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1Dipartimento di Ingegneria e Architettura (DIA), Università degli Studi di Parma, Parco

Area delle Scienze 181/A, 43124 Parma, I

(Received xx; revised xx; accepted xx)

Our experimental study focuses on the density and velocity field in two layers of fluid
separated by a sharp density interface. Turbulence is generated by a non invasive stirrer,
a Taylor-Couette tank, and the interface is stabilized with a source of saline fluid and a
source of fresh water at the bottom and top of the tank, respectively. The same volume
fluxes are withdrawn by two sinks to maintain a constant volume of fluid in the tank. Our
results confirm past experiments and show that a strong vertical exchange of fluid occurs
close to the inner cylinder and across the interface, where the vertical turbulent length-
scales appear to be suppressed. For low values of kinetic energy supplied to the system,
the interface may act as a rigid boundary for the turbulent eddies, with a reduction of
the vertical length scales although it seems not to affect the horizontal length-scales.

The vertical buoyancy flux extracted at the top of the tank is fairly well reproduced
by the measured correlation ρ′w′ between density and vertical velocity fluctuations
across the interface. Quadrant analysis of the correlation terms reveals that the greatest
contribution to salt flux is given by eddies that carry the lighter fluid from top to bottom
across the interface. The mixing process is accompanied by a single wake-like disturbance,
with a radial front advancing in the azimuthal direction across the interface, acting as
a blade, and with a period that decreases with rotation rate. The wake favours the
smoothing of the density step and, in a simplified model, we assume that the turbulent
diffusion is active during a fraction of the cycle in the wake mixing region, with diffusivity
proportional to the transverse length scale and the speed of the wake. The mixing region
is the domain between the nose of the wavelike perturbation and the section where the
interface becomes “darker” again after being mixed by the vortexes. The results of this
model are in a fair agreement with the experiments.

The potential energy of the interfacial perturbations is only a small part of the
missing turbulent kinetic energy, defined as the difference in the turbulent kinetic energy
between a well-mixed fluid and a two-layer fluid. Further analysis is needed to explain
the mechanism of generating these perturbations and the factors that control their
periodicity.
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1. Introduction

The appearance of density interfaces that separate two nearly homogeneous layers
is very frequent in the natural environment. Some of the most important examples are:
(i) the thermocline, which is the density interface between the upper mixed layer and
the stratified pycnocline, (ii) the planetary boundary layer, which extends from the free
atmosphere to the Earth surface, and (iii) interfaces that develop between dense gravity
currents and the light ambient fluid.

The mixing mechanisms occurring across these density interfaces can vary depending
on the nature of turbulence and the stratification of the fluid. They can be shear-free,
when mixing is caused by external forces far from the interface, like wind stress and
surface wave breaking responsible for the deepening of the ocean upper mixed layer. Some
other mechanisms are shearing based, like counter-flowing currents, gravity currents, or
imposed shear stress over a surface, and a velocity jump occurs at the interface (Thorpe
1973).

The influence of the background stratification over the flow shear also affects the
mixing phenomena at interfaces and it is expressed by the Richardson number, Ri =
g ∆ρH/(ρ0u

2
rms), where g is gravity acceleration, ∆ρ is the mass density difference, H

is the height of the layer, ρ0 is the reference for density and urms is the scale velocity.
For strong stratification (large density gap, hence, large Ri), the interface acts like a
rigid surface and it is scoured by turbulent eddies that bump against it and flatten
(Hannoun et al. 1988; Fernando & Long 1988; Troy & Koseff 2005). In contrast, for weak
stratification, turbulent eddies are more capable to penetrate the interface and overturn,
raising heavy fluid in the buoyant surrounding through splashing mechanisms (Briggs
et al. 1998; Fernando 1991).

The influence of the molecular diffusivity of passive scalars has also been examined.
Turner (1965) found that with increasing density difference due to salinity with respect
to that of temperature, heat transfer becomes faster than salt. Wolanski & Brush Jr
(1975) confirmed that the entrainment velocity (i.e. the rate of change in concentration
in one of the two layers) decays with the molecular diffusivity of the passive scalars at
fixed Ri.

A lot of experimental study have been devoted to the parametrization of the vertical
flux of heat and salt in a two layer or linearly stratified fluid, mixed mechanically by
vertically oscillating grids (Linden 1980; Fernando & Long 1985, 1988) or horizontally
oscillating rods (Fernando & Long 1988; Park et al. 1994; Whitehead & Stevenson 2007;
Thorpe 2016), or rotating disks acting at the bottom (Boyer et al. 1997) and at the surface
(Shravat et al. 2012) of a cylindrical tank filled with two layers of fluid with different
density. Although the vertical oscillating grid has allowed several detailed analyses of
the processes, some secondary flows and interferences have been documented (McKenna
& McGillis 2004). Non-invasive mixing across a density interface can be generated by
a Taylor-Couette tank and in this respect, the vertical buoyancy flux exhibited a non
dependence either on the density difference between the two layers (Woods et al. 2010)
or on the number or height of the layers, provided that 2 < Ri < 20 (Oglethorpe et al.
2013) and that the vertical flux is rate-limited by turbulence (Petrolo & Woods 2019). The
stability conditions of the flow between two concentric cylinders in a circular Couette flow
have been investigated experimentally and theoretically for stable linear density stratified
fluid (Boubnov et al. 1995). Mixing across a density interface in stratified Taylor– Couette
flow has been modelled by Balmforth et al. (1998) with a mechanism of equipartition of
energy production responsible of a more efficient entrainment, further detailed in Guyez
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et al. (2007). Numerous experiments on several aspects of mixing in a Taylor-Couette
tank are documented in Oglethorpe (2014).

The source of turbulence also affects the definition of the variables in the Richardson
number. In particular the length scale of turbulence is related to a geometric scale of
the stirrer (Linden 1980; Park et al. 1994), or to the depth of the layers in Woods et al.
(2010), although a more coherent definition is based on the turbulent kinetic energy
(TKE) κ and on buoyancy gradient bz, with l = (κ/bz)

1/2 (Balmforth et al. 1998).
In this paper we devote an in-depth analysis to the flow field of a two-layer fluid in

a Taylor-Couette tank, and in particular at the density interface. The dynamics of the
density interface is responsible for the salt flow and it has been demonstrated that under
certain conditions the density gradient is sharp, under different conditions it is smoothed.
The open question is the main mechanism supporting buoyancy flux in the presence of a
sharp gradient. In this condition, classical diffusive models fail and are not able to capture
the subtle mechanisms behind the transfer process. Hence, new insights are requested on
the basis of dedicated experiments.

A series of measurements of density and fluid velocity, with an adequate accuracy
and data rate, allows the description of the overall flow field, with (macro-) turbulence
description, length scales, salt fluxes. In particular, the interface between the two fluids
is populated by periodic perturbations. Some videos show how perturbations develop
for all the rotation rates, Ω, spread in radial direction and advance in the azimuthal
direction, a mechanism already documented in Oglethorpe (2014). The characteristics of
these perturbations are quantified by measurements of the interface level, with periodic
fluctuations also in the presence of coherent structures in the flow field. The present
experiments are the counterpart of experiments devoted to turbulence effects on gas and
chemicals exchange at the free surface (the interface between water and air), (Brumley
& Jirka 1987; Komori et al. 1989; Herlina & Jirka 2008; Longo 2010, 2011; Variano &
Cowen 2013), with differences due to the density jump between the bottom- and the
top-layer fluids and to the source of turbulence.

The manuscript is organized as follows. Section 2 describes the experiments and section
3 contains data analysis for the velocity and the turbulence field, for the length scales.
Section 4 details the interface dynamics. The conclusion is in Section 5.

2. Experiments

In our experiments, we used a Taylor-Couette tank with a steady outer cylinder of
radius R2 = 17.2 cm and a rotating inner cylinder of radius R1 = 8.5 cm, see figure 1a.
The annulus was filled with a two-layer fluid of total depth of H = 25 cm and each layer
had an equal depth of H/2 = 12.5 cm, with the bottom having a higher salt content
and so being denser than the upper. The device is similar to that reported in Woods
et al. (2010) and in Petrolo & Woods (2019), also with an almost equal aspect ratio
A = (H/2)/∆R = 1.43, where ∆R = R2 − R1. For most experiments, the tank was
initially filled with the upper layer (light fluid), then the bottom one (denser fluid) was
slowly injected at the bottom of the tank in order to avoid mixing and to maintain a
sharp interface.

Turbulence generated by the rotation of the inner cylinder induces a vertical salt
transport and a decrease of the density difference at the interface (Woods et al. 2010).
For this reason, during our experiments the interface was stabilized by a source of fresh
water and a source of salty water (salinity equal to 25% by weight, i.e. approximately
the maximum concentration of NaCl in water at ambient temperature), located near
the surface and the bottom of the tank, respectively. In order to maintain a constant
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Figure 1: The experimental device. (a) Set up of the experiments; (b) set up of the conductivity
and UVP probes in the tank; (c) the probe for interface position measurement.

volume of fluid inside the tank, an equal volume of the fluid was withdrawn by two sinks
located at the same depth of the two sources. The volume flux of each source/sink was
q = 2.50 cm3 s−1 and it was controlled by peristaltic pumps. The densities of the two
out-flowing fluids were periodically measured by hydrometers, and double-checked with
a refractometer, in order to monitor the steady state condition. The range of rotation
rates of our experiments was Ω = 1.50− 2.75 rad s−1: we found that higher values of Ω
tend to erode the interface for the given q, and the system becomes linearly stratified.
The main parameters of the experiments are listed in table 1.

Density data were recorded by a conductivity probe mounted on a traverse system
that profiled the fluid in approximately 33 s continuously in time, see figure 1b. The
probe has two pins (micro USB type B connectors) that work as electrodes spaced ≈
0.2 mm, with hardware described in Carminati & Luzzatto-Fegiz (2017). The volume
of measurement is a cylinder of approximate height 0.4 cm and radius 0.2 cm, and the
data rate is ≈ 20 Hz. Fluid velocity in the vertical, radial and azimuthal direction was
measured by 5 Ultrasound Velocity Profilers (UVP, model DOP 2000 Signal Processing
S.A., Switzerland, 2000) with a carrier frequency of 8 MHz, data rate of 15-20 profiles per
second, depending on the set-up. The fluid was seeded with TiO2 parcels, characterized
by high sonic impedance, so that the UVPs could measure their velocity at different
distance (gates) along the axis of the ultrasonic cone on the basis of the Doppler shift of
the echoes (see Longo et al. 2016, for more details). Because the sound speed depends on
the density and temperature of the fluid, the position of the gate and parcel velocity were
corrected by using the model for density-bulk modulus-salinity suggested by Mackenzie
(1981).

In the experiments 1-9 of table 1 the UVP probes were arranged as sketched in figure 1b,
with two probes aligned along the vertical direction (one of them in a fixed position at
the middle of the gap, the other one could be manually moved along the radial direction),
while the last three probes were aligned along the azimuthal, vertical and radial direction,
and they profiled the fluid moving jointly with the conductivity probe.

In the experiments 10 - 15, in order to detect the density perturbations travelling across
the interface, a new specific probe, similar to that used in Wessels & Hutter (1996) was
home made with two stainless steel φ1 mm bars, 1 cm spaced, exposed to the fluid for a
length of 1.8 cm, and insulated along the remainder of the length, see figure 1c. During
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Test Ω ρto ρbo Sto Sbo Fto q Re Ri
two-layer (rad s−1) (g cm−3) (g cm−3) (%) (%) (g s−1) (cm3 s−1) (×104) (×102)

1 2.75 1.040 1.150 5.76 20.22 0.150 2.50 1.99 2.50
2 2.50 1.027 1.161 3.97 21.73 0.102 2.50 1.81 3.20
3 2.50 1.028 1.158 4.11 21.32 0.106 2.50 1.81 3.10
4 2.25 1.020 1.165 3.00 22.18 0.077 2.50 1.63 3.90
5 2.25 1.021 1.163 3.24 21.91 0.083 2.50 1.63 3.80
6 2.00 1.012 1.170 1.90 22.77 0.048 2.50 1.44 4.70
7 2.00 1.013 1.171 2.04 22.91 0.052 2.50 1.44 4.70
8 1.75 1.008 1.175 1.40 23.30 0.035 2.50 1.26 6.30
9 1.50 1.006 1.182 1.10 23.30 0.028 2.50 1.08 5.20

10 2.75 1.041 1.148 6.00 20.00 0.156 2.50 1.99 -
11 2.50 1.025 1.161 3.80 21.70 0.097 2.50 1.81 -
12 2.25 1.022 1.162 3.30 21.80 0.084 2.50 1.63 -
13 2.00 1.015 1.167 2.30 22.30 0.058 2.50 1.44 -
14 1.75 1.007 1.172 1.30 23.00 0.033 2.50 1.26 -
15 1.50 1.006 1.175 1.10 23.20 0.028 2.50 1.08 -

water
16 2.00 0.998 0.998 0 0 0 2.50 1.44 0
17 2.25 0.998 0.998 0 0 0 2.50 1.63 0
18 2.50 0.998 0.998 0 0 0 2.50 1.81 0
19 2.75 0.998 0.998 0 0 0 2.50 1.99 0
20 1.75 0.998 0.998 0 0 0 2.50 1.26 0
21 1.50 0.998 0.998 0 0 0 2.50 1.08 0

Table 1: Parameters of the experiments. Ω is the rotation rate of the inner cylinder; ρto and ρbo
are the density of the top and bottom out flowing fluid in state state condition; Sto and Sbo are
the salinity of the top and bottom out flowing fluid in steady state condition; Fto is the vertical
salt flux, measured as Fto = qρtoSto; q is the volume flux of each source/sink; Re = ωR2

1/ν is the
Reynolds number; Ri = g(ρbo − ρto)Λ/(ρ0u2

rms) is the Richardson number (ρ0 is the reference
mass density and Λ is the integral vertical length scale, see §3.3).

the experiments, the probe was located so that the mid-section of the exposed length
was at the level of the density interface. The distance r of the probe from the inner
cylinder could be varied manually and it was set to r = 2, 4, 6 cm. At each of the three
positions the signal was recorded for 20 minutes at a sampling frequency of ≈ 20 Hz.
Other experiments required two of these probes spaced 7 cm in the azimuthal direction,
with output signals cross-correlated to estimate the interfacial perturbations phase speed.

Experiments 16 - 21 were run with homogeneous fluid (fresh water), in order to build
reference for comparison.

Finally, some unpublished data from Petrolo & Woods (2019) are discussed in the
present study, in particular, in section 4.1, where we deal with shadowgraphy analysis.

2.1. The uncertainty in variables and parameters

The density of the fluid initially filling the tanks was measured with a hydrometer
with accuracy of ± 10−3 g cm−3, mass density of the top out-flowing fluid was measured
with a refractometer and an accuracy of ± 2 ·10−3 g cm−3. Local and instantaneous mass
density of the fluid in the tank during the experiments was measured with a conductivity
probe upon calibration, with an overall accuracy of ± 3 · 10−3 g cm−3 also depending
on fluid temperature fluctuations. Fluid velocity was measured with an accuracy 6 4%
(Longo et al. 2012), resulting in a slightly larger uncertainty for the turbulent component
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(6 4.5%) depending on the duration of acquisition for a given bandwidth of ≈ 20 Hz.
The relative uncertainty in spectral peak frequency detection is 6 2%. The geometry of
the device (internal and external radius) was known with an absolute uncertainty of 0.2
cm, the flow rate of the pumps was known with an uncertainty 6 2%.

The uncertainty of the derived variables has been estimated by adopting the classical
error propagation rules, with ∆Re/Re 6 5% and ∆Ri/Ri 6 7%.

3. Experimental observations and discussion

3.1. The velocity field

The fluid velocity field in the z − r plane was reconstructed with a proper set-up of
the UVP probes. One probe was vertically aligned at a distance r = 0.5, 1.3, 2, 3, 4, 5, 6, 7
and 8 cm from R1, with the head immersed a few millimetres below the free surface of
the upper layer and pointing downward. For every position, a number of 6000 profiles
were recorded along the vertical direction with a sampling frequency of ≈ 20 profiles s−1,
velocity resolution of ≈ 0.11 cm s−1 and an axial (with respect to the probe) space
resolution of ≈ 0.03 cm .

A second ultra-short UVP probe was radially aligned, with the head at ≈ 1 cm from
the inner radius of the external cylinder, pointing inward and moving up and down in the
vertical direction jointly with the conductivity probe. Also for this second probe 6000×9
radial velocity profiles were registered, with a sampling frequency of ≈ 15 profiles s−1

and accuracy of ≈ 0.15 cm s−1. The total amount of UVP profiles for each test is 54 000,
which corresponds to a whole number of ≈ 100 vertical excursions of the conductivity
probe and of the radial probe, considering a time of ≈ 33 s for the probes to run the
vertical depth H of the fluid.

A typical example of the density profiles and time-averaged vertical, w, and radial,
ur, velocity field is shown in figure 2a-b-c, with data from Exp 1 in table 1, with Ω =
2.75 rad s−1. The interface (density jump) is located at z ≈ 14 cm.

Figure 2b-c, shows the contours of the average vertical and the radial velocity, positive
upward and outward, respectively. The vectors are the fluid velocity in the z − r plane.
Blank zones are due to probes moving inside the fluid, and hence occupying a region
where data cannot be available, or other geometric limitations. Figure 2d shows the
instantaneous contour map of the radial velocity, with several recirculation cells not
present in the average velocity map, and with a wider velocity range.

The mean vertical velocity contour map exhibits a generally positive value, with a
strong exchange of vertical flux at the interface. A red spot of an upward velocity is
registered, close to the inner cylinder just below the interface, while a blue spot above
the density jump carries fluid downward. A net upward flux is clearly visible at the
bottom of the tank, close to the inner cylinder. This is a secondary inward radial flow
driven by the centrifugally imbalanced pressure gradient at the bottom boundary, where
a no-slip condition holds (Burin et al. 2006). The mean radial velocity field presents
coherent structures, with three persistent main patches of velocity directed toward the
outer cylinder (see figure 2c). These features are typical for all the values of rotation
rates tested (not shown).

This pattern is visible also for homogeneous fluid in Exp 19, see figure 3: the parcels
moves up along the inner cylinder from the bottom of the tank, reaching almost the mid-
height of the fluid where they diverge towards the outer cylinder, continuing to move
upward. At the free surface, the motion is inverted and parcels start falling along the
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Figure 2: (a) Time averaged density profile over the period of the steady state, with error bars
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for a two-layer ambient fluid: (b) contour plot of the time-averaged vertical velocity component,
w; (c) contour plot of the average and (d) of the instantaneous radial velocity component, ur
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components. Data refer to Exp 1 of table 1, Ω = 2.75 rad s−1.

inner radius for mid-height and deviate to the outer radius. The vertical path is 8-shaped.

3.2. Turbulence field

Turbulent velocity fluctuations were extracted by subtracting the instantaneous ve-
locity from the time-averaged velocity. Figure 4 shows the vertical and radial TKE
components for two experiments at different Ω. Both components are damped near the
density interface, and the overall pattern is similar, although with minor intensity for
reduced rotation rate. The vertical component dominates near the inner cylinder, with a
subsequent diffusion toward the mid gap and the transfer to the radial component.

Figure 5a shows the three components of the TKE and the total value averaged along
the total depth of the fluid, H. At low Ω (low Reynolds number) the vertical component
dominates, followed by the radial component, and the turbulence field is anisotropic.
At high Ω, the three contributions are almost equal and the turbulence field is almost
isotropic; at low Ω a kink is present that remains unexplained.

We compare the characteristics of our device with those of Woods et al. (2010), who
used a tank with an inner radius of R1 = 10 cm and an outer radius of R2 = 25 cm,
filled with fluid up to a depth H = 40 cm. Figure 5b shows the fluctuating azimuthal
velocity (time, vertically and gap-averaged) for the different values of Reynolds number
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Re = ΩR2
1/ν. The red line represents the empirical relationship〈
u′θ,rms

〉
W10

=
0.086± 0.01

R2 −R1
ln

(
R2

R1

)
νRe = (6.3± 0.7)× 10−7Re, (3.1)

that derives from the equation (2.7) of Woods et al. (2010) (〈u′rmsr〉 = (0.086±0.01)ΩR2
I),

after radial average and substitution ΩR2
1 = νRe. The comparison with the present data

interpolation, dashed green line in figure 5b, shows an adequate superposition although
two outliers are evident, with the coefficient K = 0.068±0.01 instead of K = 0.086±0.01.
This result indicates the scalability of the Taylor-Couette cell as a generator of turbulence.
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3.3. The length-scales

The integral, Λ, and micro, λ, length-scales of the flow field along the three prin-
cipal directions (vertical, radial and azimuthal) can be evaluated by means of the
normalized autocorrelation function of the fluctuating velocity component χ(z, ς) =
u′(z, y)u′(z, y + ς)/u′2, with u′ = w′, u′r or u′θ and ς the space lag. We define the integral

length-scale Λ(z) =
∫ ς
0
χ(z, ς) dς, where ς is the length over which the autocorrelation

function is positive, while the Taylor micro length-scale is related to the curvature of
the autocorrelation coefficient at the origin, see Tennekes & Lumley (1972). The integral
length-scale is representative of the size of the coherent macro structures of the flow field
(large eddies). The Taylor microscale is associated with the small scale eddies and gives
a convenient estimation for the fluctuating strain rate field. In the present analysis we
are dealing with Eulerian length scales, since we are considering correlations between
fluctuating velocities measured at fixed points in a fixed frame of reference.

Figure 6 shows the vertical, the radial and the azimuthal λ and Λ, with error bands
corresponding to one standard deviation, representing the variability within the set of
velocity profiles. The general trend is of an increment of the scales with Ω and a larger
variability in the upper layer with respect to the lower layer. The most relevant variations
are observed for the vertical length scales, which drop near the interface at low Ω.
This drop can be related to the interface of thickness Hint, which, at large values of
Ri = g(∆ρ/ρ)Hint/(ΩR1)2, acts like a rigid boundary where the colliding eddies flatten,
transferring energy from vertical to horizontal scales (Briggs et al. 1998; Hannoun et al.
1988). The density difference between the layers increases as Ω decreases, as the vertical
salt transport shows a Ω3 dependent behaviour (Woods et al. 2010; Petrolo & Woods
2019), so Ri increases and the vertical length-scales reduce. However, the reduction of
energy contained in the vertical is not accompanied by an increment in the r − θ plane.

The mean values of the micro length-scales in the three directions do not seem to be
markedly affected by the interface, as illustrated in the three bottom panels of figure 6.
The micro length-scales remain almost isotropic (Fernando 1991), with a mean value
λ ≈ 0.2± 0.1 cm. Their values generally decrease with height and Ω.

The radial and azimuthal Λ are larger than the vertical, with the azimuthal length-
scale showing a more chaotic trend along the vertical and a not so evident dependence on
Ω. The eddy geometry is more confined in the vertical than in the radial and azimuthal
directions. In these two directions the eddies are quite varying, possibly as a consequence
of instabilities of the flow field.

The spatial variations of the three families of length scales is indicative of the role of
the interface in forcing the structure of the eddies, mainly at low rotation rate, and of
the overall effects of the geometry of the Taylor-Couette cell mainly on the large eddies.
The integral length scales in the three directions show a progressive homogeneity for
increasing Ω.

4. Fluctuations at the interface

4.1. Preliminary visualization of the interface dynamics

A preliminary video image analysis has been conducted in order to detect the features of
the interface. For an easy visualization, coloured fluids with intermediate density between
top and bottom layers were injected by three small pipes at the interface, positioned at
three different radial distances from the inner cylinder. These fluids float at the interface
before being dispersed in the two layers. A similar analysis was conducted in Oglethorpe
(2014) mainly with the use of shadowgraphy, a technique that will be described later
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Figure 6: (a) Vertical micro length-scales and (b) integral length-scales; (c), radial micro length-
scales and (d) integral length-scales; (e), azimuthal micro length-scales and (f ) integral length-
scales, as a function of z, for the rotation rates Ω = 1.50− 2.75 rad s−1.

( )a

c)
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( )c

Figure 7: Snapshots of the dye streaks for (a) test at Ω = 2.75 rad s−1, (b) test at Ω =
2.00 rad s−1, and (c) test at Ω = 1.50 rad s−1. The radial lines are 20◦ apart.

on. Video 1 is available as supplementary material. Figure 7 shows three snapshots at
the early stage of injection of the coloured dye streaks for different Ω, with an evident
different magnitude of fluctuations at different radial position and rotation rate.

A top view obtained with three web cams (not shown) indicates that after an initial
chaotic mixing of the dye streaks, a single wavelike perturbation appears (a crest of
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Ω ΛT λT
(rad s−1) (s) (s)

r = 2− 4− 6 cm r = 2− 4− 6 cm
1.50 0.8 1.2 0.5 0.10 0.16 0.10
2.00 0.5 0.5 0.6 0.12 0.12 0.14
2.75 0.6 0.5 0.6 0.12 0.15 0.11

Table 2: Integral, ΛT , and micro, λT , time scales measured at distance r = 2 − 4 − 6 cm from
the inner cylinder.

denser fluid invades the upper layer, eventually a trough of less dense fluid invades the
lower layer), generated near the inner cylinder and progressively extending through the
gap, with the coloured fluid accumulated behind the front of the perturbation.

Time series of radial lines of pixels are shown in figure 8a-b-c for different Ω. The
dashed lines mark the inclined fronts of the perturbations corresponding to an outwards
excursion of the dye, with a period T = 14 − 23 s, reducing for increasing Ω. The dye
of three different colours mix and accumulate behind the front, occupying an increasing
portion of the interface. It is also evident that the fluctuations of the dye are larger for
the green one (the nearest to the inner cylinder) than for the blue one (the nearest to the
outer cylinder), and are also increasing for increasing rotation rate. Figure 8d shows the
time-averaged dye streaks, with an evident correlation of the outwards fluctuations for
the green and the red ones. This indicates that the impulse arises near the inner cylinder
and propagates radially, although it does not apparently reach the outer cylinder, since
the blue streak is much less affected. A more complex scenario is reported in Oglethorpe
(2014), where (i) the strong shear near the inner cylinder favours mixing of fluids; (ii)
the mixed fluid travels outwards and generates a gravity current bore-like propagating
radially and azimuthally, which (iii) finally spreads in the horizontal plane and in the
vertical in both layers. However, the origin and the evolution of the wavelike disturbances
is similar in both scenarios, although the events look more energetic in Oglethorpe’s
experiments than in the present one. For instance, in the present experiments we could
not observe the splash of the fluid on the outer cylinder.

The perturbation dynamics at higher rotation rates is more complex and the perturba-
tion front also includes the blue streaks. The fluctuations are highly self-correlated with
a time lag approximately equal to 0.2 s, estimated by digitizing the pixel position and
computing the autocorrelation of the signal. The integral and the micro time scales are
listed in table 2. The integral time scale decreases for increasing rotation rate and for
measurements near the inner cylinder r = 2 cm, indicating that the fluctuations become
progressively more random in the region where turbulence is more intense; it remains
constant at higher Ω for measurements at r = 4− 6 cm. The time microscales are much
less affected by the distance from the inner cylinder and by Ω, taking an almost constant
value.

Similar information was obtained by a lateral view across the interface. Figure 9 shows
three time series (for three different rotation rates) of a vertical line of pixels in false
colour across the density interface, where a periodicity is observed. At high rotation
rate, Ω = 2.75 rad s−1 (figure 9a) the dye injected at the interface spreads in a vertical
wave-like motion and diffuses more rapidly towards the top layer. For this reason, it
is not straightforward to detect the periodicity of such perturbations, nevertheless the
period T ≈ 14 s has been evaluated as a mean of two subsequent vertical dyed blue
stripes. At lower rotation rate, Ω = 2.00− 1.50 rad s−1 (figure 9b-c) the period is equal
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Ω = 2.00 rad s−1,(c) Ω = 1.50 rad s−1. (d) Averaged dye streaks for test with Ω = 1.50 rad s−1,
moving average with a time window of 3 s. The dashed lines indicate the crest of the perturbation.

to T ≈ 19− 24 s, respectively. The enlargement shows a saw-tooth profile, with the dye
slowly expanding in the advancing disturbance. The different behaviour of the different
colours, with the cyan beneath the average interface and the red one mainly above it, is
addressed to the different concentrations of the aniline powder, with a consequent slight
difference in the density of the coloured fluid.

A different view is offered by the shadowgraphs shown in figure 10, clearly showing
a wake almost symmetric in the two layers with some eddies near the fronts. With
the shadowgraph technique, it is possible to visualize any density variation by shining
parallel light rays, perpendicularly to the fluid. In our experiments we used a carousel slide
projector illuminating horizontally the outer cylinder and projecting shadows created by
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Figure 9: Time series of vertical lines of pixels from lateral view images. (a) Ω = 2.75 rad s−1, (b)
Ω = 2.00 rad s−1,(c) Ω = 1.50 rad s−1. The enlargement shows the shape of the perturbation,
with a smooth rising front and a steep rear.

the density interface and other density variations onto the inner cylinder. We recorded a
video with a HD videocamera of a mobile phone. Because the tank of the present study
had a metallic inner cylinder that reflected most of the light shed by the projector, we
chose to show some unpublished data of Petrolo & Woods (2019), who used a tank with
a white inner cylinder that made the shadowgraphy analysis much clearer and of higher
quality. The wakes observed in the present study were almost identical to those of Petrolo
& Woods (2019), with minor insignificant differences. The shadowgraphs of figures 10-
11 refer to Exp 7 in Petrolo & Woods (2019) and are similar to the wake described
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Figure 10: Snapshots of the interface in a two-layer fluid at Ω = 2.50 rad s−1. Exp 7 in Petrolo
& Woods (2019).

in Oglethorpe (2014). The presence of wakes behind steady breakers at the air-water
interface, in the water phase, has been detected since several decades, see Peregrine &
Svendsen (1978); Battjes & Sakai (1981). A steady wake develops also in mixing layers,
eventually in presence of a different mass density (Brown & Roshko 1974) fluids. In the
present experiments a singular wake develops and diffuses momentum and density upward
and downward, see figure 11a-b where a time series of vertical lines of pixels is extracted
from the same experiment shown in figure 10 . The wake has a linear increasing transverse
length, analogously to the earlier finding of Brown & Roshko (1974) for wakes generated
by a mixing layer between two fluids of different density; the two fronts delimiting the
ambient fluid and the wake expand upward and downward at a speed of approximately
0.7 cm s−1 and seem to rebound (at least the front advancing in the upper layer of fluid
seem to rebound at the free surface).

The wake enhances mixing and smooths out the sharp density gradient, with a strong
diffusion of salt taking place without the singularity of the step density. The disruption
of the step density is evident in the nose (t ≈ 4; 25 s), where the shadow of the interface
is diffused, and persists for several seconds, up to t ≈ 12; 32 s. The periodicity of the
disturbances generates intermittency, with a sequence of low and intense diffusion and
with an increasing average value if the disturbances are more frequent. The question
remains open on the source of these wakes and of the mechanism behind the periodicity.
A possible explanation (see Singh et al. 2018) is a first mode gravity-wave instability
forced by a highly turbulent flow at the interface, similar to that observed for a free-
surface Taylor–Couette flow (Mujica & Lathrop 2006).
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& Woods (2019).

4.2. A model for salt transport

More detailed and quantitative information is given by a series of measurements focused
on density and vertical velocity fluctuations across the interface. The conductivity probe
and a short UVP probe (connected jointly with the vertical translation bar) acquired the
signal for 120 s, moving in steps of 2 mm from one acquisition to the next. The measure-
ment range was±2 cm relative to the average position of the interface. Figure 12a-b shows
the fluctuating density and fluctuating vertical velocity (rms values). The thickness of
the interface hinterface ≈ 1 cm is estimated by the range of ∆z corresponding to the 80%
of the cumulated area of the ρ′rms curve. At the density discontinuity, ρ′rms grows rapidly,
whereas w′rms decreases towards the interface more gradually, approaching zero at lower
Ω. Figure 12c shows the correlation of the two fluctuating variables, with positive peaks
near the interface, more localized at intermediate Ω and spreading over a wider range if
the rotation rate increases (equivalent to increasing Re). The vertical average value of
ρ′w′ across the interface within the vertical interval comprising 98% of the cumulated
correlation across the interface, referred to a 4 cm window, can be interpreted as the
vertical buoyancy flux per unit area. If we compare it with the buoyancy flux estimated
as Bm = qρtoStog/ρ0 = Ftog/ρ0, where ρto and Sto are the mass density and salinity of
the upper out-flowing fluid and Fto ≡ qρtoSto is the salt flux measured as mass of salt
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comparison between the buoyancy flux measured as the integral vertical salt transport and
salt transport across the density interface.

per unit of time, see figure 12d, we find an adequate overlap. The vertical buoyancy flux
shows a Bm ∼ Ω3 dependence, as previously found by Woods et al. (2010); Petrolo &
Woods (2019), and vanishes at low Ω.

In order to model the effect of the wake on salt transport, we assume that at a given
azimuthal position the wake has a transverse length scale l(t) (see figure 11b) and a linear
density variations with a uniform vertical gradient of density equal to (ρt−ρb)/l(t), with
a vertically invariant correlation in the mixing region modelled as

ρ′w′(t) = −D(t)
(ρt − ρb)
l(t)

, (4.1)

where D(t) is the mass diffusivity. We assume that diffusion is relevant for a fraction
αTp of the period of the wake (the mixing region in figure 11b, where the mixing region
was estimated by eye as limited by the nose and by the section were the interface gets
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”darker“ again after disruption), with an average vertical flux over a cycle equal to

1

Tp

∫ t0+αTp

t0

ρ′w′ dt = − 1

Tp

∫ t0+αTp

t0

D(t)
(ρt − ρb)
l(t)

dt ≡ Ft0
A
, (4.2)

where A is the cross-section of the tank. By assuming a diffusivity D(t) = kρl(t)c, where
kρ is a coefficient and c is the speed of the wake (the velocity scale, see §4.4), eq.(4.2)
yields

kρα =
Fto

A(ρb − ρt)c
. (4.3)

Figure 13 shows the experimental value of kρα for increasing Ω, which attains a fairly
constant value equal to 1.4 · 10−3 ± 8%. For the experiment in figure 11 results α ≈ 0.4
and kρ = 0.0035. In order to compare this result with the coefficient of the Prandtl’s
model (Prandtl 1942), we keep in mind that the Schmidt number for the diffusivity of
the mass, defined as Sc ≡ νT /D, can be extremely variable, generally differs from unit
(Brown & Roshko 1974; Variano & Cowen 2013) and has an important role in mixing
processes (Leclercq et al. 2016a,b). By assuming for simplicity that Sc = 1 the empirical
proportionality coefficient for the flux of momentum is kT = kρ, which is slightly less
than the coefficient of Prandtl for plane mixing layers, kT,Prandtl = 0.01. The difference
is related to the velocity scale, here assumed for simplicity equal to the speed of the wake
and that should more correctly be related to the defect of velocity in the mixing layer
(see, e.g. Tennekes & Lumley 1972). We also neglected the entrainment and the region
of the nose, characterized by a more complex scenario, and we have also pragmatically
assumed that the structure of the wake is radially invariant.

4.3. Quadrant analysis

The fluctuating density and vertical velocity correlation was also analysed with a
quadrant decomposition (see, e.g., Variano & Cowen 2013), with a conditional sampling
of the events belonging to the first quadrant (ρ′ > 0, w′ > 0), to the second quadrant
(ρ′ < 0, w′ > 0), to the third quadrant (ρ′ < 0, w′ < 0), and to the fourth quadrant
(ρ′ < 0, w′ < 0). Figure 14 is a schematic diagram depicting the events that control
vertical transport of salt near the interface. Since the vertical density gradient is negative,
the diffusive flux belongs to Q1 and Q3, the contra-diffusive flux belongs to Q2 and Q4.
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Figure 14: Schematic diagram showing the eddies carrying excess or defect of density. Q1 (ρ′ >
0, w′ > 0), Q2 (ρ′ < 0, w′ > 0), Q3 (ρ′ < 0, w′ < 0), Q4 (ρ′ > 0, w′ < 0). The horizontal arrows
indicates that part of the action of Q3(Q1) is transferred to Q2(Q4). Q1+Q3 is the diffusive
action, Q2+Q4 is the contra-diffusive action.

A similar schematic is depicted in Odier et al. (2012), were entrainment/detrainment is
defined when a parcel of fluid that is lighter/heavier is advected into/out of the current
and thoroughly mixed. However, the model in Odier et al. (2012) refers to a gravity
turbulent current advancing in a homogeneous domain of fluid mainly at rest, whereas
in the present experiments turbulence is present in both layers.

The event-averaged (phase-averaged) contribution of the ith quadrant is

〈
ρ′w′

〉
i

=
1

Ni

Ni∑
j=1

[
(ρ′w′)j

]
i

for i = 1, . . . 4, (4.4)

where Ni is the number of events in the ith quadrant. The time-averaged contribution
of the ith quadrant is

(
ρ′w′

)
i

=
1

N

Ni∑
j=1

[
(ρ′w′)j

]
i

for i = 1, . . . 4, (4.5)

where N is the total number of events for all quadrants. Ni/N is the time of permanence
(concentration) of events in the ith quadrant, hence

(
ρ′w′

)
i

=
Ni
N

〈
ρ′w′

〉
i
, with ρ′w′ =

4∑
i=1

(
ρ′w′

)
i
. (4.6)

We can also analyse the events over threshold, selecting only the correlation terms
satisfying the relation

|ρ′w′| > βTh ≡ β(ρ′rmsw
′
rms), (4.7)

where β is a coefficient of a threshold Th assumed equal to the product of the rms values
of density and vertical velocity fluctuations (a different scale can be selected).

Figure 15a-b-c shows the concentration, Ni/N the time and phase-average quadrant
contribution (no threshold, with β = 0) to the salt flux ρ′w′ for Exp 1, with positive
contribution (upward flux) from quadrants 1-3 and negative contribution from quadrants
2-4, with the latter approximately half value of the former. The average salt flux is
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positive, as expected, as a result of the dominant contribution of diffusive terms, almost
equally distributed between quadrants 1-3. The intensity of the events, represented by the
phase-average values, is stronger from quadrant 3, i.e. the lighter fluid of the upper layer
sinking into the lower and denser one; these events have a time concentration generally
lower than the other three quadrants, so they are not so frequent events but they are
quite strong. The time-average peak value is ≈ 0.6, which decays to ≈ 0.1 at distance of
∆z = 0.5 cm.

Figure 16 shows the same data in figure 15 for β = 2. The intense events are much less
frequent and are non zero only near the interface, phase-averaged contributions of the
four quadrants are generally more balanced, with events having comparable intensity for
all quadrants, being more frequent for quadrants 1-3, with a dominance of quadrant 3
(ρ′ < 0, w′ < 0), revealing that the bursts of lighter fluid parcels downward are intense
and frequent. According to this scheme, the (diffusive) action generating salt flux is
turbulence in the upper layer, with lighter fluid eddies scraping the interface from the
top. More than 60% of the flux is related to these energetic events (the dimensionless value
of the peak at the interface is equal to ≈ 0.4, whereas the corresponding values for all
events equals ≈ 0.6). This analysis confirms that the flux of buoyancy is an intermittent
phenomenon also at the small scale, with intense events occurring immediately after the
passage of the wavelike perturbation described in §4.1, although we do not have enough
data to check it. However we bear in mind that our measurements refer to a single radial
position and that the scenario could be radially heterogeneous.

Figure 17 shows the joint probability density functions for the events in the four
quadrants, and figure 18 shows the contribution of each quadrant to the flux. This figure
confirms the results of the quadrant analysis. We observe that in the upper layer negative
density fluctuations are frequently characterized by negative vertical velocity fluctuations,
i.e. lighter fluid deepens into the denser and lower layer; in the lower layer, near the
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interface, there is an evident dominance of heavy fluid parcels moving preferentially
upward. Below the interface the contribution of Q1 is dominant, above the interface the
most relevant contribution is due to Q3.
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4.4. The dynamics at the interface

In order to quantify the interface fluctuations, a twin-wire conductivity probe was
assembled and connected to the same electronics as the density probe mainly addressed
to, and was calibrated by recording the conductivity of the quiescent two-layer fluid at
different vertical positions with respect to the interface. The probe proved extremely
sensitive and stable, with an overall accuracy better than 0.1 mm and a frequency
response of a few hertz. The recorded time series lasting for 10 minutes showed a drift
of the average level of the interface up to ≈ 1 mm, which is mainly addressed to small
unbalances of the peristaltic pumps. Figure 19a shows a time window of the raw signal
(after de-trend), η, and of the moving averaged signal of the interface position for Exp
10, run at Ω = 2.75 rad s−1. A sequence of waves is observed, further analysed in the time
domain with a zero (up)crossing method. The average wave height of the highest third of
the waves (trough to crest, see e.g. Goda 2010) and period of the waves are Hw,1/3 ≈ 0.7
mm and T1/3 ≈ 15 s, respectively. T1/3 does not change dramatically upon Ω, and reaches

a peak of ≈ 18 s at Ω = 2.00 rad s−1 and a lowest value of ≈ 12 s at Ω = 1.50 rad s−1.
On the other hand, Hw,1/3 drops monotonically with Ω, hitting Hw,1/3 = 0.2 mm at

Ω = 1.50 rad s−1. Similar data can be retrieved in the frequency domain, observing the
spectra showing peaks in correspondence of the waves (see figure 19b). We notice that the
measured height of these fluctuations is much lower than that estimated in Oglethorpe
(2014), where PIV measurements suggested a value less than 2 cm. Figure 20 shows the
peak period of the interfacial disturbances computed from the spectra as a function of
Ω. While near the inner cylinder (r = 2 cm) the peak period of the waves is strongly
varying, without a specific trend except at high Ω, in the mid-gap and near the outer
cylinder positions (r = 4− 6 cm) the period is Tp ∝ Ω−1, and is radially homogeneous.
This behaviour indicates that for Ω < 2.00 rad s−1 the disturbances, generated near the
inner cylinder (the “fetch” in the context of wind gravity waves), propagate outward
and coalesce with a non-linear interaction, doubling the period and finally attaining a
regime configuration. For Ω > 2 rad s−1 the evolution of the perturbations is much
faster and the regime configuration is obtained even at r = 2 cm. The continuous curve
is the interpolating function Tp = 12π/Ω (frequency peak of the disturbances equal
to 1/6 of the frequency of rotation). The experiments in Oglethorpe (2014) suggested
T = 4.82

√
(R2 −R1)/R1 (2π/Ω) which, for the present experimental configuration, gives

9.75π/Ω. There is no clear explanation of the differences, although the analysis given in
Mujica & Lathrop (2006) for a free-surface Taylor–Couette flow, shows that bistability
and hysteresis are observed, with an azimuthal pattern related to the mean flow and free
surface.
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Figure 19: (a) Interface position for Exp 10. Raw signal after de-trend (grey dots) and moving
average with a time window of ≈ 2.5 s (red line). The time origin is the start of the record; (b)
energy spectum in the frequency domain for Exp 10.
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spectra at different radial positions as a function of Ω. The dashed curve connects measurements
near the inner cylinder, the continuous curve is the interpolating curve Tp = 12π/Ω.

In order to underpin the nature of these perturbations, we assume that some part
of the kinetic energy of a fluid element is transformed into potential energy (see also
Boubnov et al. 1995, for a similar approach).

The potential energy per unit area of the interface of the wavelike perturbations is
equal to

Epot =
1

2Tacq
(ρb − ρt)g

∫ Tacq

0

η(t)2 dt, (4.8)

where Tacq is the duration of the acquisition. Figure 21a shows the time and radially
averaged TKE as a function of the height of the fluid, and it refers to the same experiment
of figure 2. From the steady state density profile reported in figure 2a, we can see that a
sharp density interface is present at z = 12.5− 15cm . This interface determines a local
TKE reduction, as shown in figure 21a. As a pragmatic definition, we define the shaded
area as the “missing TKE”, TKEmis, which is energy by unit surface, and represents the
TKE that we assume can be transformed into energy stored in the wavelike perturbations.
TKEmis can be decomposed into the three components due to the fluctuations in the
radial (r−component), vertical (z−component) and azimuthal (θ−component) velocity
fluctuations, including their combinations.
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area representing the “missing TKE”; (b) potential energy of the density interface as a function
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Figure 21b shows the average potential energy from eq.(4.8) as a function of TKEmis,
with three different series referred to the only vertical velocity fluctuations w′ (blue
dots), to the vertical and radial velocity fluctuations, w′ and u′r (orange dots), and to all
the three components of the velocity fluctuations (green dots). TKEmis increases with
rotation rate at low rotation rate, before reaching the plateau for Ω > 2.25 rad s−1 In all
the experiments the potential energy of the interface fluctuations is only a few percent of
the missing TKE, and even if we could evaluate the total energy of the fluctuations by
adding the kinetic energy of the wave-induced velocity (not measured in the present tests,
but of the same order of the potential energy - equal to the potential energy for linear
waves), it still would be a small amount of the missing TKE. For Ω > 2.25 rad s−1, when
turbulence becomes very intense, the missing TKE reaches a plateau as indication of the
progressive reduction of the difference between the density of the top and bottom layers
in steady state. With increasing Ω, the density contrast between the layers becomes so
small that it can be overturned by turbulence. Therefore, the fluid evolves toward a weak
stratification and eventually, with a further increase in Ω, toward a well-mixed condition.
The contribution of the vertical velocity fluctuations to missing TKE disappears for
Ω > 2.75 rad s−1. In facts, experiments run atΩ = 3.00 rad s−1 (not presented) show that
the interface is eroded by turbulent eddies and gradually disappears and the initial two-
layer fluid evolves toward a linearly stratified fluid, with a completely different scenario.
Because no density interfaces are present when the fluid becomes linearly stratified, there
is no discontinuous profile of TKE, and it is not possible to detect the “missing TKE”
anymore.

Another study of interest is the comparison between the phase speed of the interfacial
disturbances, and the speed of the coherent structures, in order to analyse how these two
quantities of the flow field are related. The phase speed c of the interfacial perturbations
was estimated by correlating the signals of two twin-wire conductivity probes located at
r = 3 cm (with the two wires radially aligned) and spaced ∆ = 7 cm in the azimuthal
direction, and measuring the time delay of the peak τp, with c = ∆/τp. The estimation
of the speed of the coherent structures required a final series of measurements with two
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Figure 22: Cross-correlation map of vertical velocities in the time domain for two UVP probes
at r = 3.5 cm and 3.5 cm apart in the azimuthal direction. (a) Exp 1 with Ω = 2.75 rad s−1,
(b) Exp 8 with Ω = 1.75 rad s−1. The lines at ∆z = 0 indicate the density interface.

UVP probes pointing downward located at r = 3.5 cm and 3.5 cm azimuthally apart,
recording the vertical velocity over the depth of both top and bottom layers of fluid.
A number of 2000 velocity profiles were recorded by each probe in multiplexing with a
frequency of 10 couples of profiles per second. Figure 22 shows the typical pattern for
high and low Ω, with the line at ∆z = 0 marking the position of the density interface.
The experiment with Ω = 1.50 rad s−1 has peaks only in the upper layer (not shown)
whilst higher values of Ω show evident peaks in the correlation in both layers. The peak
of the correlation has a time delay equal to the time of travel of the coherent structures
and allows for the computation of the speed of these structures. Since there is a limited
variability in the vertical, we consider the average speed.

Figure 23 shows the speed of the interfacial perturbations and the speed of the coherent
structures. Both values increase for increasing Ω with coherent structures generally slower
than the interfacial perturbations, with a decreasing difference for increasing Ω. The
different values of the speed of coherent structures and of interfacial perturbations speed
suggest that the dynamics of the two processes is controlled by different factors, with
the velocity lag favouring mixing at the interface. A possible resonance is forecast for
Ω > 2.75 rad s−1, if the celerities become equal. In fact experiments at Ω = 3.00 rad s−1

(not shown) indicate that, for the given buoyancy supplied at the base, the two-layer
stratification evolves towards a linear stratification.
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5. Conclusion

Our experiments focussed on the mechanisms of turbulent transport in a two-layer
fluid in a non invasive turbulence generator, the Taylor-Couette tank. In our experiments,
we stabilized the density interface with a source of fresh water and salty water at the top
and bottom of the tank respectively. At the same time we withdrew the same volume
flux as the supply by two sinks positioned at the same depths of the respective sources.

The fluid velocity was measured with UVP. The average vertical velocity contour
maps show a variegate pattern, with some recirculation cells that are affected by the
two-layer configuration. A strong exchange of fluid occurs at the interface, near the
inner cylinder, and a more in-depth analysis reveals that the interface is indeed affected
by multiple complex mechanisms. Similar complexity is shown in the contour maps of
the radial velocity, also characterized by a significant variation in time with (almost)
instantaneous snapshots different from the time-average distribution. Outward and
inward fluxes alternate in the vertical, with persistent cells, with an average velocity
less than 1 cm s−1 but with short-time velocity up to 3 cm s−1. Similar contour maps
for the TKE components indicate higher energy near the inner cylinder, damped at the
interface and radially spread. The turbulent field is anisotropic near the inner cylinder
and progressively becomes isotropic and homogeneous, except at the interface. This is an
indicator of the complex interaction of TKE and buoyancy flux. The overall mechanism
of salt transport is not steady, and periodic disturbances develop and travel at the
interface, with corresponding slower coherent structures propagating in the azimuthal
direction.

A first preliminary analysis of the video image from the side of the tank showed
that the disturbances (waves) are generated regularly and periodically near the inner
cylinder and propagate progressively in the radial and azimuthal directions. Video 2 is
available as supplementary material. The videos from above confirmed the presence of
one single wave in the tank at a time. Further video analysis from a side view through the
interface, allowed to evaluate the period of disturbances, which increases with the speed
of rotation. The dye injected at the interface in the side view has a sawtooth profile,
as it expands slowly or quickly, respectively at low or high Ω, in the advancing wave,
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before spreading upwards. Interfacial disturbances develop from the minimum rotation
rate Ω = 1.50 rad s−1 (below this value the turbulence is modest and most of the effects
recorded at higher rotation rates are absent), and then disappear for Ω > 2.75 rad s−1,
when the two-layer fluid becomes linear stratified for the imposed buoyancy inflow rate.

Shadowgraphs show that the interfacial disturbances look like a wake in the vertical
plane, with the two fronts propagating almost symmetrically in the two layers across
the density interface. The wake disturbs the flow field, engulfs the surrounding fluid
and enhances the salt mixing, smoothing out the strong density gradient. The single
wake travelling azimuthally in the gap, with a period decreasing for increasing Ω,
behaves like a blade and favours salt transport across the interface. There is still no
clear identification of the mechanism behind the wake generation, although possible
candidates are a breaking wave (or moving jumps) at the interface, and a mixing layer.
The mechanism of generation of these disturbances is not yet analysed in detail, although
a good candidate is the gravity-wave instability at the interface.

Quantitative information was obtained by density and velocity measurements in a
restricted area across the interface.

Firstly, as already detected by other researches, the turbulent vertical length-scales are
abruptly reduced, especially at low rotation rate. This could be addressed to the density
interface which acts like a rigid boundary where colliding eddies flatten. However, on
the basis of our experimental observations, the energy that is supposed to be transferred
from vertical to horizontal scale (Briggs et al. 1998; Hannoun et al. 1988) does not seem
to involve an increase of the radial and azimuthal length-scales.

Secondly, at the interface density fluctuations ρ′urms increase while vertical velocity
fluctuations w′urms decrease, and their correlation ρ′w′ (vertically averaged) is a fairly
good approximation of the vertical buoyancy flux per unit area. A quadrant analysis
separates diffusing and contra-diffusing contributions to the cross correlation, and reveals
that eddies carrying lighter fluid from the top downward are the most effective ones
for salt flux. This analysis is limited to measurements in a single radial position, and
measurements at different radial positions could show a different behaviour. Further
experiments are requested to completely validate the scenario are left for future activity.

We have modelled salt transport in the vertical as an intermittent process at the
interface, with a turbulent diffusion of salt in a fraction of the wake, the mixing
region behind of the nose. Variability in time and space of mixing was also detected
in Guyez et al. (2007) in stratified fluids. By assuming a diffusivity in the mixing
region proportional to the transverse length scale and to the speed of the wakes, a
constant coefficient of proportionality results, and c ∝ Fto, where c is the speed of the
coherent structures and Fto the vertical turbulent salt flux. Once the salt is transferred
in the vertical, the small convective flows in the interior of the two layers guarantee the
homogeneous density, if buoyancy is injected in the tank.

The interface perturbations are also detected by a twin-wire conductivity probe. The
measured equivalent position of the interface shows a peak period Tp ∝ Ω−1, with a
coefficient equal to 12π slightly larger than the estimate 9.75π by Oglethorpe (2014),
and a potential energy per unit area that is only a few percent of the missing TKE,
i.e. the TKE that would have been in the absence of the density discontinuity. Further
analysis is needed to explain how the remainder of the TKE is converted, e.g. an inverse
cascade process, see Pouquet et al. (2013). An obvious way could be a conversion into
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pure thermodynamic energy. The missing TKE disappears at Ω > 2.75 rad s−1, when the
turbulence is intense enough to erode the density interface and the fluid in the reservoir
evolves towards a stratified linear condition.

The interfacial perturbations exhibit an increasing speed with Ω and they are faster
than the coherent structures detected by the cross-correlation of the vertical velocity
profiles, with a lag decreasing for increasing Ω. We infer that they approach the same
value for Ω > 2.75 rad s−1, with a resonance that could be the reason for the two-layer
fluid to become linearly stratified.

One open question is whether a similar diffusive mixing mechanism occurs at high
value of Ω when turbulence is intense enough to overturn the density interface and
the fluid evolves towards a linear stratification. Petrolo & Woods (2019) described the
formation of layers at the base (or top) of the tank, gradually propagating upwards
(or downwards). Further analysis may say if the flux ρ′w′ is still responsible for mixing
through the propagating fronts of these layers. A second open question is whether the
propagating fronts in a linear stratified fluid still manifest a wavelike structure and the
same periodicity. It would be interesting to understand if the quantity kρα still is a
constant value with Ω.

As a final perspective, it could be of interest to introduce a heat source at the bottom
of the tank to see how the velocity and turbulence field could be affected by the coupling
of two buoyancy sources (salt and heat) and if there could be other visible mechanisms
beyond the wake-like perturbation.
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