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A B S T R A C T

We propose a weak form of the transient heat equations for solid bodies, as a time-dependent
spatial variation of the heat displacement vector field, whose time derivative is the heat flux.
This develops the variational principle originally proposed by Biot, inasmuch Fourier’s law is
embedded as a holonomic constraint, while energy conservation results from the variation (the
vice-versa from Biot). This is a neat formulation because only the heat displacement appears
in the variational equations, whereas Biot’s form also involved the unknown temperature field:
Fourier’s law is used only a posteriori to recover the temperature. Since the heat displacement
is generally more regular than the temperature field, it represents a natural variable in prob-
lems with material inhomogeneities, uneven radiation, thermal shocks. The three-dimensional
analytical set-up is presented in comparison with Biot’s, for boundary conditions accounting
for radiation and convection. A mechanical analogy with the equilibrium of an elastic bar
with viscous constraints is suggested for the one-dimensional case. The variational equations
are implemented in a finite element code. Numerical experiments on benchmark problems,
involving high temperature gradients, confirm the efficiency of the proposed approach in many
structural problems.

. Introduction

No structural designer can avoid addressing issues regarding temperature, thermal stress, and material properties. Thermal
train can produce stress states well beyond the material capacity if the motion is incompatible with the constraints. Uneven
emperature distributions may induce an eigenstress state in unconstrained bodies. Composite structures are characterized by the
ssociation of materials with different thermal properties, which may provoke stress concentrations, especially at the interfaces and
t the edges (Groh & Weaver, 2016; Mittelstedt, Becker, Kappel, & Kharghani, 2022). Portions with very high or very low thermal
ransmissivity can be artfully incorporated into a structural organism to convey the heat flow into the body to reduce stress state.
or problems involving high temperatures, high temperature gradients and cyclical changes of temperature, thermo-physical and
echanical properties of constituent materials may vary as a function of the temperature (Galuppi, Franco, & Bedon, 2023; Noda,
991).

In many practical problems of civil, mechanical, nuclear, aeronautical and aerospace engineering, the temperature field cannot
e represented by smooth functions in space and time. This occurs in the presence of thermal shocks, uneven heat sources, materials
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with inhomogeneous thermal properties (Furmañski, 1997; Wang, Guo, & Wang, 2023; Wang, Li, & Yang, 2015) (laminates, long and
short fiber-reinforced, inclusion-filled, polycrystalline). However, the paradigm in all models is Fourier’s law of thermal conduction,
which involves the gradient of the temperature field. This may cause problems in the presence of strong irregularities, especially
when these occurs in regions of the body not known a priori. The difficulties are evident especially in the numerical discretization.
Standard numerical approaches for thermal problems (Carter & Booker, 1989; Zienkiewicz, Taylor, & Zhu, 2005) are formulated
in terms of the temperature field only, and based on standard finite element approach in space, relying on the Weighted Residual
Method, and on a finite difference approximation of the time-dependence of the relevant field. Simpler methods are often used,
consisting in discretizing the governing equation of the problem by means of finite difference techniques, in both space and
time (Ismail & Henríquez, 2003; Strobel, Abadie, & Mendes, 2007). In most of these approaches, the condition of energy conservation
is only approximately satisfied.

In the 1950’s Biot (1955) proposed an ingenious weak form of the heat conduction equation starting from the definition of
he heat displacement vector field, whose time derivative is the heat flux. Such field enjoys a higher regularity with respect to the
emperature field and, therefore, allows to directly consider complex problems. Moreover, the variational form of the equations
ermits a straightforward finite element implementation in space. Biot further observed (Biot, 1970) that the resulting equations
re of the same form as those of Lagrangian mechanics for the slow motion of a dissipative system with negligible inertia forces,
efined by the potential energy and the dissipation function. The temperature distribution at the boundary and the heat sources
rovide thermal driving forces, defined by the method of virtual work as in mechanics (hence, called thermal forces). Personally, we

find this analogy very enlightening for an intuitive interpretation of heat diffusion phenomena at the qualitative level.
Since Biot referred to his formulation as a variational principle in heat transfer (Biot, 1970), we will continue here to use this

name. However, it should be mentioned that it is not a true variational principle because of its reliance on the Rayleigh dissipation
function concept. The dissipation function is not defined, but only the supposed variation of the dissipation function is set to the
form needed to recover the governing differential equations of the problem. Although this approach has sometimes been reputed of
limited fundamental appeal and can lead to other difficulties in the problem solution, especially for highly dissipative systems, we
repute it very interesting for most applications of structural engineering, for which the material properties are accurately defined
by a few coefficient and not affected by chemical or nuclear transformations.

The original form of Biot’s variational principle corresponds to the weak form of Fourier’s equation, written in terms of both
the temperature and heat displacement fields, where the energy conservation law is a holonomic constraint to be satisfied. We
recall that Biot also proposed (Biot, 1967) a complementary principle, where the heat flux is defined in terms of the temperature
and the variational principle is expressed in terms of the variation of the temperature field. Other variational principles, bearing
some analogy with it, have been developed (Chambers, 1956; Lorenzini, 1970; Rosen, 1953). Here, we propose a new variational
formulation of the thermal problem that we may attempt to call ‘‘neat’’ because the variational equations are written in terms of the
heat displacement field only. It develops, while preserving, Biot’s idea, because it provides the weak form of the energy conservation
law, whereas Fourier’s equation is ‘‘embedded’’ in the variational form. Specifically, the constraint provided by Fourier’s equation,
and hence the temperature field, does not explicitly appear in the resulting equations. The constraint shall be used only a posteriori,
to calculate the temperature field in the body once the heat displacement field has been obtained.

The variational approach is formulated for three-dimensional bodies under various types of boundary conditions. The one-
dimensional version also suggests an intuitive mechanical analogy with the problem in structural mechanics of a linear elastic
rod subjected to viscous constraints (dashpots). A numerical FEM implementation is proposed, based on the use of the simplest
tri-linear shape functions to approximate the heat displacement field.

This work complements and extends the numerical method developed in Galuppi and Royer-Carfagni (2022), specifically
conceived for the one-dimensional thermal analysis of laminated glass window panes, which was based on the original Biot’s
principle. This evidenced a major draw-back, since it necessitated to discretize both the heat displacement and the temperature
fields with high order Hermite shape functions. That approach was further extended (Galuppi & Royer-Carfagni, 2023a, 2023b) to
the three dimensional case, with the specific aim of evaluating the uneven temperature fields and heat fluxes in architectural glazing
under varying uneven external conditions (temperature and solar radiation), but provided a spurious behavior of the temperature
field at the critical points. The numerical approach via the flux-based ‘‘neat’’ variational principle is easier to implement and more
accurate.

The article is organized as follows. Section 2 presents the new variational principle, detailing the resulting field equations
under various boundary conditions. An analogy with the mechanics of an elastic bar is proposed for the one-dimensional case. In
Section 3, the principle is implemented in a finite element framework, and applied to paradigmatic benchmark problems, illustrated
in Section 4. The major outcomes from this research and hints for future work are proposed in the Conclusions.

2. Variational approaches for the thermal problem

Let the three-dimensional domain 𝛺 denote the reference configuration of a solid body, with boundary 𝜕𝛺 and outer unit normal
𝐧. Introduce the right-handed reference system (𝑥, 𝑦, 𝑧), and indicate with 𝜃(𝐱, 𝑡) the temperature at the point 𝐱 = (𝑥, 𝑦, 𝑧) at time 𝑡.
2

he body exchanges heat with the external environment via convection and radiation.
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2.1. Heat displacement field and differential form of the thermal problem

Following the seminal work by Biot (1970), it is useful to write (as usual ̇( ) indicates time derivative) the local rate of heat flow
s �̇�(𝐱, 𝑡), where 𝐇(𝐱, 𝑡) is the heat displacement field. Denoting with 𝜆 the thermal conductivity of the material, the thermal problem
s governed by classical Fourier’s law (Lienhard & Lienhard, 2019), which reads

𝜆 ∇𝜃(𝐱, 𝑡) + �̇�(𝐱, 𝑡) = 𝟎 , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.1)

nergy conservation provides that, for any sub-body  ⊂ 𝛺 with outer unit normal 𝐧,

−∫𝜕
�̇�(𝐱, 𝑡) ⋅ 𝐧 𝑑𝑠 + ∫

𝑞♯(𝐱, 𝑡) 𝑑𝑉 = ∫
𝑐 �̇�(𝐱, 𝑡) 𝑑𝑉 , (2.2)

here 𝑐 is the material specific heat per unit volume and 𝑞♯(𝐱, 𝑡) is the generated/absorbed heat per unit volume and unit time.
In general, 𝑐 and 𝜆 may vary within the body and be temperature dependent, but for our specific application, they will be

upposed constant. Moreover, internal production/dissipation mechanisms may affect the form of 𝑞♯(𝐱, 𝑡), but this is not considered
ere: 𝑞♯(𝐱, 𝑡) will be treated as a problem datum, associated with heat radiation, and no internal phenomena of dissipation are
upposed to be present. This is a strong assumption, but it is verified for most applications of structural engineering.

Integrating (2.2) by parts, since the sub-body  ∈ 𝛺 is arbitrary, the local form of energy conservation can be written as

−∇ ⋅ �̇�(𝐱, 𝑡) + 𝑞♯(𝐱, 𝑡) = 𝑐 �̇�(𝐱, 𝑡) , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.3)

A particular case (steady state condition) is that in which 𝑞♯(𝐱, 𝑡) = 0 and �̇�(𝐱, 𝑡) = 0, which provides ∇ ⋅ �̇�(𝐱, 𝑡) = 0. More in
general, using (2.1) in (2.3), one obtains the heat diffusion equation (Lienhard & Lienhard, 2019)

𝛥𝜃(𝐱, 𝑡) + 𝑞♯(𝐱, 𝑡) = 𝑐 �̇�(𝐱, 𝑡) , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.4)

Following again Biot (1970), it is convenient to define the fictitious heat flux �̇�♯(𝐱, 𝑡), associated with 𝑞♯(𝐱, 𝑡) via

∫
𝑞♯(𝐱, 𝑡) 𝑑𝑉 = −∫𝜕

�̇�♯(𝐱, 𝑡)⋅𝐧 𝑑𝑠 ⇒ ∇ ⋅ �̇�♯(𝐱, 𝑡) = −𝑞♯(𝐱, 𝑡) , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.5)

n this formulation we consider (Biot, 1970), as relevant vector fields for the thermal problem, the heat displacements 𝐇(𝐱, 𝑡) and
♯(𝐱, 𝑡), as the time integral of the corresponding heat fluxes, i.e.,

𝐇(𝐱, 𝑡) ∶= −∫

𝑡

0
𝜆∇𝜃(𝐱, 𝑡) 𝑑𝑡 , (2.6a)

𝐇♯(𝐱, 𝑡) ∶= ∫

𝑡

0
�̇�♯(𝐱, 𝑡) 𝑑𝑡 , ∇ ⋅𝐇♯(𝐱, 𝑡) = −∫

𝑡

0
𝑞♯(𝐱, 𝑡) 𝑑𝑡 , (2.6b)

for which the values at 𝑡 = 0 can be assumed null, without loss of generality. It is clear (Biot, 1970), from (2.3) and (2.5), that the
eat displacements will be defined up to an additive time-independent solenoidal vector, but this is indeterminacy is inessential in
he solution of the thermal problem (Galuppi & Royer-Carfagni, 2022). Then, Eq. (2.2) can be integrated in time, to give

−∫
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

𝑑𝑉 = ∫
𝑐
[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

𝑑𝑉 , (2.7)

where 𝜃0(𝐱) ∶= 𝜃(𝐱, 0) is the initial temperature distribution in the body. The local form of the energy balance is therefore

−∇ ⋅
[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

= 𝑐
[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

, ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.8)

As indicated by Biot (1970), the main advantage is that the energy conservation law (2.8) now does not involve any time
derivative.

2.2. ‘‘Classical’’ form of the variational principle

The variational principle, here called ‘‘classical’’, was proposed by Biot (1970), but with a different definition of the displacement
field, which we prefer not to follow here for the reasons explained in Remark 2.1. Essentially, it provides the weak form of Fourier’s
equation, whereas the energy conservation law plays the role of a holonomic constraint.

After multiplying (2.1) for the variation of the displacement field 𝛿𝐇 (whose dependence on (𝐱, 𝑡) is not written for brevity),
integration over 𝛺 provides

∫𝛺
∇𝜃(𝐱, 𝑡) ⋅ 𝛿𝐇 𝑑𝑉 + ∫𝛺

1
𝜆

�̇�(𝐱, 𝑡) ⋅ 𝛿𝐇 𝑑𝑉 = 0 . (2.9)

o account for energy conservation, 𝛿𝐇 should be chosen such to satisfy (2.8). Observe that, since 𝐇♯(𝐱, 𝑡) and 𝜃0(𝐱) are assigned,
hen 𝛿𝐇♯(𝐱, 𝑡) = 𝟎 and 𝛿𝜃0(𝐱) = 0; consequently

−∇ ⋅ 𝛿𝐇(𝐱, 𝑡) = 𝑐 𝛿𝜃(𝐱, 𝑡) . (2.10)
3
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Therefore, integrating (2.9) by part and using (2.10), one obtains

∫𝛺
𝑐 𝜃(𝐱, 𝑡) 𝛿𝜃 𝑑𝑉 + ∫𝛺

1
𝜆

�̇�(𝐱, 𝑡) ⋅ 𝛿𝐇 𝑑𝑉 = −∫𝜕𝛺
𝜃(𝐱, 𝑡) 𝛿𝐇 ⋅ 𝐧 𝑑𝑠 . (2.11)

This provides the variational principle, which has to be complemented with Eq. (2.8), which correlates the field variables 𝐇(𝐱, 𝑡)
nd 𝜃(𝐱, 𝑡).

It is straightforward to demonstrate that the first variation of (2.11) with the constraint (2.8) provides Fourier’s law. This results
rom an arbitrary variation 𝛿𝐇 and the corresponding variation of 𝛿𝜃 according to (2.10). However, a major drawback of this
pproach is that both the fields 𝜃(𝐱, 𝑡) and 𝐇(𝐱, 𝑡) enter in the equations, and they are related by the constraint.

Remark 2.1 (The Original Formulation by Biot). The formulation originally proposed by M. Biot in the 1950’s (Biot, 1957, 1970),
relies upon an alternative definition of the heat flux fields. In particular, 𝑞♯(𝐱, 𝑡) is defined via the vector field 𝐇∗(𝐱, 𝑡), opposite to
𝐇♯(𝐱, 𝑡) of (2.5), i.e.,

∇ ⋅𝐇∗(𝐱, 𝑡) = ∫

𝑡

0
𝑞♯(𝐱, 𝑡) 𝑑𝑡 . (2.12)

The counterpart of the energy conservation law (2.8) is now

−∇ ⋅𝐇+(𝐱, 𝑡) = 𝑐
[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

, ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.13)

where the field 𝐇+(𝐱, 𝑡) is a fictitious heat displacement, since it is not directly correlated with the heat flux.
Probably, these definitions are consequent to the genesis of the principle. Biot first defined the variational principle in absence

f heat source, and then added the contribution of the generated heat. By comparing Eqs. (2.13) and (2.8), it can be verified that
+(𝐱, 𝑡) = 𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡): there is no difference when 𝐇♯(𝐱, 𝑡) = 𝟎. In this framework, Fourier’s law (2.1) is written as (Biot, 1970)

𝜆 ∇𝜃(𝐱, 𝑡) + �̇�+(𝐱, 𝑡) + �̇�∗(𝐱, 𝑡) = 𝟎 , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.14)

The variational setting provides the weak form of the Fourier’s equation, where the variation of (2.13), i.e., −∇ ⋅ 𝛿𝐇+(𝐱, 𝑡) =
𝛿𝜃(𝐱, 𝑡), is used as a holonomic constrain. The counterpart of (2.11) now reads (Biot, 1970)

∫𝛺
𝑐 𝜃(𝐱, 𝑡) 𝛿𝜃 𝑑𝑉 + ∫𝛺

1
𝜆

�̇�+(𝐱, 𝑡) 𝛿𝐇+ 𝑑𝑉 = −∫𝛺
1
𝜆

�̇�∗(𝐱, 𝑡) 𝛿𝐇+ 𝑑𝑉 − ∫𝜕𝛺
𝜃(𝐱, 𝑡) 𝛿𝐇+ ⋅ 𝐧 𝑑𝑠 . (2.15)

This formulation is amenable of a straightforward finite element implementation in space.
We remark that, by comparing Eqs. (2.11) and (2.15), the two variational settings coincide when there are no heat genera-

tion/absorption, i.e., 𝐇∗(𝐱, 𝑡) = 𝐇♯(𝐱, 𝑡) = 0, and consequently 𝐇+(𝐱, 𝑡) = 𝐇(𝐱, 𝑡) = 0. Moreover, the initial temperature 𝜃0(𝐱) does
not appear in the expression proposed by Biot (1970). This is not a problem because only the variation of the energy conservation
law is used as an internal constraint. In any case, for the definition of the ‘‘neat’’ form of the principle, it is useful to preserve the
physical interpretation of the heat displacement, as defined in Section 2.1.

2.3. The ‘‘neat’’ formulation of the variational principle

Following the definition (2.6) of the heat displacement fields 𝐇(𝐱, 𝑡) and 𝐇♯(𝐱, 𝑡), the weak form of the energy conservation law
(2.8) can be obtained by multiplying the expression (2.8) by the variation ∇ ⋅ 𝛿𝐇, i.e.,

∫𝛺

[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

∇ ⋅ 𝛿𝐇 𝑑𝑉 + ∫𝛺
1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

∇ ⋅ 𝛿𝐇 𝑑𝑉 = 0 . (2.16)

The field 𝐇(𝐱, 𝑡) is required to be continuous, whereas its variation 𝛿𝐇 shall satisfy the boundary conditions. Using the divergence
theorem and considering Fourier’s law (2.1), the first term can be written as

∫𝛺

[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

∇ ⋅ 𝛿𝐇 𝑑𝑉 =

∫𝛺
1
𝜆

�̇�(𝐱, 𝑡) ⋅ 𝛿𝐇 𝑑𝑉 + ∫𝜕𝛺
𝜃(𝐱, 𝑡) 𝛿𝐇 ⋅ 𝐧 𝑑𝑠 − ∫𝛺

𝜃0(𝐱)∇ ⋅ 𝛿𝐇 𝑑𝑉 , (2.17)

o that (2.16) may be rearranged in the form

∫𝛺
1
𝑐
∇ ⋅𝐇(𝐱, 𝑡) ∇ ⋅ 𝛿𝐇 𝑑𝑉 + ∫𝛺

1
𝜆

�̇�(𝐱, 𝑡) ⋅ 𝛿𝐇 𝑑𝑉 =

−∫𝜕𝛺
𝜃(𝐱, 𝑡)𝛿𝐇 ⋅ 𝐧 𝑑𝑠 + ∫𝛺

𝜃0(𝐱)∇ ⋅ 𝛿𝐇 𝑑𝑉 − ∫𝛺
1
𝑐
∇ ⋅𝐇♯(𝐱, 𝑡) ∇ ⋅ 𝛿𝐇 𝑑𝑉 . (2.18)

Observe that only the divergence of 𝐇♯(𝐱, 𝑡) appears in this expression. From (2.6b), this is the amount of heat generated/absorbed
in the volume up to the current time.
4
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The final form of the variational principle can be obtained from (2.18) with the divergence theorem, i.e.,

∫𝛺

{

−1
𝑐
∇
[

∇ ⋅
[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]]

+ 1
𝜆
�̇�(𝐱, 𝑡) + ∇𝜃0(𝐱)

}

⋅ 𝛿𝐇 𝑑𝑉

+∫𝜕𝛺

{

𝜃(𝐱, 𝑡) − 𝜃0(𝐱) +
1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]}

𝛿𝐇 ⋅ 𝐧 𝑑𝑠 = 0 . (2.19)

Remarkably, this formulation involves only the heat flux, whereas the temperature only appears at the boundary.
The arbitrariness of the variation 𝛿𝐇 inside the body provides the strong form of governing field equation, i.e.,

1
𝜆
�̇�(𝐱, 𝑡) = ∇

[1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

− 𝜃0(𝐱)
]

, ∀𝐱 ∈ 𝛺, ∀𝑡 , (2.20)

which has to be solved under appropriate boundary conditions, detailed in Section 2.4.
Suppose that 𝐇(𝐱, 𝑡) has been found. The temperature field in the body can be obtained by using Fourier’s law (2.1) as a constraint,

which provides 1
𝜆 �̇�(𝐱, 𝑡) = −∇𝜃(𝐱, 𝑡). Therefore, any heat displacement and temperature field which contemporaneously satisfies (2.1)

and (2.20) shall be such that

−∇𝜃(𝐱, 𝑡) = ∇
[ 1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

− 𝜃0(𝐱)
]

, ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.21)

This implies that 𝜃(𝐱, 𝑡) − 𝜃0(𝐱) +
1
𝑐∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

= 𝐹 (𝑡), i.e., it is a function of time only, being its gradient null in the whole
domain.

When the variation 𝛿𝐇⋅𝐧 is not zero on a part 𝜕𝑝𝛺 of the boundary 𝜕𝛺, the natural boundary condition provided by the boundary
term of (2.19) readily implies that

𝜃(𝐱, 𝑡) − 𝜃0(𝐱) +
1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

= 𝐹 (𝑡) = 0 , ∀𝐱 ∈ 𝜕𝑝𝛺 , ∀𝑡 . (2.22)

Therefore, one obtains 𝐹 (𝑡) = 0 in the whole domain 𝛺 and, consequently,

𝜃(𝐱, 𝑡) − 𝜃0(𝐱) +
1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]

= 0 , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.23)

This is the energy conservation law (2.8). The case in which 𝛿𝐇 ⋅ 𝐧 = 0 on the whole boundary 𝜕𝛺 deserves a particular attention,
because it entails an intrinsic indeterminacy in the temperature field 𝜃(𝐱, 𝑡) − 𝜃0(𝐱). It will be considered as case (ii) in the next
Section 2.4.

We take the liberty to call this variational formulation ‘‘neat’’ in comparison with the ‘‘classical’’ one, described in Section 2.2,
because it has the noteworthy advantage that it involves only the heat displacement as the unknown field. This is very useful in the
numerical implementation, as it will be discussed in Section 3. It considers Fourier’s law as a constraint and provides the energy
conservation law via the Euler–Lagrange equations; the vice-versa occurred in the ‘‘classical’’ formulation.

Remark 2.2 (A Mechanical Interpretation à la Biot). Following Biot (1970), the terms on the left-hand-side of (2.18) can be interpreted
as the variation of the thermal potential 𝐻 , associated with the heat flowing into the volume, and of the dissipation function , defined
as

𝛿𝐻 ∶= ∫𝛺
1
𝑐
∇ ⋅𝐇(𝐱, 𝑡) ∇ ⋅ 𝛿𝐇 𝑑𝑉 , (2.24a)

𝛿 = ∫𝛺
1
𝜆

�̇�(𝐱, 𝑡) 𝛿𝐇 𝑑𝑉 . (2.24b)

The terms on the right-hand-side indicate the thermal driving forces

𝛿 ∶= −∫𝜕𝛺
𝜃(𝐱, 𝑡) 𝛿𝐇 ⋅ 𝐧 𝑑𝑠 , (2.25a)

𝛿0 ∶= ∫𝛺
𝜃0(𝐱)∇ ⋅ 𝛿𝐇 𝑑𝑉 , (2.25b)

𝛿♯ ∶= −∫𝛺
1
𝑐
∇ ⋅𝐇♯(𝐱, 𝑡) ∇ ⋅ 𝛿𝐇 𝑑𝑉 . (2.25c)

In particular, 𝛿0 and 𝛿♯ indicate the contributions respectively due to the initial temperature distribution and the energy
enerated in the volume, whereas 𝛿 accounts for the effect of the temperature distribution at the domain boundaries. Notice
hat the temperatures at the domain boundaries and the volume heat source may be time-dependent. From (2.24) and (2.25), the
ariational principle (2.18) can be written as

𝛿𝐻 + 𝛿 = 𝛿 + 𝛿0 + 𝛿♯ . (2.26)

This notation has a mechanical analogy with the equations that regulate the motion of an elastic system with viscous dissipation
nd negligible mass. This is obtained through the definition of the variation of a Rayleigh-type dissipation function, which
ncludes the effects of velocity-proportional dissipative forces in the energy equations (Euler–Lagrange) of a classical mechanical
ystem (Bersani & Caressa, 2021; Nguyen, 1994; Virga, 2015).
5
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Remark 2.3 (The ‘‘Neat’’ Variational Principle in Biot’s Notation). The ‘‘neat’’ variational principle can be re-stated in terms of the
iot’s heat displacement fields 𝐇+(𝐱, 𝑡) and 𝐇∗(𝐱, 𝑡), defined in Remark 2.1. For this, multiply the energy conservation law (2.13) by

the variation ∇ ⋅ 𝛿𝐇+, and integrate it over the spatial domain 𝛺, to obtain

∫𝛺

[

𝜃(𝐱, 𝑡) − 𝜃0(𝐱)
]

∇ ⋅ 𝛿𝐇+ 𝑑𝑉 + ∫𝛺
1
𝑐
∇ ⋅𝐇+(𝐱, 𝑡)∇ ⋅ 𝛿𝐇+ 𝑑𝑉 = 0 . (2.27)

By considering Fourier’s law (2.14), and integrating by parts, Eq. (2.27) may be rewritten as

∫𝛺
1
𝑐
∇ ⋅𝐇+(𝐱, 𝑡) ∇ ⋅ 𝛿𝐇+ 𝑑𝑉 + ∫𝛺

1
𝜆
�̇�+(𝐱, 𝑡) ⋅ 𝛿𝐇+ 𝑑𝑉 =

−∫𝜕𝛺
𝜃(𝐱, 𝑡)𝛿𝐇 ⋅ 𝐧 𝑑𝑠 + ∫𝛺

𝜃0(𝐱)∇ ⋅ 𝛿𝐇 𝑑𝑉 − ∫𝛺
1
𝜆
�̇�∗(𝐱, 𝑡) ⋅ 𝛿𝐇+ 𝑑𝑉 . (2.28)

Again, it can be verified that, when there are no heat generation/absorption, i.e., 𝐇∗(𝐱, 𝑡) = 𝐇♯(𝐱, 𝑡) = 0, this expression coincides
ith (2.18).

The so obtained variational formulation is not complementary to the classical Biot’s setting presented in Remark 2.1, since the
ariable subjected to variation is, again, the heat displacement field. However, it may be considered dual because what is inverted
s the role of the expressions (2.1) and (2.3) as ‘‘constraint’’ and ‘‘Euler–Lagrange equation’’.

.4. Boundary conditions and temperature field

Through the ‘‘neat’’ variational principle (2.18), one can find the heat displacement field 𝐇(𝐱, 𝑡). The temperature field can be
ecovered a posteriori, from the internal constraint (2.1), which can be written as

∇ ⋅ �̇�(𝐱, 𝑡) = −𝜆 𝛥𝜃(𝐱, 𝑡) , ∀𝐱 ∈ 𝛺 , ∀𝑡 . (2.29)

his is Poisson’s equation, which allows to determine 𝜃(𝐱, 𝑡) from the conditions that this field has to satisfy on the boundary.
In most thermal problems, the boundary conditions are usually of three types (Lienhard & Lienhard, 2019; Mills, 1992).

i. The (possibly time-dependent) temperature 𝜃(𝐱, 𝑡) is specified on the domain boundary 𝜕𝛺. This value can be used in the
variational Eq. (2.18). Observe that the value of 𝛿𝐇 ⋅ 𝐧 is not constrained at the boundary, since (2.22) only determines the
value of the divergence of 𝐇(𝐱, 𝑡) at the boundary. Once 𝐇(𝐱, 𝑡) and �̇�(𝐱, 𝑡) are evaluated by solving the variational problem,
the temperature field is determined from (2.29), with Dirichlet boundary conditions

𝜃(𝐱, 𝑡) = 𝜃(𝐱, 𝑡) , ∀𝐱 ∈ 𝜕𝛺 , ∀𝑡 . (2.30)

ii. The heat flux �̇�(𝐱, 𝑡) ⋅ 𝐧 = ̇̄𝐻𝑛(𝐱, 𝑡) is specified on 𝜕𝛺. Integrating in time, this provides that 𝐇(𝐱, 𝑡) ⋅ 𝐧 = �̄�𝑛(𝐱, 𝑡) is assigned for
any 𝑡 on 𝜕𝛺 and, consequently, the variation 𝛿𝐇 ⋅ 𝐧 vanishes on the boundary. This implies that in the variational Eq. (2.19)
the boundary integral disappears. The variational problem is solved under the requirement that 𝐇(𝐱, 𝑡) ⋅ 𝐧 is assigned on 𝜕𝛺,
and the whole heat displacement field is found. The temperature field is found from (2.29) with boundary conditions of the
Neumann type which, from the Fourier’s law constraint, take the form

−𝜆∇𝜃(𝐱, 𝑡) ⋅ 𝐧 = −𝜆
𝜕𝜃(𝐱, 𝑡)
𝜕𝐧

= ̇̄𝐻𝑛(𝐱, 𝑡) , ∀𝐱 ∈ 𝜕𝛺 , ∀𝑡 . (2.31)

It is clear that there is an intrinsic indeterminacy in the temperature field for this case. For example, if the thermal equations
are satisfied by 𝜃(𝐱, 𝑡), they are also satisfied by 𝜃(𝐱, 𝑡) + 𝜃1(𝑡), obtained by adding the arbitrary uniformly distributed field
𝜃1(𝑡). This is not surprising, since there are many ways to inject a prescribed heat flux from the boundary, as a function of
the body temperature. In other words, knowledge of the heat sources and the heat fluxes on the whole boundary can only
determine the gradients of the temperature fields at each time.
This is the only case in which variational principle cannot provide, per se, a unique solution in terms of temperature. To solve
the indeterminacy, the energy conservation law (2.22) should be artificially considered on at least part of the boundary, even
if it does not result from the variational form as a natural boundary conditions.

iii. Robin conditions, or boundary conditions of the third kind, are prescribed for the temperature field. In this case, the heat flux
is proportional to the difference between the temperature at the boundary and the temperature of the surrounding medium
𝜃𝑒(𝐱, 𝑡), possibly dependent on time and the point 𝐱 ∈ 𝜕𝛺, according to an expression of the form

−�̇�𝑛(𝐱, 𝑡) = 𝜆
𝜕𝜃(𝐱, 𝑡)
𝜕𝐧

= ℎ
[

𝜃𝑒(𝐱, 𝑡) − 𝜃(𝐱, 𝑡)
]

, ∀𝐱 ∈ 𝜕𝛺 , ∀𝑡 , (2.32)

where ℎ is the surface heat transfer coefficient.1 In this case, 𝜃𝑒(𝐱, 𝑡) is the boundary datum, whereas 𝜃(𝐱, 𝑡) is free. This implies
that the boundary term in (2.19) can be written as

∫𝜕𝛺

{

𝜃(𝐱, 𝑡) − 𝜃0(𝐱) +
1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]}

𝛿𝐇 ⋅ 𝐧 𝑑𝑠

= ∫𝜕𝛺

{ 1
ℎ
�̇�(𝐱, 𝑡) ⋅ 𝐧 + 𝜃𝑒(𝐱, 𝑡) − 𝜃0(𝐱) +

1
𝑐
∇ ⋅

[

𝐇(𝐱, 𝑡) +𝐇♯(𝐱, 𝑡)
]}

𝛿𝐇 ⋅ 𝐧 𝑑𝑠 .
(2.33)

1 In the most general case, the convective heat transfer coefficient ℎ may vary on the boundary, and be temperature-dependent. Furthermore, the surface heat
6

ransfer law (2.32) can account, even in an approximated way, for both convection heat exchange and infra-red radiation. An example is provided in Section 4.3.



International Journal of Engineering Science 202 (2024) 104103A. Haydar et al.

d

w

i
i

2

c

S
t

i
a
u
o

s
F

w

Again, the boundary conditions are obtained since the variation 𝛿𝐇 ⋅ 𝐧 is arbitrary.
Once 𝐇(𝐱, 𝑡) is determined, the temperature field is found from (2.29) with the mixed boundary condition (2.32), correlating
𝜕𝜃(𝐱,𝑡)
𝜕𝐧 with 𝜃(𝐱, 𝑡) at the border. Also in this case, energy conservation (2.23) is naturally provided by the variational form of

the equations.

Remark 2.4 (Robin Conditions in Biot’s Formalism). Following Biot (1970), the boundary conditions (2.32) are accounted for via the
riving force 𝛿 (2.25a) as

𝛿 = −𝛿𝑏 + 𝛿𝑏 , with 𝛿𝑏 ∶ = ∫𝜕𝛺
1
ℎ

�̇�𝑛(𝐱, 𝑡) 𝛿𝐇 ⋅ 𝐧 𝑑𝑠 ,

𝛿𝑏 ∶ = −∫𝜕𝛺
𝜃𝑒(𝐱, 𝑡) 𝛿𝐇 ⋅ 𝐧 𝑑𝑠 ,

(2.34)

where 𝛿𝑏 is a boundary dissipation function, while 𝛿𝑏 accounts for the influence of the environmental temperatures. Accounting
for (2.34), the variational principle (2.26) may be written as

𝛿 + 𝛿 + 𝛿𝑏 = 𝛿𝑏 + 𝛿0 + 𝛿♯ , (2.35)

here the various quantities are as defined in Remark 2.2.

Of course, the aforementioned conditions may be contemporaneously applied on different parts of the body boundary. In general,
t is not straightforward to solve Poisson’s equation (2.29), either analytically or numerically. However, in the finite element
mplementations, such conditions can be directly enforced in the discretized version of the thermal equations.

.5. A mechanical analogy for the one-dimensional case

A mechanical analogy for the one-dimensional case may serve to illustrate the ‘‘neat’’ variational principle. The reference
onfiguration 𝛺 is now the 1D domain of length 𝑠, with coordinate 𝑧 ∈ [0, 𝑠]. The temperature field 𝜃(𝑧, 𝑡) and the heat flux in
𝑧 direction �̇�(𝑧, 𝑡) are related by the 1D counterpart of Fourier’s law (2.1), which reads

𝜆 𝜃′(𝑧, 𝑡) + �̇�(𝑧, 𝑡) = 0 , ∀𝐳 ∈ [0, 𝑠] , ∀𝑡 , (2.36)

where ′ denotes differentiation with respect to 𝑧. From the one dimensional version of (2.6), the energy conservation law (2.8) is
written in the form

−[𝐻 ′(𝑧, 𝑡) +𝐻♯ ′(𝑧, 𝑡)] = 𝑐[𝜃(𝑧, 𝑡) − 𝜃0(𝑧)] , ∀𝑧 ∈ [0, 𝑠] , ∀𝑡 . (2.37)

By coupling Eqs. (2.36) and (2.37), the 1D counterpart of the heat diffusion Eq. (2.3) is readily obtained (Lienhard & Lienhard,
2019), and the dual variational principle (2.18) reads

∫

𝑠

0

1
𝑐
𝐻 ′(𝑧, 𝑡)𝛿𝐻 ′ 𝑑𝑧 + ∫

𝑠

0

1
𝜆

�̇�(𝑧, 𝑡)𝛿𝐻 𝑑𝑧 =

− [𝜃(𝑧, 𝑡)𝛿𝐻]𝑠0 + ∫

𝑠

0
𝜃0(𝑧)𝛿𝐻 ′ 𝑑𝑧 − ∫

𝑠

0

1
𝑐
𝐻♯ ′(𝑧, 𝑡)𝛿𝐻 ′ 𝑑𝑧 .

(2.38)

The field equation and the boundary conditions may be evaluated analogously to the three dimensional case detailed in
ection 2.3. The one-dimensional reduction of the three types of boundary conditions and the a posteriori evaluation of the
emperature field follows the same arguments of Section 2.4.

The mechanical analogy consists in a linear elastic rod 𝑧 ∈ [0, 𝑠], with Young’s modulus 𝐸 and cross sectional area 𝐴. As indicated
n Fig. 1, each infinitesimal segment of the bar, comprised between the cross sections at 𝑧 and 𝑧+d𝑧, is connected to the ground by
dashpot with viscous constant 𝜂 d𝑧, such to form a homogeneous array. Suppose that each point 𝑧 where the dashpot is anchored
ndergoes the displacement 𝑢♯(𝑧, 𝑡), positive if in the direction of positive 𝑧, and let 𝑢(𝑧, 𝑡) denote the elongation of the end points
f the dashpot, so that 𝑢♯(𝑧, 𝑡) + 𝑢(𝑧, 𝑡) is the total displacement of the point 𝑧 of the bar.

In the initial reference configuration, at 𝑡 = 0, the bar is subjected to distributed forces per unit length 𝑓0(𝑧). Define

𝐹0(𝑧) ∶= ∫

𝑧

0
𝑓0(𝜁 ) 𝑑𝜁 +𝑁0 , (2.39)

uch that 𝐹0(0) = 𝑁0 and 𝐹0(𝑠) = ∫ 𝑠
0 𝑓0(𝜁 ) 𝑑𝜁 + 𝐹0(0) are the normal forces acting at the bar ends at 𝑡 = 0. Furthermore, as shown in

ig. 1, time-dependent compression forces 𝐹 (0, 𝑡) and 𝐹 (𝑠, 𝑡) are applied at the bar ends.
The equilibrium equation for an infinitesimal segment comprised between the generic section 𝑧 and 𝑧 + 𝑑𝑧 reads

𝐸𝐴
[

𝑢′′(𝑧, 𝑡) + 𝑢♯ ′′(𝑧, 𝑡)
]

− 𝜂�̇�(𝑧, 𝑡) − 𝐹 ′
0(𝑧) = 0 , (2.40)

ith boundary conditions

𝐸𝐴
[

𝑢′(0, 𝑡) + 𝑢♯ ′(0, 𝑡)
]

= −𝐹 (0, 𝑡) + 𝐹0(0) ,

𝐸𝐴
[

𝑢′(𝑠, 𝑡) + 𝑢♯ ′(𝑠, 𝑡)
]

= −𝐹 (𝑠, 𝑡) + 𝐹 (𝑠) .
(2.41)
7
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Fig. 1. Mechanical analogy for the one dimensional thermal problem: linear elastic bar connected to the ground by an array of dashpots.

To state the equivalence with the thermal problem, in which the temperature is prescribed at the boundary 𝑧 = 0 and 𝑧 = 𝑠, it
s sufficient to set

𝐸𝐴 = 1
𝑐
, 𝜂 = 1

𝜆
. (2.42)

rom the analogy, it is evident that the displacement fields 𝑢(𝑧, 𝑡) and 𝑢♯(𝑧, 𝑡) correspond to 𝐻(𝑧, 𝑡) and 𝐻♯(𝑧, 𝑡), respectively, while
0(𝑧) is the counterpart of the initial temperature 𝜃0(𝑧).

More in particular, denoting with 𝑁(𝑧, 𝑡) = 𝐹 (𝑧, 𝑡) − 𝐹0(𝑧) the axial force in the bar, assumed positive if compressive, the
onstitutive law is in the form

𝑁(𝑧, 𝑡) = 𝐹 (𝑧, 𝑡) − 𝐹0(𝑧) = −𝐸𝐴
[

𝑢′(𝑧, 𝑡) + 𝑢♯ ′(𝑧, 𝑡)
]

, (2.43)

orresponding to the energy conservation law (2.37), while the axial equilibrium equation is

𝜂�̇�(𝑧, 𝑡) = −𝐹 ′(𝑧, 𝑡) , (2.44)

hich is the counterpart of the Fourier’s equation (2.36). Clearly, 𝐹 (𝑧, 𝑡) corresponds to the temperature field 𝜃(𝑧, 𝑡). Hence, the
ompression forces 𝐹 (0, 𝑡) and 𝐹 (𝑠, 𝑡) applied at the bar ends play the role of the boundary temperatures.

The condition (2.44) implies that any solution for which �̇�(𝑧, 𝑡) = 0, such that 𝑢(𝑧, 𝑡) = 𝑢(𝑧), shall be characterized by 𝐹 ′(𝑧, 𝑡) = 0.
his means that the heat flux is null: when the steady state condition is reached the temperature field is uniform. More generally,
he analogy between the equations for the elastic and the thermal cases suggests that, in a finite element implementation of the
hermoelastic problem, the same shape functions can be considered to approximate both the elastic and the heat displacements.

. Finite element implementation

In Galuppi and Royer-Carfagni (2022), the one-dimensional version of the original variational principle by Biot, recalled
n Remark 2.1, was numerically implemented by approximating the relevant fields with high order Hermite shape functions.
pplications to multilayered plates composed of an arbitrary number of plies with different physical and thermal properties were
rovided. The implementation was extended in Galuppi and Royer-Carfagni (2023a, 2023b) to a three dimensional monolithic plate,
nevenly irradiated on the surfaces, entailing periodic variation of the thermal driving forces. A major drawback is that compatible
hape functions had to be assumed for the temperature and the heat displacement field, because they both enter in the fundamental
ariational principle. Remarkably, in the ‘‘neat’’ variational formulation only the displacement field needs to be considered.

.1. Finite element discretization

The domain 𝛺 is categorized in sub-domains, in each one of which the material is homogeneous. Each sub-domain is further
ivided into finite elements. The order of the variational form (2.38) indicates that the shape functions for the heat displacement field
hould entail at least 𝐶0 continuity within each sub-domain and at the interface between the neighboring sub-domains. Henceforth,
ne can consider the nodal heat displacements as generalized time-dependent coordinates, and use simple tri-linear shape functions
o interpolate the displacement field between the nodal points.

Let �̃�(𝑡) denote the vector collecting the 3𝑁 nodal values of the heat displacement, where 𝑁 it the total number of nodes in the
omain. Following standard procedures (Bathe, 2006; Zienkiewicz et al., 2005), the displacement field in a generic element 𝑒 and
n the whole body, respectively 𝐇𝑒(𝐱, 𝑡) and 𝐇(𝐱, 𝑡), are written as

𝐇𝑒(𝐱, 𝑡) = 𝝓(𝐱) �̃�𝑒(𝑡) , 𝐇(𝐱, 𝑡) = 𝝓(𝐱) �̃�(𝑡) , (3.1)

where �̃�𝑒(𝑡) is the column vector containing 3𝑛 generalized coordinates, where 𝑛 is the number of nodes in the element, while the
× 3𝑛 matrix 𝝓(𝐱) and the 3 × 3𝑁 matrix 𝝓(𝐱) collect the shape functions, respectively for the element and for the whole body.
8
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According to (3.1), the heat flux field and the variation of the heat displacement field in a generic element read

�̇�𝑒(𝐱, 𝑡) = 𝝓(𝐱) ̇̃𝐇𝑒(𝑡) , 𝛿𝐇𝑒(𝐱, 𝑡) = 𝝓(𝐱) 𝛿�̃�𝑒(𝑡) , (3.2)

where 𝛿�̃�𝑒(𝑡) is the vector of the arbitrary variations of the generalized coordinates.
It is convenient to approximate the heat displacement field due to the heat source, 𝐇♯(𝐱, 𝑡), with the same shape functions used

for 𝐇𝑒(𝐱, 𝑡), such that 𝐇♯
𝑒(𝐱, 𝑡) = 𝝓(𝐱) �̃�♯

𝑒(𝑡) is the function at the element level; clearly, �̃�♯
𝑒(𝑡) is the column vector containing the

nodal values of 𝐇♯(𝐱, 𝑡) at the considered element.
These approximations are used in the variational principle (2.19). For the generic element 𝑒, for which the constants 𝑐 and 𝜆 are

denoted by 𝑐𝑒 and 𝜆𝑒, one defines the quantities

𝐊𝑒 ∶=
1
𝑐𝑒 ∫𝛺𝑒

[

∇𝑇𝝓(𝐱)
]𝑇 ∇𝑇𝝓(𝐱) 𝑑𝑉 , 𝐂𝑒 ∶=

1
𝜆𝑒 ∫𝛺𝑒

𝝓𝑇 (𝐱) 𝝓(𝐱) 𝑑𝑉 ,

𝐪𝑒(𝑡) ∶= −∫𝜕𝛺𝑒

𝜃(𝐱, 𝑡) 𝝓(𝐱) ⋅ 𝐧 𝑑𝑠 , 𝐪0,𝑒(𝑡) ∶= ∫𝛺𝑒

𝜃0(𝐱)∇𝑇𝝓(𝐱) 𝑑𝑉 ,

𝐪♯𝑒(𝑡) ∶= − 1
𝑐𝑒 ∫𝛺𝑒

∇ ⋅𝐇♯(𝐱, 𝑡) ∇𝑇𝝓(𝐱) 𝑑𝑉 = −𝐊𝑒�̃�♯
𝑒(𝑡) ,

(3.3)

where 𝐪𝑒(𝑡), 𝐪0,𝑒(𝑡) and 𝐪♯𝑒(𝑡) are the counterpart of the thermal driving forces defined by (2.25). At the element level, one finds from
(2.19) the matrix form (Biot, 1970; Galuppi & Royer-Carfagni, 2022, 2023a)

𝐊𝑒 �̃�𝑒(𝑡) + 𝐂𝑒
̇̃𝐇𝑒(𝑡) = 𝐪𝑒(𝑡) + 𝐪0,𝑒 −𝐊𝑒�̃�♯

𝑒(𝑡) , (3.4)

where 𝐊𝑒 and 𝐂𝑒 play the role of element stiffness and damping (3𝑛 × 3𝑛) matrices, respectively.
Following the classical direct assembly method (Zienkiewicz et al., 2005), the matrix form on the full domain reads

𝐊�̃�(𝑡) + 𝐂 ̇̃𝐇(𝑡) = 𝐪(𝑡) + 𝐪0 −𝐊�̃�♯(𝑡) , (3.5)

where the global 𝐊 and 𝐂 (3𝑁 × 3𝑁) matrices are band matrices.
Notice that the term 𝐪𝑒(𝑡) in (3.4) accounts for the temperatures at the element boundaries. Unless an interfacial thermal

esistance is present, a case which will be specifically considered in Section 3.3, the matching conditions of the variational principle,
erived from the continuity of the heat displacement and its variation, imply that the temperature field is continuous. Thanks to
his, all the terms cancel out after assembling the 𝐪𝑒(𝑡) vectors, except on the external domain boundary 𝜕𝛺. The only surviving

term is

𝐪(𝑡) = −∫𝜕𝛺
𝜃(𝐱, 𝑡) 𝝓(𝐱) ⋅ 𝐧 𝑑𝑠 . (3.6)

his is analogous to the elimination of internal nodal forces via virtual work, a standard result in Finite Element (FE) ap-
roach (Zienkiewicz et al., 2005) that can also be verified through the ‘‘interconnection principle’’ established by Biot (1970).

Once �̃�(𝑡) is found by solving (3.5) with proper boundary conditions, the temperature field 𝜃(𝐱, 𝑡) can be evaluated by integrating
ourier’s equation (2.1), as indicated in Section 2.4. The integration constants in space can be found from the boundary conditions,
hile the time integration constant comes from the initial conditions on the temperature field.

The proposed FE approach can be particularized to two- and one-dimensional problems, by reducing the number of degrees of
reedom associated to each node. Examples of one-dimensional applications will be provided in Sections 4.1 and 4.2.

.2. Boundary conditions

The numerical implementation of the boundary conditions of Section 2.4 is as follows.

i. When temperatures are prescribed at the boundaries, one evaluates the vector 𝐪(𝑡) of the thermal driving forces by considering
the (possibly space- and time-dependent) prescribed temperatures.

ii. When the normal component of the heat flux is prescribed at a boundary, the correspondent nodal values of ̇̃𝐇(𝑡) in (3.5) and,
consequently, of �̃�(𝑡), can be obtained. Since the variation of the heat flux is null, the boundary term in (2.18) disappears;
consequently, the terms of 𝐪(𝑡) in (3.6) which are associated with the considered boundary degrees of freedom, are set equal
to zero. In the particular case of perfect insulation, a null heat flux is prescribed: the corresponding degrees of freedom can
be set to zero, which is equivalent to reducing the number of equations in (3.5).

iii. When boundary temperatures are given functions of the environmental temperatures and of the heat flux (Robin conditions),
one can substitute the value of the temperature as a function of �̇�𝑛 and the external temperature in the boundary term
of (2.19). To make the calculation explicit, consider the boundary conditions in the form (2.32). Solving for 𝜃(𝐱, 𝑡) and
substituting in the boundary term of (2.19), using the discretization (3.1), one finds that (3.5) becomes

̃ [ ] ̇̃ ̃ ♯
9

𝐊𝐇(𝑡) + 𝐂 + 𝐂𝑏 𝐇(𝑡) = 𝐪𝑏(𝑡) + 𝐪0 −𝐊𝐇 (𝑡) , (3.7)
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where

𝐂𝑏 ∶=
1
ℎ ∫𝜕𝛺

𝝓𝑇 (𝐱) 𝝓(𝐱) ⋅ 𝐧 𝑑𝑠 , (3.8a)

𝐪𝑏(𝑡) = −∫𝜕𝛺
𝜃𝑒(𝐱, 𝑡) 𝝓(𝐱) ⋅ 𝐧 𝑑𝑠 . (3.8b)

Observe that the term associated with 𝐂𝑏 accounts for boundary dissipation (Biot, 1970).

3.3. Interfacial thermal resistance

Layers with different physical and thermal properties, widely used in many applications (Pásztory & Le Duong, 2021; Sadineni,
Madala, & Boehm, 2011), can be considered by using the corresponding values for 𝜆𝑒 and 𝑐𝑒 in the element stiffness and damping
matrices (3.3). There is no need of implementing particular interface conditions, apart from the continuity of the heat flux.

A particular case is that of an Interfacial Thermal Resistance (ITR), also known as thermal contact resistance or Kapitza resis-
tance (Ruan, Shi, Guo, & Gu, 2020). This is the resistance to heat flow at the interface between two materials, arising from the
combination of poor mechanical or chemical adherence at the interface and/or thermal expansion mismatch (Benveniste & Miloh,
1986; Lipton & Vernescu, 1996; Nan, Birringer, Clarke, & Gleiter, 1997), and it is specifically relevant for solid–gas and solid–liquid
interfaces (Chen, Xu, Zhou, & Li, 2022; Liang & Hu, 2018). The result is a jump in the temperature profile, proportional to the heat
flux normal to the interface (Chen et al., 2022; Yuan, Yu, Li, & Fang, 2022).

To illustrate, consider the case where the ITR is a smooth surface 𝜕𝛺𝐼𝑇𝑅. Introduce a local orthogonal curvilinear system of
coordinates (𝜉, 𝜂, 𝜁 ), with arclength parametrization, such that 𝜕𝛺𝐼𝑇𝑅 corresponds to 𝜁 = 0, the axis 𝜁 is orthogonal to 𝜕𝛺𝐼𝑇𝑅,
whereas the axes associated with the 𝜉 and 𝜂 lines are tangent to 𝜕𝛺𝐼𝑇𝑅. The heat flux across the interface in the direction of 𝜁 is

�̇�𝜁 (𝜉, 𝜂, 0, 𝑡) = − 1
𝑅

[

𝜃(𝜉, 𝜂, 0+, 𝑡) − 𝜃(𝜉, 𝜂, 0−, 𝑡)
]

, (3.9)

here 𝑅 is the value of the interfacial thermal resistance and 𝜃(𝜉, 𝜂, 0±, 𝑡) represent the temperatures on the two sides of the interface.
In the proposed approach, this contribution affects the dissipation term in (2.19), i.e., the one where the coefficient 1∕𝜆

ppears. One can interpret the resistant interface as a thermally anisotropic ply, as per (Biot, 1970), of very small thickness 𝛥𝜁 ,
.e., 𝜁 ∈

(

− 1
2𝛥𝜁,

1
2𝛥𝜁

)

, and very low thermal conductivity 𝜆𝜁 in the 𝜁 direction. There are no internal heat sources, no heat is stored,2
o that the heat fluxes, assuming that 𝛥𝜁 is very small, are uniform in the 𝜁 direction. Consequently, from (2.1), the temperature is
inearly distributed in the thickness.

Now, consider the limit for 𝛥𝜁 → 0 and 𝜆𝜁 → 0, while 𝛥𝜁∕𝜆𝜁 → 𝑅. Therefore, the contribution in the dissipative term of (2.18)
reads

lim
𝛥𝜁→0

1
𝜆𝜁 ∫𝜕𝛺𝐼𝑇𝑅

∫

𝛥𝜁∕2

−𝛥𝜁∕2
�̇�𝜁 (𝜉, 𝜂, 𝜁 , 𝑡) 𝛿𝐻𝜁 𝑑𝜁 𝑑𝐴 = 𝑅∫𝜕𝛺𝐼𝑇𝑅

�̇�𝜁 (𝜉, 𝜂, 0, 𝑡) 𝛿𝐻𝜁 𝑑𝐴 . (3.10)

In the numerical implementation, the ITR is considered by placing nodes in correspondence of the interface. The matrix form
(3.5) of the variational principle becomes

𝐊�̃�(𝑡) +
[

𝐂 + 𝐂𝐼𝑇𝑅
] ̇̃𝐇(𝑡) = 𝐪(𝑡) + 𝐪0 −𝐊�̃�♯(𝑡) , (3.11)

where 𝐂𝐼𝑇𝑅 is a square matrix, where the only non-zero terms are those corresponding to the degrees of freedom associated with
�̇�𝜁 (𝜉, 𝜂, 𝜁 , 𝑡) of the interfacial nodes, which are equal to 𝑅.

4. Examples and comparisons

Two one-dimensional examples are first proposed as benchmark problems, since their solution was obtained by other authors
with a different approach. Here, 𝛺 is the 1D domain 𝑧 ∈ [0, 𝑠]. Each node used for the discretization of the 1D heat displacement
𝐻𝑧(𝑧, 𝑡) has one degree of freedom, so that the shape function matrices 𝝓(𝐱) and 𝝓(𝐱) collapse into vectors. Once the nodal values are
ound from (3.5), the temperature is determined by direct 1D integration of Fourier’s law (2.1), with constants of integration in each
lement derived from the boundary conditions and continuity at the nodes; in the case of ITR, the jump is determined by the heat
lux via (3.9). Alternatively, following a common procedure in FEM (Bathe, 2006; Zienkiewicz et al., 2005), the nodal temperatures
an be directly recovered as the internal forces on each node: once �̃�𝑒(𝑡) and ̇̃𝐇𝑒(𝑡) are known, Eq. (3.4) can be inverted to find 𝐪𝑒(𝑡).
t has been verified that the two approaches give identical results. A three-dimensional example is proposed in Section 4.3. The FE
odel has been implemented by using the GiD program (Coll et al., 2018) to pre-process the input data.

The chosen examples are paradigmatic benchmark problems. Example 1 reproduces a classical problem, already considered by
iot (1970); example 2 concerns an interfacial thermal resistance; example 3 considers differently irradiated regions in layered
omposites. Both examples 2 and 3 typically involve high temperature gradients.

2 This is equivalent (Yuan et al., 2022) to assume that 𝑐 = 0 in (2.3).
10
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Fig. 2. Example 1. Temperature profile at different times evaluated with the proposed approach, compared with Biot’s solutions (Biot, 1970), and with the
olution of the differential form of the thermal problem obtained in Fourier series expansion (Carslaw & Jaeger, 1947).

.1. Example 1 - Plate with prescribed temperature at one face and insulated at the other

This 1D example was originally proposed by Biot (1957, 1970). It regards a homogeneous pane of thickness 𝑠 = 50mm, initially
t the uniform temperature 𝜃0(𝑧) = 0 ◦C. At 𝑡 = 0, the face 𝑧 = 0 is suddenly brought to the temperature 80 ◦C, while the face
= 𝑠 is thermally insulated. No heat sources are present. This corresponds to boundary conditions of the first and the second kind,
ccording to the definitions of Sections 2.4 and 3.2, i.e.,

𝜃(0, 𝑡) = 𝜃 = 80 ◦C , �̇�(𝑠, 𝑡) = 0 , ∀𝑡 . (4.1)

Biot solved the problem (Biot, 1970) approximating the temperature field with parabolic functions, by dividing the heating
process into two phases. First, heat penetrates up to a depth 𝑧 = �̄�, called penetration depth. This phase ends at 𝑡 = 𝑡, when the
penetration depth equals the plate thickness (�̄� = 𝑠). In the second phase, for 𝑡 > 𝑡, the temperature rises at the insulated boundary.

In our numerical solution, the mesh is refined in the neighborhood of 𝑧 = 0 since the temperature presents here a discontinuity
at 𝑡 = 0: 20 elements, 0.5 mm thick, are used for 0 < 𝑧 < 10mm, while 8 elements, 5 mm thick, compose the remaining part.

The obtained results in terms of temperature profile 𝜃(𝑧, 𝑡) at different 𝑡, evaluated by setting 𝜆 = 200 W/(m K) and 𝑐 = 2.7 ⋅ 106

J/(m3 K), are plotted in Fig. 2. For the sake of comparison, the same figure shows Biot’s solution (Biot, 1970), and the results
obtained by solving the differential form of the heat conduction equations via Fourier series expansion (first 30 terms of the series),
as in Carslaw and Jaeger (1947). The results show an excellent agreement.

4.2. Example 2 - Element with interfacial thermal resistance

This problem, proposed in Yuan et al. (2022), is that of a composite plate made of two layers of thickness 𝑠1 = 𝑠2 = 0.5 m, with
𝜆1 = 200 W/(m K), 𝜆2 = 100 W/(m K), and 𝑐1 = 𝑐2 = 2.7 ⋅ 106 J/(m3 K), with an Interfacial Thermal Resistance 𝑅 = 1/500 m2 K/W.
The initial temperature is assumed uniform and equal to 20 ◦C. At 𝑡 = 0 the temperature is suddenly raised to 480 ◦C on the side
𝑧 = 0, whereas it is kept fixed at 20 ◦C at 𝑧 = 𝑠1 + 𝑠2 = 𝑠.

In Yuan et al. (2022), different 1D modeling strategies, solved with finite differences, were developed to account for the ITR: (i)
numerically implement the ITR relation (3.9) in terms of the temperature derivative; (ii) create a ‘‘virtual layer’’ with a very small
thermal conductivity 𝜆𝜁 (compare Eq. (3.10)) at the interface to represent the ITR; (iii) use a local ‘‘artificial layer’’ surrounding
the interface with modified thermal properties, to reflect the influence of the ITR on the heat transfer through the interface.
These approaches are reliable, but require a very fine mesh: by changing the mesh size, the temperature profile does change. The
convergence is reached using 500 elements, 2 mm thick, with a time step of 0.001 h.

In the proposed variational approach, we have verified that convergence is reached with only 20 elements, 50 mm thick, with a
time step of 0.01 h. Accurate results may be also be obtained with only four elements, but this mesh is not accurate for the evaluation
of the interfacial temperatures in the first minutes of the ‘‘loading’’ history, when the temperature profile presents a high slope in
proximity of the surface 𝑧 = 0, where the temperature jump is instantaneous. Therefore, at the beginning of the transient state, a
finer mesh is required to correctly reproduce the temperature profile. When the temperature profile smooths out as a consequence
of heat conduction, a coarse mesh is sufficient for a good accuracy.

Fig. 3(a) shows a comparison of the temperature profiles at 𝑡 = 1500 s, also recorded in Yuan et al. (2022), with evidence
of the temperature jump at the ITR surface. Fig. 3(b) shows the time evolution of the temperatures on the two faces of the ITR,
i.e., 𝜃𝐼𝑇𝑅,𝑙(𝑡) = 𝜃(𝑠−1 , 𝑡) and 𝜃𝐼𝑇𝑅,𝑟(𝑡) = 𝜃(𝑠+1 , 𝑡). The difference with the solution proposed in Yuan et al. (2022) is of the order of

◦
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Fig. 3. Example 2. Comparison between the solution obtained with the proposed approach and that proposed by Yuan et al. (2022). (a) Temperature profile at
= 1500 s; (b) time evolution of the temperatures on the two faces of the ITR.

.3. Example 3 - Partially shaded laminated glass pane

The third, 3D, example is representative of a window glass pane, unevenly irradiated by the sun due to cast shadows on its
urface, which separates environments at different temperature. At 𝑡 = 0 the temperature of pane is supposed to be uniform; at
= 0+ the body is put in contact with the environments and is (unevenly) irradiated by the sun. We calculate the transient thermal
tate, until the steady-state condition is reached. The model could also account for seasonal- or daily-varying boundary conditions,
ut this analysis is not done here.

Table 1
Values of physical and thermal properties for the materials considered in Example 3.

Material Reference 𝑐 [J/(m3 K)] 𝜆 [W/(m K)] 𝛼 [–] 𝜏 [–]

Glass EN (2012) and N180E (2004) 1800 103 1 0.23 0.67
PVB Alvarez, Flores, and Estrada (1998) and Carrot, Bendaoud, Pillon, Olabisi, and Adewale (2016) 1478.3 103 0.236 0.01 0.99

Consider the 1 m × 1.5 m rectangular laminated glass pane represented in Fig. 4, composed by alternating glass plies with PVB
olymeric interlayer, with very different physical and thermal properties (Alvarez et al., 1998; Galuppi & Royer-Carfagni, 2022), as
ndicated in Table 1.

Here, according to a practice followed by most authors, it is assumed that the interfacial thermal resistance at the glass-PVB
nterface is negligible, even if the presence of an ITR cannot be ruled out a priori. According to Pietrak and Wisniewski (2014), the
TR effect is low in case of an efficient mechanical and chemical bond between the constituents, such as for well-made laminated
lass. There are cases, however, in which partial delamination occurs, due to poor manufacturing or exposure to an aggressive
nvironment, for which the ITR would come into play.

A reference system is introduced, such that 𝑥, 𝑦 are the in-plane directions and 𝑧 is along the thickness. The panel is defined
y 0 ≤ 𝑥 ≤ 1.0m, 0 ≤ 𝑦 ≤ 1.5m. The laminate is made of one glass ply (0 < 𝑧 < 𝑠1) of thickness 𝑠1 = 12mm, the PVB interlayer
𝑠1 < 𝑧 < 𝑠1 + 𝑠2) of thickness 𝑠2 = 1.5mm, and the third glass ply (𝑠1 + 𝑠2 < 𝑧 < 𝑠1 + 𝑠2 + 𝑠3 = 𝑠) of thickness 𝑠3 = 6mm. The shaded
egion is rectangular and identified by the domain 0 < 𝑥 < 0.5m and 0 < 𝑦 < 0.5m.

As shown in Fig. 4, the panel is discretized by using one element in the thickness for each layer (three elements in total), and
y dividing the surface into 30 and 50 elements respectively in the 𝑥 and 𝑦 directions (4500 elements and 6324 nodes). The mesh
s refined in the neighborhood of the interface between shaded and unshaded regions, where conduction heat exchange occurs.
ri-linear shape functions have been used.

The panel exchanges heat via convection (with the external and the internal air) and radiation (with the sky vault and external
urfaces (ISO, 2003), and with other internal surfaces (Marino, Nucara, Pietrafesa, & Polimeni, 2017) assumed to be at the same
emperature 𝜃𝑖 of the internal air (EN, 2007)). Although the radiant energy exchange is proportional to the fourth power of the
bsolute temperatures (Lardner, 1963), since the temperature difference between panel and environment is small, the expressions
an be linearized (Lienhard & Lienhard, 2019). The conclusion is that all the heat-exchange contributions at the panel surfaces
rovide boundary conditions of the Robin kind (2.32). This can be written in the form

�̇�𝑧(𝑥, 𝑦, 0, 𝑡) = ℎ𝑖
[

𝜃𝑖 − 𝜃(𝑥, 𝑦, 0, 𝑡)
]

, �̇�𝑧(𝑥, 𝑦, 𝑠, 𝑡) = ℎ𝑒
[

𝜃(𝑥, 𝑦, 𝑠, 𝑡) − 𝜃𝑒
]

, ∀𝑡 , (4.2)

here ℎ𝑒 and ℎ𝑖 are the total heat transfer coefficient on the external and internal surfaces, respectively, simultaneously ac-
ounting for both convection and radiation, while 𝜃𝑒 is the ‘‘nominal’’ external temperature, defined so to provide the formal
quivalence (Galuppi & Royer-Carfagni, 2022).

The solar radiation, here denoted as 𝐺, can be modeled as an internal heat source (Galuppi & Royer-Carfagni, 2022; Lienhard
12

Lienhard, 2019). The total density of heat flow rate depends on several factors, such as season, time of day, panel orientation
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Fig. 4. Example 3. Laminated glass pane with unshaded and shaded portions: geometry and mesh used in the FEM implementation, plotted with the GiD
pre-processor.

and inclination (Demain, Journée, & Bertrand, 2013; Revfeim, 1982). A very used approach (Wright, 1998) consists in assuming
that the heat flux varies linearly in the thickness of each layer (Galuppi & Royer-Carfagni, 2023a). In our notation, this represents
a heat source 𝑞♯(𝑧, 𝑡) of uniform magnitude in each layer, independent on 𝑥, 𝑦. This also justifies the use of linear shape functions
for approximating 𝐻♯

𝑧(𝐱, 𝑡), while setting 𝐻♯
𝑥(𝐱, 𝑡) = 𝐻♯

𝑦 (𝐱, 𝑡) = 0. We can assume, following Galuppi and Royer-Carfagni (2022), that
part of the energy hitting the external ply at 𝑧 = 0 is absorbed, another part is reflected and the remain part is transmitted to second
layer. Similarly, the energy hitting layer 2 splits into an absorbed part, a reflected part, and a part transmitted to layer 3. Denoting
with 𝛼𝑖 and 𝜏𝑖 the absorptivity and the transmissivity with respect to the solar radiation of the 𝑖th ply, the heat it absorbs is

𝑞♯𝑖 (𝐱) = �̇�♯ ′
𝑧;𝑖 (𝐱) =

𝛼𝑖 𝛽𝑖
𝑠𝑖

𝐺 , where 𝛽𝑖 ∶=
{

1 for 𝑖 = 1 ,
∏𝑖−1

𝑘=1 𝜏𝑘 for 𝑖 = 2, 3 .
(4.3)

This allows to define the heat displacement field �̇�♯
𝑧(𝐱) through its nodal values. Here, it has been set to be zero at the external

surface 𝑧 = 0, while �̃�♯
𝑧(𝑥, 𝑦, 𝑠1) = 𝛼1𝛽1 ∫

𝑡
0 𝐺𝑑𝑡, �̃�♯

𝑧(𝑥, 𝑦, 𝑠1 + 𝑠2) = (𝛼1𝛽1 + 𝛼2𝛽2) ∫
𝑡
0 𝐺𝑑𝑡, �̃�♯

𝑧(𝑥, 𝑦, 𝑠) = (𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3) ∫
𝑡
0 𝐺𝑑𝑡. An

arbitrary additive constant could be added to this field (for example, so to have �̃�♯
𝑧(𝑧, 𝑡) = 0 at the internal surface 𝑧 = 𝑠), without

affecting the final results.
Realistic values for a winter scenario have been considered for the environmental parameters: 𝐺 = 800 W/m2, 𝜃𝑒 = -12 ◦C and

𝜃𝑖 =25 ◦C. The total external and internal heat transfer coefficients, respectively ℎ𝑒 = 11.926W∕(m2K) and ℎ𝑖 = 8.375W∕(m2K), have
been calculated following Galuppi and Royer-Carfagni (2022). The initial temperature is assumed to be 𝜃0 = 0 ◦C.

The heat displacement field has been evaluated by solving the matrix problem (3.7), accounting for the Robin boundary
conditions at the two panel surfaces. The panel edges have been assumed to be perfectly insulated, i.e., the normal heat flux is zero
on the panel borders. Once the heat displacement field is known, the temperature distribution has been recovered by integrating
the internal constrain (2.1) (Fourier’s law), calculating the integration constants from the boundary conditions.

Fig. 5 shows the qualitative temperature distribution at the steady state, at the external (𝑧 = 𝑠) and internal (𝑧 = 0) surfaces. It
is evident that they are both approximately uniform in the shaded and not-shaded regions, left aside a thin strip in correspondence
of the interface. A comparable example with a partially shaded rectangular portion, but in which the pane is monolithic, was
considered in Galuppi and Royer-Carfagni (2023b), implementing the classical version of Biot’s variational principle and a different
FE implementation. In that simulation, the temperature field presented singularities at the corner, which were attributed to the
irregularity (sharp angle) of the interface boundary (Fox, 1971; Yosibash, 2012). Now, it has been verified that the solution presents a
very slight peak in the temperature field at the corner of the shaded region, but apparently does not grow unboundedly. Remarkably,
the temperature peak disappears if the angle formed by the interface lines at the corners is just slightly different from 90◦: the plots
in Fig. 5 have been obtained for an 89.5◦ angle. However, the discussion about the potential concentration of temperatures in areas
of high curvature is beyond the scope of this article.

The obtained results are compared with a direct numerical solution of the differential form of the heat-conduction equations,
under the aforementioned boundary and initial conditions. This is done with the ‘‘pdepe’’ Matlab tool (MATLAB, 2023), based on
a finite difference approach in both space and time. In this case, the plate has been discretized by using tetrahedral elements, with
max size of 15 mm and minimum size of 1 mm, for a total of 129 328 elements and 219 004 nodes.

Fig. 6 shows the time variation of the temperatures at the internal (𝑧 = 0) and external (𝑧 = 𝑠) surfaces, as well as of the interface
temperatures at 𝑧 = 𝑠1 and 𝑧 = 𝑠2, at two different (𝑥, 𝑦) coordinates of the laminated panel. Fig. 6(a) considers a point 𝐴 of the
shaded region far from the interface (where the temperature is constant in practice at the steady state), whereas Fig. 6(b) refers to
13
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Fig. 5. Example 3. Temperature distribution at the steady state, at (a) the internal 𝑧 = 0 and (b) the external 𝑧 = 𝑠 surfaces, plotted with the GiD post-processor.

Fig. 6. Example 3. Temperature as a function of time 𝑡 on the external (𝑧 = 𝑠) and internal (𝑧 = 0) surfaces and at the interfaces (𝑧 = 𝑠1 and 𝑧 = 𝑠2), in the (a)
irradiated and (b) shaded regions. Comparisons between the proposed approach (lines) and the numerical solution of the differential form of the heat-conduction
equations (markers).

Fig. 7. Example 3. Through-the-thickness temperature profile at different times at the same points considered in Fig. 6. Comparisons between the proposed
solutions (lines) and the numerical solution of the differential form of the heat-conduction equations (markers).

a point 𝐵 of the fully irradiated region, again far from the interface, both indicated in Fig. 4. The graphs also show the comparison
with the direct numerical solution, plotted with markers. The steady state condition is achieved in about two hours.

For the same points 𝐴 and 𝐵, Fig. 7 records the temperature profile across the thickness of the laminated glass element, for
different time instants.

To analyze the in-plane temperature distribution, Fig. 8 shows the surface and interface temperatures, at the steady state (𝑡 = 2 h),
on the lines 𝐿1 and 𝐿2 indicated in Fig. 4. These graphs emphasize the sigmoidal temperature profile in proximity of the interfaces.
The transition zone has a width of about ten times the thickness of the whole laminated panel, which confirms the findings of Galuppi
and Royer-Carfagni (2023b).

The comparison with the solution obtained from the differential form of the thermal problem indicates an excellent agreement
with our method, being the maximum difference less than 0.2 ◦C. It has also been verified, in a simpler model problem, that
the pde solution requires a much higher number of elements than the proposed approach to obtain comparable results. Since
14
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Fig. 8. Example 3. In-plane temperature distribution at the steady state, on the external and internal surfaces and at the interfaces, calculated on the lines (a)
𝐿1 and (b) 𝐿2 of Fig. 4. Comparisons between the proposed approach (lines) and the numerical solution of the differential form of the heat-conduction equations
(markers).

the computational time is comparable for the two methods kept fixed the number of nodes, we deduce that our approach is
computationally much more efficient.

5. Conclusions

We have presented a variational setting for the heat conduction problem in solid bodies which develops Biot’s original
formulation, providing the weak form of the energy conservation while Fourier’s equation is a holonomic constraint embedded
in the formulation. This represents a development of Biot’s approach, since only the heat displacement field enters in the equations,
whereas Fourier’s law is only used a posteriori to recover the temperature field. For the one-dimensional case, there is a direct
mechanical analogy with the equilibrium problem of an elastic bar with viscous constraints.

The proposed variational formulation has been implemented in a FE framework and applied to benchmark problems, showing
an excellent agreement with results taken from the technical literature. Compared to the standard formulations for heat conduction
in solids based on the scalar temperature field, one main advantage in the proposed vector field (flux-based) approach is that the
heat displacement enjoys a much higher regularity than the temperature. Therefore, its use is particularly convenient in all those
problems involving significant temperature gradients, since a coarser discretization is sufficient. With respect to Biot’s classical
principle, the proposed form allows to use elementary tri-linear shape functions for the displacement field. Numerical convergence
is fast and the results accurate.

There are certainly important issues, yet to be investigated. The heat displacement cannot be uniquely determined, yet the heat
displacement functions are the primary unknowns of the formulation. The numerical approach has been tested for a limited number
of problems, but it is critically important to study the stability character of the proposed formulation. This shall include the study of
the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf–sup conditions, performing patch tests and conducting convergence analysis on a
higher number of numerical experiments. The weak form of the thermal equations could also be extended to problems characterized
by nonlinear heat conduction laws. The formal correspondence between the heat displacement field in the thermal problem, and
the displacement field in an elastic problem, detailed in the mechanical analogy for the one-dimensional case, suggests that there
may be a commonality of numerical formulation for the coupled thermoelastic problem, yet to be appreciated.

While these issues shall be addressed in further research, the results obtained so far show that the proposed flux-based variational
approach is very promising for transient thermal analysis in many applications of structural engineering. We close with a quote from
the classic treatise ‘‘The Analytical Theory of Heat’’ published by Joseph Fourier in 1822: The effects of heat are subject to constant
laws which cannot be discovered without the aid of mathematical analysis.
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