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Continual Representation Learning for Node

Classification in Power-Law Graphs

Gianfranco Lombardoa, Agostino Poggia, Michele Tomaiuoloa

aDepartment of Engineering and Architecture, University of Parma, Italy

Abstract

The recent advent of node embedding techniques enabled a more efficient
application of machine learning techniques on graphs. These techniques al-
low each node of a network to be encoded into an arbitrary low-dimensional
vector representation, which can be exploited by statistical learning models.
However, the main limitation of these approaches is that the embedding task
is solved as an optimization problem on a static snapshot of the graph. In
a real scenario, temporal dynamics should be considered with some conse-
quences: new nodes might join the network and get a representation of only
these new ones. As a consequence, a new training step over the entire graph
is required. Even more, training models with static approaches can have
resource-intensive requirements, especially when dealing with large networks.
In light of this, a continual feature learning that builds on top of previously
already learned knowledge (previous partial embedding of the network) and
well-known properties can be a solution to address both limitations efficiently
in real scenarios. Our approach is suitable for graphs whose degree distribu-
tion is described by a power-law function that is a common property of real
systems. This research work presents three main scientific contributions: (a)
a continual feature learning meta-algorithm for node embedding, which ex-
ploits properties of power-law distribution and spaces alignment techniques;
It is suitable with any traditional node embedding techniques that relies
on embedding spaces (b) we demonstrate empirically, by performing node
labeling tasks, that a lightweight solution to encode new nodes, based on
limited knowledge of the embedding of the network hub-nodes, can provide
comparable or better performances, with respect to static approaches. (c)
Finally, we experimented our algorithm in the temporal graphs domain and
we achieved better results in node classification compared with other state
of the art techniques.
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1. Introduction1

Graphs (or networks) representations are fundamental in modeling many2

systems, particularly for expressing relational knowledge about interacting3

entities. Thus, they are ubiquitous in a wide range of disciplines, such as4

Computer Science, Sociology, Finance, Biology, and others. Moreover, in5

addition to being useful as knowledge repositories, these data structures also6

play a key role in Knowledge Discovery within the application of Machine7

Learning techniques. Several examples are available in the scientific literature8

of different research fields: in [1] the authors modeled the interaction between9

proteins as a network, to predict a correct label for each node, for describing10

its functionalities; in [2] the authors use a temporal network describing the11

US stock market to cluster correlated stocks’ behaviors, in order to predict12

financial crises; in [3] an online community of patients is exploited to extract13

latent information about the emotional effects of their pathology. The main14

issue when applying machine learning on graphs is finding a way to encode15

structural information in the feature space required by learning models.16

Representation learning is the branch of machine learning that aims to17

solve this problem by generalizing low-dimensional representations learning18

for data structures or sequences (e.g. text, graph). State of the art is learning19

these embeddings by solving an optimization problem that seeks to preserve20

local and global properties [4]. The first attempt in this field is the Neural21

language model [5] and its most famous breakthrough implementation for22

word embedding: Word2Vec [6].In this model, a shallow neural network is23

trained to predict the missing word given the context or the contrary of pre-24

dicting the context given the word. The training task is an auxiliary task to25

get feature vectors associated with each word, named representation learn-26

ing. In particular, Word2vec exploits the Skip-gram model to optimize the27

objective function using Stochastic Gradient Descent (SGD) as an iterative28

learning function and hierarchical Softmax. Both are used in the form of29

back-propagation on a single hidden layer feed-forward neural network with30

a linear activation function. The Skip-gram model has been adapted in the31

last years for node embedding in networks, by using streams of random walks32

instead of text corpora.33

2



Although these approaches raised state-of-art benchmarks in both fields,34

they present a limitation when dealing with dynamical contexts. They are35

designed to work on a static context, for example, a snapshot of a graph at36

a certain time. In a real scenario, a new node might join the network or a37

word in a text might be unseen at training time. It is necessary to run the38

entire representation learning process again, to get a feature vector for these39

new elements. Addressing this issue in a dynamic context is still challenging40

and of increasing interest in Machine Learning, as demonstrated by the high41

number of papers published in the last two years.42

In this research work, we propose a meta-algorithm that aims to learn43

features of new nodes incrementally joining a graph, by using a continual44

learning approach, partial embedding alignment and exploiting properties of45

power-law graphs. This approach is suitable for graphs whose degree distri-46

bution follows a power-law function. However, several works [7] have primar-47

ily demonstrated that real systems tend to present this distribution in their48

node degree. We demonstrate that it is possible to embed new data by learn-49

ing features incrementally, building on top of previously learned knowledge50

and well-known properties, with comparable or even outperforming results51

with respect to the static methods, without training the whole model again.52

Moreover, we experimented our algorithm for Node Classification on tempo-53

ral graphs achieving better results than other state of the art methods.54

The paper is organized as follow: in Section 2, we present the current state55

of the art in this domain, in Section 3 we introduce some properties related56

to power-law graphs that are involved as an assumption in our algorithm.57

In Section 4, we describe the proposed solution, named WalkHub2vec and58

finally in Section 5 the experimental part, and the results are presented.59

2. State of the art60

The increasing interest in Representation Learning for graphs in the Ma-61

chine Learning community is due to the idea that exploiting links among62

data in the form of a graph can increase learning performances for several63

tasks. In particular, the witnessed rapid growth in knowledge graph (KG)64

construction and the application made this task crucial in several domains.65

However, finding a way to incorporate information about the structure of a66

network into a statistical model is still challenging because of the heterogene-67

ity of this information. For example, in the case of link prediction, one might68

want to focus more on structural properties to encode pairwise properties be-69
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tween nodes (e.g. common friends in a social network). On the contrary, in70

the case of node classification, one might want to preserve more global prop-71

erties in the node description (e.g. nodes sharing many labels need to be72

similar). Moreover, in knowledge graphs, each edge is represented as a triple73

of the form (head entity, relation, tail entity), also called a fact, indicating74

that a specific relation connects two entities. Thus, the underlying symbolic75

nature of such triples usually makes this kind of graph hard to manipulate76

for machine learning tasks [8].77

The idea behind the representation Learning is to learn a mapping func-78

tion that embeds nodes as points in a low-dimensional vector space by solving79

a downstream task. Several approaches have been presented in the scientific80

literature, with multiple and separate lines of research [9] [10]. In knowledge81

graphs, the key idea is to embed components of a KG including entities and82

relations into this kind of continuous vector spaces, to learn features that83

preserve the inherent structure of the graph. Those embeddings can further84

be used to benefit all kinds of tasks, such as KG completion [11],[12], entity85

resolution [13], node classification [14], [15] and link prediction [16].86

The State of the Art is represented by several methods that learn static87

node representations combining neural networks, random walks in graphs88

and the neural language model Skip-gram [17]. A classic approach to node89

embedding is DeepWalk [18], which captures second-order proximity. In this90

algorithm, random walks are modeled as sentences and later are fed into91

the Skip-gram model. Values from the hidden layers are the resulting node92

embedding vectors.93

The LINE algorithm [19] addresses the efficiency issues, that previous ap-94

proaches have when applied on large networks, by improving scalability with95

the use of negative sampling and asynchronous stochastic gradient descent96

to solve the optimization problem.97

Finally, another relevant algorithm is Node2vec [20], which is an impor-98

tant modification of DeepWalk with significant performance gains. It intro-99

duces a parametrization of random walks generation by combining DFS and100

BFS-like behavior and also negative sampling. A common formulation of the101

optimization problem addressed by these algorithms can be summarized by102

Equation 1. where f is the function that maps each node u ∈ V in the vector103

space and Ns(u) is the neighborhood of node u, sampled in different ways by104
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the algorithms.105

max
f

∑
u∈V

logPr(Ns(u)|f(u)) (1)

However, although much progress has been reached in terms of perfor-106

mances, scalability over large networks is still problematic. It can become a107

limit even with just thousands of nodes when the network is dense. Addi-108

tionally, the static nature of these methods can hardly apply to the analysis109

of real systems that are intrinsically dynamic.110

In the last two years, several works have tried to address the issue of111

node embedding in a dynamic context, and this increasing production of112

different solutions highlights the importance of the topic both in academia113

and industry. The most used approach in the literature is based on modeling114

dynamics as a sequence of static snapshots.115

The first algorithm, based on network snapshots, is the Continuous-time116

Dynamic Network Embedding (CTDNE) [21], proposed for the link predic-117

tion task. It relies on the concept of temporal random walks, using times-118

tamps to preserve the time order of edges and thus their temporal dependen-119

cies. It can preserve temporal structural properties for link prediction, but120

it requires retraining at every change in the network.121

Other successful snapshots-based works, relying on a different approach,122

are DynGEM [22], the one proposed in [23], Dynnode2vec [24] and Dyn-123

graph2vec [25]. Dyngem and Dyngraph2vec estimate node representation124

with a deep autoencoder and an LSTM, respectively, by initializing net-125

work weights with the previously computed embedding at time t − 1. Both126

algorithms address the problem of graph visualization and link prediction127

without node classification. Their main limitation is their use of their own128

learning model (PropSize), so they only work with this embedding method.129

The algorithm proposed in [23] is an extension of the Skip-gram model and,130

in particular of the LINE algorithm. Its interesting contribution is that when131

a new node joins the network, changes in the representations of other nodes132

are limited. In light of this, it computes a new representation with new walks133

only for a selected set of vertices. It offers impressive performance in several134

tasks, including a simple task of node classification, independently to the135

static algorithm used for random walk generation.136

Finally, Dynnode2vec can be seen as a combination that takes the advan-137

tages of CTDNE and the algorithm in [23]. It uses the concept of evolving138

walk generation and computes new representation only for new nodes that139
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join the graph in a particular timeframe by initializing the hidden weights of140

the neural network with the ones used to embed the snapshot at time t− 1.141

More recently, in [26], the authors proposed an algorithm, named Credit142

probing network embedding, that aims to compute node embedding for evolv-143

ing networks with a partial monitoring of the network. The basic idea is to144

update each node vector dealing with it as a timestamps vector and to exploit145

a probing system to decide which node and when it should be updated. How-146

ever, in this case, the evaluation task is represented by the link prediction147

task, and the source code is not currently available.148

Finally, in [27], the authors propose tNodeEmbed, an algorithm based149

on Node2Vec that learns new nodes representation by aligning snapshots us-150

ing Orthogonal Procustes [28] and then training an LSTM for a given task151

to optimize feature learning. It is not easy to assert which one is the best,152

because they are experimented on different datasets and with some gaps for153

what concerns other more difficult tasks like Node classification. The only154

tNodeEmbed takes into consideration the task of multi-class node classifica-155

tion, i.e., the benchmark task allowing a comparison with static approaches.156

This last algorithm reaches very interesting performance, but a complete157

comparison with the static case remains difficult. The authors experimented158

with tNodeEmbed on different datasets and the used parameters for embed-159

ding are unclear.160

From direct experiments and the analysis of recent literature, we can as-161

sert that the idea of dynamic network embedding based on snapshot does162

not solve scalability issues and retraining is time-consuming, although less163

than the static case under certain conditions. In particular, these are im-164

portant limitations when dealing with real networks that can often be large165

and dense. We have to be able to maintain previous embeddings and some-166

times the set of previous walks whenever there is a change. It is possible167

to conclude that several issues and open problems are present in dynamic168

network embedding. However, considering the recent growth of this research169

line, all of the works reviewed in this section propose interesting approaches170

with important progress that trace a way to more generalized solutions.171

In this work, we take into account specifically the multi-class node labeling172

task in light of (i) the reported lacks in state of the art, and (ii) the different173

issues which this case presents, with respect to the more studied case of link174

prediction.175
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3. Properties of power-law graphs176

WalkHub2Vec founds its theoretical justifications in several properties of177

power-law graphs (Scale-free networks). The importance of this particular178

category of networks has been widely discussed in several research fields (E.g.179

[29],[30],[31]). The main reason is related to the fact that it fits the relation-180

ships among entities in many real systems, in various domains. The difference181

between a random network and a power law one lies in the probability dis-182

tribution, which better describes a node’s choice with a particular degree.183

In random networks, the randomness of links generation brings to a Poisson184

distribution and a lack of a component composed of nodes with a higher185

degree than other nodes, i.e., the hub nodes [7]. On the other hand, real186

systems are often better described by a power-law because only a few nodes187

present a high degree, while most of the remaining nodes have a small degree.188

When a system presents a power-law degree distribution, it means that the189

probability of randomly selecting a node with degree K is well approximated190

by Equation 2191

Pk ∼ k−γ (2)

This difference has an important consequence on how networks tend to192

grow. In power-law graphs, the evolution is well described by the Barabási-193

Albert Model [32]. This model assumes that in power-law graphs (or Scale-194

free graphs) the growth is described by a property called Preferential At-195

tachment. This property claims that the probability Π(k) of a new node196

to be connected with node i depends on the degree ki, as in Equation 3.197

That means that the growth in this kind of graph follows a probabilistic198

mechanism where a new node is free to connect to any node in the network,199

whether it is a hub or has a single link.200

However, if a new node has a choice between a degree-two and a degree-201

four node, it is twice as likely that it connects to the degree-four node [7].202

This behavior related to the power-law distribution is well known also as the203

Pareto principle, or 80/20 rule [33]. This rule can be summarized, saying204

that roughly 80% of the effects come from 20% of the causes. For exam-205

ple, as Pareto noticed in the 19th century, 20% of the population earned206

most of the money, while most of the population (80%) earned rather small207

amounts. Thus, it is likely that new incomes are destined to that 20% of208

people. Similarly, if a new node joins a network, it will likely be connected209

with the graph’s 20% of hub nodes. This property relies on the long-tail of210

the power law distribution: in this kind of graphs, it is possible to observe211
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that most nodes have a small degree while few nodes have a big degree (the212

so called long-tail). For this reason, as illustrated in [7] in power-law graphs213

is present a giant component that is composed by hub nodes (nodes with a214

high degree) that connect most of the normal nodes with a small degree.215 ∏
(ki) =

ki∑
j kj

(3)

4. WalkHub2Vec216

In this section we describe the incremental feature learning algorithm for217

node embedding. In light of the properties summarized in Section 3, we take218

into account power-law graphs. First of all because WalkHub2Vec aims to be219

a solution to embed real systems graphs, thus this choice does not represent220

a limitation. Secondarily, to the best of our knowledge, these properties have221

not been taken into account by previous works. Finally, as we demonstrate222

in the result section, these properties represent a useful tool to address the223

dynamical case of a new node joining the network and in need for a vector224

representation. Also, we believe that an important part of the information225

required by the node classification can be directly found in the hubs compo-226

nent of each graph. The algorithm that we present is based on DeepWalk for227

simplicity, but it can be used with other embedding solution (e.g. Node2Vec228

or LINE) and also combining them in different moment. Additionally, being229

it based on a static embedding of a network, it is possible to retrieve past230

trained embeddings of a network to obtain the representation of new nodes231

without retraining. Every time a new node has to be embedded with respect232

to the previous static embedding, we seek to optimize a variant of the problem233

in Equation 1 specifically for incremental feature learning. This optimization234

maximizes the probability of observing a second-order neighborhood among235

the hubs component for the new node i, conditioned on an aligned feature236

representation between the target original space and a lightweight embedding237

of the hubs, or in other words the embedding of node i with respect to the238

original embedding space:239

maxPr(NH(i)|R · fH(i)) (4)

Where R is the rotational matrix necessary to align the drifted embedding240

space and is later discussed in detail. Being A defined as the static algorithm241
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chosen for the unique snapshot of the graph, WalkHub2Vec has the following242

steps:243

1. It computes the static embedding of the network G with A following the244

specific parameters of the considered algorithm and solving the general245

optimization problem in Equation 1. Given a graph G we define also246

EG{G} as the embedding of G made with respect to G itself.247

2. The algorithm extracts the hub component of the network by selecting248

the sub-graph H induced by the percentage λ of nodes with the highest249

degree. The parameter λ is set as default equal to 20 in light of the250

Pareto principle. For construction EH{G} ⊂ EG{G} without any other251

computation (Figure 1a).252

3. When a new node i joins the network, it is considered a graph composed253

by the sub-graph H plus the node i: H + i. In the rare case when the254

new node in the power-law graph has not links with the hubs, a single255

random walk from i to one of the hubs is considered in the construction256

of H + i. Given the smaller network H + i a lightweight embedding257

EH{H+i} is computed with A or an arbitrary algorithm (Figure 1b).258

4. In order to get the embedding of node i with respect to the original259

embedding space, the algorithm proceed to align EH{H+i} with EH{G}260

by learning the optimal rotation matrix. The alignment involves only261

nodes’ representations who belong to the second-order neighborhood of262

i in the hub component (Figure 1c). Alignment details are discussed263

later in 4.1.264

5. Once the rotational matrix R is computed, the embedding of i with265

respect of the original embedding space is the dot product between R266

and the embedding of i with respect to H + i space (Figure 1d).267

4.1. The orthogonal Procrustes problem268

The orthogonal Procustes problem [28] is a matrix approximation tech-269

nique that aims to learn the orthogonal rotational matrix R which closely270

maps a matrix A to a matrix B (Equation 5). It is based on the Frobenius271

norm and a closed-form solution is provided with the Single Value Decom-272

position (SVD).273

R = argminΩ||ΩA−B||F subject to ΩΩT (5)

In WalkHubs2Vec, matrix A is represented by the embedding of the second-274

order neighborhood of node i in EH{H+i} and respectively the correspondents275
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G

EG{G}

EH{G}

(a) a

EH{H+i}
i

i

G+i

H+i

(b) b

EH{G}EH{H+i}

R

(c) c

EG{G}
EG+i{G}

(d) d

Figure 1: (a) First and second steps of the algorithm; The embedding of the hub component
is extracted as a subset of the entire embedding EG(b) Third step: A new node i joins
the network and a new embedding of only the H sub-graph is computed; (c) The two
embedding spaces have all nodes in common expect for the new node i. They have to
be aligned to get i coordinates with respect to the original space. Embedding alignments
by learning the optimal rotation matrix; (d) Node i with its resulting embedding in the
original space

10



in EH{G} . In order to increase the quality of the alignment the two matrix are276

previously pre-processed following the full Procustes superimposition [34]. It277

requires that matrices, that can be seen as geometric shapes to be aligned,278

are previously uniformly scaled and translated to have the average value in279

the origin.280

5. Results281

In this section we provide an overview of the datasets and methods which282

we will use in our experiments. Code and data to reproduce our results are283

available on GitHub (see footnote 1). In order to evaluate WalkHubs2Vec284

and the related methodology, we performed three different kind of node la-285

belling tasks: multi-label classification, multi-class classification and node286

classification with a dynamic graph. The difference between the first and the287

second is that in the first one each node can have more than one label at288

the same time and each one has to be correctly predicted. For both tasks,289

with the aim of a fair comparison between our method and the static tech-290

niques, we used the exact experimental procedure as in [35, 36], DeepWalk291

[18] and Node2Vec [20] and their common datasets. Finally, we evaluated292

WalkHubs2Vec in a dynamic context with temporal edges and nodes, making293

a comparison with CTDNE[21], tNodeEmbed [27] and DySAT [37]. For each294

task and experiment, we randomly selected a percentage of the labeled nodes295

between 10 and 90%, and use them as training data. The rest of the nodes296

are used as test set Specifically, we repeated 10 times, and we report the297

average performance in terms of both Macro-F1 and Micro-F1. The machine298

learning model used for all the tasks is a One-Vs-Rest logistic regression. 1
299

5.1. Datasets300

For the multi-label classification we considered three networks: PPI and301

Wikipedia. We selected these networks as a benchmark because have also302

been used to evaluate Node2Vec and DeepWalk in their respective papers.303

• PPI: Protein-Protein interactions for Homo Sapiens, is a network with304

3,890 nodes, 76,584 edges and 50 different labels, where labels represent305

the biological states.306

1https://github.com/gfl-datascience/walkHub2vec
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• Wikipedia: This network is composed by 4,777 nodes with 40 differ-307

ent labels and 184,812 edges. It is a co-occurrence network of word308

appearing in the first million bytes of the Wikipedia dump. Labels are309

Part-of-Speech (POS) tags associated to each word.310

• Blogcatalog: It is a social network of relationships among blogger311

authors on the BlogCatalog website. The network has 10,312 nodes,312

333,983 edges and 39 different labels that represent blogger interest313

inferred through metadata.314

For the multi-class classification task we used Cora, that is one of the most315

famous in literature for this task (E.g. [38],[39], [27]) with its various ver-316

sions. It is a citation network composed by papers about different research317

areas of Computer Science and their citations. We used the largest version318

available with all of the nodes and the labels [40]. The network has 23,567319

nodes, 93965 edges and 10 classes, which represent the topic of the articles.320

We exploited Cora also for the node classification task in dynamic graphs.321

We used temporal directed edges that represent citations from one paper to322

another, with timestamps of the citing paper’s publication date as in [27]. We323

trained a starting embedding with papers between 1900 and 1990 and then324

we used papers until 1999 as new nodes and edges coming-up in the network.325

We used the same methodology also to evaluate CTDNE, tNodeEmbed and326

DySAT.327

5.2. Experimental setup328

In light of the reasons explained in Section 2 about a necessary fair com-329

parison, we used the same datasets used to evaluate Node2vec and DeepWalk330

in their respective papers. These datasets have not temporal information but331

this has not been a significant limitation for our evaluation, since we do not332

aim to solve only a temporal problem but also an incremental one, when a333

new generic node joins the network and when the entire graph is unknown334

at training time. Under this hypothesis, for the multi-label and multi-class335

tasks, we randomly selected the 10% of the nodes in each dataset to simulate336

their appearance (I set). These nodes are sampled by a non-uniform distri-337

bution over the degree that makes nodes with smaller degree more likely to338

be sampled. This choice is also motivated by the idea that the leaf nodes339

with few links are often under evaluated by the sampling edges techniques340

used in the Skip-gram model. However, also Hub nodes can be sampled in341
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the (I set) although is less frequent that a node joins a network directly342

with an high degree. In order to prove the effectiveness of our methodology,343

we also treated the moments at which they join the network as totally in-344

dependent events. In other words, we do not consider the possibly existing345

edges in the sub-graph induced by the I set. The rest of the network rep-346

resents the first static snapshot used as input for WalkHubs2Vec. As base347

for the meta-algorithm we used predominantly DeepWalk and in one case348

also Node2vec as demonstration that our algorithm and the methodology349

can deal with any node embedding technique. We also made a compari-350

son with these two algorithms without the use of the meta-algorithm and351

when the graph is entirely processed with these algorithms. We used the352

same hyper-parameters proposed in the respective papers of DeepWalk and353

Node2Vec, without any optimization of these parameters. Each experiment354

is composed by 10 independent runs where each time nodes for the different355

sets are sampled.356

• Dimension = 128357

• Walk lenght = 10358

• Number of walk = 80359

• P and Q (Node2vec) both equal to zero to compare with DeepWalk360

We also used in each case the parameter λ = 20, in this way the static361

network is divided into two groups: 20% of hubs and the remaining 80%362

unconsidered for the embedding.363

5.3. Multi-label node classification364

In this section we report the results of the multi-label classification on365

PPI, Blogcatalog and Wikipedia. We experimented our algorithm with the366

previously introduced methodology by selecting different portions of nodes367

as training set, in the range between 10% and 90%. However, we report368

only results for the case of 50%, because we are interested in evaluating369

how features, computed incrementally on the 10% of the nodes of I set, can370

affect the prediction results. This condition became more evident when we371

randomly selected large portions of the network in the 10 runs. Results are372

presented in Figure 2.373
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Figure 2: Performance evaluation of different benchmarks on varying amount of labeled
data used for training. The x axis denotes the fraction of labeled data, whereas the y axis
in the top and bottom rows denote the Micro-F1 and Macro-F1 scores respectively.

5.3.1. Protein-Protein Interactions374

On this dataset, WalkHubs2Vec performs slightly better than Node2Vec375

and Deepwalk both with Micro and Macro F-1 score. In particular it is376

interesting the result when the selected percentage of training is the 90%377

and probably most of the nodes of I set have been considered in the 10 runs.378

5.3.2. BlogDatalog379

On this dataset, WalkHubs2Vec performs in a comparable way with Deep-380

Walk with an average divergence of -0.004 and -0.009 in terms of respectively381

micro and macro F-1 score.382

5.4. Wikipedia383

Unlike the two previous networks, on Wikipedia Node2Vec performs in384

general better than DeepWalk. In light of this, we present results obtained385

with WalkHubs2Vec based on DeepWalk but also based on Node2Vec. In386
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both cases WalkHub2Vec performs in a comparable way than the static tech-387

niques. The average divergence between Node2vec and the incremental case388

is 0.003 and -0.006 for micro and macro F-1 respectively. As expected, the389

version of WalkHubs2Vec based on Node2Vec performs bettern than the one390

based on DeepWalk as reflection of the static performance of the algorithms.391

5.5. Comparative analysis for multi-label classification392

Several features of the selected datasets should be considered, to get an393

overall evaluation of our algorithm in the multi-label classification task. First394

of all, each network presents a power-law distribution for node degree, but395

Wikipedia graph has a more significant cut-off than the others. Practically,396

on this dataset, the power-law distribution is more acceptable after a certain397

degree (around 10), while before this value, a log-normal distribution is more398

evident. In our opinion, this fact is what makes the difference with results399

we obtained with the PPI dataset since the density of the two graphs is quite400

similar (PPI: 0.005, Wikipedia: 0.003) and the average node degree (PPI:401

19, Wikipedia: 15). Another critical factor is how the topological structure402

affects the results and how the number of labels that have to be predicted.403

We analyzed this aspect more by comparing the three networks in terms of404

modularity for community detection and connected components. In PPI,405

where we have better results than the other algorithms, the number of labels406

is 50, modularity is 0.337, and it is possible to find 43 different clusters (or407

communities) and 35 connected components. That means that nodes tend408

to arrange in groups with the same labels, and thus, the classification task409

results to be more simple. In the Wikipedia network, with a Modularity410

equal to 0.2, we found only 12 clusters, a single connected component with411

40 different labels that have to be predicted. Finally, Blogcatalog resulted412

in a more difficult case: with a Modularity equal to 0.24 we found 7 differ-413

ent clusters, one single connected component when the number of labels is414

39. In light of this, we hypothesize that exploiting the power-law properties415

can make a significant difference when the labels reflect also the topological416

structure of the network, and on the other hand, have comparable results in417

the other cases. However, in these last cases, having comparable results by418

using only the 20 percent of nodes to compute the embedding is an interesting419

result that should be more analyzed in future works.420
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5.6. Multi-class node classification421

In this section, we report the results of the multi-class classification on422

Cora with WalkHubs2Vec based on DeepWalk with the static case where423

the entire network is embedded with Node2Vec and DeepWalk. In this case,424

WalkHubs2Vec outperforms the baseline methods both in micro and macro425

F-1 score. The average gain of WalkHubs2Vec is about 0.01 in both metrics.426

Results are presented in Figure 3.427
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Figure 3: Performance evaluation on Cora of different benchmarks on varying the amount
of labeled data used for training. The x axis denotes the fraction of labeled data, whereas
the y axis in the top and bottom rows denote the Micro-F1 and Macro-F1 scores respec-
tively.

5.7. Node classification with temporal graphs428

WalkHubs2Vec exploits a continual learning approach since it is designed429

to learn a representation of nodes and parts of a graph that are not entirely430

known at training time. For this reason, we experimented with the algorithm431

in the most common scenario of temporal graphs. Indeed, in this context,432

the graph structure is dynamic with timestamps associated with each edge433
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Micro f-1 score Macro f-1 score
CTDNE 0.7194 0.6397
DySAT 0.4828 0.1312
tNodeEmbed 0.7740 0.7078
WalkHubs2Vec 0.8101 0.7532

Table 1: Performance results of WalkHubs2Vec vs. baselines for the node classification
task over the dynamic Cora dataset.

that determines the moment an edge comes up to be part of the graph. As434

a consequence, new nodes may join the network.435

The Cora dataset exploited in the previous section can be used also to model436

a temporal scenario by using as timestamps the publication date of the pa-437

pers, as already presented in [27]. We experimented WalkHubs2Vec on this438

dataset using as baselines three algorithm designed for temporal graph em-439

bedding: tNodeEmbedding [27], CTDNE [21] and DySAT [37]. These three440

algorithms have been already presented in the Literature review 2.441

We used papers from 1900 until 1989 to create the starting graph and then442

the remaining ten years as new nodes and edges that join the network. In443

the starting graph, there are 21974 nodes and 64991 edges. Temporal items444

are 1593 new nodes and 28975 new edges. We computed the embedding445

representation for each node and then we performed a classification task to446

predict one of the ten possible labels. Classification has been performed us-447

ing the One-Vs-Rest Logistic classifier as in the previous experiments except448

for tNodeEmbed because it learns the embedding while dealing with a clas-449

sification task performed with an LSTM deep neural network. We evaluated450

WalkHubs2Vec and the baselines in terms of Micro-F1 and Macro-F1 scores.451

Table 1 shows the results we achieved on this task. WalkHubs2Vec outper-452

forms the baselines both in micro and macro f1-score. All the experiments453

have been repeated for 10 runs and the results represent the average score.454

455

CTDNE, DySAT and tNodeEmbedding exploits Node2Vec as node em-456

bedding engine for every single snapshot, for this reason, we compared our457

algorithm using the same embedding technique. Since Node2Vec is the basis458

of all the algorithms, we selected the same embedding hyper-parameters for459

all and they are the same of the previous sections and from [20]. We did460

not optimize the other parameters available within the algorithms and this461

can represent a reason why in particular DySAT under-performs remarkably462
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with respect of the other algorithms. DySAT and tNodeEmbed train neural463

network-based models while performing representation learning of nodes and464

for this reason, the number of epochs represents an important parameter. We465

decided to train CTDNE, tNodeEmbed, and DySAT for 50 epochs, because466

over this number we experimented with some computational issues right with467

DySAT. Another thing that we desire to report is that DySAT is designed468

to learn the distribution of edges to perform only link prediction although it469

computes the temporal embedding of each node.470

Figure 4: Performance evaluation between WalkHubs2Vec and the baselines on the tem-
poral Cora dataset.

It is interesting the comparison with tNodeEmbed because a common471

aspect with WalkHubs2Vec is the idea of embedding alignment, that in the472

first one is computed over the entire graph while in our algorithm is performed473

considering only the giant component. Moreover, tNodeEmbed has been474

evaluated with its built-in deep neural network for the classification task475

and not with the one-vs-rest logistic classifier that is a less powerful model.476

This last aspect leads us to the idea that considering similarities between the477

two approaches and the theoretic advantage of the LSTM neural network478

for tNodeEmbed, one possible reason for our better results can rely exactly479

upon the importance of making attention to the hubs of the network while480
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learning the new nodes’ representation. We plan to further investigate this481

aspect in our future works in order to quantify this importance.482

6. Conclusions483

In this research work we have addressed the problem of continual feature484

learning for node embedding in power-law graphs. The work is focused on the485

idea of taking advantages of the scale-free property of this category of graphs,486

to compute embedding of new nodes without retraining the learning model487

in the node classification context. We propose also an implementation of this488

methodology, WalkHubs2Vec, that can deal with any embedding techniques.489

Results demonstrate how the combination of partial embeddings based on the490

hubs component and embedding alignment can solve the problem with good491

results in terms of features quality for the new nodes. WalkHubs2Vec reaches492

equal or slightly better results when compared to well-known static methods,493

as Node2vec and DeepWalk and better results when compared with state-494

of-the-art techniques for dynamic graph embedding. Future developments495

are related to performing different tasks with this methodology (e.g. link496

prediction). Moreover, it would be interesting to use a similar approach also497

in word embedding and other embedding contexts.498
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