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Abstract

We investigated atomic sites occupancy for the Si dopant in Si-doped κ-

Ga2O3(001) using photoelectron spectroscopy (PES) and photoelectron holography 

(PEH). From PES and PEH, we found that the Si dopant had one chemical state and three 

Page 1 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:YAMASHITA.Yoshiyuki@nims.go.jp


types of inequivalent Si substitutional sites (SiGa) were formed. The ratios for the 

inequivalent tetrahedral, pentahedral, and octahedral SiGa sites were estimated to be 

55.0%, 28.1%, and 16.9%, respectively. Higher (lower) ratios for the three inequivalent 

SiGa sites may come from lower (higher) formation energy. The Tetra (Octa) SiGa site has 

the highest (lowest) ratio of the three SiGa sites since it has the lowest (highest) formation 

energy. We suggest that the tetrahedral SiGa site is due to the active dopant site, whereas 

the pentahedral and octahedral SiGa sites can be attributed to the inactive dopant sites for 

the Si-doped κ-Ga2O3(001).
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Introduction

In recent years, gallium oxide (Ga2O3) has attracted considerable interest as an 

ultra-wide bandgap semiconductor because of a bandgap of around 5 eV, high thermal 

stability, and the availability of large-scale β-Ga2O3 single crystal wafers. Such superior 

Ga2O3 properties can apply to the field of power electronics.1-7 For Ga2O3, there are five 

crystal polymorphs: α-, β-, δ-, γ-, and κ-Ga2O3.3,4 Among them, the most 

thermodynamically stable is β-Ga2O3, which has been widely investigated.6-9

Recently, the orthorhombic κ-Ga2O3 polymorph is gaining attention due to its 

higher symmetry with respect to monoclinic structure, its large spontaneous polarization 

along the (001) direction, and its ferroelectricity.10-13 According to previous studies, this 

structure can be synthesized by several chemical- and physical-vapor phase epitaxial 

techniques (e.g., metal-organic vapor phase epitaxy MOVPE, halide vapor phase epitaxy, 

molecular beam epitaxy, and pulsed laser deposition) on various substrates.14 Among 

them, c-plane sapphire has been so far the most frequently used substrate for κ-Ga2O3 

epitaxy.7,15-18 The κ-Ga2O3 structure is shown in Figure 1(a). There are three inequivalent 

Ga atomic sites in κ-Ga2O3: octahedral (Octa), pentahedral (Penta), and tetrahedral 

(Tetra).11,19

For κ-Ga2O3, both Si and Sn have been experimentally found to be extrinsic  
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donors.7,11,16,20,21 According to electron paramagnetic resonance (EPR), Si is suggested to 

be an effective mass donor when it is positioned as a substitutional of Ga (SiGa) in the 

tetrahedral site of the orthorhombic κ-Ga2O3 lattice.16 Nonetheless, despite the possible 

incorporation of Si at cation concentrations that might exceed 1% in the metal-organic 

vapor phase deposited (MOVPE) layers, the reported Hall-measured charge carrier 

density n never exceeded the mid 1018 cm-3 range.7 This net donor density concentration 

range was independently confirmed by capacitance-voltage measurements performed in 

Schottky diodes based on Si-doped κ-Ga2O3.22

 In this framework, the following could all play an important role in the resulting 

Si dopant activation efficiency in κ-Ga2O3:7 (i) the presence of a large concentration of 

extended defects (i.e., rotational domain boundaries and plane defects), (ii) the possible 

occupation of different reticular Ga sites, and (iii) the presence of a large amount of 

compensating defects (deep level acceptors). In particular for point (i) and (iii), the (001)-

oriented heteroepitaxy of κ-Ga2O3 on various substrates [e.g., c-plane sapphire, (0001)-

GaN, (111)-MgO]14 results in the formation of large density of structural defects that are 

mostly perfectly vertically oriented, i.e., 3 x 120° rotated domains and anti-phase 

boundaries.7,23,24 According to the recent work of Vyvenko et al., these vertically oriented 

structural defects could be electrically charged.24 We believe that the discrepancy 
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between the detected level of incorporated Si in the κ-Ga2O3 matrix and the net doping 

level is in line with a high level of compensation that can be largely induced by such 

vertically oriented structural defects. A similar picture of large charge carrier 

compensation related to charged structural defects has been reported and modelled in the 

case of defective β-Ga2O3 layers by Fiedler et al.25 In this work, we describe the first 

experimental confirmation that the Si impurities incorporated in κ-Ga2O3 lattice sites 

substitute Ga (target point (ii)), particularly to experimentally clarify the respective 

fraction of different reticular Ga sites that are actually occupied by Si (SiGa), possibly 

causing active and inactive dopant in Si-doped κ-Ga2O3 thin films.

We employed photoelectron holography (PEH) to clarify the Si dopant site for 

the Si-doped κ-Ga2O3. In the PEH, the photoelectrons of the target atoms (e.g., dopants) 

are excited as the emitter under photoirradiation and scattered by the surrounding atoms. 

Finally, interference patterns are formed in the core-level photoelectron angular 

distribution. PEH has a great advantage in which non-periodic atomic structures are 

applicable. Additionally, since PEH is based on photoelectron spectroscopy, chemical 

state-discriminated PEHs can be achieved.26-29
 Therefore, we can clarify the atomic 

structures and the chemical states of the Si dopants in κ-Ga2O3. The PEH schematic is 

shown in Figure 1(b).
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We also performed PEH simulations for the atomic position of the Si dopants in 

κ-Ga2O3 to clarify the Si dopant sites. Since the structure around the dopant atom should 

be relaxed as the dopant is introduced into κ-Ga2O3, the bond length around the dopant 

atom may be different from the length before the dopant introduction. Thus, we performed 

extended x-ray absorption fine structure (EXAFS) to estimate the bond length after the 

dopant introduction. PEH simulations were done using the bond length after introducing 

the dopant. In the present study, we investigated the atomic position of the Si dopant for 

Si-doped κ-Ga2O3 using PEH to clarify the atomic structures of the active and inactive Si 

dopants for the Si-doped κ-Ga2O3. 
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Experimental

Figure 1. (a) Unit cell of κ-Ga2O3: Green, blue, and brown polyhedrons represent Octa, Penta, and 

Tetra Ga sites. (b) PEH schematic for Si-doped κ-Ga2O3. Yellow, green, and gray balls represent 

Si, Ga, and O atoms.

Page 7 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A κ-Ga2O3 epitaxial layer was grown on a c-plane sapphire substrate with 

MOVPE. Trimethylgallium and ultrapure H2O were used as a metal precursor and an 

oxidizing gas. H2 was used as the gas carrier. The reaction was carried out at a H2 pressure 

of 60 mbar in the growth chamber with a substrate temperature of 610°C. A H2-diluted 

mixture of 0.05% SiH4 was employed as the Si dopant source. Using a SiH4 flow of 15 

standard cubic centimeters per minute resulted in a Si concentration of 1.02 cation % in 

the κ-Ga2O3 layer (determined by atom probe tomography, which is the same sample that 

was previously investigated.) evenly distributed in the analyzed film volume.7 The 

dopant’s carrier concentration was experimentally determined by Hall effect 

measurements to be 2.6 × 1018 cm−3 where the electronic transport was dominated by a 

hopping mechanism (further details on the electrical characterization of the very same 

sample are available.).7 Before PES and PEH measurements, the substrates were cleaned 

by the RCA method so that surface contaminations were removed. Then the surface oxide 

layer and the particles were removed by concentrated hydrochloric acid for 1 min., 

followed by washing with deionized water.

X-ray photoelectron spectroscopy (XPS) and hard x-ray photoelectron 

spectroscopy (HAXPES) measurements were performed using PHI Quantes (ULVAC-

PHI). Monochromatic Al Kα (1486.6 eV) and Cr Kα (5414.9 eV) were used as incident 
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x-rays sources for the XPS and HAXPES. The take-off angle (TOA) was 90° (surface 

normal). We employed the pass energies of 55 and 112 eV for XPS and HAXPES 

measurements, respectively. The energy resolutions for XPS and HAXPES 

measurements were estimated to be 0.51 and 1.11 eV, respectively. The total energy 

resolutions were estimated by measuring the Fermi level of Au polycrystalline sample. 

We used KolXPD software to perform the XPS and HAXPES peaks fitting.30 We used 

Voight function (convolution of Lorentzian and Gaussian functions) for peaks fitting after 

removal of the background of the Shirley function.31-33

PEH measurements were performed at BL25SU at SPring-8. We used a retarding 

field analyzer (RFA) for PEH measurements. The RFA energy resolution was 

approximately 0.5 eV.34-36 RFA’s acceptance angle was approximately ±49°, and the 

angular resolution was 0.5°.36 The base pressure of the main chamber was 2.8 × 10−8 Pa. 

PEH simulations were performed using 3D-AIR-IMAGE software (version 1.1.09). The 

total analysis multiple scattering pattern simulation code was included in the software.37-40 

For the simulations, we employed an electron kinetic energy of 800 eV, a temperature of 

300 K, and an inelastic mean free path of 10 Å. 

The EXAFS measurements were carried out at the BL6N1 in the Aichi 

Synchrotron Radiation Center. The base pressure of the main chamber was 3.1 × 10-7 Pa. 
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The spot-size of the incident photon at the sample position was 2.0 mm × 1.0 mm 

(horizontal × vertical). A SPECS PHOIBOS 150 was used as an electron analyzer.41 The 

pass energy was set to 20 eV. The angle between the incident photon and the sample 

surface normal was 55°. The TOA was set to 90° (surface normal).42,43 For the EXAFS 

measurements, the total electron yield was employed. The energy range for the EXAFS 

measurements was from 1800 to 2100 eV with 1.0-eV energy steps. 

Results and discussion

Figure 2 shows the XPS and HAXPES spectra for the Si-doped κ-Ga2O3(001). 

In the Ga 2p XPS spectrum (Figure 2(a)), the peak at 1119.0 eV is attributed to the Ga-O 

species.44-46 In the Si 1s HAXPES spectrum (Figure 2(b)), the peak at 1843.5 eV is due 

to the Si-O species.47,48 When the different Si oxidation states (from 1+ to 4+) exist, the 

corresponding peaks appear at lower binding energy position from 1 to 3 eV (depend on 

the oxidation states),49,50 forming an asymmetric peak structure. However, the Si 1s 

HAXPES spectrum shows a symmetric peak structure. Therefore, we can exclude the 

possibility of the presence of the different Si oxidation states. Thus, the chemical state of 

the Ga and Si atoms shows one chemical component. Since Si 1s shows one chemical 

species, the Si atom in the Si-O species may be due to the Si dopants. 
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Figure 3(a) shows the Ga 3p and Si 2p PES spectrum for the Si-doped κ-

Ga2O3(001) measured at an incident photon energy of 911 eV. For them, spin-orbit 

splitting of 3.46 eV and 0.60 eV was employed for the peaks fitting.51-54 The 

corresponding PEHs for Ga 3p and Si 2p are shown in Figures. 3(b) and (c). The Si 2p 

PEH shows clear patterns, indicating that the Si dopant may be located at the atomic 

positions of κ-Ga2O3(001). 

Figure 2. (a) Ga 2p3/2 XPS (b) Si 1s HAXPES spectra measured at photon energies of 1486.6 eV 

(XPS) and 5414.9 eV (HAXPES), respectively.
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Figures 4(a) and (b) show the EXAFS and the oscillation for the Si-doped κ-

Ga2O3(001). Fig. 4(c) shows k2-weighted Si K-edge EXAFS spectrum plotted with the 

Figure 3. (a) Ga 3p and Si 2p PES spectrum for Si-doped κ-Ga2O3(001). PEHs of (b) Ga 3p and 

(c) Si 2p for Si-doped κ-Ga2O3(001). 
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fitting result for Si-doped κ-Ga2O3(001). The fitting range in k-space was chosen at 2–

7.2 Å-1
 with a good signal-to-noise ratio. Fig. 4(d) shows the radial distribution function 

of the k2-weighted EXAFS and the fitting result of the Octa SiGa site as an example. The 

fitting was performed using ARTEMIS software, and the reliable factor was set to 

0.015.55,56 The nearest Si-O distance was estimated to be 2.01 Å, a value shorter than the 

Ga-O bond length of 2.02 Å observed for the non-doped κ-Ga2O3 Octa site.23
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 We also performed fitting for the other SiGa sites in κ-Ga2O3 (Figure S2). The 

first nearest Si-O distance was estimated to be 2.02 Å and 1.83 Å for the Penta and Tetra 

SiGa sites. We performed PEH simulations based on the bond length obtained from 

EXAFS. This is because when the dopants are introduced to the sample, the bond length 

should be changed around the dopant atom. Thus, we have to use the bond lengths around 

the Si dopant atom obtained from EXAFS. 

Figure 4. (a) Si K-edge EXAFS and (b) k2-weighted Si K-edge EXAFS for Si-doped κ-

Ga2O3(001). (c) k2-weighted Si K-edge EXAFS spectrum (black solid line) plotted with best fit 

(red solid line) for Si-doped κ-Ga2O3(001) sample. The fitting range was 2–7.2 Å-1. (d) Radial 

distribution function of the k2-weighted EXAFS (black solid line) and the fitting results (red solid 

line) for SiGa in Octa site. The fitting range was 1–4 Å. The amplitude reduction factors, ΔR, and 

MSRD values were set to 1, -0.011 Å, and 0.015, respectively.
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According to previous studies, dopant atomic positions are Ga replaced by Si, 

that is, SiGa in κ-Ga2O3.7,20 Therefore, PEH simulations were performed for the Octa, 

Penta, and Tetra SiGa sites. Figure 5 shows the experimental and simulated Si 2p PEHs 

for the Octa, Penta, and Tetra SiGa sites. Not every simulated PEH for the respective Octa, 

Penta, and Tetra SiGa sites explains the experimental Si 2p PEH, indicating that the Si 

dopant sites may be due to the mixture of inequivalent SiGa sites.

To determine the dopant site ratio for the Si-doped κ-Ga2O3, we mixed the 

simulated Si 2p PEHs of the Tetra, Penta, and Octa SiGa sites. The simulated PEH with 

the three inequivalent SiGa site ratios is shown in Figure 5(d). The best fit for the 

experimental PEH data was obtained using the ratios for Tetra, Penta, and Octa SiGa sites 

of 55.0%, 28.1%, and 16.9%, respectively.  Note that the occupancy ratios of the Tetra, 

Penta, and Octa SiGa sites were estimated using the equations shown in Supporting 

Information.
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For the undoped κ-Ga2O3, the ratios for the Tetra, Penta, and Octa sites were 

25%, 25%, and 50%.11,19 Therefore, based on our results, in the case of the Si-doped κ-

Ga2O3, the Tetra SiGa site is strongly favored with respect to the Penta and Octa sites 

(55.0% with respect to the presence of just 25% of the Ga tetrahedral sites in the κ-Ga2O3 

lattice). The Penta SiGa (28.1%) is almost half of the tetrahedral site occupation despite 

sharing an identical amount of available sites in the orthorhombic lattice (25% of the 

Figure 5. Experimental (yellow) Si 2p and the simulated (blue) PEHs. The simulated PEHs of (a) 

Octa SiGa site (b) Penta SiGa site (c) Tetra SiGa site, and (d) their sum are 16.9%, 28.1%, and 55.0%.
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Penta Ga sites in the undoped κ-Ga2O3). Even though the Octa Ga sites are the highest 

occupation in the κ-Ga2O3 lattice (50%), the Octa SiGa site occupation in Si-doped κ-

Ga2O3 is the lowest (16.9%). 

The difference in these SiGa ratios might be related to the formation energy of 

such defects. In this framework, our data suggest that the Tetra sites of the SiGa defect 

should have the lowest formation energy with respect to the Octa and Penta coordinations. 

Nevertheless, this does not fully agree with the first principles calculations of Zeman et 

al. that predicted the Octa SiGa site to have the lowest formation energy for the κ 

polymorph, followed by the Tetra and Penta sites.57 

The discrepancy between the experimental and theoretical results might be 

explained as follows. As we already described the introduction section, our sample has 

large density of structural defects. The defects are mostly perfectly vertically oriented, 

i.e., 3 x 120° rotated domains and anti-phase boundaries.7,23,24 In addition, these vertically 

oriented structural defects could be electrically charged.24 On the other hand, the first 

principles calculations of Zeman et al. do not contain the charged structural defects, 

vertically oriented and rotated domains, and anti-phase boundaries.57 As a result, the first 

principles calculations might not fully agree with the experimental results.58-60 

Von Bardeleben et al. investigated the electrically active dopant in Si-doped κ-
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Ga2O3 with EPR and concluded that the detected dopant site was due to the Tetra SiGa 

site.16 Thus, based on the present investigation, that site may be attributed to the active 

dopant site for the Si-doped κ-Ga2O3. The Si impurity in other Ga sites might be 

electrically inactive dopants for the Si-doped κ-Ga2O3 (Penta and Octa SiGa sites). Further 

investigations are required to clarify the origin of the suggested inactivity of the SiGa Penta 

and Octa sites.

Conclusion

We used XPS, HAXPES, PEH, and EXAFS to clarify the chemical states and 

the atomic positions of Si dopants for Si-doped κ-Ga2O3(001). From XPS and HAXPES, 

we found that the Si dopant shows one chemical state for the Si-O species in Si-doped κ-

Ga2O3(001). Since the Si 2p PEH showed clear hologram patterns for the Si dopant, it 

should be located at the cationic positions of κ-Ga2O3(001). We experimentally 

demonstrated that Si is effectively incorporated in Ga sites. We simulated the PEH 

patterns to clarify the precise occupation site of Si dopants in the orthorhombic lattice and 

found that the simulated PEH of each inequivalent SiGa site (i.e., Tetra, Penta, Octa) could 

not explain the experimental Si 2p PEH. Thus, the Si dopant was found to occupy all the 

different cationic sites (i.e., mixture of inequivalent SiGa sites). With the ratios of the Tetra, 
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Penta, and Octa SiGa sites of 55.0%, 28.1% and 16.9%, respectively, we obtained a best 

fit of the PEH experimental data. The recorded differences should be considered in light 

of the overall amount of different Ga inequivalent sites in the orthorhombic unit cell (i.e., 

Tetra, Penta, and Octa sites of 25%, 25%, and 50%) and may be attributed to different 

SiGa formation energies. In this framework, the Tetra SiGa site has by far the highest 

occupation ratio among the three inequivalent Ga sites in the lattice. We suggest that this 

result is related to the SiGa in the Tetra site that has the lowest formation energy; whereas, 

the Octa SiGa site exhibited the lowest ratio, suggesting that this defect configuration has 

the highest formation energy. The current findings in the framework of previous 

investigations suggest that the Tetra SiGa site may be the only active dopant site in Si-

doped κ-Ga2O3, and the Penta and Octa SiGa sites may be inactive. 

Supporting Information

The supporting information contains additional experimental data. Figure S1 shows Si 2s 

XPS spectrum of Si-doped κ-Ga2O3(001). Figure S2 shows k2-weighted Si K-edge 

EXAFS and the radial distribution function of the k2-weighted EXAFS and the fitting 

results for the Penta and the Tetra SiGa sites for Si-doped κ-Ga2O3(001) sample. Figure 

S3 shows the difference images between experimental PEH and simulated PEHs for Octa, 
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Penta, Tetra SiGa sites, and the sum of Octa, Penta, and Tetra SiGa sites where the 

respective ratio of 16.9%, 28.1%, and 55.0% (the best fit). (Figure 5(d)) 
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