

0

.s2 C �2"1/
�2
2 s ds C cza.1/

Z "2

0

.s2 C �2"2/
�2
2 s ds

C "1L;"1.j´j/C "2L;"2.j´j/:

Finally, when "1 < j´j < "2 we again estimate jF"1.´/ � F"2.´/j � jF"1.´/j C
jF"2.´/j and come up with (5.23). In conclusion, we have proved that (5.21) holds
in any case and the proof of the lemma is complete. �

As for the newly defined functions g1;".�/ and g2;".�/ displayed in (5.12) and
(5.13), respectively, their basic properties can be summarized in the following ana-
logue of Lemma 4.4:

LEMMA 5.3. For every " such that 0 < " < minf1; T g=4, the following statements
are true:

� The functions �T;1/ 3 t 7! g2;".t/=g1;".t/ and t 7! g1;".t/t are almost
nondecreasing and nondecreasing, respectively, in the sense that

(5.24)

8�<
�:
T � s � t H) g2;".s/

g1;".s/
� c

g2;".t/

g1;".t/
for c � c.n;N; �; ca; /;

g1;".s/s � g1;".t/t:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 999

� If (1.44) holds, then also the following inequality holds for all t � T :

(5.25)

g2;".t/

g1;".t/
� ccb min

��Z t

T

g1;".s/s ds

� 2��
.1C#/n

;

�
1

t1=�1

Z t

T

g1;".s/s ds

� 4�1
.1C#/.n�2/

�
C ccb;

where c � c.n;N; �; / and # is defined as in the statement of Theo-
rem 1.13.

� If (1.45) holds, then also the following inequality holds for all t � T :

(5.26)
g2;".t/

g1;".t/
� ccb

�Z t

T

g1;".s/s ds

� 2��
.1C#/n

C ccb;

with c � c.n;N; �; /.
� For every t � T it holds that g1;".t/=g2;".t/ � 1:

PROOF. In order to prove that y 7! g1;".y/y is nondecreasing on �T;1/, we
take T � s < t and show that g1;".s/s � g1;".t/t . If T � s < t � T", by
definition (5.12) of g1;".�/ this simply means g1.s/s � g1.t/t , which is true by
assumption (1.31). Next, if T" � s < t , we trivially obtain g1;".s/s � g1;".t/t

since the function y 7! .y2 C �2"/
.�2/=2y is nondecreasing (recall that  > 1).

Finally, if T � s � T" � t , by the previous two cases we have g1;".s/s �
g1;".T"/T" � g1;".t/t , and the second inequality in (5.24) is shown. For the proof
of the first inequality in (5.24), we similarly first consider the case T � s � t � T"
and distinguish two different situations. If  � 2, we notice that 4" � T � s

implies that .s2 C �2"/ � 2.s2 C �2/ and therefore, we can estimate

(5.27)

g2;".s/

g1;".s/
� g2

g1

g2.s/C "2
�2
2 .s2 C �2/

�2
2

g1.s/

.5.6/� g2

g1

g2.s/C "2
�2
2 z��1za.s/

g1.s/

.5.5/� c
g2.s/

g1.s/

.1.31/� c
g2.t/

g1.t/
� c

g2;".t/

g1.t/
D c

g2;".t/

g1;".t/

where c � c.n;N; �; ca; / (recall (5.14) and � � z� by (5.6)). Otherwise, if  < 2,
we can estimate directly .s2 C �2"/

.�2/=2 � .s2 C �2/.�2/=2 and proceed as in
the last display. Notice that we have indeed also proved that

(5.28) T � s � T" H) g2;".s/

g1;".s/
� c

g2.s/

g1.s/
; c � c.n;N; �; /:

Next, in the case T" � s < t , the assertion follows after observing that

(5.29)
g2;".y/

g1;".y/
D g2;".T"/

g1;".T"/
for all y � T":
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1000 L. BECK AND G. MINGIONE

In the remaining case T � s � T" � t , we again use the last two cases and
(5.29) to get g2;".s/=g1;".s/ � cg2;".T"/=g1;".T"/ D cg2;".t/=g1;".t/ and the
proof of (5.24) is complete. Next, we prove the second claim (5.25). This follows
straightaway from the assumption (1.44) and (5.28) when T � t � T". A different
reasoning is needed for the case T" < t . Here we may use the result from the first
case and start estimating via (5.29)

(5.30)

g2;".t/

g1;".t/
D g2;".T"/

g1;".T"/

� ccb min

(�Z T"

T

g1;".s/s ds

� 2��
.1C#/n

;

�
1

T
1=�1
"

Z T"

T

g1;".s/s ds

� 4�1
.1C#/.n�2/

)
C ccb:

Then it obviously follows that

(5.31)
g2;".t/

g1;".t/
� ccb

�Z t

T

g1;".s/s ds

� 2��
.1C#/n

C ccb

as t � T" for c � c.n;N; �; /. On the other hand, let us now introduce the
nonnegative quantity

(5.32)

Q" WD
�
t

T"

�1=�1
Z T"

T

g1;".s/s dsZ t

T

g1;".s/s ds

D
�
t

T"

�1=�1 I"

I" C g1g1.T"/

.T 2
" C �2"/

�2
2

Z t

T"

.s2 C �2"/
�2
2 s ds

D t
1=�1
" I"

I" C g1g1.T"/T

"

.T 2
" C �2"/

�2
2

��
t2" C

�
�"

T"

�2�=2
�
�
1C

�
�"

T"

�2�=2�

where t" WD t=T" and where, thanks to the fact that t 7! g1.t/t is nondecreasing
on �T;1/, we have

(5.33) I" WD g1

Z T"

T

g1.s/s ds � g1g1.T"/T
2
" :

We now distinguish two cases. If t" � 1000, then it easily follows that Q" �
10001=�1 . Otherwise, if t" > 1000, then by recalling that 1=�1 �  and�"=T" � 2
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1001

we instead have

Q"

.5.33/� c./
g1t


" g1.T"/T

2
"

I" C g1t

" g1.T"/T

2
"

:

In any case we conclude that Q" � c./, uniformly with respect to ", and therefore
we can bound

g2;".t/

g1;".t/
� ccb

h
sup
"

Q"

i 4�1
.1C#/.n�2/

�
1

t1=�1

Z t

T

g1;".s/s ds

� 4�1
.1C#/.n�2/

C ccb:

Then (5.25) follows from (5.31) and the above display. Similarly, the third claim
(5.26) follows. Finally, we observe that (5.4)–(5.5) imply g1.t/ � g2.t/ for all
t � T , which in turn shows the final claim g1;".t/ � g2;".t/ for every t � T , by
the very definitions of g1;" and g2;" given in (5.12) and (5.13), respectively. This
completes the proof of the lemma. �

5.2 A Priori Estimates
In this section we consider again a functional of the type in (1.1) under ad-

ditional assumptions on the integrand ´ 7! F.´/ � zF .j´j/ and then apply the
corresponding estimates to the case of the approximating functionals defined in the
previous section. Specifically, with B � R

n being a fixed ball with n � 2, we start
considering a vector-valued weak solution u 2 W 1; .BIRN / to the system

(5.34) � div a.Du/ D f in B � R
n; f 2 L1.RnIRN /;

with aWRN�n ! R
N�n being such that

(5.35) a.´/ D za.j´j/´ for all ´ 2 RN�n;

where zaW �0;1/! �0;1/ is of class W 1;1
loc �0;1/\C 1

loc.�0;1/ nN D/; i.e., it is
locally C 1-regular outside a finite set N D � .0;1/, and it is such that za0.0/ D 0.
This implies that a.�/ 2 W

1;1
loc .RN�n/. The prototype we have in mind is of course

given by the function za".�/ in (5.8). Note that this structure assumption implies that
@a.´/ is a symmetric nonnegative bilinear form onRN�n whenever it makes sense.
For a fixed " 2 .0; 1/ such that 0 < " < minf1; T g=4 as in Section 5.1, we then
assume that the following growth and ellipticity conditions are satisfied whenever
@a.´/ makes sense (this in fact happens whenever j´j 62 N D):

(5.36)

8����<
����:

j@a.´/j � g2;".j´j/ on fj´j > T ; j´j 62 N Dg;
g1;".j´j/j�j2 � h@a.´/�; �i on fj´j > T ; j´j 62 N Dg;
j@a.´/j � �.j´j2 C �2"/

�2
2 on fj´j 62 N Dg;

�0.j´j2 C �2"/
�2
2 j�j2 � h@a.´/�; �i on fj´j 62 N Dg;

for every � 2 R
N�n, where the functions g1;"; g2;"W .0;1/ ! .0;1/ have been

defined in (5.12) and (5.13), respectively, while �" D � C " > 0, as defined in
(5.7). Here 0 < �0 � 1 � � denote fixed constants that are not going to play any
quantitative role in the forthcoming a priori estimates. Exactly as for (5.4)–(5.5),
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1002 L. BECK AND G. MINGIONE

we find from (5.35)–(5.36) and from the definitions in (5.8) and (5.12)–(5.13) that
for any ´ 2 RN�n such that j´j > T it holds that

(5.37) za.j´j/ � g1;".j´j/ and za.j´j/ � g2;".j´j/
and

(5.38)

(
za.j´j/C za0.j´j/j´j � g1;".j´j/
za.j´j/C za0.j´j/j´j � g2;".j´j/

if, in addition, j´j 62 N D :

A trivial consequence of (5.37)–(5.38) is

(5.39) jza0.j´j/jj´j � g2;".j´j/ if j´j > T and j´j 62 N D ;

while, similarly to (5.37), we have that

(5.40) za.j´j/ � �0.j´j2 C �2"/
�2
2 and za.j´j/ � �.j´j2 C �2"/

�2
2

hold this time whenever j´j � 0 (recall that za.�/ is continuous). We notice that,
upon defining

(5.41) F.´/ WD zF .j´j/ WD
Z j´j

0

za.s/s ds;

which by (5.36) is a strictly convex integrand, by (5.34) we have that u is a local
minimizer of the functional

(5.42) w 7!
Z
B

� zF .jDwj/ � f w�dx D
Z
B

�F .Dw/ � f w�dx

in the sense of Definition 1.1. By (5.2) we get that

(5.43)
�0


.t2 C �2"/

=2 � �0�

"


� zF .t/ � �.t2 C �2"/

=2 8t � 0:

Assumptions (5.36)3;4 made on a.�/ and (5.43) allow us to verify that assumptions
(8.2) below are satisfied by the integrand in (5.41) (for a suitable choice of param-
eters � and � adopted there). Therefore the regularity results in (8.3) apply to u

and read

(5.44)
Du 2 L1loc.BIRN�n/;

u 2 W
2;2

loc .BIRN /; a.Du/ 2 W
1;2

loc .BIRN�n/:

We start with a technical lemma, exploiting the structure assumption (5.35) (see
also Remark 5.5 below).

LEMMA 5.4. Let aWRN�n ! R
N�n be the vector field considered in (5.34) and

therefore satisfy conditions (5.35) and (5.36). Then, for everyw 2 W
2;2

loc .BIRN /\
W

1;1
loc .BIRN /, the inequality

(5.45)
nX

sD1

�
@a.Dw/

jDwj DDsw;Dsw 
DjDwj
�
� g1;".jDwj/��DjDwj��2
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1003

holds at almost every point x 2 B such that jDw.x/j > T and jDw.x/j 62 N D .
Furthermore, if H 2 L1

loc.B/ and � 2 W
1;1

loc .B/ are two functions, again at almost
every point x 2 B such that jDw.x/j > T and jDw.x/j 62 N D , the inequality

(5.46)

nX
sD1

�
@a.Dw/

jDwj DDsw;Dsw 

�
�2DjDwj CH�D�

��

� 1

2
g1;".jDwj/��DjDwj��2�2 � 1

2
g2;".jDwj/H 2jD�j2

holds provided za.�/ is nondecreasing on �T;1/.

PROOF. Recalling (5.1) and (5.3) we have

(5.47)
�
@a.´/

j´j
��;�
i;j

D
@
´
�

j

a�i

j´j D za.j´j/
j´j �ij ��� C za0.j´j/

´�i ´
�
j

j´j2

for j´j 6D 0, j´j 62 N D . We calculate (recall the notation in (5.3))

(5.48)

nX
sD1

hIN�nDDsw;Dsw 
DjDwji
jDwj

D
nX

i;sD1

NX
�D1

DiDsw
�Dsw

�Di jDwj
jDwj

D
nX

iD1

��Di jDwj��2 D ��DjDwj��2

and

(5.49)

nX
sD1

h.Dw 
Dw/DDsw;Dsw 
DjDwji
jDwj2

D
nX

i;j;sD1

NX
�;�D1

Diw
�Djw

�DjDsw
�Dsw

�Di jDwj
jDwj2

D
nX

i;sD1

NX
�D1

Diw
�Dsw

�DsjDwjDi jDwj
jDwj

D
NX
�D1

jhDw�;DjDwjij2
jDwj :
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1004 L. BECK AND G. MINGIONE

Merging (5.47)–(5.49) yields

(5.50)
nX

sD1

�
@a.Dw/

jDwj DDsw;Dsw 
 �2DjDwj
�

D �2za.jDwj/��DjDwj��2 C �2za0.jDwj/jDwj
NX
�D1

��hDw�;DjDwji��2
jDwj2 :

Proof of (5.45). The assertion in (5.45) follows immediately from (5.50) and the
first inequality in (5.37), whenever za0.jDw.x/j/ is non-negative. Otherwise, when
za0.jDwj/ is negative, we estimate

(5.51)
NX
�D1

��hDw�;DjDwji��2
jDwj2 � ��DjDwj��2

so that, by (5.50), as we are evaluating Dw at those points x where jDw.x/j > T

and jDw.x/j 62 N D , we obtain
nX

sD1

�
@a.Dw/

jDwj DDsw;Dsw 
DjDwj
�

(5.51)� �za.jDwj/C za0.jDwj/jDwj���DjDwj��2
(5.38)1� g1;".jDwj/��DjDwj��2

and (5.45) is completely proved.
Proof of (5.46). Proceeding as for (5.48), we here find

H�

nX
sD1

hIN�nDDsw;Dsw 
D�i
jDwj D H�

nX
i;sD1

NX
�D1

DiDsw
�Dsw

�Di�

jDwj
D H�hDjDwj;D�i

and, as for (5.49), we get

H�

nX
sD1

h.Dw 
Dw/DDsw;Dsw 
D�i
jDwj3

D H�

nX
i;j;sD1

NX
�;�D1

Diw
�Djw

�DjDsw
�Dsw

�Di�

jDwj3

D H�

nX
i;sD1

NX
�D1

Diw
�Dsw

�DsjDwjDi�

jDwj2

D H�

NX
�D1

hDw�;DjDwjihDw�;D�i
jDwj2 :
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1005

Recalling that za0.�/ � 0 on �T;1/, it follows that

(5.52)

nX
sD1

�
@a.Dw/

jDwj DDsw;Dsw 
H�D�

�

D za.jDwj/H�hDjDwj;D�i

C za0.jDwj/jDwjH�

NX
�D1

hDw�;DjDwjihDw�;D�i
jDwj2

� za.jDwj/
�
�1
2
jDjDwjj2�2 � 1

2
H 2jD�j2

�
C za0.jDwj/jDwj

�
"
��

2

2

NX
�D1

��hDw�;DjDwji��2
jDwj2 � 1

2

H 2jD�j2
jDwj2

NX
�D1

jDw�j2
#
:

Adding up (5.52) and (5.50), and using (5.38)1, finally yields (5.46). �

Remark 5.5. Lemma 5.4 continues to hold a.e. in fjDwj 2 N Dg \ fjDwj > T g
provided some conventions are made. Indeed, as jDwj 2 W

1;2
loc .B/, by (5.35) the

standard chain rule applies and gives that a.Dw/ 2 W
1;2

loc .BIRN�n/. Moreover,
for any s 2 f1; : : : ; ng it holds that

Ds�a.Dw/� D @a.Dw/DDsw

D za.jDwj/DDsw C za0.jDwj/DsjDwjDw
(5.53)

while the co-area formula gives that jDjDwjj � 0 a.e. on fjDwj 2 N Dg \
fjDwj > T g. This fact allows us to give meaning to the right-hand side of (5.53)
a.e. on fjDwj 2 N Dg. Specifically, we interpret (5.53) as @a.Dw/DDsw D
za.jDwj/DDsw; that is, we set (recall the notation in (5.3))

(5.54) @a.Dw/ D za.jDwj/IN�n a.e. in fjDwj 2 N Dg:
With such notation, it is now straightforward to note that both (5.45) and (5.46)
also hold a.e. on fjDwj 2 N Dg \ fjDwj > T g. In particular, (5.46) turns out to
be valid independently of whether za.�/ is nondecreasing or not, as the proof works
in this case as if it were za0.jDw.x/j/ � 0.

In the following, with 0 < " < minf1; T g=4, accordingly to what was done in
(4.27), we define

(5.55) GT;".t/ WD
Z maxft;T g

T

g1;".s/s ds:

We then have the following lemma:

LEMMA 5.6. Let u 2 W
1;

loc .BIRN / be a weak solution to (5.34) under the as-
sumptions (5.35) and (5.36) and with n � 2. Let Br.x0/ b B be another ball and

 10970312, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21880 by U

niversity D
egli Studi D

i Parm
a Settore B

iblioteche, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1006 L. BECK AND G. MINGIONE

M be such that kDukL1.Br .x0// � M and T � M . Then, for each k � 0, the
inequality

(5.56)

Z
Br=2.x0/

��D.GT;".jDuj/ � k/C
��2 dx

� c

r2

�
g2;".M/

g1;".M/

�1C# Z
Br .x0/

.GT;".jDuj/ � k/2C dx

C cM 2

Z
Br .x0/\fGT;".jDuj/>kg

jf j2 dx

holds for c � c.n;N; �; ca; /, with # D 0 if za.�/ in (5.35) is a nondecreasing
function on �T;1/ and # D 1 otherwise.

PROOF. We recall that u enjoys the regularity properties in (5.44). We follow
the same strategy as for the proof of Lemma 4.5, and hence we adopt the same
notation used there (in particular, for the localization function �). Throughout the
proof we use the simplified notation G.�/ � GT;".�/, and we keep in mind the
convention fixed in Remark 5.5 to treat those points x where jDu.x/j 2 N D and
jDu.x/j > T . Specifically, we use (5.54) with Dw � Du. As in the scalar case
we have

(5.57)
Di .G.jDuj/ � k/C D g1;".jDuj/

nX
sD1

NX
�D1

DiDsu
�Dsu

�

D g1;".jDuj/jDujDi jDuj and g1;".jDuj/ > 0

for every i 2 f1; : : : ; ng and whenever G.jDuj/ > k. The differentiated form of
the system (5.34), that is,

(5.58)
Z
B

h@a.Du/DDsu;D'idx D �
Z
B

fDs' dx

(as in (4.32)) for s 2 f1; : : : ; ng can be tested with

' � 's WD �2.G.jDuj/ � k/CDsu 2 W
1;2
0 .BIRn/

so that

(5.59)
D's D �2.G.jDuj/ � k/CDDsuC �2Dsu
D.G.jDuj/ � k/C

C 2�.G.jDuj/ � k/CDsu
D�:

Summing over s 2 f1; : : : ; ng accordingly, three terms appear on the left-hand side
of (5.58). For the first one we use (5.36)2 for those points where jDwj 62 N D ,
while for a.e. point where jDwj 2 N D , we use (5.54) with Dw � Du and the
first inequality in (5.37) (the remaining set of points is negligible); summarizing,
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1007

we get the nonnegative contribution

nX
sD1

Z
B

h@a.Du/DDsu;DDsui.G.jDuj/ � k/C�2 dx

� 1

2

Z
B

g1;".jDuj/.G.jDuj/ � k/CjD2uj2�2 dx:

To estimate the remaining two terms, we use Lemma 5.4, taking into account
also the content of Remark 5.5. We first consider the situation when za.�/ is nonde-
creasing (and therefore za0.�/ � 0). In this case we apply (5.46) with the choice

H � 1fjDuj>T g
2.G.jDuj/ � k/C
g1;".jDuj/jDuj 2 L1.Br/

in order to estimate

nX
sD1

Z
B



@a.Du/DDsu;

Dsu

�
�2D.G.jDuj/ � k/C C 2.G.jDuj/ � k/C�D�

��
dx

D
nX

sD1

Z
B\fG.jDuj/>kg

g1;".jDuj/jDuj
�
@a.Du/DDsu;

Dsu

�
�2DjDuj C 2.G.jDuj/ � k/C

g1;".jDuj/jDuj �D�

��
dx

� 1

2

Z
B\fG.jDuj/>kg

�g1;".jDuj/�2jDuj2jDjDujj2�2 dx

� 2

Z
B

g2;".jDuj/
g1;".jDuj/ .G.jDuj/ � k/2CjD�j2 dx

� 1

2

Z
B\fG.jDuj/>kg

��D.G.jDuj/ � k/C
��2�2 dx

� c

r2

�
g2;".M/

g1;".M/

� Z
Br .x0/

.G.jDuj/ � k/2C dx;

with c � c.n;N; �; ca; /; recall (5.57). Notice that in the last estimation we have
also used (5.24). This concludes the estimates for the right-hand side terms in
(5.58) when za.�/ is a nondecreasing function on �T;1/. In the general case, when
no additional information on za.�/ is available, we instead use (5.45) (again keeping
Remark 5.5 in mind) to have only an estimate for the second term arising from
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1008 L. BECK AND G. MINGIONE

(5.59); that is, recalling (5.57), we here find

nX
sD1

Z
h@a.Du/DDsu;Dsu
D.G.jDuj/ � k/Ci�2 dx

D
nX

sD1

Z
B\fG.jDuj/>kg

g1;".jDuj/jDujh@a.Du/DDsu;Dsu
DjDuji�2 dx

�
Z
B\fG.jDuj/>kg

�g1;".jDuj/�2jDuj2��DjDuj��2�2 dx
D
Z
B

��D.G.jDuj/ � k/C
��2�2 dx:

Finally, we treat the third term coming from (5.59). Recalling (5.47) and (5.57),
we use the first identity in (5.52) with the choice H � 2.G.jDuj/ � k/C, getting

nX
sD1

h@a.Du/DDsu;Dsu
H�D�i

D za.jDuj/H�

nX
s;iD1

NX
�D1

DiDsu
�Dsu

�Di�

C za0.jDuj/jDujH�

nX
i;j;sD1

NX
�;�D1

Diu
�Dju

�DjDsu
�Dsu

�Di�

jDuj2

D za.jDuj/
g2;".jDuj/

g2;".jDuj/
g1;".jDuj/ .G.jDuj/ � k/C2�

nX
iD1

Di .G.jDuj/ � k/CDi�

C za0.jDuj/jDuj
g2;".jDuj/

g2;".jDuj/
g1;".jDuj/ .G.jDuj/ � k/C

� 2�
nX

i;sD1

NX
�D1

Ds.G.jDuj/ � k/CDiu
�Dsu

�Di�

jDuj2 :

By the above identity and using (5.37)2 and (5.39), and eventually also the Young
inequality, we get

2

�����
nX

sD1

Z
B

h@a.Du/DDsu; .G.jDuj/ � k/CDsu
D�i� dx
�����

� 1

2

Z
B

��D.G.jDuj/ � k/C
��2�2 dx C c

r2

�
g2;".M/

g1;".M/

�2Z
B

.G.jDuj/ � k/2C dx;
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1009

again with c � c.n;N; �; ca; /. Connecting all the estimates in the displays
coming after (5.59), in any case we haveZ

B

�
g1;".jDuj/.G.jDuj/ � k/CjD2uj2 C ��D.G.jDuj/ � k/C

��2��2 dx
� c

r2

�
g2;".M/

g1;".M/

�1C# Z
B

.G.jDuj/ � k/2C dx C c

nX
sD1

Z
B

jf jjDs'sjdx;

where c � c.n;N; �; ca; /. The last term in the above display can be estimated
exactly as it was done in the scalar Lemma 4.5 (compare with (4.36) and subse-
quent estimates, and use the last point in Lemma 5.3), which then leads to the claim
(5.56). �

We now apply the above results to the setting of Section 5.1, that is, to the case
that za.�/ in (5.35) is such that za.s/ � za".s/C ".s2C�2"/

.�2/=2 and therefore that
the functionals in (5.42) have integrands F � F" as in (5.9) while the functions
za" are defined in (5.8). We recall that Lemma 5.1 gives that t 7! zF 0

".t/=t is
nondecreasing if  � 2 in (1.42). The inequalities deriving from (5.56) with the
choices # D 0 ( � 2) and # D 1 ( < 2) are formally equal to those displayed
in Lemmas 4.5 and 4.6, respectively. Here we are taking �0 D 1 in (1.34) while
g1.�/; g2;".�/ in this setting are replaced by the functions g1;".�/; g2;".�/ in (5.12)–
(5.13). The only difference is that the value of # now depends on the behavior
of t 7! zF 0.t/=t D za.t/ (and therefore on the value of  in (1.42)), and it is
no longer fixed as # D 0 as for Theorem 1.9. Using inequality (5.56) we can
therefore proceed as in Lemma 4.7, thereby getting the quantitative L1-estimate
(4.38) for the gradient. In turn, with (4.38) at our disposal, we can repeat the
proof of Lemma 4.8 and arrive at (4.41), with the only further modification that we
have to use the second inequality in (5.16) in order to get the last inequality in the
estimate (4.40) (with �0 D 1). After having established (4.41) (again with �0 D 1

and using (5.18) to estimate as in (4.42) with  � � C 2), we need to distinguish
between the situation with n � 3 and n D 2. In the case n � 3, we now have to
use (5.25) instead of (4.19), according to whether t 7! zF 0.t/=t is nondecreasing or
not, and therefore if  � 2 or not in (1.42). These precisely yield inequality (4.43)
with � D  � 2 in any case (# D 0; 1), from which we then arrive at (4.39) with
�0 D 1, that is

(5.60)

GT;"

�kDukL1.BR=2/

�
� c

�«
BR

F".Du/dx

� 2
�

C c

«
BR

F".Du/dx

C c
P

fBR
1 . � ; R/ 1

1��1

L1.BR/
C c

P
fBR
1 . � ; R/ 

�1

L1.BR/

C cH".T /
P

fBR
1 . � ; R/

L1.BR/
;
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1010 L. BECK AND G. MINGIONE

for a constant c depending only on n, N , �, ca, cb ,  , � , and �1. If f � 0,
then it is easy to see that the bound in (5.25) can be replaced by the one in (5.26)
(which holds upon assuming (1.45)) and (5.60) follows without the potential terms.
Finally, in the case n D 2, estimate (4.41) implies (4.63) (still with �0 D 1,
�C2 D  , and � D 0; 1, as above depending on the behavior of t 7! zF 0.t/=t ). By
then taking advantage of (5.26) instead of (4.21), fixing an arbitrary � 2 .0; �/ and
choosing � 2 .0; 1=2/ such that (4.65) and (4.66) hold, we then arrive at (4.67),
which now reads as

(5.61)

GT;"

�kDukL1.BR=2/

�
� c

�«
BR

F".Du/dx

� 2
���

C c
P

fBR
1 . � ; R/C��1

L1.BR/

C c
h
H".T /

P
fBR
1 . � ; R/


L1.BR/

i1C�
C c

for a constant c depending only on N , �, ca, cb ,  , � , �1, and � . The a priori
estimates in (5.60) and (5.61) are now needed to conclude with the proof of Theo-
rem 1.13 via the approximation argument from the next section.

5.3 Passage to the Limit and Conclusion
We shall follow the strategy of Section 4.4, to which we shall often refer, but

with several important modifications. We start by fixing a ball B b �, and we de-
fine a decreasing sequence f"mg of positive numbers such that "m ! 0 as m!1
and 0 < "m < minfdist.B; @�/; jBj1=n; 1; T g=4 for all m 2 N; in addition, we de-
fine a sequence of positive numbers f�mg as �m WD �"m (recall the notation of �"
in (5.7)) and a sequence of integrands fLmg as Lm WD L;"m as in (5.10). In what
follows, we denote by u the local minimizer from the statement of Theorem 1.13,
for which (5.17) implies u 2 W

1;
loc .�IRN /. Then, we define the sequence of regu-

larized functions fxumg in W 1; .BIRN / as in (4.48), where the family of mollifiers
f�"g is as in (4.2). The functionals Fm are then defined as

Fm.wIB/ WD
Z
B

�Fm.Dw/ � fmw�dx;

as in (4.49), where this time the family of integrands fFmg is defined through
Fm WD F"m via (5.9), while the functions ffmg are defined as

(5.62) fm WD

8�<
�:
f if jf j � m;

mf

jf j ; if jf j > m:

In this way we have that jfmj � minfjf j; mg, and thus fm 2 L1.�IRN / for
every m 2 N, and, as a consequence of the fact that f 2 Ln.�IRN / by assump-
tion, we also have fm ! f in Ln.�IRN /. We remark that we are in the situation
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1011

of Section 5.2 with zF � zFm (and in particular of (5.41)), N D � f"m; T"mg,
za.�/ � zam.�/, and a.�/ � @Fm.�/, where

Fm.´/ D zFm.j´j/ D
Z j´j

0

zam.s/s ds; zam.s/ WD za"m.s/C "m.s
2 C �2"/

�2
2 :

Therefore, conditions (5.36) are satisfied by (5.15), and the results of Section 5.2
can be applied to local minimizers of the functional Fm. In particular, the local
estimates (5.60) and (5.61) apply. Notice also that using Lemma 5.2 and (5.17)2,
we get

(5.63) sup
m
kFm.Du/kL1.BC"mB1/ C kDxumkL .B/ <1:

Finally, we define the sequence fumg, um 2 xum CW
1;
0 .BIRN /, as that of the

solutions to the Dirichlet problems in (4.50). Also in this case direct methods apply
as all the functionals Fm are lower-semicontinuous and coercive in the Dirichlet
class xumCW

1;
0 .BIRN /. This last fact can be checked by noticing that in (4.52)–

(4.54) one can replace um by any other function w 2 xumCW
1;
0 .BIRN /. Indeed,

by also using (5.17)2 in (4.54) (with um replaced by w) we get

Fm.wIB/
jBj � 1

c

«
B

jDwj dx �
«
B

jfmxumjdx

� jB C "mB1j
jBj

«
BC"mB1

Fm.Du/dx � ckf k


�1

Ln.B/
� cT  � c�

for a constant c still depending only on n, N , �, and  . This easily gives coercivity
of Fm in the Dirichlet class xumCW

1;
0 .BIRN / and therefore yields the existence

of the needed minimizer um for (4.50). Next, proceeding as in (4.52)–(4.54), we
can then arrive at (4.55), which, combined with Lemma 5.2 (use (5.20) with F" �
Fm) and (5.17)2, gives«

B

.jDumj2 C �2m/
=2 dx C

«
B

Fm.Dum/dx

� c

«
BC"mB1

F.Du/dx C ckf k


�1

Ln.B/
C cT  C c� ;

with c � c.n;N; �; za.1/; /. Using this last inequality in (5.60) (again with F" �
Fm, u � um), and proceeding as in the proof of Theorem 1.9, we again arrive at
(4.56), where on the right-hand side Fm.Du/ is replaced by F.Du/ and ST by T ,
while on the left-hand side we find GT;".�/ as defined in (5.55). By a standard
covering argument, we then find for every � < 1 a constant c� , also depending on
� but independent of m, such that kDumkL1.�B/ � c� for every index m 2 N.
Therefore, we can proceed by extracting a converging subsequence such that the
convergences in (4.57) hold, with limit function xu 2 u C W

1;
0 .BIRN /, which,

by lower semicontinuity, also satisfies kDxukL1.�B/ � c� . Accordingly, using
Lemma 5.2, and in particular (5.21), we have that for every � 2 .0; 1/, there exists
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1012 L. BECK AND G. MINGIONE

Sm 2 N, depending on c� and therefore ultimately on � , such that the following
holds:

(5.64)
j´j � c� and xm � m0 � m

H) jFm.´/ � Fm0
.´/j � c"m0

.c� C �C 1/ C o.m0/C o.m/;

where o.m0/; o.m/ ! 0 for m0; m ! 1, respectively, and the constant c is
independent of m;m0. Using the definitions of xum and fm in (4.48) and (5.62),
respectively, and recalling (4.57)2, we infer that

(5.65) fmum ! f xu and fmxum ! f u strongly in L1.B/:

As every integrand Fm0
is convex, with m0 being fixed, by lower semicontinuity

we have

(5.66)
Z
�B

�Fm0
.Dxu/ � f xu�dx � lim inf

m!1

Z
�B

�Fm0
.Dum/ � fmum�dx:

On the other hand, with m � m0 � xm, employing, in order, (5.64), the minimality
of um, and (4.53), we have thatZ

�B

�Fm0
.Dum/ � fmum�dx

�
Z
�B

�Fm.Dum/ � fmum�dx C c"m0
.c� C �C 1/ C o.m0/C o.m/

�
Z
B

�Fm.Dxum/ � fmxum�dx C
Z
Bn�B

fmum dx

C c"m0
.c� C �C 1/ C o.m0/C o.m/

�
Z
BC"mB1

Fm.Du/dx �
Z
B

fmxum dx C
Z
Bn�B

fmum dx

C c"m0
.c� C �C 1/ C o.m0/C o.m/:

Using (5.63) and (5.65), the above inequality implies

lim sup
m0!1

lim inf
m!1

Z
�B

�Fm0
.Dum/ � fmum�dx

� lim sup
m0!1

lim sup
m!1

Z
�B

�Fm0
.Dum/ � fmum�dx � F .uIB/C

Z
Bn�B

f xudx:

Notice that here we have used (5.20) and Lebesgue’s dominated convergence
theorem. Connecting the last display with (5.66), recalling that Dxu is bounded on
�B , and taking advantage of (5.11)3, we arrive at F .xuI �B/ � F .uIB/: Letting
� ! 1, we finally conclude that F .xuIB/ � F .uIB/. We have therefore obtained
(4.59) again. From this point on, recalling that now (4.56) holds in this case too
(with Fm.Du/ replaced by F.Du/ and ST by T , � �  � 2, and �0 D 1), the rest
of the proof, and in particular the a priori estimates for the vectorial case, that is,
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1013

(1.35) for n � 3 and (1.38) for n D 2, follows as in Section 4.4 in the setting of
Theorem 1.9 and as in Section 4.5 in the setting of Theorem 1.11, respectively.

Let us finally comment on the case f � 0. Here, exactly as in the scalar case,
the second term in estimate (4.41) does not appear. Hence, only assumption (1.45)
(which implies the corresponding version (5.26) for g2;"=g1;") instead of (1.44)
is needed to prove a local quantitative L1-estimate for the gradients Dum and to
then pass to the limit.

Remark 5.7. A careful analysis of the proof of Theorem 1.13 reveals that the con-
stant c appearing in estimate (1.35) depends on � in a such a way that c ! 1
when � ! 0; see in particular (5.17) in Lemma 5.1.

6 Applications and Theorems 1.2–1.8 and 1.16
Here we show how to obtain Theorems 1.2–1.8 and 1.16 from Theorems 1.9,

1.11, and 1.13.

6.1 Proof of Theorems 1.2–1.5
We here prove all results on minimizers of functionals with .p; q/-growth by

showing the applicability of Theorems 1.9 and 1.11 in the scalar setting and of
Theorem 1.13 in the vectorial setting. Since (1.12) is assumed throughout Theo-
rems 1.2–1.5, in what follows, we shall permanently work with the choice

(6.1)

(
g1.t/ D �.t2 C �2/.p�2/=2;
g2.t/ D �.t2 C �2/.q�2/=2 C�.t2 C �2/.p�2/=2;

for t 2 .0;1/. In this way, since the functions t 7! g2.t/=g1.t/ and t 7! g1.t/t

are continuous and nondecreasing on .0;1/, assumption (1.31) is fulfilled with
constant ca D 1 for any T > 0, while the assumptions in (1.32) are automatically
satisfied. Moreover, we shall also fix the parameter � D p � 2: We start with the
proof of Theorem 1.2 as a consequence of Theorem 1.9; here it is n > 2. We fix
the parameters �0, �1, � as

(6.2) �0 D 1; �1 D 4C .n � 2/.q � p/

4p
; and � D 2 � n

�
q

p
� 1

�
:

We next determine the constants �; ca; cb in order to meet the requirements of
Theorems 1.9; all of the following computations will hold for any choice of T > 0,
and we shall always consider T � 1. We note that (1.33)1 is true for our choice
� D p � 2 for any T > 0. Moreover, with

p

Z t

T

g1.s/s ds D p�

Z t

T

.s2C�2/.p�2/=2s ds D �.t2C�2/p=2��.T 2C�2/p=2

for all t � T > 0, also (1.33)2 is verified, due to (1.12)1.
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1014 L. BECK AND G. MINGIONE

In order to deal with the final assumption (1.34), let us first notice that q � p

implies � � 2 D 2�0, while we also have the implications

q

p
< 1C 2

n
H) � > 0 and

q

p
< 1C 4.p � 1/

p.n � 2/
H) �1 < 1:

Thus, the choices of � and �1 in (6.2) are admissible, according to assumption
(1.15). Next we observe that, for all t � T > 0, the calculation above yields, with
.q � p/=p D .2�0 � �/=n � 1 by the choice of the exponent � ,

(6.3)

g2.t/

g1.t/
D �

�
.t2 C �2/.q�p/=2 C �

�

� �

�
�.t2 C �2/p=2 � .T 2 C �2/p=2�

q�p
p

C �

�
.T 2 C �2/.q�p/=2 C �

�

� p
q�p
p

�

�q=p

�Z t

T

g1.s/s ds

� 2�0��

n

C �

�
.T 2 C �2/.q�p/=2 C �

�
:

Similarly, we find for all t � T > 0, with 4C.n�2/.q�p/
.n�2/p D 4�1

n�2 � 5 by the choice
of the exponent �1,

g2.t/

g1.t/
� 25

�

�
.t2 C �2/�

2
n�2 �.t2 C �2/p=2 � .T 2 C �2/p=2�

4C.n�2/.q�p/
.n�2/p

C 25
�

�
.T 2 C �2/.q�p/=2 C �

�

� .2p/5
�

�6

�
1

t1=�1

Z t

T

g1.s/s ds

� 4�1
n�2

C .1C 25C.q�p/=2/
�

�
:

Therefore, the assumption (1.34) is verified with the choice of the constants

(6.4) cb D max
�
.2p/5

�

�6
;
�
1C 25C.q�p/=2

��
�

�
:

In conclusion, we have proved that all assumptions (1.31)–(1.34) are satisfied
in the setting of Theorem 1.2. We can thus apply Theorem 1.9, getting estimate
(1.35), that with � D p � 2 and the values displayed in (6.2) becomes

max
��kDuk2L1.B=2/ C �2

�p=2 � .T 2 C �2/p=2; 0
	

� c

�«
B

F.Du/dx C kf k
p

p�1

Ln.B/
C T p C �p

�

C c

�«
B

F.Du/dx C kf k
p

p�1

Ln.B/
C T p C �p

� 2p
.nC2/p�nq

C ckf k
p

p�1

L.n;1/.B/
C ckf k

4p
4.p�1/�.n�2/.q�p/

L.n;1/.B/
C c.T C �/kf kL.n;1/.B/:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1015

By (6.4) this holds for c � c.n; p; �;�/, independently of T 2 .0; 1�. Letting
T ! 0, noting F.´/ � ��p, and finally using the Young inequality with conjugate
exponents .p; p=.p�1// to estimate the last term, we get the assertion (1.16), also
using the obvious inequality kf kLn . kf kL.n;1/.

Finally, we comment on the assertion that condition (1.15) can be replaced by
the weaker one (1.14) when p � 2 � 4=.nC 2/ or when f � 0. In the first case
p � 2�4=.nC2/, this is trivial since here we have 2=n � 4.p�1/=.p.n�2//. In
the second case f � 0, one easily checks from the above computations that (1.36)
is ensured by (1.14) for the choice of the constant cb D 4q�pC1.�=�/q=p, and the
conclusion then follows as above, after applying Theorem 1.9 in the version with
f � 0.

The proofs of Theorems 1.3 and 1.5 follow from Theorems 1.13 and 1.11 in a
similar fashion, and we therefore only comment on the suitable choices and neces-
sary modifications. The remaining details are left to the interested reader.

We continue with the proof of Theorem 1.3, which is found as a consequence of
Theorem 1.13 (for n � 2). Here the conditions in (1.42) are satisfied by assump-
tions (1.20) and (1.12) with  D p. As a main difference, one needs to replace the
definition of the parameters �1 and � in (6.2) by

(6.5) �1 D 4C .1C #/.n � 2/.q � p/

4p
and � D 2 � .1C #/

n.q � p/

p
;

where once again we have set # D 0 if p D  � 2 and # D 1 otherwise. With
these choices one can follow exactly the computations from above to show that
assumption (1.44) is satisfied. Furthermore, we observe that the parameters in (6.5)
are indeed admissible: the assumptions �1 � 1=p D 1= and � � 2 are trivially
satisfied in view of q � p, while �1 < 1 and � > 0 follow precisely from the
assumptions (1.15) and (1.19), for the cases # D 0 and # D 1, respectively. Thus,
all assumptions of Theorem 1.13 are satisfied and the local boundedness of Du

follows (with an estimate coming from (1.35) with �0 D 1 and T D 0).
Next, we comment on how to derive Theorem 1.4 from Theorem 1.11; here

we have n D 2. We may fix the parameters �0 and � as in (6.2), which again
ensures that the assumptions in (1.33) are satisfied. Moreover, the computation in
(6.3) shows that also (1.37) holds true. Concerning the admissibility of � , we note
that � > 0 is implied by the assumption q < 2p in (1.22), and � � �0 D 1

can be guaranteed by possibly taking q larger such that q � 3p=2 is satisfied.
(Note that this does not change the validity of the other conditions, for the reason
that if the assumptions (1.12) are satisfied for some q, then the same assumptions
are satisfied for larger values of q.) Thus, all assumptions of Theorem 1.11 are
satisfied and the local boundedness of Du follows (with an estimate coming from
(1.38) with T D 0, which is at this point similar to the one in (1.16)).

Finally, we deduce Theorem 1.5 from Theorem 1.13 (for n D 2). Again, con-
dition (1.42) is satisfied by assumption, while (1.45) is true when choosing � as in
(6.5) (distinguishing by the value of # once again the settings when p D  � 2 or
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1016 L. BECK AND G. MINGIONE

not). The choice of � is once again admissible, since � > 0 is true by the assump-
tions (1.22) and (1.23) for the cases # D 0 and # D 1, respectively, and � � 1 can
be guaranteed by possibly choosing q larger such that q � .1C 1=.2.1C #///p.
Thus, all assumptions of Theorem 1.13 for n D 2 are satisfied and the local bound-
edness of Du follows (with an estimate coming from (1.38) and T D 0).

6.2 Proof of Theorem 1.7
We deduce Theorem 1.7 on minimizers of functionals with exponential growth

from Theorem 1.13 by making a suitable choice of the structure functions g1.�/
and g2.�/ and of the parameters � , �1, ca, cb , �, �, # , and  and for T D 1. We
consider n > 2; the two-dimensional case n D 2 can be obtained in a similar way
from Theorem 1.11. The functions g1.�/ and g2.�/, defined below, provide lower
and upper bounds on the second-order derivative of the integrands ek.�/, which are
given by

(6.6) @2ek.j´j/ D e00k.j´j/
´
 ´

j´j2 C e0k.j´j/
�
IN�n
j´j � ´
 ´

j´j3
�

for every ´ 2 R
N�n such that j´j 6D 0 (again recall the notation in (5.3)). By a

straightforward computation, (6.6) gives

(6.7)
��@2ek.j´j/

��2 D �
e00k.j´j/

�2 C �e0
k
.j´j/
j´j

�2
.Nn � 1/; j´j 6D 0:

In order to evaluate and bound the expressions in the last two displays, we first
infer by induction that

e00.t/ D p0t
p0�1e0.t/;

e0k.t/ D pkt
p0�1ek.t/

k�1Y
jD0

pj �ej .t/�pjC1 for k � 1;
(6.8)

holds for every t 2 .0;1/, and we note that e0
k
.�/ is always positive. By differen-

tiating the identities in (6.8), we obtain, for k � 2, that

(6.9)

e00k.t/ D tp0�1e0k.t/

(
pk

k�1Y
jD0

pj �ej .t/�pjC1

C
k�2X
sD0

psC2psC1
sY

jD0
pj �ej .t/�pjC1

)

C tp0�1e0k.t/
�
p1p0 C p0 � 1

tp0

�
;

 10970312, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.21880 by U

niversity D
egli Studi D

i Parm
a Settore B

iblioteche, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1017

while, in the remaining cases k D 1; 0, we instead have

(6.10)

8��<
��:

e001.t/ D tp0�1e01.t/
�
p1p0�e0.t/�p1 C p1p0 C p0 � 1

tp0

�
;

e000.t/ D tp0�1e00.t/
�
p0 C p0 � 1

tp0

�
;

respectively. This in turn implies that both matrices on the right-hand side of (6.6)
are positive definite (recall that we are assuming that p0 > 1), and we have that

(6.11) h@2ek.j´j/�; �i � min
�

e00k.j´j/;
e0
k
.j´j/
j´j

�
j�j2

holds for every choice of ´; � 2 RN�n with ´ 6D 0. By (6.9)–(6.10), and essentially
using only the second-to-last terms appearing in the curly brackets, for k � 1 we
find

(6.12) t � 1 H) e00k.t/ � p1p0
e0
k
.t/

t
and e000.t/ � p0

e00.t/
t

:

We now consider the situation where k � 1 and find upper and lower bounds
for the eigenvalues of the matrix @2ek using (6.11). We next define g1.�/ � g1;k.�/
and g2.�/ � g2;k.�/ as

(6.13)

8�����<
�����:

g1.t/ WD 1ft�1g minfp1; 1g
e0
k
.t/

t
;

g2.t/ WD 1ft�1g10 ypkC1k

�p
k C 2C

p
Nn

�
tp0�1e0k.t/

�Qk�1
jD0 ej .t/�pjC1 ;

for every t > 0 (recall that p0 > 1), respectively, where we have set ypk
WD 1C max0�j�kfp0; : : : ; pkg. The definition of the lower-bound function g1.�/
is justified by the first inequality in (6.12), while the definition of the upper-bound
function g2.�/ follows by taking into account (6.9)–(6.10)1. In the case k D 0, by
the second inequality in (6.12) and by (6.10)2, we set analogously

(6.14)

8�<
�:
g1.t/ WD 1ft�1g

e00.t/
t

;

g2.t/ WD 1ft�1g10p0
�
2C

p
Nn

�
tp0�1e00.t/:

Now, let us verify that with the above settings all assumptions of Theorem 1.13
are satisfied for suitable choices of the parameters, in particular, for any � 2 .0; 2/,
 D p0, � D 0, �1 2 �1=p0; 1/ D �1=; 1/, # D 1, � D minfp1; 1gminfp0p1 � � �
pk; 1g, and finally T D 1. We shall treat the case k � 1; the case k D 0 can be
treated in a similar way, also by recalling (6.14). We first observe that the functions
t 7! g2.t/=g1.t/ and t 7! g1.t/t are continuous and increasing on �1;1/, which
shows that assumption (1.31) is fulfilled with constant ca D 1. Next, note that, by
(6.8) and (6.11)–(6.13), the growth and ellipticity assumptions (1.32) are satisfied.
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1018 L. BECK AND G. MINGIONE

In order to verify (1.42) with � D 0 and  D p0, it is sufficient to take into
account that za.t/ � e0

k
.t/=t and the identity in (6.8). We finally check (1.44). For

this, noting that the first identity in (6.13) implies

(6.15)
Z t

1

g1.s/s ds D minfp1; 1g�ek.t/ � ek.1/�

for every k � 1 and t � 1. Then, recalling the definitions in (6.13) and (1.44)
follows with any � 2 .0; 2/ and �1 2 �1=p0; 1/ provided that the constant cb is
chosen large enough as a function of k; p0; p1; : : : ; pk; �; �1. With these choices
all the assumptions of Theorem 1.13 are satisfied. We therefore conclude with the
local Lipschitz continuity of minimizers of the functional in (1.26) whenever we
have f 2 L.n; 1/.�IRN / for n > 2 and, in an analogous way, whenever we have
f 2 L2(Log L)�.�IRN / for � > 2 for n D 2.

Finally, in order to deal with the case f � 0 and prove estimate (1.27), we apply
Theorem 1.16. Assumption (1.49) is obviously satisfied thanks to (6.15). By the
definition in (1.25) it follows that, for every integer k � 0,(

e�1
kC1.t/ WD e�1

k
�.log t /1=pkC1 �;

e�10 .t/ WD .log t /1=p0 ;

with every e�1
k
.�/, which is defined on �ek.0/;1/. It is therefore easy to see

that each function e�1
k
.�/ satisfies (1.50) for every � > 1 and suitable constants

c� ; d� > 1 depending on �; k; p0; p1; : : : ; pk . We can apply estimate (1.51),
which in turn yields (1.27), and the proof is complete.

6.3 Proof of Theorem 1.8
Theorem 1.8 concerning the anisotropic functionals Ea can be obtained as a

corollary of Theorem 1.9, and again we restrict to the case n > 2 for brevity. The
proof is similar to that of Theorem 1.7. This time, again with T D 1, it is sufficient
to choose(

g1.t/ WD 1ft�1g minf.A0p/
2; 1gtp�2 exp.A0t

p/;

g2.t/ WD 1ft�1g10�p.1C An/.nC 1/�2 t2p�2 exp.Ant
p/:

The functions t 7! g2.t/=g1.t/ and t 7! g1.t/t are continuous and nondecreas-
ing on �1;1/, and thus (1.31) holds with ca D 1, and (1.32) is satisfied. ByR t
1 g1.s/s ds � exp.A0t

p/ � exp.A0/ for t � 1, and, as for Theorem 1.7, we
check that (1.34) and (1.36) are satisfied provided (1.30) holds, �0 D 1, � is suf-
ficiently close to 0, and �1 close to 1 for a suitable choice of cb depending on
n, p, A0, An, �1, and � . Similarly, (1.33) holds for � D p � 2, � D 0, and
� D minf.A0p/

2; 1g. Theorem 1.9 applies, thereby yielding the local Lipschitz
continuity of minimizers of Ea.
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1019

6.4 Proof of Theorem 1.16
The proof builds on an application of Theorem 1.13 and the arguments devel-

oped for its proof, where we take zF .j´j/ � A.j´j/; needless to say, we can as-
sume that A.0/ D 0. Notice that by (5.2) and (5.4) it follows that t 7! A.t/ is a
nondecreasing function, which is increasing and therefore invertible on �T;1/.
By the extension specified in the statement, i.e., A�1.t/ � T for every t 2
�0; A.T /�, the function t 7! A�1.t/ is also nondecreasing (and actually increas-
ing on �A.T /;1/).

We start by recalling a few immediate consequences of (1.50). First, by a sim-
ple iteration argument we see that the validity of (1.50), for some couple .�; c�/
such that �; c� > 1 actually implies that, for every x� > 1, there exists constants
cx� ; dx� > 1 such that

(6.16) A�1.t x�/ � cx�A�1.t/C dx� 8t � A.T /:

(Indeed, fix x� and take t � A.T /. Let us first consider the case t > 1; if x� � � ,
then, obviously A�1.t x�/ � A�1.t�/ � c�A

�1.t/C d� . Otherwise, if x� > � , let
m � m.x�; �/ � 1 be the smallest integer such that �m � x�; then, iterating (1.50)
we find

A�1.t x�/ � A�1.t�
m

/h � cm� A
�1.t/C d�

m�1X
kD0

ck� DW cx�A�1.t/C dx� ;

that is, the claim (6.16). Next, if t � 1 there is nothing to prove as A�1.t x�/ �
A�1.t/ � cx�A�1.t/C dx� ). Moreover, we have the estimates

(6.17)

8��<
��:
A�1.aC b/ � A�1.2a/C A�1.2b/ 8a; b � 0;

A�1.ab/ � c2
�
A�1.a/C A�1.b/

� 8a; b � 0

such that maxfa; bg � A.T /:

(Indeed, (6.17)1 just follows from the fact that t 7! A�1.t/ is nondecreasing. For
(6.17)2 note that we can assume a; b � 1, since otherwise we can simply use the
fact that t 7! A�1.t/ is nondecreasing. Also, recalling that maxfa; bg � A.T /, we
can confine ourselves to treat the case a � A.T / � b � 1; thus A�1.a/ � T D
A�1.b/, so that the others will follow similarly. In that case, using (6.16) we have
A�1.ab/ � A�1.a2/ � c2A

�1.a/C d2). To proceed, we observe that the current
assumptions allow Theorem 1.13 to be applied with f � 0 and zF � A. We can
assume that kDukL1.B=2/ > T ; otherwise (1.51) follows immediately, provided
c is suitably chosen. Then, combining (1.35) (used with �0 D 1) and (1.49) we
get, after a few simple manipulations

A.kDukL1.B=2// � c

�
1C A.T /C T  C

«
B

A.jDuj/dx
�2=�

C�;

where the constant c depends only on n, N , �, �, ca, cb ,  , � , and A0.1/; we
may of course assume that c � A.T /. Applying A�1 to both sides of the previous
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1020 L. BECK AND G. MINGIONE

inequality, and using (6.16) and (6.17) repeatedly, we arrive at (1.51) with the
asserted dependence of the constant c.

6.5 Proof of Theorem 1.15
The natural growth estimates under a 42-condition stated in Theorem 1.15 are

deduced as a consequence of Theorem 1.13 applied with F.´/ � A.j´j/. To this
end, we will work with lower- and upper-bound functions

(6.18) g1.t/ D .ia C 1/za.t/ and g2.t/ D .sa C 1/za.t/
and now verify the assumptions of Theorem 1.13 by relying on the uniform ellip-
ticity assumption (1.3). First, notice that (1.3) implies that za.1/t iaC1 � za.t/t �
za.1/tsaC1 for t > 0, and therefore A 2 C 1

loc�0;1/ \ C 2
loc.0;1/. Needless to say,

we have that g1.t/ > 0 for t > 0. Obviously, t 7! g2.t/=g1.t/ is constant, so in
particular it is nondecreasing, while t 7! g1.t/t is increasing on .0;1/ because
of (1.3), which yields (1.31) for every T > 0. Next, (1.3) is used once again to
see, in view of (5.1), that (1.32) holds for every T > 0, and that condition (1.42)
is satisfied with � D 0,  D ia C 2 > 1, and � D .ia C 1/za.T /=T ia . We finally
verify (1.44) for cb D .sa C 1/=.ia C 1/ and � D 2, �1 D 1=.ia C 2/ (these
parameters provide the best estimates; the value of # is irrelevant here and we can
formally take # D 1). Thus, Theorem 1.13 applies and yields the estimate (1.35)
with �0 D 1 and � D ia for any choice of T 2 .0; 1� and a constant depending on
the quantity za.T /=T ia ; eventually applying Young’s inequality, we get

(6.19) A.kDukL1.B=2// � c

«
B

A.jDuj/dx C ckf k
iaC2
iaC1

L.n;1/.B/
C cT iaC2:

The constant here depends on n, N , ia, sa, and za.T /=T ia .
In order to conclude with the desired estimate (1.46), we choose T D 1 and

employ a few elementary arguments. We need to prove that for every c1 � 1, it
holds that

(6.20) A�1.c1s/ � c1A
�1.s/ 8s > 0:

For this, notice that the lower bound in (1.3) implies that the function s 7! za.s/s is
nondecreasing; therefore, changing variables, we have thatZ t

0

za.s/s ds D
Z c1t

0

za
�
s

c1

�
s

c1

ds

c1
� 1

c1

Z c1t

0

za.s/s ds:

By the definition in (1.5) we have therefore proved that c1A.t/ � A.c1t /, for
every t > 0, which in turn implies (6.20). Finally, applying A�1.�/ to both sides
of (6.19) and combining (6.20) with (6.17)1 (which is still valid in this case as
A.�/ is nondecreasing), we easily get the first claim (1.46) of the theorem. We
then consider the second claim, asserting that if (1.47) is in force, then the estimate
(1.46) holds with c2 D 0. To this end, let us choose a sequence fTkg in .0; 1�

such that Tk ! 0 and za.Tk/=T ia
k

! i2. We then apply (6.19) with T � Tk
for every k 2 N, getting a corresponding estimate. By assumption (1.47), the
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1021

constants involved now depend also on i2 but are independent of k. Therefore,
letting k ! 1, we arrive at (6.19) without the final T term, and the rest of the
proof is as in the case where (1.47) is not in force. This completes the proof of
Theorem 1.15.

6.6 Comparisons with Marcellini’s Theory
Following Remark 1.14, we briefly compare our assumptions with those in Mar-

cellini’s seminal papers [46, 47] when f � 0. The overall outcome is that our
assumptions are not weaker than those in [46] for the vectorial case and for func-
tionals with superquadratic growth, while they are essentially equivalent to those
in [47] for the scalar one. Let us remark that the assumptions in [48] remarkably
capture simultaneously fast-growth conditions as well as linear-type growth condi-
tions. These are not considered here, mainly due to the presence of the right-hand
side f , but they will be the object of future investigation.

Let us now compare the results with the vectorial case, thereby considering The-
orem 1.13. For simplicity we shall consider the case that t 7! zF 0.t/=t is nonde-
creasing (implied by  � 2 and in turn implying that zF 0.t/=t � zF 00.t/). In this
case Theorem 1.13 involves the following bound:

(6.21)
g2.t/

g1.t/
.

�Z t

0

g1.s/s ds

� 2��
n

C 1

for large values of t and some � < 2 (we are formally taking T � 0 as here
only the behavior for large values of the gradient variable matters). By looking
at (5.1)–(5.4), and recalling the definitions in (1.41), with our notation we have
g1.t/ � zF 0.t/=t and g2.t/ � zF 0.t/=tC zF 00.t/, so that (6.21) amounts to requiring
that

(6.22)
zF 00.t/t
zF 0.t/

. � zF .t/� 2��n C 1 DW R2.t/:

On the other hand, the main assumption in [46] (see [46, lemma 2.3]) prescribes
that

(6.23) lim
t!1

zF 00.t/t1C�

� zF 0.t/�1C�
<1 8� > 0;

and in particular that this limit exists. In turn, the latter assumption implies that

(6.24)
zF 00.t/t
zF 0.t/

.

� zF 0.t/
t

��
DW R1.t/ 8� > 0;

holds for large values of t ; see [46, 48]. The right-hand side of (6.22) cannot be
controlled by the one in (6.24). This can be easily seen by observing that positive
solutions to the differential inequality t � zF .t/�� . zF 0.t/ for 1 < � � .2��/=.n�/
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1022 L. BECK AND G. MINGIONE

exhibit a finite-time blowup. We can conclude that in the case of vectorial func-
tionals such that t 7! zF 0.t/=t is nondecreasing, our assumptions are not cov-
ered by those in [46]. Moreover, notice that comparing (6.22) and (6.24) in the
case of the exponential-type functionals in (1.25)–(1.26) leads us to the expres-
sions for zF 0.t/ and zF 00.t/ computed in (6.8) and (6.9), respectively. We then get
�ek.t/�.2=n/�" . R2.t/=R1.t/ for every " > 0 and for t suitably large, depending
on � , n, N , p0, : : : , pk , and ". Therefore, the right-hand side in (6.22) is asymp-
totically much larger than the right-hand side in (6.24) whenever � 2 .0; 2/ for all
� < .2� �/=n. So, in the case of fast-growth conditions, assumption (6.21) seems
to be weaker than (6.23) from [46], although a direct comparison is difficult.

We then switch to the case of abstract .p; q/-growth conditions, that is, when
the only available information is in (1.12). As noted in Section 1, the assumptions
considered here recover in the scalar case the bounds in [45]. On the other hand,
notice that conditions of the type (6.24) and in [46, 48] do not apply to this case
unless additional structure assumptions are satisfied (consider, for instance, the
oscillating integrand in [48, (2.10)], where in fact no bound is required on q=p).
Indeed, (6.24) would prescribe in the general .p; q/-growth case that q=p D 1,
thereby yielding no result. We can conclude that the assumptions considered here
provide a unified approach to both exponential and .p; q/-growth conditions in the
vectorial case.

We finally turn to the scalar case, where our main reference is [47]. A direct
comparison in this case is not straightforward, as Marcellini’s assumptions involve
a wide set of parameters. Anyway, an optimal choice of such parameters, as de-
tailed in [47, remark 2.1], determines as assumptions g01.t/t . g1.t/ for every
t > 0, and g2.j´j/j´j2 . minfg1.j´j/j´j2; F .´/g1C.2��/=n C 1 for every ´ 2 Rn

and some � 2 .0; 2�. Notice that in [47], we have that g1.�/ and g2.�/ are de-
fined on �0;1/. The above assumption on g1.�/ gives g1.t/t2 .

R t
0 g1.s/s ds, and

therefore the assumptions in [46] amount to requiring

g2.j´j/
g1.j´j/

. min
�Z j´j

0

g1.s/s ds; F.´/

� 2��
n

C 1 for some � 2 .0; 2�:

These are essentially equivalent to the assumptions (1.34) of Theorem 1.9, when
�0 D 1 and taking (1.33)2 into account. Notice that here the comparison is com-
plete and is not only restricted to the case of functionals with superquadratic growth
as done above in the vectorial case. Notice also that we are assuming here the ad-
ditional superlinear growth in (1.33)1. This is avoidable at several stages and is
linked to the presence of the right-hand side f in Theorem 1.9.

7 General Equations and Theorem 1.17
For the proof of Theorem 1.17 we shall confine ourselves to the case n > 2.

The proof in the case n D 2 can be obtained easily as the proof in the higher-
dimensional case and looking at the proof of Theorem 1.11. As usual, we assume
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1023

that f 2 L.n; 1/.RnIRN / by letting f � 0 outside �. We start the proof by
modifying an approximation scheme that appears in various forms in the literature.
For instance, we refer to [26, 45]. For any " 2 .0; 1�, we denote �" WD � C " as
in (2.1), and recalling (4.2), we define the mollified vector field xa"WRn ! R

n and
the truncated functions f" as follows:

(7.1)

8<
:
xa".´/ WD .a � �"/.´/ D

Z
B1

a.´C "y/�.y/dy;

f".x/ WD minfmaxff .x/;�1="g; 1="g:
Thanks to (1.53), and using calculations similar to those in [26, sec. 3], we get that
xa"WRn ! R

n satisfies the following conditions:

(7.2)

(jxa".´/j CH".j´j/j@xa".´/j � c�H".j´j/�q�1 C c�H".j´j/�p�1;
�H".j´j/�p�2j�j2 � ch@xa".´/�; �i;

for a constant c � c.n; p; q; �;�/ that is independent of " 2 .0; 1�; recall the
notation of H" in (2.1). Finally, we define the q-growth vector field a"WRn ! R

n

as a".´/ WD xa".´/C "�H".j´j/�q�2´ for every ´ 2 Rn. The newly defined family
fa"g of vector fields is such that

(7.3) a".�/! a.�/ uniformly on compact subsets of Rn as "! 0:

Moreover, by (7.2) it follows that for every " 2 .0; 1� there exists a constant c" � 1

such that the following growth and ellipticity conditions are satisfied:

(7.4)

8�����<
�����:

ja".´/j CH".j´j/j@a".´/j � c�H".j´j/�q�1 C c�H".j´j/�p�1;
�H".j´j/�p�2j�j2 C "�H".j´j/�q�2j�j2 � ch@a".´/�; �i;
ja".´/j CH".j´j/j@a".´/j � c"�H".j´j/�q�1;
�H".j´j/�q�2j�j2 � c"h@a".´/�; �i;

whenever ´; � 2 R
n, for another constant c � c.n; p; q; �;�/ � 1, which is this

time independent of ". The lower bound in (7.4)2 implies that for every choice of
´1; ´2 2 Rn the following monotonicity inequality holds:

(7.5)

.j´1j2 C j´2j2 C �2"/
.p�2/=2j´1 � ´2j2

C ".j´1j2 C j´2j2 C �2"/
.q�2/=2j´1 � ´2j2

� cha".´1/ � a".´2/; ´1 � ´2i;
for a constant c � c.n; p; q; �;�/ that is independent of " 2 .0; 1�. In turn,
using this last inequality and recalling again the notation in (2.1), the next esti-
mate can now be obtained via minor variants of the arguments developed for [45,
lemma 4.4]:

(7.6) �H".j´1j/�p C "�H".j´1j/�q � c
�j´2j2 C 1

�p.q�1/
2.p�1/ C cha".´1/; ´1 � ´2i:
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1024 L. BECK AND G. MINGIONE

This holds uniformly in " 2 .0; 1� and for every choice of ´1; ´2 2 R
n, where

c � c.n; p; q; �;�/. We now define u" 2 u0 CW
1;q
0 .�/ as the (unique) solution

to the regularized Dirichlet problem

(7.7)

(
� div a".Du"/ D f" in �;

u � u0 on @�:

Existence follows by standard monotonicity methods in the Dirichlet class u0 C
W

1;q
0 .�/. Notice also that p.q � 1/=.p � 1/ � q as p � q, so that, in particular,

it is u0 2 W 1;q.�/. We then have the following:

LEMMA 7.1. Let u" 2 W 1;q.�/ be the solution to the Dirichlet problem in (7.7);
then the inequality

(7.8)
Z
�

f�H".Du"/�
p C "�H".Du"/�

qgdx � cDp

holds for a constant c depending only on n, p, q, �, and �, uniformly with respect
to " 2 .0; 1�. We recall that D has been defined in (1.55).

PROOF. Using (7.6) and the fact that u" solves (7.7), we get

(7.9)

Z
�

f�H".Du"/�
p C "�H".Du"/�

qgdx

� c

Z
�

�jDu0j2 C 1
�p.q�1/
2.p�1/ dx C zc

Z
�

jf".u" � u0/jdx

for c; zc � c; zc.n; p; q; �;�/, and it remains to estimate the last integral in the right-
hand side of the above inequality. For this we distinguish two cases. If p < n, we
set p� WD np=.n � p/, so that .p�/0 � n. Then, using the first Sobolev inequality
and then the Hölder inequality, and recalling the definition of f" in (7.1), we haveZ

�

jf".u" � u0/jdx � ku" � u0kLp� .�/kf"kL.p�/0 .�/

� ckDu" �Du0kLp.�/kf kL.p�/0 .�/

� cj�jp�1p kDu" �Du0kLp.�/kf kLn.�/:

Otherwise, if p � n, we similarly findZ
�

jf".u" � u0/jdx � ku" � u0k
L

n
n�1 .�/

kf"kLn.�/

� cj�j 1n kDu" �Du0k
L

n
n�1 .�/

kf kLn.�/

� cj�jp�1p kDu" �Du0kLp.�/kf kLn.�/:
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1025

Taking into account the content of the last two displays and using the Young in-
equality, we get

zc
Z
�

jf".u" � u0/jdx

� 1

2

Z
�

�H".Du"/�
p dx C cj�jkf kp=.p�1/

Ln.�/
C c

Z
�

�jDu0j2 C �2
�p=2

dx

for a new constant c D c.n; p; q; �;�/, where zc is the constant appearing in (7.9).
Combining this last estimate with the one in (7.9) yields (7.8) and the proof is
complete. �

We are ready for the crucial uniform a priori estimate, which is a counterpart of
the one contained in Lemma 4.8.

LEMMA 7.2. Let u" 2 W 1;q.�/ be the solution to the Dirichlet problem in (7.7);
there exists a constant c � c.n; p; q; �;�/, but otherwise independent of " 2
.0; 1�, such that the inequality

(7.10)
kH".jDu"j/kpL1.BR=2/ � c

�
Dp

jBRj
� p

p�.q�p/n

C c
Dp

jBRj
C ckf k

p
p�1

L.n;1/.BR/
C ckf k

2p
2.p�1/�.q�p/.n�2/

L.n;1/.BR/

holds for any ball BR b �, where the quantity D has been defined in (1.55).

PROOF. By (7.4)3;4 the vector field a"WRn ! R
n has standard and nondegen-

erate q-growth and ellipticity, so by standard regularity theory it follows that u"
satisfies the regularity properties displayed in (4.31). Thanks to (7.4)1;2, we then
intend to adapt to the setting of Section 4.2 with the choices

(7.11)
za.�/ � a".�/; g1.t/ � g1;".t/ WD �H".t/�

p�2=c;

g2;".t/ WD c�H".t/�
p�2 C c�H".t/�

q�2;

for a suitable constant c � c.n; p; q; �;�/ and, finally, with xT D T D 0. In
particular, notice that the conditions in (4.26) are satisfied with the choice in (7.11),
provided c is chosen suitably large. Notice also that we shall use several a priori
estimates derived in Section 4.2 for the choice xT D T D 0 although these have
been derived for the case 0 < T < xT . Indeed, all the estimates are uniform with
respect to xT , and therefore we may choose a small xT and eventually let xT ! 0. We
are therefore able to proceed as for the Caccioppoli inequalities in Lemmas 4.5 and
4.6, and eventually we arrive at the quantitative L1-estimate (4.38). We use this
estimate as done in Lemma 4.8 but with # D 1 since the vector field a"WRn ! R

n

is not assumed to be symmetric.
Let’s see the details. Notice that with the choice (7.11) (and xT D 0), and re-

calling (2.1), we also have that G0.t/ D �H".t/�
p=.cp/. Estimate (4.38) with

# D 1 applied in the present context (again we now consider concentric balls
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1026 L. BECK AND G. MINGIONE

BR=2 b Bs b Bt b BR, x0 2 Bt , and R0 D t � s such that BR0
.x0/ � Bt and

k D 0 as done for Lemma 4.8), using computations similar to those in (6.3), and
finally taking also (7.8) into account, now gives

�H".jDu".x0/j/�p

� c

.t � s/n=2

�kH".jDu"j/kL1.Bt / C 1
� .q�p/n

2 kH".jDu"j/kp=2L1.Bt /
Dp=2

C c
�kH".jDu"j/kL1.Bt / C 1

� .q�p/.n�2/
2 kH".jDu"j/kL1.Bt /P

fBR
1 .x0; 2R0/;

with c � c.n; p; q; �;�/ being independent of ". Notice that, in proceeding as
in Lemma 4.8, we have used the obvious pointwise inequality j.f"/BR j � jfBR j,
which is an immediate consequence of the definition in (7.1). Recalling that x0 2
Bt is arbitrary, the previous estimate implies

kH".jDu"j/kpL1.Bs/

� c

.t � s/n=2

�
kH".jDu"j/k

.q�p/nCp
2

L1.Bt /
C kH".jDu"j/kp=2L1.Bt /

�
Dp=2

C c
�kH".jDu"j/kL1.Bt /

� .q�p/.n�2/C2
2

P
fBR
1 . � ; 2.t � s//


L1.Bt /

C ckH".jDu"j/kL1.Bt /

P
fBR
1 . � ; 2.t � s//


L1.Bt /

:

The bound on q=p assumed in (1.19) (recall we are considering the case n > 2)
implies �.q�p/nCp�=2 < p and �.q�p/.n� 2/C 2�=2 < p. We may therefore
apply the Young inequality to get

kH".jDu"j/kpL1.Bs/

� 1

2
kH".jDu"j/kpL1.Bt /

C c
Dp

.t � s/n
C c

�
Dp

.t � s/n

� p
p�.q�p/n

C c
P

fBR
1 . � ; 2.t � s//

 p
p�1

L1.Bt /
C c

P
fBR
1 . � ; 2.t � s//

 2p
2.p�1/�.q�p/.n�2/

L1.Bt /
;

which again holds for a constant c � c.n; p; q; �;�/ that is independent of ". We
are now again able to apply the iteration Lemma 4.9 as was done at the end of the
proof of Lemma 4.8, this time with �.y/ WD kH".Du"/kpL1.By/

for y 2 �R=2;R�.
This and (2.3) finally yields (7.10) with the dependence of the constant c described
in the statement. �

We complete the proof of Theorem 1.17 with a convergence argument. We
take a decreasing sequence f"mg in .0; 1� such that "m ! 0 and denote fDumg WD
fDu"mg. By using (7.8) with u" � um, we infer that the sequence fumg is bounded
in W 1;p.�/ and therefore, up to a not-relabeled subsequence, we may assume that
there exists u 2 u0 C W

1;p
0 .�/ such that um * u in W 1;p.�/. We are now

going to prove that u is a distributional solution to � div a.Du/ D f and satisfies
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1027

the conditions stated in Theorem 1.17, thereby concluding the proof. Applying
Lemma 7.2 and a standard covering argument, we infer for every bounded z� b �,
there exists a constant M �M.dist. z�; @�// � 1 such that

(7.12) kDumkL1.z�/ �M 8m 2 N:

By using (7.12) we can essentially reduce to the standard case p D q in (7.2)
(with the involved constant c additionally depending on M q�p), as in this case the
problem becomes uniformly elliptic.

In this case several estimates are already available. When p � 2 one can use the
results in [57] and [25, theorem 5.2] (formally with p D q), or directly combine
the estimates in [50, sec. 4] with those of [25, theorem 5.2]. The outcome, after
a standard diagonalization and localization argument, is that the sequence fDumg
is bounded in W

�;p
loc . z�IRn/ for any � < 1=.p � 1/. In the case p < 2 we can

use more directly the information in (7.12) to deduce that fDumg is bounded in
W

1;2
loc . z�IRn/. This is more classical; see, for instance, step 3 in Section 8 below. In

any case, as z� b � is arbitrary, again up to a subsequence we deduce that Dum !
Du in L1

loc.�/, which, together with (7.12), implies that Dum ! Du strongly in
Lt

loc.�/ for every t <1. This allows us to let m!1 in the distributional form
of (7.7)1, thereby getting that u solves the Dirichlet problem (1.52) (recall that
am.�/ ! a.�/ as m ! 1, uniformly on compact subset of Rn and fm ! f in
Ln). Finally, estimate (1.54) follows letting m!1 in (7.10) (" � "m) and using
lower semicontinuity. The proof of Theorem 1.17 is therefore complete.

8 Regularity for Irregular Functionals with Polynomial Growth
In this final section we justify (5.44); therefore we use the notation adopted in

Section 5 and proceed via another approximation argument. We could have in-
corporated it into the one used in Section 5.1, but this would have led to several
additional complications while several of the arguments needed are already avail-
able elsewhere. Indeed, the result follows as a combination of various hidden facts
scattered in the literature, and we could not find any explicit reference to what we
needed. Since we also believe that the facts reported here could be useful some-
where else in the future, we briefly report the proofs here.

We consider a functional of the type in (1.1), where now it is f 2 L1.�IRN /

and the integrand F.´/ satisfies the structure condition in (1.43) for some zF 2
C 1�0;1/ \W

2;1
loc �0;C1/ such that

(8.1) za.�/ 2 W
1;1

loc �0;C1/; zF .t/ WD
Z t

0

za.s/s ds;
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1028 L. BECK AND G. MINGIONE

and furthermore satisfies the bounds

(8.2)

8��<
��:
�.t2 C �2/=2 ���=2 � zF .t/ � �.t2 C �2/=2;

j@2F.´/j � �.j´j2 C �2/
�2
2 ;

�.j´j2 C �2/
�2
2 j�j2 � h@2F.´/�; �i;

for every choice of t � 0 and ´; � 2 R
N�n (such that @2F.´/ exists), where

0 < � � 1 � � and � > 0 (this is crucial here) are fixed, positive constants.
(Notice that, in fact, (8.2)1 can be derived from (8.2)2;3 via the argument used for
(5.43), modulo adjusting the constant �. It also follows that zF 0.0/ D 0). Due to
(8.2)1, the functional in (1.1) is then naturally defined in W

1;
loc .�IRN / and, in

what follows, we consider a local minimizer u 2 W
1;

loc .�IRN / of F in the sense
of Definition 1.1. Our aim is to prove, in several steps and via an approximation
argument, that

(8.3) Du 2 L1loc.�IRN�n/; u 2 W
2;2

loc .�IRN /; a.Du/ 2 W
1;2

loc .�IRN�n/;

where a.´/ WD za.j´j/´ D @F.´/ for every ´ 2 R
N�n. This provides a justifica-

tion to (5.44). To this end, because of standard covering arguments, it is actually
sufficient to prove that

(8.4)
Du 2 L1.B=2IRN�n/; u 2 W 2;2.B=8IRN /;

a.Du/ 2 W 1;2.B=8IRN�n/;

holds for any fixed ball B b � such that jBj � 1.

Step 1. Introduction of approximate problems. We are able to use the argu-
ments [26, lemmas 3.1 and 3.2] to get a sequence of approximating and C 2

loc�0;1/-
regular functions zFk such that

(8.5)

8��<
��:

1
c�
.t2 C �2

k
/=2 � c��k � zFk.t/ � c�.t2 C �2

k
/=2;

j@2Fk.´/j � c�.j´j2 C �2
k
/
�2
2 ;

1
c�
.j´j2 C �2

k
/
�2
2 j�j2 � h@2Fk.´/�; �i;

for every ´; � 2 RN�n, t � 0, where c� � c�.n;N; �;�; / � 1 is independent of
k, �k WD �C 1=k, and Fk.´/ WD zFk.j´j/. The uniform convergence Fk ! F of
these integrands takes place on compact subsets of RN�n. Here we need to remark
that the arguments in [26, lemmas 3.1 and 3.2] work in a more general situation,
where no upper bound on @2F as in (8.2) is in force. Accordingly, these lemmas
yield (8.5) without the upper bound on @2Fk displayed in (8.5)3. Essentially, what
we can do here is use [26, lemmas 3.1 and 3.2] with the choice p D q (with the
notation used in [26]; these correspond to  in the present setting) and (8.2)2;3
being in force. This makes several of the constructions in [26, lemmas 3.1 and
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1029

3.2] superfluous; essentially, the initial mollification procedure in those lemmas
suffices. We then consider, for every k 2 N, the variational problem

(8.6) min
w2uCW 1;

0
.B/

Z
B

�Fk.Dw/ � f w�dx

and denote by uk 2 uCW
1;
0 .BIRN / its unique solution.

Step 2. Du 2 L1.B=2IRN�n/. By the growth conditions of Fk in (8.5), the
minimality of uk , and using an argument that is very similar to the one in Sec-
tion 4.4 (in particular, see estimate (4.55)), we get

(8.7)
«
B

�jDukj2 C �2k
�=2

dx � c

«
B

�jDuj2 C �2k
�=2

dx C ckf k


�1

Ln.B/

with c � c.n;N; �;�; /. By the arguments of [26, sec. 5] or those of Sec-
tion 4.4, it follows that (up to the choice of a subsequence) uk * u weakly
in W 1; .BIRN /. By known regularity theory for standard growth functionals
(see [24, 33, 36]), we get the following local estimate for uk:

kDukkL1.B=2/ � c

�«
B

.jDukj2 C �2k/
=2 dx

� 1


C c�jBj1=nkf kL1.B/�
1

�1 ;

still with c � c.n;N; �;�; /. Letting k ! 1 and taking advantage of (8.7), we
get

kDukL1.B=2/ � c

�«
B

.jDuj2 C �2/=2 dx

� 1


C c�jBj1=nkf kL1.B/�
1

�1 :

Step 3. Du 2 W 1;2.B=8IRN�n/. A crucial point here is that all the numbers
f�kg; � are uniformly bounded away from 0 as we are assuming that � > 0 holds
from the beginning. We use standard difference quotient arguments. We refer to
[29, chap. 8] for the basic properties of difference quotient operators �s;h'.x/ WD
�'.xChes/�'.x/�=h (here jhj > 0 and fesg is the standard basis of Rn) and their
use. In the Euler-Lagrange equation of the functional in (8.6),Z

B

h@Fk.Duk/;D'idx D
Z
B

f ' dx;

which holds for every ' 2 C1
0 .BIRN /, we take �s;�h' instead of ', for 0 <

jhj < minfdist.spt.'/; @B/; r=8g, where r denotes the radius of B . Integration by
parts for finite differences yields

(8.8)
Z
B

h�s;h�@Fk.Duk/�;D'idx D �
Z
B

f�s;�h' dx:

We then take a standard cutoff function � 2 C1
0 .B=4; �0; 1�/ with � � 1 in B=8

and jD�j . 1=r and define ' � 's WD �2�s;huk so that ' 2 W
1;2
0 .B=4IRN /.
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1030 L. BECK AND G. MINGIONE

Using this test function in (8.8) and employing the bounds in (8.5), and also the
by-now classical methods explained in [29, theorem 8.1], we first findZ

B=4

.jDukj2 C �2k/
�2
2 j�s;hDukj2�2 dx

� c

Z
B=4

.jDukj2 C �2k/
�2
2 j�s;hDukjj�s;hukjjD�j� dx

C c

Z
B=4

jf jj�s;�h'jdx:

By the uniform estimates from Step 2, M WD supk kDukkL1.B=2/ is finite, so that
we have

(8.9)

Z
B=4

jf jj�s;�h'jdx � kf kL1.�/

Z
B=4

jD'jdx

� ckf kL1.�/

�
Mrn�1 C

Z
B=4

j�s;hDukj�2 dx
�
:

Then, after using standard norm estimates for difference quotients and Young’s
inequality and proceeding in a standard way by reabsorbing terms, we arrive at

(8.10)

Z
B=4

.jDukj2 C �2k/
�2
2 j�s;hDukj2�2 dx

� c

Z
B=4

.jDukj2 C �2k/
�2
2 j�s;hukj2jD�j2 dx

C ckf kL1.�/

�
M C

Z
B=4

j�s;hDukj�2 dx
�
:

In the case  � 2, the above estimate and a further use of the Young inequality
implies

��2
Z
B=4

j�s;hDukj2�2 dx

� c
�
M 2 C �2k

�=2 C c
�kf k2L1.�/.1C �2� /CM 2

�
:

(8.11)

Otherwise, (8.10) implies

�
M 2 C �2k

��2
2

Z
B=4

j�s;hDukj2�2 dx

� c��2M 2 C c
n
kf k2L1.�/

h
1C .M 2 C �2k/

2�
2

i
CM 2

o
:

(8.12)

In both cases the involved constant c only depends on n, N , �, �, and  and is
otherwise independent of k 2 N. Since h (small) and s 2 f1; : : : ; ng are arbitrary,
the fact that � � 1 in B=8 shows Duk 2 W 1;2.B=8IRN�n/. Furthermore, in
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LIPSCHITZ BOUNDS AND NONUNIFORM ELLIPTICITY 1031

view of �s;hDuk ! DsDuk strongly in L2.B=8IRN�n/, we may let h ! 0 in
(8.11)–(8.12), and this yields

(8.13)
Z
B=8

jD2ukj2 dx � c.n;N; �;�; ; �;M; kf kL1.�//

for each k 2 N, and the constant is independent of k 2 N. As a consequence of this
uniform boundedness of the sequence fD2ukg in L2.B=8IRN�n/ in combination
with the weak convergence uk * u in W 1; .BIRN / established in Step 2, we
then find (again up to a subsequence) the weak convergence D2uk * D2u in
L2.B=8IRN�n/, and D2u satisfies, by lower semicontinuity, the corresponding
estimate. We have therefore proved that Du 2 W 1;2.B=8IRN�n/. A similar
argument actually gives uk 2 W

2;2
loc .B=2IRN /.

In this respect, when  � 2, we can further improve (8.13). In fact, we have that
jf jj�s;�h'j � "j�s;�h'j2 C jf j2=" holds for " 2 .0; 1/. We use this estimate to
replace the last term in (8.10); then, letting h ! 0, summing on s, and choosing
" � ".M/ small enough to reabsorb terms, we arrive at (8.13) but with the right-
hand side independent of �, and where kf kL1 is now replaced by kf kL2 . As a
consequence, a similar estimate holds for Du after letting k !1. In turn, if we a
priori know that fDukg is locally uniformly bounded, we can infer that u 2 W

2;2
loc

under the only assumption that f 2 L2 and including the case � D 0. This can
be used for equations with standard  -growth and ellipticity, as done in the final
convergence argument at the end of Section 7.

Step 4. a.Du/ 2 W 1;2.B=8IRN�n/. Note that the previous step also im-
plies jDuj 2 W 1;2.B=8/, and so, in view of (8.1) and @F.Du/ D a.Du/ D
za.jDuj/Du, the chain rule for Sobolev functions gives

a.Du/ 2 W 1;2.B=8IRN�n/

(see also Remark 5.5). Thus, all the assertions in (8.4) are established and the proof
is complete.
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