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I INTRODUCTION 1

A Dynamic Programming Approach for Cooperative
Pallet-Loading Manipulators

Luca Consolini, Mattia Laurini and Marco Locatelli

Abstract—In a high-speed palletizing machine, packages of
various sizes are inserted on a conveyor belt. Then, cooperating
multiple robotic manipulators move them to obtain a desired
final layout. The throughput of this palletizing process critically
hinges upon the strategic selection of the insertion sequence and
the careful choice of robot manipulations. Pursuing a higher
throughput in this context holds great importance due to its
potential to enhance productivity, however, reaching such goal
constitutes a challenging task. Indeed, the problem of maximizing
the throughput of the palletizing machine is a nontrivial one
and, despite its relevant importance in industrial settings, it
has not received much attention in existing literature. In this
work, we present a Dynamic Programming-based algorithm,
together with some reduction techniques, that allows finding
the shortest packages sequence and the corresponding robot
manipulations that maximize production. We include some
numerical experiments on randomly generated problems and
on actual industrial scenarios, which show the good performance
of the proposed method.

Note to Practitioners—This work is motivated by the need
of high-speed palletizing machine manufacturers to automate
the generation of packages sequences, and the corresponding
robot manipulations tasks assignment. We solve this problem
with a Dynamic Programming-based algorithm. The benefit of
the proposed method is twofold. On one hand, it allows palletizing
machines manufacturers not to waste their employees’ time on
the often lengthy task of manually planning packages sequences
and manipulations. On the other hand, the proposed approach
allows minimizing the time required to assemble an assigned
layout, increasing the overall throughput of the production chain.
The proposed algorithm can be implemented in any programming
language of choice (e.g., C++) and integrated by manufacturers in
their production software. The main limitation of this approach
is the computational time which grows exponentially with the
number of packages. However, given that the application is an
off-line one, this approach allows handling most of the industrial
layouts, which usually consist of a few tens of packages, in a
reasonable amount of time. As future developments, the approach
could be generalized to handle more complicated manipulator
movements and/or allow robots to manipulate each package more
than once. This would add a layer of complexity that would
require nontrivial tailored solution strategies in order to handle
these new degrees of freedom.

Index Terms—Cooperative manipulators, manipulation plan-
ning, collision avoidance, dynamic programming.

I. INTRODUCTION

WE consider a high-speed palletizing machine with
multiple robotic arms (see Figure 1). We fix an inertial
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coordinate frame along the moving belt. Assuming that the
conveyor belt moves from left to right, the origin is placed at
the position that the bottom-left corner of the belt occupies at
the initial time. We assume that the x-axis is parallel to belt
velocity.

A multiple-line infeed conveyor inserts packages of different
sizes on the belt, that moves with constant speed. Figure 2
shows a possible packages configuration after their insertion
on the belt, along two possible insertion lines, associated to
different y-coordinates. Multiple robotic manipulators reposi-
tion packages along the y-axis, so that all of them reach the y-
coordinate and orientation that corresponds to an assigned pallet
layout. Figure 3 shows a possible configuration obtained after
the manipulations. A stopping bar at the end of the conveyor
belt, orthogonal to it, aligns packages along the x-axis, so that
they make a layer of a given pallet configuration (see the right
end of Figure 1). The machine obtains the desired final layout
by moving packages along the y-axis and aligning them with
the stopping bar. This procedure is somehow reminiscent of
computer game “Tetris”, in which the player moves falling
pieces sideways, while these fall to the bottom of the screen to
compose a desired configuration. Finally, the obtained packages
layout is transferred from the conveyor belt to the top of a
pallet, constituting one of its layers.

Since the palletizing process can be the bottleneck of the
whole packaging line (see [1], [2], [3], [4]), it is important
to reduce the time needed to compose the desired layout. For
instance, [3] observes that “Factories have many steps in a
production cycle and a step might be a bottleneck causing
low productivity. Palletizing tasks are often required at each
step to convey the product to the next step. Therefore, there
are many palletizing tasks in a factory and these tasks are
crucial within it. From the review of the production site, we
came to the conclusion that it is possible to reduce overall
working hours by reducing the time needed for palletizing”.
Indeed, product packages typically accumulate upstream of
the palletizing machine and the ability of the palletizer to
produce fully loaded pallets heavily impacts the throughput
of the production plant. For a fixed conveyor belt speed, the
problem of maximizing the throughput is equivalent to that of
minimizing the overall length of the packages sequence with
respect to the conveyor belt reference frame (see Figure 1).
In principle, to reduce the length of the packages sequence
we could place the packages on the conveyor belt as tight
as possible. However, since manipulators bases are fixed and
the belt is moving, the robots can manipulate each package
only in a limited time-window. Hence, with such a choice, the
manipulators could not be able to move all packages in time
to the desired final positions. Consequently, we need to add
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Fig. 1: A palletizing system with two manipulators, a stopping bar and a 2-line infeed conveyor.

sequence length

Fig. 2: Packages configuration before being manipulated.

Fig. 3: Packages configuration after being manipulated.

sufficient spacing between packages, to give the robots enough
time to execute all manipulations. Moreover, we also need to
avoid collisions among packages during manipulations.

In a previous work of ours [5], we called this problem the
Pallet Pattern Placement Sequence Problem (3PSP).

A. Literature review

The problem of optimizing the positions of some objects in
a pallet, to reduce the occupied space, has been extensively
studied in literature. Various works are related to the Bin
Packing Problem (BPP) (see, e.g., [6], [7], [8]). Some of them
address the problem in 2 dimensions, such as [9], [10], and
with packages of different size, as in [11]. Other works consider
the problem in 3 dimensions, like [12], or focus on the stability
of stacked layers of products, as [13]. Some other works are
devoted to the related Pallet Loading Problem (PLP) (see,
e.g., [14], [15], [16]). It can be addressed in 2 dimensions,
considering identical packages as in [17], and with secondary
objectives, like in [18]. The PLP can also be addressed in
3 dimensions and with non-homogeneous packages (see, for
instance, [19]).

The BPP and the PLP can be considered complementary to
the 3PSP addressed in the present paper. Indeed, they focus
on optimizing the final pallet layout, while we assume it to
be known a priori. This assumption is common in industrial
applications, since customers often provide their own pallet
layouts to palletizing machines producers. Our goal is not that
of maximizing the amount of packages on a pallet, as in PLP.
Rather, we want to find the packages positions and the sequence
of manipulations that allow to obtain an assigned layout in
minimum-time. 3PSP takes into account manipulators kinematic
and dynamic constraints, together with other factors, such as
the conveyor belt speed, the robots working space, and the
time windows in which every package can be manipulated by
the robots. Moreover, it must avoid collisions among packages.

3PSP has not received much attention in literature. Some
works consider it for high-speed palletizing machines (see [20]),
or for different palletizing machines setups (see, e.g., [21], [22],
[23], [24]). However, they describe the problem in very general
terms, and do not provide a mathematical model or specific
solution algorithms.

To the best of our knowledge, the only work in literature
that provides a mathematical formulation of 3PSP is a previous
work of ours [5]. There, we showed that 3PSP can be modeled
as a Mixed Integer Linear Programming (MILP) problem. More
specifically, we modeled it as a variant of a Vehicle Routing
problem with time windows and additional collision avoidance
constraints. In principle, such MILP model could be solved
by standard solvers, such as GUROBI [25] or CPLEX [26].
However, the required computational time is very large. In
order to reduce it, in [5], we proposed a suboptimal solution
algorithm. However, such algorithm still relies on the use of
commercial solvers, and the solution times are still very high
for large problems. Moreover, the reduction of the problem to
the MILP framework requires some simplifications, for instance
in the formulation of the manipulators’ dynamics.

Finally, note that the 3PSP can be considered a problem
of cooperative robotics (see, e.g., [27], [28], [29], [30], [31]).
In fact, in a good quality solution, manipulators carry out
their tasks in a cooperative way, fulfilling the common goal of
forming the prescribed layer with a minimum-length sequence.

B. Paper contribution
The main novelty of this paper is the use of Dynamic

Programming (DP) for solving the 3PSP. The new approach
has the following advantages:

• It is computationally efficient, since we developed two
tailored cut strategies that allow improving computational
times. Moreover, it does not need commercial solvers for
solving 3PSP instances, making it more advantageous for
companies that will not need purchasing an expensive
license. In the numerical experiments section, we show
the performance improvement due to the proposed cut
strategies. Also, we will show that the proposed method
outperforms the one introduced in [5], which makes use
of the commercial solver GUROBI.

• It is flexible and allows handling complex constraints.
For instance, we consider the presence of packages of
different sizes and a multiple-line infeed conveyor. That
is, with reference to Figure 1, we assume that packages
can be inserted on the conveyor belt on different lines,
corresponding to different y-coordinates. DP can handle
manipulators with any dynamics, since manipulators travel
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times can be represented by a generic function of initial
and final positions.

C. Basic solution strategy
Let N be the number of packages that compose the

desired final layout, M the number of manipulators, and K
the number of infeed lines. We can represent a candidate
manipulation sequence with the following decision variables,
for i ∈ {1, . . . , N},

• xi ∈ R, where xi is the x-coordinate that the center of
package i occupies when it is inserted on the conveyor
belt;

• yi ∈ {ŷ1, . . . , ŷK}, where yi is the y-coordinate that
the center of package i occupies on the conveyor belt,
associated to the chosen infeed line, and ŷk is the y-
coordinate associated to the k-th infeed line, with k ∈
{1, . . . ,K};

• ti ∈ R,mi ∈ {1, . . . ,M}, where ti is the time at
which package i is moved and mi is the manipulator
that moves it. Variables ti and mi completely describe
the manipulation of the i-th package, indeed, as we will
specify at point 4) of Section II-A, packages are only
moved along the y-axis and the final y-coordinate of the
i-th package, as well as its orientation, is known, as it
depends only on the chosen layout.

y

x(0, 0)

t = 0

y

x(0, 0)

t = t1 > 0

y

x(0, 0)

t = t2 > t1

Fig. 4: Reference frame movement.

As said, the reference frame is fixed on the belt and the
origin of the x-axis corresponds to the bottom-left corner of
the conveyor belt at the initial time (see the top subfigure of
Figure 4). Thus, coordinates xi are nonpositive. Indeed, as seen
in Figure 4, at initial time t = 0, the origin (0, 0) occupies the
bottom-left corner of the belt. At time t1 > 0, the origin has
moved to the right with respect to the world inertial frame and
a few packages have been inserted on the belt with negative
x-coordinates. Finally, at time t2 > t1, the origin has moved
to the far right end of the conveyor belt and all packages have
been placed on the belt with negative x-coordinates. Note that
at times greater than t2 the origin is positioned further right
with respect to the end of the physical belt. So, packages x-
coordinates are always nonpositive and if a package at position
j is placed on the belt later than a package at position i, then
xj < xi. We want to minimize the length of the packages
sequence, or, equivalently, maximize the minimum among all
variables xi.

The resulting problem is a mixed integer non-linear one,
having both continuous (xi, ti) and discrete (yi,mi) variables
and involving non-linear constraints.

In our work [5], we formulated the 3PSP as a MILP. Here,
we propose a DP approach that has lower computational times
and can handle larger problems.

To limit the number of continuous decision variables, we
discretize the set of packages insertion position x-coordinates.
Namely, we assume that, for i ∈ {1, . . . , N}, xi ∈ X̂ , where
X̂ = {x̂1, . . . , x̂Q} is a small cardinality set of available
x-coordinates for inserting a package on the belt. Then,
we iteratively optimize yi, ti,mi, while keeping variables xi
constant, and optimize variables xi, while keeping variables
yi, ti,mi constant. We will show that this strategy allows
finding feasible solutions with low computational times. The
obtained solutions are suboptimal, but in general of good quality.
In fact, in Section VII-A, we will show that the aforementioned
solutions cannot be improved by either modifying yi, ti,mi,
while keeping xi fixed, or by modifying xi along some
directions, while keeping the other variables fixed.

II. PROBLEM MODELIZATION

A. Overall problem assumptions
To simplify the mathematical formulation of this problem,

following [5], we make a number of assumptions, which hold
true for many palletizing machines:

1) Manipulators operating spaces do not overlap.
2) Each package is moved only once.
3) At the end of the conveyor belt, there is a stopping bar

orthogonal to it, which allows aligning packages.
4) With respect to the moving belt reference frame, packages

are manipulated only along the y-axis. Moreover, note
that manipulators can also perform 90◦ rotations of the
packages according to their desired orientation in the final
layout.

5) Packages are not lifted from the belt during manipulations.
This is a common practice in industrial palletizing ma-
chines to improve the execution speed. Hence, we must
make sure that packages do not collide with each other
while in motion.

6) The conveyor belt speed w is constant and is considered
a fixed parameter.

B. Associated graph
Similarly to [5], we define a graph G, whose nodes are

associated to initial and final packages and manipulators
positions and whose edges represent the allowed transitions.
Namely, we set G = (V, E), in which the node set is
V = O ∪ I ∪ F ∪ R. Set O = {O1, . . . ,OM} represents
the initial resting positions of the M manipulators, nodes in
I = {I1, . . . , II}, with I ≥ N , are associated to the initial
available positions on the belt, F = {F1, . . . ,FN} refers to
packages final positions and R = {R1, . . . ,RM} represents
manipulators final resting positions. Since we assume to have
a discrete set of possible packages position x-coordinates
X̂ = {x̂1, . . . , x̂Q} and K infeed lines, the set of initial
positions I has cardinality |I| = I = QK. We set N = I ∪F .

The edge set E is defined as follows:
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• All nodes in O are connected to all nodes in I, that is,
manipulators can move from their initial resting position
to an initial position on the belt occupied by a package.

• All nodes in I are connected to all nodes in F . These
edges represent the motions in which manipulators move
a package from an initial to a final position.

• All nodes in F are connected to all nodes in I. These
edges represent the motions with which, after having
moved a package, manipulators return to an initial package
position to start another manipulation.

• All nodes in F are also connected to all nodes in R.
These edges represent those motions in which, after having
moved a package, a manipulator goes to its final resting
position.

• Each node in O is also connected to a corresponding
node in R. These edges represent the cases in which a
manipulator m ∈ {1, . . . ,M} does not move any package,
so that it goes directly from its initial resting position Om

to its final one Rm.
Note that if a manipulator travels an edge in the last group

(i.e., from O to R), then it does not perform any manipulation,
it is useless to the palletizing task and could be removed from
the plant. Hence, edges of the last group should not be travelled
in any appropriate solution. Anyway, we maintain these edges
to represent solutions that do not use all manipulators.

The subgraph given by (N , {e ∈ E | e ∈ N × N}) is
bipartite, since manipulators are only allowed to move from
an initial package position to a final one, (i.e., they perform a
manipulation), and from a final package position to an initial
one, (i.e., after having performed a manipulation, they move to
a new initial package position to perform a new manipulation).

The adjacency matrix of graph G is

A =


0M,M 1M,I 0M,N IM,M

0I,M 0I,I 1I,N 0I,M
0N,M 1N,I 0N,N 1N,M
0M,M 0M,I 0M,N 0M,M

 , (1)

with A ∈ {0, 1}|V|×|V| and where, for any ℓ,m ∈ N, 0ℓ,m,
1ℓ,m and Iℓ,ℓ are the ℓ×m zero matrix, the ℓ×m matrix with
all entries equal to 1 and the ℓ× ℓ identity matrix, respectively.

At time t = 0, all manipulators occupy their initial position
in O and, at the end, each manipulator is required to be at its
final resting position in R. The sequence of movements of the
m-th manipulator describes a path on the graph that starts at
Om. Then, the manipulator has two options: it may go directly
to the corresponding final resting position Rm (in this case, the
manipulator does not move any package and it travels along
the edge represented by the m-th diagonal element of IM,M

in (1)). Otherwise, the manipulator travels to a node in I , then
travels alternately between nodes in F and I, and then, after
having visited one last node in F , it goes to its final resting
position Rm.

As a clarifying example, consider a layout with N = 4
packages as depicted in Figure 5, for a system with M = 2
manipulators, a single-line infeed conveyor and a discrete
set of packages position x-coordinates X̂ = {x̂1, x̂2, x̂3, x̂4}.
The associated graph G = (V, E), with node set V =
{O1,O2, I1, I2, I3, I4,F1,F2,F3,F4,R1,R2}, is depicted

in Figure 6. In this example we consider a single-line infeed
conveyor, thus I = N = 4. The manipulator at initial resting
position O1 moves a package from initial position I1 to final
position F1, then picks up another package at initial position
I2 to drop it off at final position F2, and finally goes to its final
resting position R1. The manipulator at initial resting position
O2 moves a package from initial position I4 to final position
F4, then picks up another package at initial position I3 to drop
it off at final position F3 and then moves to its final resting
position R2. The paths of the two manipulators on the graph
are highlighted in Figure 6 in blue and green, respectively.
Figure 7 shows the manipulators paths and packages initial
and final positions in the reference frame. Note that, since the
package at initial position I1 has to be rotated by 90◦ to final
position F1, in general, the space required for ensuring the
collision-free manipulation of this package is larger than the
convex hull of the union of the space covered by the package
before and after its manipulation. Here, we overestimate the
collision-free space for performing the manipulation from I1
to F1 with the smallest rectangle that contains the area of
the conveyor belt that is occupied by the package during its
manipulation and whose edges are aligned with the axes of our
reference frame. In Figure 7, collision-free areas associated
to manipulations are represented as blue or green rectangles
depending on whether such manipulations are carried out by
the first or the second robot, respectively.

x

y

F1
F2

F3

F4

Fig. 5: Layout of three packages of different type.

I2

I1

I3

I4

O1

O2

F2

F1

F3

F4

R1

R2

Fig. 6: Graph associated to a system with 2 manipulators and
3 packages with highlighted manipulators paths.

C. Packages positions and types
We define function γ : I → R2 such that, for i ∈ I, γ(i)

represents the coordinates (xi, yi) ∈ R2 on the moving frame of
the initial package position associated to node i. Function γ can
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Fig. 7: Manipulations sequences on the conveyor belt.

also be extended to nodes in F , however, in view of assumption
4) of Section II-A, until a final position is not associated to
an initial one, its x-coordinate is not well-defined. Namely, if
j ∈ F is a final package position that has been associated to
initial position i ∈ I, then γ(j) = (xi, yj), where xi is the
x-coordinate of initial position i and yj is the y-coordinate of
final position j, according to the given layout. For any initial
position i ∈ I, quantity xi (its coordinate along the x-axis)
can be considered an optimization variable, as our goal is
to obtain a positions sequence which is as short as possible,
whilst the coordinate along the y-axis is known a priori as it
corresponds to the y-coordinate of one of the available lines of
the infeed conveyor. Since packages can have different shapes,
we denote by L the set of different available package types
and by LF : F → L the function that associates to each final
position j ∈ F , the type of package LF (j) that occupies such
position. Note that function LF is known a priori since the
pallet layout is assigned.

D. Manipulators time-windows

Let qm be the initial x-coordinate of the center of the m-th
manipulator base, and let −w be the speed at which the base
moves along the x-axis (negative since the movement is in a
direction opposite to the conveyor belt velocity). Then, at time
t, the x-coordinate of the base is qm− tw. We assume that the
operating space of each manipulator is a rectangle aligned with
the belt. On the x-axis, the rectangle is centered at the base
of the manipulator and has length 2W , with W > 0. Thus,
with respect to the moving frame, at time t, the operating
space of the m-th manipulator along the x-axis is the interval
[qm − tw −W, qm − tw +W ]. On the y-axis, it covers the
whole width of the belt (see Figure 1). As manipulators bases
move with speed −w with respect to the reference frame,
package positions can be visited by manipulators only within
specific time windows. At time t, the m-th manipulator can
visit node k ∈ V only if γ(k) belongs to the m-th manipulator
operating space. In other words, letting x be the x-coordinate
of γ(k), it must hold that x ∈ [qm − tw −W, qm − tw +W ]
or, equivalently, tw ∈ [qm − x −W, qm − x +W ]. Setting
[amk , b

m
k ] = [w−1(qm − x − W ), w−1(qm − x + W )], for

all k ∈ V and m ∈ M, if the m-th manipulator visits node
k at time τm, then it must hold that τm ∈ [amk , b

m
k ]. This

corresponds to a time window requirement on nodes visits.

E. Collisions handling

As mentioned earlier, manipulators do not lift packages from
the belt. In order to ensure collisions avoidance, similarly to
what we did in [5], we introduce the following quantities which
depend on positions x-coordinates. For i ∈ I, j ∈ F , k ∈ N ,

and ℓ ∈ L, define binary variables ck,ℓi,j (x) ∈ {0, 1} such that

ck,ℓi,j (x) =


0, if a manipulation from γ(i) to γ(j)

collides with a package of type ℓ
placed at γ(k),

1, otherwise.

(2)

In other words, ck,ℓi,j (x) = 1 if a package, moved from the initial
position associated to node i to the position in the final layout
associated to node j, does not collide with a package of type
ℓ, placed at the position corresponding to node k. Otherwise,
ck,ℓi,j (x) = 0.

We also need to introduce other quantities for ensuring the
collision-free placement of a package on the conveyor belt
from the infeed conveyor. For i ∈ I, k ∈ N , and ℓ, ℓ̄ ∈ L,
define binary variables c̄k,ℓ̄i,ℓ (x) ∈ {0, 1} such that

c̄k,ℓ̄i,ℓ (x)=


0, if a package of type ℓ placed at γ(i) col-

-lides with one of type ℓ̄ placed at γ(k),
1, otherwise.

(3)

Observe that, for k ∈ F , values ck,ℓi,j (x) and c̄k,ℓ̄i,ℓ (x) are well
defined only if ℓ = LF (k). Note also that in the computation
of ck,ℓi,j (x), the type of package that is manipulated from initial
position i to final position j is known, since it must correspond
to LF (j).

F. Precedence relations on final positions
As already mentioned, the stopping bar placed at the end of

the conveyor belt allows obtaining the final configuration by
aligning packages along the x-axis (see Figure 1). To obtain
the desired layout, we need to make sure that packages of
different type, that occupy overlapping intervals on the y-axis
in the final layout, are inserted on the belt at x-coordinates that
respect the same ordering as in the final layout. We introduce
a partial order relation over F , denoted by <P such that for
j, k ∈ F , j <P k if the x-coordinate associated to the final
position j is smaller than that associated to final position k.
Recall that the conveyor belt moves from left to right, so that a
position with a bigger x-coordinate precedes a position with a
smaller x-coordinate. More precisely, we associate to each final
position j ∈ F an interval Y(j) that contains the y-coordinates
of the package that occupies final position j. If j <P k, we
say that final position k precedes final position j. Then j <P k
if and only if:

• intervals associated to final positions j and k are overlap-
ping, that is, Y(j) ∩ Y(k) ̸= ∅

• xj < xk.
As an example, consider the pallet layout of Figure 5 made

out of four packages of different type. The package at final
position F1 needs to precede packages at positions F2 and F3,
that is, F2 <P F1 and F3 <P F1, since Y(F1)∩Y(F2) ̸= ∅,
Y(F1)∩Y(F3) ̸= ∅, and xF2

< xF1
, xF3

< xF1
. Whilst the

three packages at positions F2, F3 and F4 can be placed in
either order with respect to each other, that is, Fi ̸<P Fj and
Fj ̸<P Fi, since Y(Fi)∩Y(Fj) = ∅, for i, j ∈ {2, 3, 4} and
i ̸= j (placing one before the other will not compromise the
correct formation of the layer). The same reasoning applies
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to F1 and F4 for which F1 ̸<P F4 and F4 ̸<P F1, since
Y(F1) ∩ Y(F4) = ∅.

G. Decision variables and feasible set
The decision variables of our problem are:
• the x-coordinates of the available initial positions on the

conveyor belt {xi}i∈I ∈ RI ,
• the integer variables that represent the assignment of

packages to available initial positions on the conveyor
belt: for each i ∈ I, define pi ∈ L ∪ {0} such that

pi =


ℓ, if initial position i is occupied

by a package of type ℓ,
0, otherwise.

• the binary flow variables that represent the sequence of
manipulations for each robot. Namely, for each m ∈ M,
for each i, j ∈ V , binary variable Xm

i,j ∈ {0, 1} is such
that

Xm
i,j =


1, if manipulator m moves

from node i to node j,
0, otherwise.

To simplify the notation, we will denote {xi}i∈I , {pi}i∈I ,
and {Xm

i,j}i,j∈V,m∈M simply by x, p, and X , respectively. Let
B ⊆ RI × (L∪{0})I ×{0, 1}|V|×|V|×M be the feasible set of
the 3PSP. Let

Bx = {(p,X) ∈ (L ∪ {0})I × {0, 1}|V|×|V|×M |
(∃x ∈ RI) (x, p,X) ∈ B},

Bp,X = {x ∈ RI | (∃p,X ∈ (L ∪ {0})I×
{0, 1}|V|×|V|×M ) (x, p,X) ∈ B}

(4)

be the discrete and continuous sections of B, respectively.
In other words, Bx is the set of feasible assignments p and
flow variables X , for a given choice of positions x. Set
Bp,X contains all feasible positions x, for a given choice of
assignments p and flow variables X . The objective function is
F : B → R, F (x, p,X) = mini∈I|pi ̸=0{xi} that associates to
a triplet (x, p,X) ∈ B the minimum x-coordinate. Note that
−F (x, p,X) is the length of the packages sequence (since all
the x-coordinates are nonpositive). Our goal is to minimize the
sequence length or, equivalently, maximize function F , that is,

max
(x,p,X)∈B

F (x, p,X), (5)

III. SOLUTION STRATEGY

In [5], we modeled the 3PSP as a MILP, but we noted that
the direct solution of the complete problem requires a time
that grows very quickly with the total number of packages.
Indeed, even simple configurations with 5–6 packages require
a computational time of a few hours. In most application of
high-speed palletizing machines, manipulation sequences are
precomputed before the machine installation, thus it is not
necessary to solve the 3PSP in real-time. However, typical
pallet layers can have more than 20–30 packages, and the
solution of the complete MILP is not a viable option. Thus,
in [5], we separated the 3PSP into two subproblems:

• In the first one, we assume that the initial position variables
x are known, and we optimize packages assignment
variables p and manipulator assignment variables X .

• In the second one, we assume that p and X are known,
and we optimize initial position variables x.

Roughly speaking, the first subproblem is related to the
assignment of manipulation tasks to robots and the association
between packages and initial positions. The second subproblem
is related to the optimization of the x-coordinates of the initial
package positions.

In [5], we proposed an algorithm which solves these two
subproblems iteratively, until the length of the packages
sequence cannot be reduced any further.

The solution strategy is outlined in Algorithm 1, where, at
line 7, ϵ > 0 is a tolerance on objective function F .

Algorithm 1 Solution strategy

1: x̄ := x0

2: repeat
3: (p̄, X̄) := argmax(p,X)∈Bx̄

F (x̄, p,X)
4: µ := F (x̄, p̄, X̄)
5: x̄ := argmaxx∈Bp̄,X̄

F (x, p̄, X̄)
6: ξ := F (x̄, p̄, X̄)
7: until ξ − µ < ϵ
8: return (x̄, p̄, X̄)

In this algorithm, x0 ∈ RI is an initial value for the
packages initial x-coordinates. We can simply choose x0 =
(0,−d0,−2d0, . . . ,−d0(N − 1)), where d0 is a sufficiently
large positive constant such that the initial positions are spaced
enough to guarantee the existence of a feasible solution for
the problem at line 3. Indeed, a sufficiently large value of
d0 ensures that manipulators have enough time to move all
packages and that these motions cause no collisions. We iterate
the solution of the two subproblems, in which the output of one
is fed as an input parameter to the other, until the optimization
at line 5 improves the value of the objective function F by
less than ϵ.

In this work, Algorithm 1 is still the overall solution strategy,
as in [5], but we use different methods for solving the two
subproblems at lines 3 and 5. Indeed, in [5] we modeled both
problems as MILPs, while, here, we solve the subproblem
at line 3 by DP, and the one at line 5 by a simple bisection
procedure. In addition to the solution strategy we presented in
this section, the 3PSP could be solved by means of alternative
methods, more computationally demanding, which are briefly
discussed in Appendix D.

IV. MANIPULATION AND PACKAGE ASSIGNMENTS
SUBPROBLEM

As said in the previous section, we separate the 3PSP into two
subproblems, and we solve the one associated to manipulation
and package assignments by means of DP, assuming that
initial package position x-coordinate variables {xi}i∈I are
known input parameters. Note that if the values of x are
known, ck,ℓi,j (x) and c̄k,ℓ̄i,ℓ (x) can be precomputed, so that they
are also considered known problem parameters. To formulate
such subproblem as a DP one, we represent the set of all
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possible packages and manipulators configurations. In the initial
configuration, the belt is empty, and the manipulators are at
their initial resting positions in O. We want to reach a final
configuration in which all packages are at the corresponding
positions in the final layout and all manipulators are at their
final resting positions in R. In order to achieve this, we can
perform two kinds of operations: the insertion of a package
on the belt and the movement of a manipulator. We want to
find the sequence of these operations that allows obtaining the
shortest packages sequence.

A. State space

We define the state space as Σ = VM × RM × ({0} ∪
L)I+N × ({0}∪I)N . Each state is a quadruple (θ, τ, ϕ, ψ), in
which the variables have the following meaning:

• θ = (θ1, . . . , θM ) ∈ VM is such that θm is the node
currently occupied by manipulator m;

• τ = (τ1, . . . , τM ) ∈ RM is such that τm is the time at
which manipulator m has reached its current node θm;

• ϕ = (ϕ1, . . . , ϕI+N ) ∈ ({0} ∪ L)I+N is a vector
representing the occupancy status of each initial and final
package position. That is, for any k ∈ N , ϕk = 0 if
position k is empty, or ϕk = ℓ, with ℓ ∈ L, if position k
is occupied by a package of type ℓ;

• ψ = (ψ1, . . . , ψN ) ∈ ({0} ∪ I)N is a vector representing
the association between initial and final packages positions.
That is, for any j ∈ F , ψj = 0 if position j is empty, or
ψj = i, with i ∈ I, if final position j is occupied by the
package that was inserted on the conveyor belt at initial
position i. ψ provides an important piece of information
on the state of the system since, given assumption 4)
of Section II-A, knowing that a final position has been
occupied by a package that was at a certain initial position
gives us the x-coordinate of that final position. Without
ψ, we would not be able to assign an x-coordinate to any
of the occupied final positions.

The initial state σ0 is such that all manipulators are at their
initial positions at initial time t = 0 and the conveyor belt is
empty. Namely:

σ0 = ((O1, . . . ,OM ), 01,M , 01,I+N , 01,N ). (6)

As an example, consider the layout of Figure 5 with four
packages of different type such that (∀i ∈ {1, 2, 3, 4}) L(Fi) =
i. Consider also the sequence of Figure 7, and assume the first
manipulator is in F1 and the second manipulator is in I4;
then its corresponding state is (θ, τ, ϕ, ψ) with θ = (F1, I4),
τ = (τ1, τ2), ϕ = (0, 2, 3, 4, 1, 0, 0, 0), since the package at
initial position I1 has been moved to a final position, whilst
the packages of type 2, 3 and 4 are still at initial positions I2,
I3 and I4, respectively, and ψ = (I1, 0, 0, 0), as final position
F1 has been occupied by the package inserted at I1 and the
remaining final positions F2, F3 and F4 are still empty.

B. Objective function

The objective is to minimize the length of the packages
sequence on the conveyor belt, that corresponds to the smallest

x-coordinate among the positions occupied by the packages.
Hence, the objective function to minimize is f : Σ → R with

f(ϕ, ψ) = − min
i∈I|ϕi ̸=0∨(∃j∈F)ψj=i

xi, (7)

while f(ϕ, ψ) = ∞, if set S = {i ∈ I | ϕi ̸= 0 ∨ (∃j ∈
F) ψj = i} is empty. Here, S represents the subset of the
initial positions I that have been assigned to packages in
the current configuration (ϕ, ψ). Namely, S represents the
subset of I consisting of those initial positions i ∈ I that
are currently occupied by a package (ϕi ̸= 0) or that were
previously occupied by a package that has already been moved
to a final position ((∃j ∈ F) ϕj = i). The length of the
sequence is equal to the most negative x-coordinate among
the used initial positions, changed of sign due to our choice
of reference frame. Since packages are moved only along the
y-axis, manipulations do not change packages x-coordinates
and do not alter the length of the sequence.

C. Expansion of current state
As said, we define two types of moves: the insertion of a

package on the belt and the motion of a manipulator, described
by two transition functions ρ1 : Σ × I × L → Σ and ρ2 :
Σ×M×V → Σ, respectively. We define two corresponding
admissibility functions η1 : Σ × I × L → {0, 1}, η2 : Σ ×
M× V → {0, 1}, that are equal to 1 on allowed transitions
and 0 on forbidden ones.

Let σ′ = ρ1(σ, i, ℓ) be the state obtained from σ
by inserting a package of type ℓ at initial position
i. Then, if σ = (θ, τ, (ϕ1, . . . , ϕI+N ), ψ) and σ′ =
(θ′, τ ′, (ϕ′1, . . . , ϕ

′
I+N ), ψ′):

1) Times and positions of manipulators and final packages
configurations do not change: θ′ = θ, τ ′ = τ , ψ′ = ψ.

2) A package of type ℓ is added to initial position i, while
the other initial positions do not change: ϕ′i = ℓ, (∀k ∈
N ) k ̸= i⇒ ϕ′k = ϕk.

Further, we set η1(σ, i, ℓ) = 0 if and only if at least one of
the following conditions holds:

3) The package is added to a non-empty position, that is
ϕi ̸= 0, or to an initial position that is already associated
to a final one, that is (∃j ∈ F) ψj = i.

4) The package is assigned to a node whose x-coordinate is
greater than the x-coordinate of a package that is already
on the belt. That is, (∃k ∈ I) ϕ′k ̸= 0 ∧ xi > xk.

5) The package collides with a package already positioned
on the conveyor belt: (∃k ∈ N ) ϕk ̸= 0 ∧ c̄k,ϕk

i,ℓ = 0.
6) All the packages of type ℓ required for the final layout

have already been placed on the conveyor belt, that is
|{ϕk ∈ N | ϕk = ℓ}| = Nℓ.

Condition 8) ensures that the sequence of packages insertions
respects the temporal order: since the conveyor belt moves
from left to right and the infeed conveyor is placed at the
beginning of the belt on the left, the x-coordinate of every
inserted package is not greater than that of all previously
inserted ones.

Let σ′ = ρ2(σ,m, k) be the state obtained from σ
by moving manipulator m to node k. Note that the
manipulator moves a package only if it goes from an
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initial node to a final one. Function ρ2 is such that, if σ =
((θ1, . . . , θm), (τ1, . . . , τM ), (ϕ1, . . . , ϕI+N ), (ψ1, . . . , ψN ))
and σ′ = ((θ′1, . . . , θ

′
m), (τ ′1, . . . , τ

′
M ), (ϕ′1, . . . , ϕ

′
I+N ),

(ψ′
1, . . . , ψ

′
N )):

7) Times and positions of manipulators different from m
remain the same: (∀m′ ∈ M) m′ ̸= m ⇒ (θ′m′ =
θm′ ∧ τ ′m′ = τm′).

8) The position and time of manipulator m are updated. Due
to the time-window constraint, if the visit time of the
destination node k is lower than the beginning of the
associated time window amk , then it is set to amk : θ′m = k,
τ ′m = max{τm + tθmk, a

m
k }, where tθmk represents the

(precomputed) time a manipulator needs to move from
position θm to position k. More formally, tij is the value of
function t : R2×2 → R+ which associates to coordinates
γ(i), γ(j) ∈ R2 of positions i and j, respectively, the
travel time t(γ(i), γ(j)) from position i to j denoted by
tij . Note that function t can represent travel times of any
given manipulators dynamics.

9) If the manipulator moves a package (i.e., it moves from
an initial position to a final one), variables ϕ and ψ are
updated accordingly: θm ∈ I ⇒ (ϕ′θm = 0 ∧ ϕ′k =
1 ∧ ψ′

k = θm), whilst (∀i ∈ N ) i ̸= θm ⇒ ϕ′i = ϕi and
(∀j ∈ F) j ̸= k ⇒ ψ′

j = ψj .
Moreover, η2(σ,m, k) = 0 if and only if at least one of the

following conditions holds:
10) The motion violates the graph adjacency matrix A of (1):

Aθm,k = 0.
11) Manipulators move to unoccupied initial positions or to

occupied final positions, that is, k ∈ I and ϕk = 0 or
k ∈ F and ψk ̸= 0.

12) The time-window constraint is violated for the destination
node: τ ′m > bmk .

13) The package collides with other packages during its
motion: θm ∈ I and there exists i ∈ N such that
ϕi = ℓ ̸= 0, and ci,ℓθm,k = 0.

14) Precedence constraints are violated: there exists j ∈ F
such that ψj ̸= 0, that is, position j is occupied by a
package, and either j <P k and xj > xk or k <P j and
xk > xj .

15) If k ∈ F , the package type does not correspond to the
one assigned to the final node: ϕθm ̸= LF (k).

Denoting by P(Σ) the power set of Σ, we define function
ρ : Σ → P(Σ) such that ρ(σ), the expansion of state σ,
consists of all allowed transitions, namely:

ρ(σ) = {σ′ ∈ Σ | (∃i ∈ I)(∃ℓ ∈ L) σ′ = ρ1(σ, i, ℓ)

∧ η1(σ, σ
′) = 1} ∪ {σ′ ∈ Σ | (∃m ∈ M)(∃k ∈ V)

σ′ = ρ2(σ,m, k) ∧ η2(σ, σ
′) = 1}.

The set of accepted states A is the subset of Σ such that all
final positions are occupied, initial positions are empty, and
the manipulators are at their final resting positions. Namely,

A = {((R1, . . . ,RM ), τ, ϕ, ψ) ∈ Σ | (∀j ∈ F) ϕj = LF (j)

∧ (∀i ∈ I) ϕi = 0}.
For σ ∈ Σ, and n ∈ N we denote by ρn(σ) =
ρ(ρ(· · · ρ(σ) · · · )) the function obtained by iterating ρ n-times,

while the full expansion set ρ∗(σ) is ρ∗(σ) = ∪n∈Nρ
n(σ),

and define the set of accepted states obtained from σ as
ρA(σ) = ρ∗(σ) ∩ A.

Define the cost function V : Σ → {R,∞} so that V (σ) is
the minimum cost among the accepted states obtained from
the full expansion of σ, that is:

V (σ) = min
σ′∈ρA(σ)

f(σ′), (8)

with f defined as in (7), while V (σ) = +∞, if ρA(σ) = ∅.
Then, solving our problem is equivalent to computing V (σ0).

V. MONOTONIC DYNAMIC PROGRAMMING PROBLEMS

In this section we introduce the class of monotonic DP
problems, that includes the problem presented in Section IV.
We present some solution algorithms and reduction techniques.
In Section VI, we will apply these algorithms to the problem
at hand.

Consider a generic DP problem: let Σ be the set of states,
A ⊂ Σ the accepted states, ρ : Σ → P(Σ) the expansion
function, and f : Σ → R the objective function. Given an
initial state σ0 ∈ Σ, we want to compute minσ∈ρA(σ0) f(σ).
We consider monotonic problems, that is, we assume that:

(∀σ ∈ Σ) min
σ′∈ρ(σ)

f(σ′) ≥ f(σ),

in other words, the value of the objective function on states
obtained by expanding σ is not lower than f(σ). Note that
function f in (7) satisfies this assumption.

A. Basic algorithm
First, we formulate a basic DP algorithm (Algorithm 2),

which explores all states obtained by expanding the initial one.
We define a priority queue Q that contains the states to be
expanded. Namely, Q is an ordered set of pairs (σ, f(σ)) ∈
Σ × R, in which σ ∈ Σ is a state and f(σ) is the value of
the objective function at σ. We perform two operations on
Q: Enqueue(Q, (σ, f(σ))), which inserts pair (σ, f(σ)) in Q,
and Top(Q), which returns the state σ in Q with the highest
priority, that is, with minimum value f(σ), and removes pair
(σ, f(σ)) from the queue.

Algorithm 2 Dynamic Programming

1: Initialization: U := +∞, Enqueue(Q, (σ0, f(σ0)).
2: State extraction: σ := Top(Q)
3: repeat
4: State expansion: Σ′ := ρ(σ)
5: for all σ′ ∈ Σ′ | f(σ′) < U do
6: Enqueue(Q, (σ′, f(σ′))
7: if σ′ ∈ A then
8: U := f(σ′)

9: until Q = ∅

At line 1, we add the initial state σ0 to Q. The elements of
the queue are in ascending order, according to the value of
objective function f . We also set the initial value of the upper
bound U to +∞. At line 2, we extract the open state σ with
the lowest value of f . At line 4, we compute the corresponding
expansion set Σ′ = ρ(σ). At line 6, we add to the queue every
element σ′ of Σ such that f(σ′) is lower than the current upper
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bound U . Finally, if σ′ is an accepted state, at line 8, U is
updated. At the end of the algorithm, U is the problem solution
V (σ0). Algorithm 2 can be very inefficient since it explores
all states σ̂ ∈ ρ∗(σ) such that f(σ) < V (σ0). In the following,
we introduce some cut (or reduction) strategies that reduce the
set of explored states and the solution time.

B. Cuts based on lower bounds

A function V̂ : Σ → R is a lower bound of V if (∀σ ∈
Σ) V̂ (σ) ≤ V (σ). If an open state σ satisfies V̂ (σ) ≥ U
(where U is the current upper bound) then σ can be discarded.
This cut strategy is computationally convenient only if V̂ is
much faster to compute than V itself. Our goal is to efficiently
compute a lower bound for each new state generated by a state
expansion. We discard those states that cannot be expanded to
a feasible solution or to one that improves the best solution
found so far. In this way, we reduce the overall number of
explored states.

In the following, we show that we can define a lower bound
for V by defining a function Π : Σ → Σ̂, mapping the state
space Σ to a set of reduced cardinality Σ̂ and then, solving a
problem on Σ̂ by DP.

If the state space has the structure of a Cartesian product,
that is, there exist sets Σ1, Σ2 such that Σ = Σ1 ×Σ2, then Π
can be a simple projection from Σ to Σ1 or Σ2. In the general
case, function Π can be arbitrary, however the cardinality of
Σ̂ should be much smaller than the cardinality of Σ, so that
Π is not injective. In this way, each state σ̂ ∈ Σ̂ could be the
image of multiple states Π−1(σ̂) ∈ Σ.

We want to compute a lower bound on V (σ), where σ ∈ Σ
is an assigned state. First, we introduce a restriction of the
inverse of Π, depending on σ, as follows: Π+

σ : Σ̂ → P(Σ),
with

Π+
σ (σ̂) = Π−1(σ̂) ∩ ρ∗(σ).

In other words, Π+
σ (σ̂) is set of the counterimages with respect

to Π of σ̂, that are also expansions of state σ. Consider function
Π+
σΠ : Σ → Σ. For σ̂ ∈ Σ, set Π+

σΠ(σ̂) represents all states
belonging to the expansion of σ, that are projected by Π to
the same reduced state Π(σ̂).

We extend function Π+
σΠ : Σ → Σ to a function

Π+
σΠ : P(Σ) → P(Σ), by setting, for A ⊂ Σ, Π+

σΠ(A) =⋃
σ′∈AΠ+

σΠ(σ
′).

Function Π+
σΠ satisfies the following two properties.

Proposition V.1. For any σ ∈ Σ:

a) (∀A ⊆ ρ∗(σ)) A ⊆ Π+
σΠ(A),

b) (∀A,B ⊆ Σ) Π+
σΠ(A ∩B) = Π+

σΠ(A) ∩Π+
σΠ(B).

Proof. a) Π+
σΠ(A) = Π−1

σ Π(A)∩ ρ∗(σ) ⊇ A∩ ρ∗(σ) = A,
since Π−1

σ Π(A) ⊇ A, by the definition of the inverse and
A ⊆ ρ∗(σ) by assumption.

b) Π+
σΠ(A ∩ B) = Π−1

σ Π(A ∩ B) ∩ ρ∗(σ) =(
Π−1
σ Π(A) ∩ ρ∗(σ)

)
∩

(
Π−1
σ Π(B) ∩ ρ∗(σ)

)
=

Π+
σΠ(A) ∩Π+

σΠ(B).

In particular, property a) states that map Π+
σΠ : P(Σ) →

P(Σ) is nondecreasing.

We define an expansion function for the reduced state ρ̂σ :
Σ̂ → P(Σ̂) such that

(∀σ′ ∈ ρ∗(σ)) ρ̂σ(Π(σ′)) ⊇ Π(ρ(σ′)). (9)

In other words, the expansion function for the reduced state
must be sufficiently large. To satisfy (9), it is possible to set
ρ̂σ(σ̂) = Π(ρ(Π+

σ (σ̂))), or choose any ρ̂σ such that ρ̂σ(σ̂) ⊇
Π(ρ(Π+

σ (σ̂))).
Moreover, we choose an objective function for the reduced

state f̂σ : Σ̂ → R such that

(∀σ′ ∈ ρ∗(σ)) f̂σ(Π(σ′)) ≤ f(σ′). (10)

Namely, f̂σ(Π(σ′)) is a lower bound for f(σ′) on all elements
σ′ that are expansions of the initial state σ. For instance, it
is possible to set f̂σ(σ̂) = minσ′∈Π+

σ (σ̂) f(σ
′), or choose any

function f̂σ such that f̂σ(σ̂) ≤ minσ′∈Π+
σ (σ̂) f(σ

′).
Finally, setting Â = Π(A), we define the lower bound

function V̂ : Σ → R as V̂ (σ) = minσ̂∈ρ̂∗σ(Π(σ))∩Â f̂σ(σ̂).
Note that V̂ can be computed by applying the DP algorithm
presented in Algorithm 2 over Σ̂.

The following proposition shows that V̂ is a lower bound
for V .

Proposition V.2. For all σ ∈ Σ, V̂ (σ) ≤ V (σ).

Proof.

V̂ (σ) = min
σ̂∈ρ̂∗σ(Π(σ))∩Â

f̂σ(σ̂)

≤ min
σ̂∈ρ̂∗σ(Π(σ))∩Â

min
σ′∈Π+

σ (σ̂)
f(σ′)

= min
σ′∈Π+

σ (ρ̂∗σ(Π(σ))∩Â)
f(σ′)

= min
σ′∈Π+

σ (ρ̂∗σ(Π(σ))∩Π(A))
f(σ′)

≤ min
σ′∈Π+

σ (Π(ρ̂∗σ(σ)∩Π(A))
f(σ′)

= min
σ′∈Π+

σ (Π(ρ̂∗σ(σ)∩A))
f(σ′)

≤ min
σ′∈ρ̂∗σ(σ)∩A

f(σ′)

= min
σ′∈ρA(σ)

f(σ′) = V (σ),

where the first inequality is a consequence of Assumption (10)
on f̂ , the second equality is just a rewriting of the previous
statement, the third one follows from the definition of Â, the
second inequality is a consequence of Assumption (9) on ρ̂∗σ,
the fourth equality follows from b) of Proposition V.1, the third
inequality is a consequence of a) of Proposition V.1, and the
last equality is given by (8).

VI. APPLICATION TO OUR PROBLEM

We consider the following two reductions which play an
important role in improving the performances of Algorithm 2.

A. Omit packages configurations
In the following, for a vector x ∈ Rn, we denote by ∥x∥0 the

number of non-zero components of x. In the reduced state Σ̂
we do not store the full packages occupation state, represented
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by variables ϕ, ψ, but only the number of packages assigned
to initial and final positions. Namely,

Π((θ, τ, ϕ, ψ)) = (θ, τ, nϕ, nψ),

where nϕ = ∥ϕ∥0 − ∥ψ∥0 is the number of packages that
have been inserted on the belt, but not yet placed at their
final position, and nψ = ∥ψ∥0 is the number of packages
placed at their final position. Let σ = (θ, τ, ϕ, ψ) be the state
on which we want to evaluate the lower bound and let σ̂ =
(θ̂, τ̂ , nϕ, nψ) ∈ Σ̂ be a generic reduced state.

We define ρ̂σ : Σ̂ → P(Σ̂) as follows: (∀σ̂ ∈ Σ̂)

ρ̂σ(σ̂) = {σ̂′ ∈ Σ̂ | (∃m ∈ M) (∃k ∈ V) σ̂′ = ρ̂σ2(σ̂,m, k)

∧ η̂σ2(σ̂,m, k) = 1},

where transition function ρ̂σ2 : Σ̂ × M × V → Σ̂ plays
the same role as transition function ρ2 on the reduced
states and is defined as follows. If σ̂ = (θ̂, τ̂ , nϕ, nψ) and
σ̂′ = ρ̂σ2(σ̂,m, k) = (θ′, τ ′, n′ϕ, n

′
ψ), then σ̂′ satisfies the

same conditions 7) and 8), whilst condition 9) becomes

θm ∈ I ⇒ (n′ϕ = nϕ − 1 ∧ n′ψ = nψ + 1).

Moreover, η̂σ2(σ̂,m, k) = 0 if and only if at least one of
the following conditions, adapted from previous conditions
10)–15), is not satisfied, namely:
1̂0) The motion violates the graph adjacency matrix: Aθm,k =

0.
1̂1) Manipulators move to unoccupied initial positions or to

occupied final positions, according to the initial state σ,
that is, if k ∈ I and ϕk = 0 or if k ∈ F and ψk ̸= 0.

1̂2) The time-window constraint is violated for the destination
node: τ ′m > bmk .

1̂3) The moved package collides with packages that already
occupy their final positions in σ. That is, θm ∈ I and
there exists j ∈ F such that ψj = ℓ ̸= 0 and cj,ℓθm,k = 0.

1̂4) Precedence constraints are violated with respect to pack-
ages already assigned in I or F , that is, there exists j ∈ F
such that ψj ̸= 0 at initial state σ and either j <P k and
xj > xk or k <P j and xk > xj .

1̂5) If k ∈ F , the package type does not correspond to the
one assigned to the final node: ϕθm ̸= LF (k) according
to initial state σ.

We use this reduction only to test the feasibility of state
σ. That is, if ρ̂∗σ(Π(σ)) /∈ Â then ρ∗(σ) /∈ A, so that state σ
can be removed. For this reason, objective function f̂σ for the
reduced problem is not relevant, and we can simply set it to
the constant value −∞ if ρ̂∗σ(Π(σ)) ∈ Â, and +∞ otherwise.

We call V1 the corresponding cost function, that is, V̂1(σ) =
min

σ̂∈ρ̂∗σ(Π(σ))∩Â
f̂σ(σ̂).

B. Omit manipulator positions and times
In the reduced state we store only the packages configuration:

Π((θ, τ, ϕ, ψ)) = (ϕ, ψ).
The objective function for the reduced state is the same as (7),

that is, f̃(ϕ, ψ) = f(ϕ, ψ) = −mini∈I|ϕi ̸=0∨(∃j∈F) ψj=i xi.
Basically, ρ̃σ is defined in the same way as ρ, by considering
only constraints 3), 4), 11), 13), 14) and 15). Namely, we define

ρ̃σ : Σ̂ → P(Σ̂) as follows: (∀σ̂ ∈ Σ̂) ρ̃σ(σ̂) = {σ̂′ ∈ Σ̂ |
(∃i ∈ I) (∃ℓ ∈ L) σ̂′ = ρ̃σ1(σ̂, i, ℓ)∧ η̃1(σ̂, i, ℓ) = 1}∪{σ̂′ ∈
Σ̂ | (∃i ∈ I) (∃j ∈ F) σ̂′ = ρ̃σ2(σ̂, i, j) ∧ η̃2(σ̂, i, j) = 1}.
That is, in the reduced problem we substitute ρ1, ρ2 with
ρ̃σ1

, ρ̃σ2, and η1, η2 with η̃1, η̃2, respectively. Function ρ̃σ1 :
Σ̂× I ×L → Σ̂ is such that, if σ̂ = (ϕ, ψ) and ρ̃σ1(σ̂, i, ℓ) =
(ϕ′, ψ′), condition 1) reduces to:
1̃) ψ′ = ψ,

and condition 2) does not change:
2̃) ϕ′i = ℓ, (∀k ∈ I) k ̸= i⇒ ϕ′k = ϕk.

Function η̃1 : Σ̂ × I × L → {0, 1} is defined as before.
Namely, η̃1(σ̂, i, ℓ) = 0 if and only if at least one the following
two conditions holds:
3̃) ϕi ̸= 0.
4̃) (∃k ∈ I) ϕ′k ̸= 0 ∧ xi > xk.
Since the reduced state does not include manipulators

positions, we substitute the previous function ρ̃σ2 with a
new transition function that considers only motions from
initial to final positions. Function ρ̃σ2 : Σ̂ × I × F → Σ̂
is such that, if σ̃ = (ϕ, ψ) and ρ̃σ2(σ̃, i, j) = (ϕ′, ψ′):
ϕ′i = 0 ∧ ϕ′j = ϕi ∧ ψ′

j = i.
Function η̃2 : Σ̂×I×F → {0, 1} is such that η̃2(σ̂, i, j) = 0

if and only if at least one of the following conditions holds:
1̃1) The package is moved from an unoccupied initial position

or to an occupied final position, that is, if ϕi = 0 or if
ϕj ̸= 0.

1̃3) The package collides with other packages during its
motion: (∃k ∈ I) ϕk ∈ L ∧ ck,ϕk

i,j = 0 or (∃k ∈
F) ψk ̸= 0 ∧ c

k,LF (k)
i,j = 0.

1̃4) Precedence constraints are violated: there exists k ∈ F
such that k <P j and xk > xj or j <P k and xj > xk;

1̃5) The package type does not correspond to the one assigned
to the final node: ϕi ̸= LF (j).

We call V2 the cost function corresponding to this cut, that is,
V̂2(σ) = min

σ̂∈ρ̃∗σ(Π(σ))∩Â
f̃σ(σ̂).

We can also eliminate some open states by using the
following method.

C. Dominance
A state σ = (θ, τ, ϕ, ψ) ∈ Σ dominates σ′ =

(θ′, τ ′, ϕ′, ψ′) ∈ Σ if both the following conditions hold:
• Manipulators are at the same nodes and the two states

correspond to the same packages configurations, namely
θ = θ′, ϕ = ϕ′, ψ = ψ′.

• The manipulator times of σ are not larger than those of
σ′: τ ≤ τ ′.

During state expansion, if we encounter a state σ′ which is
dominated by a state that is already in the priority queue, then
σ′ can be eliminated.

D. Enhanced algorithm
The previous discussion allows formulating Algorithm 3, the

specialization of Algorithm 2 to the problem at hand. It uses
lower bounds and dominance to reduce the set of expanded
states.
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Algorithm 3 Enhanced Dynamic Programming

1: Initialization: U = +∞, Enqueue(Q, σ0).
2: State extraction: σ := Top(Q)
3: repeat
4: State expansion: Σ′ := ρ(σ)
5: for all σ′ = (θ, τ, ϕ, ψ) ∈ Σ′ do
6: if max τ < U ∧ V1(σ

′) < U ∧ V2(σ
′) < U

7: and the queue does not contain any configura-
8: tion σ̃ = (θ, τ̃ , ϕ, ψ) such that T̃ ≤ T then
9: Enqueue(Q, σ′)

10: if σ′ ∈ A then
11: U := min{U, f(σ′)}
12: σ∗ := σ′

13: until Q = ∅

VII. POSITION x-COORDINATES OPTIMIZATION
SUBPROBLEM

Let σ∗ be the solution of DP obtained by Algorithm 3 and
let σ0, σ1, . . . , σn = σ∗ be the sequence of states leading to
the optimal solution σ∗. That is, for each h ∈ {1, . . . , n},
σh ∈ ρ(σh−1). From this sequence, we can find the corre-
sponding values of manipulators task assignment variables X
and packages assignment variables p, that will be fixed in the
subproblem related to the optimization of initial positions x-
coordinates. For any κ ∈ {0, . . . , n}, set σκ = (θκ, τκ, ϕκ, ψκ).
Then, we set (∀h ∈ {1, . . . , n}) (∀m ∈ M)

Xm
θh−1
m ,θhm

= 1 ⇐⇒ θhm ̸= θh−1
m , (11)

and (∀i ∈ I)

pi =

{
ϕnj , if (∃j ∈ F) ψnj = i

0, otherwise.
(12)

Let {sℓ}ℓ∈{1,...,N} be such that, for k ∈ {1, . . . , N − 1},

xsk+1
≤ xsk ∧ (∃j, j′ ∈ F) ψnj = sk ∧ ψnj′ = sk+1. (13)

In other words, {sℓ}ℓ∈{1,...,N} is the sequence of non-empty
initial positions totally ordered in decreasing values of their
x-coordinates. For each k ∈ {1, . . . , N − 1}, we call dk =
xsk − xsk+1

the distance between each pair of consecutive
initial positions in sequence {sℓ}ℓ∈{1,...,N}, and optimize such
distances {dk}k∈{1,...,N−1} ∈ RN−1

+ one by one by bisection
from k = 1 up to k = N − 1. The bisection procedure is
outlined in Algorithm 4, where ϵ is a tolerance (e.g., 1 mm),
while α : RN−1

+ → RI at lines 6 and 15 is such that α(d) = x,
with {

xι = 0, ι ∈ I \ {sℓ}ℓ∈{2,...,N}

xsk+1
= xsk − dk, k ∈ {1, . . . , N − 1}.

(14)

Note that, for the purpose of performing a feasibility check,
we only need to know the x-coordinates of initial positions
that are occupied by a package, that is, we only need to know
{α(d)sℓ}ℓ∈{1,...,N}. Since the x-coordinates of initial positions
in I \ {sℓ}ℓ∈{1,...,N}, (i.e., the empty ones) are irrelevant, we
set them to 0.

Moreover, f̄ at lines 7 and 12 is a feasibility check
function that takes as input the current initial position x-
coordinates (computed so far by the bisection procedure), the

Algorithm 4 Bisection

1: Input: p and X given as in (12) and (11), respectively.
2: for k ∈ {1, . . . , N − 1} do
3: δ :=

xsk
−xsk+1

2
4: while |δ| > ϵ do
5: dk := dk − δ
6: x := α(d)
7: b := f̄ (x, p,X)
8: if b is true then
9: δ := |δ|

2
10: else
11: δ := − |δ|

2

12: b := f̄ (x, p,X)
13: if b is false then
14: dk := dk + |δ|
15: x := α(d)

16: return {xsk}k∈{1,...,N−1} ∪ {xι}ι∈I\{sℓ}ℓ∈{1,...,N}

packages assignment to initial positions p given in (12), and the
manipulations sequences X given in (11). It verifies whether
the associated 3PSP is feasible or if some constraints are
violated. Accordingly, it returns a boolean value b, true if the
3PSP is feasible and false otherwise.

If b is true, then the procedure tries to further optimize
current distance dk by bisection (see line 9). Otherwise, if b is
false, this means that distance dk has been excessively reduced,
and dk is increased by bisection (see line 11).

Note that, when the condition at line 4 is false (i.e., when
|δ| ≤ ϵ), we need to perform an additional feasibility check
(see line 12) since, if during the last execution of the while
loop at line 4 boolean b is false, then we need to adjust distance
dk by increasing it in order to make it feasible again.

When optimizing distance dk between two consecutive
positions xsk and xsk+1

, not only we are modifying the
value of xsk+1

, but also all coordinates xsk̄ such that k̄ ∈
{k + 1, . . . , N − 1}. Roughly speaking, we are pushing all
coordinates smaller than xsk closer to it by the same distance.

Finally, note that at line 16, the set of x-coordinates returned
by Algorithm 4 is the union between the x-coordinates of
occupied positions {xsℓ}ℓ∈{1,...,N} and the set of x-coordinates
{xι}ι∈I\{sℓ}ℓ∈{1,...,N} that remain unused. This second set of
coordinates is determined by distributing in [mink xsk , 0] the
remaining I−N x-coordinates in such a way that the minimum
distance between any pair of x-coordinates along each infeed
line is maximized.

A. Optimality result

Algorithm 4 does not guarantee attaining a globally optimal
solution of the position x-coordinates optimization subproblem.
Actually, it does not even guarantee finding a local minimum.
However, the obtained solution satisfies a weaker optimality
property, namely, it is a lower basic solution.

In this section, we make the following assumption.

Assumption VII.1. We make an outer approximation of the
space occupied during a manipulation with the minimum axis-
aligned bounding box (AABB) associated to it.
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For further details we refer the reader to Appendix A. This
assumption allows simplifying the computation of the collision
variables ck,ℓi,j and c̄k,ℓ̄i,ℓ . Also, the results presented in this section
depend on this assumption, since it is used in the proof of
Proposition VII.1 (see Appendix B).

Consider the following definitions, taken from [32].

Definition VII.1. Let N ⊆ Rn+, then N is called normal if
(∀x ∈ N) (∀x′ ∈ Rn+) x′ ≤ x⇒ x′ ∈ N .

Definition VII.2. Let R ⊆ Rn+, then R is called reverse normal
if (∀x ∈ R) (∀x′ ∈ Rn+) x′ ≥ x⇒ x′ ∈ R.

Consider the subset of x ∈ Rn such that{
g(x) ≤ 1

h(x) ≥ 1,
(15)

where g, h : Rn+ → R are assigned increasing functions. If we
set N = {x ∈ Rn+ | g(x) ≤ 1} and R = {x ∈ Rn+ | h(x) ≥ 1},
we can rewrite system (15) as x ∈ N∩R, where N is a normal
set and R is a reverse normal one.

Definition VII.3. Let x ∈ N ∩R, x is a lower basic solution
of system (15) if (∀x′ ∈ N ∩R) x′ ≤ x⇒ x′ = x.

Given sequence {sk}k∈{1,...,N}, defined as in (13), let
{dk}k∈{1,...,N−1}, with dk = xsk − xsk+1

, be the sequence of
distances between consecutive initial positions {xsk}k∈{1,...,N}
along the x-axis, and let g : RN−1

+ → R be such that

g(d) =
1

|mini∈I x0i |

N−1∑
k=1

dk, (16)

where x0 is the feasible initial value for x-coordinates given
in Algorithm 1, and define C = {d ∈ RN−1

+ | g(d) ≤ 1}. Note
that function g is increasing, indeed, (∀d, d′ ∈ RN−1

+ ) d ≤
d′ ⇒ g(d) ≤ g(d′), and set C is normal.

Let (p,X) be the solution provided by the DP procedure at
line 3 of Algorithm 1. Define

D = {d ∈ RN−1
+ | (α(d), p,X) ∈ B}, (17)

and set h : RN−1
+ → R as

h(d) =

{
1, d ∈ D
0, d ̸∈ D

(18)

Proposition VII.1. For assigned values of p and X , set D
defined in (17) is reverse normal.

For a proof of Proposition VII.1 see Appendix B.
Let us now state the following proposition (for a proof

see [32]).

Proposition VII.2. An increasing function f : Rn+ → R
achieves its minimum over N ∩R at a lower basic solution of
system (15).

Definition VII.4. Let x ∈ N∩R, x is an ϵ-lower basic solution
of system (15) if (∀x′ ∈ N ∩R) x′ ≤ x⇒ ∥x′ − x∥∞ ≤ ϵ.

The following proposition shows that the solution provided
by the bisection procedure cannot be improved by optimizing
components of d one by one by quantities larger than ϵ.

Proposition VII.3. The procedure outlined in Algorithm 4
provides an ϵ-lower basic solution for the 3PSP for fixed
values of (p,X).

For a proof of Proposition VII.3 see Appendix C.

VIII. NUMERICAL EXPERIMENTS

We present some numerical results on randomly generated
3PSP instances. We implemented the DP algorithm and the
bisection procedure in C++, and run the experiments on a
2.7 GHz Intel Core i5 dual-core with 8 GB of RAM. We
compared the computational times of the DP approach against
those obtained through the method presented in [5], extended
for handling packages of different type and a multiple-line
infeed conveyor. However, the problem solved in this work and
in [5] do not coincide exactly. In fact, in [5], we approximated
the travel time of manipulators movements as linear functions
of the coordinates of initial and final positions. We did this
in order to reduce the 3PSP to a MILP problem. Whereas, in
the DP approach, manipulator motion times need not be linear
functions and can be computed exactly. For this reason, the two
approaches lead to slightly different solutions and, potentially,
a feasible solution of one approach could be infeasible for
the other one. However, to the best of our knowledge, the
approach presented in [5] is the closest and only one we can
compare the DP approach with. The model of [5] is solved with
Gurobi [25], and we refer to it as MILP-G. Figure 9 presents
some numerical results on solution times of the DP approach
and MILP-G. We ran simulations for 19 different values of N
(the number of packages), linearly spaced between 3 and 21. For
each of them, we ran 20 simulations by randomly generating
layouts for a 2.5× 2 m pallet. We considered three types of
packages (0.3×0.2 m, 0.6×0.2 m, and 0.3×0.4 m) and evenly
distributed them among the available packages. For each test,
we randomly placed non-overlapping packages either parallel or
perpendicular to the conveyor belt velocity, in order to generate
a random layout, as in Figure 8. For both the MILP-G and the
DP approaches, we assumed to have M = 2 manipulators and
considered a conveyor belt speed of w = 0.45 m s−1. In the DP
approach, we computed the transition times assuming that the
manipulators followed a uniformly accelerated linear motion,
followed by a uniform linear motion (in case manipulators
manage to reach their maximum speed), and finally followed
by a uniformly decelerated linear motion with a maximum
acceleration/deceleration of 8 m s−2 and a maximum speed
of 1.6 m s−1. Whilst, for the MILP-G, we assumed that the
manipulators instantaneous acceleration was unbounded, that
their speed was ω = 1.5 m s−1 and that transition times were
computed as follows: for any i, j ∈ V , let γ(i) = (xi, yi) and
γ(j) = (xj , yj), then tij = (|xi − xj | + |yi − yj |)/ω. In the
two approaches, the use of different manipulators dynamic
models naturally leads to different solutions. In general, the
solution obtained with one dynamic model can be infeasible
with respect to the other one, and viceversa. The dynamic model
employed in the DP approach represents quite accurately the
actual manipulators dynamics. On the other hand, in the MILP-
G approach, we were forced to simplify the model to formulate
the overall problem as a MILP. In general, the DP approach
is more flexible, and allows adopting the dynamic model that
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Fig. 8: Random layout with 19 packages of three different
types.

better describes the manipulators with which the machine is
equipped. Also, we assumed that the palletizing system had a 3-
line infeed conveyor. Figure 9 shows the box-and-whisker plot
of the solution times with the DP approach, together with its
mean solution times, and those with MILP-G. Note that, after
15 packages, we stopped testing MILP-G, as it was clear that
the DP approach was outperforming it. The DP approach was
found to be on average 57.24 times faster than MILP-G for N ∈
{3, . . . , 15}, with a peak of 88.74 for tests with N = 8. Observe
that the computational times shown in Figure 9 refer to the time
required by each approach for converging to a feasible solution
of the 3PSP. As already mentioned, these solutions do not
coincide in general. Note that for both approaches the returned
solution is guaranteed to be feasible but not even locally optimal.
The two approaches are based on a variable-splitting approach.
That is, we update the position coordinates, and then, we
solve the manipulation assignment problem with fixed position
coordinates. Since the latter subproblem is itself NP-hard (as it
can be seen as a variant of a vehicle routing problem, see for
instance [33]), detecting an optimal solution of the full problem
quickly leads to a combinatorial explosion and to unacceptably
high computational times, as already shown in [5]. However,
for the DP approach we can at least prove that the obtained
results are ϵ-lower basic solutions (see Proposition VII.3).

We also performed a set of numerical experiments to
show the performance improvement due to the cut strategies
introduced in Section VI. For different numbers of packages,
ranging from 3 to 15, we solved 20 instances of the 3PSP on
randomly generated layouts, for a total of 260 tests. We used
the DP approach, both with and without the aforementioned
cut strategies. Figure 10 displays the box-and-whisker plot of
the computational times for the DP, with and without cuts. As
the number of packages increases, so does the gap between the
computational times of DP with and without cuts. On average,
the performance improvement is 62.53%, with an increasing
trend that peaks at 91.59% for layouts with 15 packages.

Finally, let us consider a system with two manipulators and
a 2-line infeed conveyor, with the same previous manipulators
parameters. Figure 11 shows the desired final layout. It is
composed of 9 packages of three different types: type 1

(0.2× 0.3 m), type 2 (0.4× 0.3 m), and type 3 (0.8× 0.3 m).
Final positions are such that (∀j ∈ {2, 8}) LF (Fj) = 1, (∀j ∈
{1, 3, 7, 9}) LF (Fj) = 2 and (∀j ∈ {4, 5, 6}) LF (Fj) = 3,
so that we have 2 packages of type 1, 4 packages of type 2,
and 3 packages of type 3. We solved this problem with the DP
approach. Figures 12 and 13 show the manipulation sequences
for the first and the second manipulator, respectively. Black
circles represent available initial package positions, which
can be either occupied by a package or not. Labels O1 and
O2 identify manipulators origin positions, whilst R1 and R2

correspond to manipulators final resting positions. The first
manipulator follows the blue path, that starts from initial posi-
tion O1 and ends at resting location R1, visiting the positions
represented by blue circles. The blue boxes are the AABB
outer approximations of the space occupied by packages during
repositioning. Similarly, the second manipulator follows the
green path, from O2 to R2, visiting the positions represented
by green circles and with green AABBs for collision avoidance.
Since we considered a 2-line infeed conveyor and a 9-package
layout, the available initial package positions are 18, labeled
with I1, . . . , I18, whilst final package positions are labeled with
F1, . . . ,F9. Note that it occurs that R1 ≡ R2 ≡ F8. Moreover,
in Figure 12 the space occupied by the package moved from
I2 to F2 overlaps with the package at I4. However, by the
time the first robot performs such manipulation, the second
robot has already moved the package at I4 to F3, hence the
manipulation from I2 to F2 is collision free. The DP solution
time for the previous example was 5.89 s, whilst the MILP-G
solution time was 763.66 s.

Additional data and plots of other ∼13 000 random tests
in total for the DP approach are available on OSF website at
osf.io/yzexk. We generated 130 random layouts and considered
4 values of the conveyor belt speed, 5 values of the manipulators
speed, and 5 values of the manipulators acceleration. For each
randomly generated layout, and for each value of the conveyor
belt speed, the manipulators speed, and the manipulators
acceleration, we solved the associated problem through the DP
approach.
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Fig. 9: Solution times of the DP approach compared to MILP-
G for different numbers of packages.

https://osf.io/yzexk/
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Fig. 10: Solution times of the DP approach with and without
cuts for different numbers of packages.

IX. CONCLUSION AND FUTURE RESEARCH

We presented a DP-based approach for solving the 3PSP
shortest packages sequence and the corresponding robot
manipulations. By the numerical experiments on randomly
generated problems, we showed the advantage of the DP
approach over the MILP one in terms of computational times.
The DP approach also allows for a higher freedom in modeling
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Fig. 11: Layout with 9 packages of three different types.
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Fig. 12: Manipulations sequence of the first manipulator.
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Fig. 13: Manipulations sequence of the second manipulator.

manipulators dynamics.
A possible development of this work would be allowing

manipulators to modify packages x-coordinates with move-
ments that are either parallel to the x-axis, diagonal (i.e., which
modify at the same time both x and y-coordinates of packages),
or similar to the knight’s move in chess: manipulators could
either first move packages along y-axis and then along x-axis,
or viceversa. This last movement could be useful in case a
diagonal movement would cause a collision. The use of such
movements not only could improve the overall length of the
sequence, hence, increasing the throughput of the palletizing
machine, but it could also make the use of stopping bars
unnecessary, allowing for a simpler machine design. Another
development could involve the manipulation of packages in
multiple steps: a package is first moved to an intermediate
position by a manipulator and then moved to its final position
by another one.

Both these developments would enormously increase the
level of complexity of the problem. Such improvements would
require not only a more involved collisions handling but a
different state space definition and expansion. Computational
times may be extremely high and the design of tailored cuts
for reducing the state space exploration would be crucial for
obtaining reasonable solution times.

APPENDIX

A. AABBs for collision avoidance
An AABB for a portion of space is a rectangle containing

such space and such that its edges are aligned with the axes of
the reference system. This is a convenient choice since collision
detection between pairs of AABBs is particularly simple and
fast. As an example, Figure 14a shows the AABB associated
to a pure translation of a package, whilst Figure 14b shows
the AABB associated to a rigid transformation of a package,
that is, a translation combined with a rotation.

Note that, when performing a rigid transformation, we
assume that the translation and the rotation are simultaneous
(i.e., they start and end at the same time). Moreover, AABBs
associated to packages exactly represent them since packages
are themselves axis-aligned rectangles. Now, with respect to (2),
consider an initial position i, a final position j, a position k,
and a package of type ℓ. Let λx, λy > 0 be the semi-lengths of
the edges parallel and perpendicular to the x-axis of the AABB
associated to the manipulation of a package from position i to j,
respectively. Moreover, let ℓx, ℓy > 0 be the semi-lengths of the
edges parallel and perpendicular to the x-axis of the package
of type ℓ at position k, respectively. Then, definition (2) can
be rewritten as follows

ck,ℓi,j (x) =(xi − λx>xk + ℓx)∨(xi + λx<xk − ℓx)∨
∨ (yi − λy>yk + ℓy)∨(yi + λy<yk − ℓy).

(19)

Similarly, with respect to (3), consider an initial position i, a
position k, a package of type ℓ and one of type ℓ̄. Let ℓx, ℓy > 0
be the semi-lengths of the edges parallel and perpendicular to
the x-axis of the package of type ℓ at position i, respectively.
Moreover, let ℓ̄x, ℓ̄y > 0 be the semi-lengths of the edges
parallel and perpendicular to the x-axis of the package of
type ℓ̄ at position k, respectively. Then, definition (3) can be
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rewritten as follows c̄k,ℓ̄i,ℓ (x) = (xi−ℓx > xk+ ℓ̄x)∨(xi+ℓx <

xk − ℓ̄x) ∨ (yi − ℓy > yk + ℓ̄y) ∨ (yi + ℓy < yk − ℓ̄y).

(a) Pure translation. (b) Rigid transformation.
Fig. 14: AABBs associated to different types of manipulations.

B. Proof of Proposition VII.1
Before proving Proposition VII.1, we need the following

preliminary result on collision variables.

Proposition A.1. Let (p,X) be a feasible pair of package
and manipulation associations for the 3PSP, let function g
be defined as in (14), and let d, d′ ∈ RN−1 be such that
d ≤ d′. Then, collision variables ck,ℓi,j (α(d)), c̄

k,ℓ̄
i,ℓ (α(d)) and

ck,ℓi,j (α(d
′)), c̄k,ℓ̄i,ℓ (α(d

′)) are such that, (∀i ∈ I)(∀j∈F)(∀k ∈
N )(∀ℓ ∈ L) ck,ℓi,j (α(d)) ≤ ck,ℓi,j (α(d

′)), and (∀i ∈ I)(∀k ∈
N )(∀ℓ, ℓ̄ ∈ L) c̄k,ℓ̄i,ℓ (α(d)) ≤ c̄k,ℓ̄i,ℓ (α(d

′)).

Proof. Consider an initial position i, a final position j, a
position k and a package of type ℓ, let λx, λy, ℓx, ℓy be defined
as in (19) and let x = α(d) and x′ = α(d′). Then, since
|xi − xk| ≤ |x′i − x′k|, by (19), we have that

ck,ℓi,j (x)=(xi − λx> xk + ℓx)∨(xi + λx< xk − ℓx)∨
∨(yi − λy> yk + ℓy)∨(yi + λy< yk − ℓy) ≤
≤(x′i − λx> x′k + ℓx)∨(x′i + λx< x′k − ℓx)∨
∨(yi − λy> yk + ℓy)∨(yi + λy< yk − ℓy)= ck,ℓi,j (x

′),

that is, ck,ℓi,j (x) ≤ ck,ℓi,j (x
′). The same reasoning applies to

ck,ℓ̄i,ℓ (x) and ck,ℓ̄i,ℓ (x
′).

We can now prove Proposition VII.1.

Proof. Let d ∈ D and d′ ≥ d, we set new x-coordinate
variables x′ = α(d′), with g defined as in (14). Obviously,
conditions 3), 4), 6), 10), 11), 15) do not occur since they only
depend on p and X , which are feasible by hypothesis. Moreover,
for k ∈ {2, . . . , I}, set times τ ′k =

∑k−1
k̄=1

d′
k̄−1

−dk̄−1

w , and
τ ′1 = 0. Then, for all m ∈ M, for all k ∈ I, we set new time
windows a′msk = amsk + τ ′k, b′msk = bmsk + τ ′k, and visit times
t′sk = tsk + τ ′k, so that condition 12) never occurs, that is,
(∀i, j ∈ V) (∀m ∈ M) Xm

i,j = 1 ⇒ t′i, t
′
j ∈ [a′

m
i , b

′m
i ]. Condi-

tion 8) also holds true since (∀i, j ∈ V) (∀m ∈ M) Xm
i,j =

1 ⇒ (∃τki ∈ R+) t
′
j = tj + τki ≥ ti + tij + τki = t′i + tij .

Now, considering condition 14), we have that if j <P k then,
since xij < xik , there exist shj , shk

∈ {sk̄}k̄∈{1,...,N−1} such
that xij = xshj

xik = xshk
with hj > hk, hence, it holds that

x′ij = xij +
∑hj−1

k̄=1
(dk̄ − d′

k̄
) < xik +

∑hj−1

k̄=1
(dk̄ − d′

k̄
) <

xik +
∑hk−1
k̄=1 (dk̄ − d′

k̄
) = x′ik , that is, condition 14) never

occurs. Finally, since d′ ≥ d, by Proposition A.1, new
collision parameters are such that ck,ℓi,j (α(d

′)) ≥ ck,ℓi,j (α(d))

and c̄k,ℓ̄i,ℓ (α(d
′)) ≥ c̄k,ℓ̄i,ℓ (α(d)), that is, conditions 5) and 13)

never occur. Hence, x′ ∈ Bp,X , which means that d′ ∈ D.

C. Proof of Proposition VII.3
Proof. Let d ∈ C∩D be the solution provided by the bisection
procedure and, by contradiction, let d̄ ∈ C ∩ D be such that
d̄ ≤ d ∧ ∥d̄ − d∥∞ > ϵ. This would mean that (∃k′ ∈
{1, . . . , N − 1}) |d̄k′ − dk′ | > ϵ. Now, since h(d̄) = 1 and D
is reverse normal, Algorithm 4 cannot return a value of dk′
such that dk′ > d̄k′ + ϵ. So, |d̄k′ − dk′ | ≤ ϵ, which contradicts
the initial assumption. This means that (∀d′ ∈ C ∩ D) d′ ≤
d ⇒ ∥d′ − d∥∞ ≤ ϵ, that is, d is an ϵ-lower basic solution
of (15).

D. Alternative solution methods
In general, the solution strategy presented in Section III

does not allow finding a global optimum of 3PSP, but provides
good quality solutions with low computational time (see
Section VIII). Here, we briefly present three alternative solution
methods.

The first two methods exploit the concepts of monotonic
optimization, recalled in Section VII-A. Define function α̃ :
RI−1

+ → RI , such that, if x = α̃(d), x1 = 0 and, for i ∈
{1, . . . , I − 1}, xi+1 = xi + di.

Set
D̃ = {d ∈ RI−1

+ | x = α̃(d), Bx ̸= ∅}, (20)

where g is defined in (14) and Bx is defined in (4). In other
words, d ∈ D if and only if B contains a feasible solution in
which the initial positions are given by α̃(d).

The following proposition is analogous to Proposition VII.1
and can be proved in the same way.

Proposition A.2. Set D̃, defined in (20), is reverse normal.

Define F̃ : RI−1
+ → R such that F̃ (d) =

∑I−1
k=1 dk.

Problem (5) is equivalent to mind∈C∩D̃ F̃ (d). As a consequence
of Proposition A.2, we can find a lower basic solution for
system (15), with g as in (16) and h as in (18) with D̃ in
place of D, by means of the iteration defined in Proposition 20
of [32].

Alternatively, we can use the Reverse Polyblock Approxima-
tion Algorithm of [34], based on a branch and bound procedure,
which generates a sequence converging to a globally optimal
solution of mind∈C∩D̃ F̃ (d). However, such algorithm suffers
from some implementation issues discussed in [34] and its
computational cost is very high.

As a different approach, we can use a pre-assigned set X̂ of
large cardinality. That is, we consider a large set of possible
initial positions, approximating all appropriate solutions with
sufficient precision. This approach allows solving the problem
directly by DP, avoiding the optimization of the x-coordinates
of initial positions. However, this method can suffer from
very high computational times and memory occupancy. Indeed,
the number of explored states (and the computational time)
increases very quickly with the cardinality of X̂ .
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