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A graph-based algorithm for optimal control of
switched systems: An application to car parking

Mattia Laurini, Luca Consolini and Marco Locatelli

Abstract—We consider a finite element approximation of
the Bellman equation for the optimal control of switched
systems. We show that the problem belongs to a special class
that we studied in a previous work, for which we developed
an efficient solution algorithm. As an application, we present
the problem of generating parking maneuvers for self-driving
vehicles on two typical urban parking scenarios. The vehicle
is described by four different switched systems in which every
switching is associated to a penalization term. In this way, we
obtain parking paths that have a small number of direction
changes and have a simple structure.

I. INTRODUCTION

As a motivating example, consider the following kine-
matic car-like model with rear-wheel drive and front
steering: (ẇ, ẏ, θ̇) = (vcosθ ,vsinθ ,ω), where (w,y) is
the position of the center of the real wheel axle, θ the
orientation angle, and pair (v,ω) the control input, where
v and ω are the linear and angular velocity, respectively.

We aim at finding a minimum-length maneuver that
drives the car from an initial configuration to a final
parking position, in presence of obstacles.

In literature, there are various approaches for solving
this optimal planning problem (see, for instance, [1], [2],
[3], [4]). Some of them are based on geometric observa-
tions on specific parking scenarios, like [5], [6], which
introduce algorithms for a parallel parking lot, or [7] for a
perpendicular one. Others address the problem by means
of interpolating curves, like [8], [9], [10]. Some works
adopt heuristic strategies, like [11], [12], probabilistic
approaches, like [13], or randomized techniques, like [14],
[15], [16], in which extensions of the Rapidly-exploring
Random Tree (RRT) algorithm are proposed, whilst others
exploit the Pontryagin’s Maximum Principle, like [17].
For a more comprehensive overview on motion planning
techniques see, for instance, [18].

In this work, we decide to follow a different approach
which consists on the numerical solution of the Bell-
man equation associated to the optimal planning problem
(see, for instance, [19], [20]). With respect to geometric
methods tailored to specific parking configurations, such
as [6], [7], this approach has two main advantages. First,
the method is very general and the solution procedure
is independent on the initial configuration of the vehicle
and the specific parking scenario. Second, the solution
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of the Bellman equation allows to compute the optimal
paths starting from all initial conditions and allows to
easily define a feedback control policy. Moreover, unlike
probabilistic or heuristic approaches (such as RRT algo-
rithm), this is deterministic and guarantees the optimality
of the obtained solution. The main disadvantage of this
approach is the solution time. In fact, as we will see in
Section III, it requires the solution of an equation with
a large number of unknowns. Nonetheless, as shown in
Section VI, computational times are getting closer to real-
time requirements and are already suited for an automated-
parking system. Further improvements could be done both
on software and hardware acceleration.

The numerical solution of the Bellman equation may
lead to parking trajectories that exhibit too many changes
from forward to backward direction due to discretization
error. One possible way to solve this problem is to
associate a penalty to each switching from forward to
backward direction and vice versa. Mathematically, this
corresponds to describe the vehicle by a switched system
that commutes between the two subsystems:

F: (ẇ, ẏ, θ̇) = (vcosθ ,vsinθ ,ω) ,

B: (ẇ, ẏ, θ̇) = (−vcosθ ,−vsinθ ,ω) .

The first subsystem (F) corresponds to forward direction
and the second one (B) to backward direction. The con-
troller is able to switch from one subsystem to the other
at arbitrary times. We associate this switched system to
a finite state machine with two states, corresponding to
the forward and backward subsystems. We associate a
penalty to each transition; this allows keeping the number
of direction changes limited. We want to minimize the cost
function C+K ¯̀, where C is the path length, K the number
of direction switchings and ¯̀ the penalty term associated
to each switching.

More generally, a switched control system consists of a
set of controlled subsystems associated to the states of a
finite state machine. This framework allows modeling var-
ious control systems arising in different applications ([21],
[22], [23], [24], [25]). Among works addressing optimal
control of switched systems, like [26], [27], [28], [29],
[30], in this paper we follow the dynamic programming
approach presented in [31], [32], based on the solution of
the associated HJB equation. In particular, we use a finite
dimensional approximation of space state and admissible
controls (similar to the procedures used in [33], [34]). In
this way, we find a finite dimensional approximation of
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the Bellman equation which belongs to a class of problems
we studied in [35] and for which we presented an efficient
solution algorithm.
Statement of contribution. We show that it is possible to
derive a formulation of a discretized version of Bellman
equation associated to the solution of optimal control
problems of switched systems that falls into a more general
class of optimization problems we studied in [36]. This
reformulation allows to exploit the iterative algorithm
introduced in that work for efficiently solving the problem.

We present an application to the generation of parking
maneuvers for self-driving vehicles. We model the vehicle
as a switched system in which each switching represents
a change to a different type of motion. In this way, for
instance, we are able to obtain maneuvers with a limited
number of direction changes.

Here, we generalize [37] by introducing the finite state
machine approach and by placing the specific application
of the parking maneuver into a more general framework.
We also extend [38] by including all technical details and
proofs and by using four different models for the finite
state machines associated to the vehicle.
Notation. Denote by R+ := [0,+∞) the set of nonnegative
real numbers. Given x ∈ RN and A ∈ RN×M , denote the
transpose of x with xT , for i ∈ {1, . . . ,N} the i-th compo-
nent of x with [x]i, for j ∈ {1, . . . ,M} denote the (i, j)-th
element of A with [A]i, j.
‖ · ‖ represents both the sup norm for real-valued func-

tions and the ∞-norm on RN , unless explicitly specified.
Given a finite set S, the cardinality of S is denoted by |S|
and symbol ∅ denotes the empty set.

Finally, given an alphabet Σ, we denote the set of all
strings of length i∈N over Σ as Σi, and the Kleene closure
of Σ as Σ∗. Following [39], [40], define a finite state ma-
chine as a tuple A= (I,Σ,ρ, ι0,IF) where I 6=∅ is a finite
set of states, Σ 6=∅ is a finite set of symbols representing
an alphabet, ι0 ∈ I is the initial state, IF ⊆ I is the set of
accept states and ρ : I×Σ∗→ I is the transition function
acting as follows: let symbol ε denote the empty string,
then (∀ι ∈ I) ρ(ι ,ε)= ι , (∀ι ∈ I) (∀σ ∈Σ) ρ(ι ,σ)∈ I and,
let τσ being the concatenation of string τ and symbol σ ,
then (∀ι ∈ I) (∀σ ∈ Σ) (∀τ ∈ Σ∗) ρ(ι ,τσ) = ρ(ρ(ι ,σ),τ).
A language over Σ is a subset of Σ∗ and the language
accepted by A is defined as follows: L(A) = {s ∈ Σ∗ |
(∀ι ∈ I) ρ(ι ,s) ∈ IF}.

II. PROBLEM FORMULATION

Definition II.1. A switched control system is a finite
state machine A= (I,Σ,ρ, ι0,IF), together with difference
equation

x(k+1) = f (x(k), ι(k),u(k))

ι(k+1) = ρ(ι(k),σ(k)),
(1)

where f : X × I×U → X represents the system dynamics,
X ⊂ Rn is compact, x = x(k) ∈ X is the system state, ι =
ι(k) ∈ I is the discrete state, U ⊂ Rm is a compact set

of admissible controls, u = u(k) ∈U is the control input
and σ(k) ∈ Σ∪{ε} is the input symbol to the finite state
machine at time step k, where ε denotes the empty string.

Define: the extended state space Ξ :=X×I; the extended
state ξ : N→ Ξ, such that ξ (k) := (x(k), ι(k)) associates
to each time step k a system state x(k) and a discrete
state ι(k); the extended input set ϒ :=U× (Σ∪{ε}); and
the extended control input υ : N→ ϒ, such that υ(k) :=
(u(k),σ(k)) associates to each time step k a control u(k)∈
U and a symbol σ(k) ∈ Σ∪{ε}. Then, system (1) can be
rewritten in form

ξ (k+1) = φ(ξ (k),υ(k)), (2)

where φ : Ξ×ϒ→Ξ is defined as follows: let ξ := (x, ι)∈
Ξ and υ := (u,σ)∈ ϒ, then φ(ξ ,υ) := ( f (x, ι ,u),ρ(ι ,σ)).

Consider the following cost function

J(ξ0,υ) = ∑
k∈N

β
k`(ξ (k),υ(k)), (3)

where β ∈ (0,1) is a discount factor and ` : Ξ×ϒ→ R+

is a cost functional. For any ξ = (x, ι) ∈ Ξ and υ =
(u,σ) ∈ ϒ, `, for instance, may have the form `(ξ ,υ) =
`1(x,u) + `2(ι ,σ), where `1 : X ×U → R+ is the cost
associated to the system and `2 : I× (Σ∪{ε})→ R+ is
the cost associated to the finite state machine transitions.

Assumption II.2. Functions f and ` are differentiable
with respect to their continuous variables.

For any L ∈ R+, let VL ⊂ {V | V : Ξ→ R} denote the
set of real valued functions on Ξ that are L-Lipschitz on
X , that is, (∀V ∈ VL) (∀x1,x2 ∈ X) (∀ι ∈ I) |V ((x1, ι))−
V ((x2, ι))| ≤ L‖x1− x2‖, and define the Bellman operator
T : VL→ VL as follows: (∀V ∈ VL) (∀ξ ∈ Ξ)

T [V ](ξ ) := min
υ∈ϒ
{βV (φ(ξ ,υ))+ `(ξ ,υ)} . (4)

It is well known (see, for instance, [41]) that the function
that associates to υ ∈ ϒ the minimum with respect to υ of
J(ξ ,υ) defined as in (3) corresponds to the fixed point of
Bellman operator T defined in (4).

In order to numerically find a fixed point of (4), we dis-
cretize sets X and U as follows. Let X̄ := {x1, . . . ,xN}⊂X ,
with N ∈N, be a set of points that defines a triangulation of
X . Let δx be the maximum edge length of the triangulation.
Similarly, set Ū := {u1, . . . ,uM} ⊂U , with M ∈N, and let
δu be the maximum of the minimum distances between
each element of Ū and the remaining ones. Set Ξ̄ := X̄×I,
and set V̄ : Ξ̄→R. In the following, V̄ (ξ ) will approximate
V (ξ ) for any ξ ∈ Ξ̄. For ι ∈ I, x∈X , set ξ := (x, ι) and de-
fine a linearly interpolated cost function ΛV̄ (ξ ) as follows.
Let {p1, . . . , pS} ⊂ X̄ , with S ∈ N, be the extremal points
of the simplex of the triangulation containing x. Then, x
can be uniquely written as x = ∑

S
j=1 α j p j, with α j ∈ [0,1],

such that ∑
S
j=1 α j = 1, and set ΛV̄ (ξ ) :=∑

S
j=1 α jV̄ ((p j, ι)).

Let ϒ̄ := Ū × I and V̄L be the set of L-Lipschitz real
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valued functions on Ξ̄ and define T̄ : V̄L→ V̄L as follows:
(∀V̄ ∈ V̄L) (∀ξ ∈ Ξ̄)

T̄ [V̄ ](ξ ) := min
υ∈ϒ̄

{βΛV̄ (φ(ξ ,υ))+ `(ξ ,υ)} . (5)

The following proposition, proved in the Appendix
together with some other preliminary results, shows that
the fixed point of T̄ is a good approximation of the fixed
point of T .

Proposition II.3. Let V̄ ∗ and V ∗ be the fixed points
of operators T̄ and T , respectively. Then, there exists a
positive constant C such that

(∀ξ ∈ Ξ̄) |V̄ ∗(ξ )−V ∗(ξ )| ≤C(δu +δx).

Since |Ξ̄|< ∞, there exists a bijective function h : Ξ̄→
{1, . . . , |Ξ̄|} that assigns to each element of Ξ̄ a natural
number between 1 and |Ξ̄|. Define a linear function Π :
V̄L → R|Ξ̄|, that associates to a function V̄ ∈ V̄L a vector
Π(V̄ )∈R|Ξ̄|, such that, (∀ξ ∈ Ξ̄) [Π(V̄ )]h(ξ ) = V̄ (ξ ). Note
that Π is invertible.

Now, we will show that V̄ ∗ can be computed as the
solution of a problem with the following form:

max
π

F(π)

subject to 0≤ π ≤ G(π), π ≤U ,
(6)

where, π ∈ R|Ξ̄|, F : R|Ξ̄| → R is any strictly monotone
increasing function with respect to each component, U ∈
R|Ξ̄| is a real constant vector and G = (G1, . . . ,G|Ξ̄|) :
R|Ξ̄| → R|Ξ̄|, is a continuous function such that, for i ∈
{1, . . . , |Ξ̄|}, Gi is monotone not decreasing with respect
to all variables, constant with respect to [π]i and with the
following form:

G(π) =
∧
l∈L
{Alπ +bl} , (7)

where L is a finite set and for each l ∈ L , Al is a
nonnegative and sparse matrix and bl is a nonnegative
vector, and

∧
represents the greatest lower bound operator.

Note that U represents an upper bound for the solution
of (6) that needs to be introduced since it will be used by
the solution algorithm.

Proposition II.4. Let V̄ ∗ be the solution of (5) and set
π∗ = Π(V̄ ∗), then π∗ solves a problem of form (6)–(7).

Proof. Let r ∈ {1, . . . , |Ξ̄|}, ξr := h−1(r). Since V̄ ∗(ξr) =
T̄ [V̄ ∗](ξr), [π∗]r = [Π(V̄ ∗)]r = V̄ ∗(ξr) = T̄ [V̄ ∗](ξr), that is,
by (5), [π∗]r = minυ∈ϒ̄

{
βΛ

Π−1(π∗)(φ(ξr,υ))+ `(ξr,υ)
}

.
Let υ = (u, ι) ∈ ϒ̄ and {pr1 , . . . , prS} ⊂ X̄ , be the extremal
points of the simplex of the triangulation containing ξr,
then there exist coefficients αr j = αr j(υ) ∈ [0,1], with
j ∈ {1, . . . ,S}, such that ∑

S
j=1 αr j = 1 and φ(ξr,υ) =

∑
S
j=1 αr j pr j . Hence, Λ

Π−1(π∗)(φ(ξr,υ)) =ΛV̄ ∗(φ(ξr,υ)) =

∑
S
j=1 αr jV̄

∗(pr j , ι)=∑
S
j=1 αr j T̄ [V̄

∗](pr j , ι). Then, recalling
that β ∈ (0,1), we have

[π∗]r = min
υ∈ϒ̄

{
β

S

∑
j=1

αr j [π
∗]h((pr j ,ι))

+ `(ξr,υ)

}
⇔

(1−βαr)[π
∗]r = min

υ∈ϒ̄

{
β

S

∑
j=1,r j 6=r

αr j [π
∗]h((pr j ,ι))

+ `(ξr,υ)

}
⇔

[π∗]r =
1

1−βαr
min
υ∈ϒ̄

{
β

S

∑
j=1,r j 6=r

αr j [π
∗]h((pr j ,ι))

+ `(ξr,υ)

}
.

For any j ∈ {1, . . . ,S}, r,r j ∈ {1, . . . , |Ξ̄|} and υ ∈ ϒ̄, set

[Aυ ]r,r j :=

{
βαr j (υ)

1−βαr(υ)
, r j 6= r

0, r j = r
[bυ ]r :=

`(ξr,υ)

1−βαr(υ)
. (8)

Note that Aυ and bυ , with υ ∈ ϒ̄, are nonnegative. More-
over, matrices Aυ are sparse since, for any r ∈ {1, . . . , |Ξ̄|},
there are at most S� |Ξ̄| nonzero entries in the r-th row
of Aυ . Then, we obtain that

π
∗ = min

υ∈ϒ̄

{Aυ π
∗+bυ}. (9)

By Proposition 3.4 of [35], the solution of (9) corresponds
to the optimal solution of a problem of form (6), in
which F is any strictly monotone increasing function
(for instance, F := ‖ · ‖1), G(π) =

∧
υ∈ϒ̄
{Aυ π +bυ} and

U = maxr∈{1...,|Ξ̄|},υ∈ϒ̄

`(ξr ,υ)
1−βαr(υ)

.

It is natural to associate to Problem (6) a directed graph
G=(V,E), where nodes correspond to the |Ξ̄| components
of π and of constraint G(π) =

∧
l∈L {Alπ +bl}, namely

V = Ξ̄ ∪ C , with Ξ̄ = {ξ1, . . . ,ξ|Ξ̄|}, C = {c1, . . . ,cΞ̄},
where vi is the node associated to [π]i and ci is the node
associated to Gi, for i ∈ {1, . . . , |Ξ̄|}. Whilst, the edge set
E⊆ V×V is defined according to the following rules:
• for i ∈ {1, . . . , |Ξ̄|}, there is an edge from ci to ξi,
• for i, j ∈ {1, . . . , |Ξ̄|}, there is an edge from ξi to c j if

G j depends on [π]i,
• no other edges are present in E.

III. SOLUTION METHOD

We define an approximated solution of Problem (6) as
follows: let ε be a positive real constant, we call π an
ε-solution of (6) if π ≥ a and ‖π−G(π)‖< ε .

Note that, since function G of (7) with matrices Al and
vectors bl defined as in (8) is a contraction, it admits a
unique fixed point. Thus, an ε-solution can be found with
a standard fixed point iteration. In [35], we proposed an al-
gorithm which exploits the special structure of Problem (6)
and is more efficient than a simple fixed point iteration.
Note that Problem (6) with G of (7)–(8) is a Linear
Programming problem which could be solved by means
of any linear solver. However, in [35] we already showed
how a commercial solver like Gurobi is outperformed
by the algorithm introduced in [35] (we refer the reader
to [35] for a more in-depth discussion). Note that the
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same problem is related to the one tackled in [42], [43].
The algorithm proposed in these works has polynomial
complexity but only works under an assumption (absence
of cycles of decreasing weight) which is not fulfilled in
our case. Also [44] addresses a similar problem, however
the superiority condition and its generalizations introduced
there do not hold in our case.

The order in which nodes are actually processed de-
pends on the ordering of the priority queue. The choice
of this ordering turns out to be critical in terms of
computational cost for the algorithm, as can be seen in the
numerical experiments in Section VI. The procedure stops
once the priority queue becomes empty, that is, once none
of the updated nodes undergoes a significant variation. The
correctness of the algorithm is independent on the choice
of the ordering of the priority queue.

IV. AN APPLICATION TO PATH PLANNING

We return to the car-like model presented in the Intro-
duction. The relation between the angular velocity ω and
the front wheel steering angle δ is given by ω = 1

l v tanδ ,
where l is the distance between the front and rear axles
of the car. The input control variables are constrained
as follows: vmin < v < vmax and δmin < δ < δmax, with
vmin < 0 and vmax > 0. The state space is given by a
bounded and connected domain Ω ⊆ R2×S1, partitioned
into two spaces: Ωfr, representing the free space, and Ωob,
representing the space occupied by obstacles. These two
spaces form a partition of Ω, that is, they are such that
Ωfr∪Ωob = Ω, and Ωfr∩Ωob =∅.
In cost function (3), we set (∀x ∈ X) (∀u ∈U)

`1(x,u) =

{
1, if x ∈Ωfr

1
1−β

, if x ∈Ωob .

In the following, we will present four finite state ma-
chines for addressing the path planning problem.
Model 1. The first finite state machine, depicted in Fig-
ure 1, is A1 = (I1,Σ1,ρ1,F,I1) in which I1 = {F,B}, with
F and B representing the control subsystem in which
the car-like vehicle is moving in forward direction and,
respectively, in backward direction; Σ1 = {c}, with symbol
c representing a direction switching, w.l.o.g., the initial
state is F, and all states are accept ones. The accepted
language is L(A1)=Σ∗1 with ρ1(F,c)=B and ρ1(B,c)= F.
For any ι ∈ I1, we define the cost function associated to
discrete state transitions as `2(ι ,c) = ¯̀, where ¯̀ > 0 is
a penalization term associated to each change between
forward and backward motion, and `2(ι ,ε) = 0. In this
way, a longer path with a lower number of direction
changes can have a lower cost than a shorter one with a
larger number of direction changes. The system dynamic
is defined as follows:

f (x, ι ,u) =

{
(cosθ ,sinθ ,ω)T , if ι = F

(−cosθ ,−sinθ ,ω)T , if ι = B.
(10)

Fstart B

c

c
Fig. 1: Finite state machine A1.

Model 2. A second model considers finite state machine
A2 = (I2,Σ2,ρ2,K,{0, . . . ,K}), in which I2 = {0, . . . ,K}∪
{I}, where K ∈N is the maximum number of allowed di-
rection switchings, states {0, . . . ,K} represent the number
of remaining allowed direction switchings and I is a reject
state. The initial state is K, that is, the state in which the
number of remaining allowed direction switchings is K,
and the set of accept states is given by I2 \{I} (that is, I
is the the only reject state). The symbols set is Σ2 = {c},
where the only symbol c is associated to a direction
switching. The transition function is ρ2(i,c) = i− 1, for
i ∈ {1, . . . ,K}, and ρ2(i,c) = I, for i ∈ {0, I}. In this
way, the accepted language is L(A2) = {ε,c,c2, . . . ,cK}.
Figure 2 represents finite state machine A2. As in the
previous model, here we have only two control subsystems
representing the car-like vehicle moving in forward or
backward direction. If x = (w,y,θ), the system dynam-
ics (1) are defined as follows

f (x, ι ,u) =


(cosθ ,sinθ ,ω)T , if ι 6= I and even

(−cosθ ,−sinθ ,ω)T , if ι 6= I and odd

(0,0,0), if ι = I .

(11)

Kstart 1 0 I
c c c c c

Fig. 2: Finite state machine A2.

Model 3. The third finite state machine is defined as A3 =
(I3,Σ3,ρ3,Bc,I3), in which I3 = {Fl,Fc,Fr,Bl,Bc,Br} and
the system dynamics are

f (x, ι ,u) =



(cosθ ,sinθ ,ωmin)
T , if ι = Fl

(cosθ ,sinθ ,0)T , if ι = Fc

(cosθ ,sinθ ,ωmax)
T , if ι = Fr

(−cosθ ,−sinθ ,ωmin)
T , if ι = Bl

(−cosθ ,−sinθ ,0)T , if ι = Bc

(−cosθ ,−sinθ ,ωmax)
T , if ι = Br .

(12)

Namely, in state names, F and B denote states associated
to forward and backward vehicle motion, respectively,
whilst l, c and r denote left, straight and right steering,
respectively. Moreover, ωmin = − v

l δmax, ωmax = v
l δmax,

where δmax is the maximum allowed steering angle.
Any state of the machine is an accept one. The alphabet

is given by Σ3 = {↖,↑,↗,↙,↓,↘}. W.l.o.g., the initial
state is Bc, that is, the state in which the vehicle is moving
in backward direction and the steer is straight. Figure 3
represents the possible state transitions from state Bc; state
transitions from other states are analogous to this one.
The accepted language is L(A3) = Σ∗3, and the transition
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function ρ3 is defined as follows: (∀ι ∈ I3) ρ3(ι ,↖) = Fl,
ρ3(ι ,↑) = Fc, ρ3(ι ,↗) = Fr, ρ3(ι ,↙) = Bl, ρ3(ι ,↓) = Bc,
ρ3(ι ,↘) = Br. For ι ∈ I3, σ ∈ Σ, the cost function associ-
ated to the finite state machine transitions is `2(ι ,σ) = ¯̀,
where ¯̀ > 0 is a penalization term associated to each
motion change, and `2(ι ,ε) = 0. Note that, as in the first
model, even though there is no given limit over the number
of direction changes, again, the transition cost function
`2 provides an implicit bound over the number of state
switchings.

FcFl Fr

Bc

start

Bl Br

↑
↖ ↗

↙ ↘
↓

Fig. 3: State transitions from state Bc for A3.

Model 4. In the last model, we consider trajectories
composed of a maximum of K segments. In each segment
the input is constant, as in Model 3. Hence, in Model 4, the
finite state machine is the parallel composition (see 2.3.2
of [45]) of A2 and A3. Namely, A4 = (I2× I3,Σ2∪Σ3,ρ4,
(K,Bc),{0, . . . ,K} × I3). Transition function ρ4 is such
that (∀ι ∈ I2) (∀η ∈ I3)

ρ4((ι ,η),σ) =

{
(ρ2(ι ,σ),η), if σ ∈ Σ2

(ι ,ρ3(η ,σ)), if σ ∈ Σ3 .

The system dynamics are defined as f4(x,(ι ,η),u) =
f (x,η ,u), with f defined as in (12).

V. STRONGLY CONNECTED COMPONENTS
DECOMPOSITION

In some cases, the queue policy can take into account
a possible ordering of the states of the finite state ma-
chine. For instance, in the finite state machine associ-
ated to Model 2, the states are traversed in the order
K,K−1, . . . ,0. For this reason, the value of the variables
associated to state K depend on K−1, but the converse is
not true. Due to this structure, it makes sense to compute
first the variables associated to state 0, then state 1, and
proceed in this order up to state K (the same reasoning
applies also to Model 4). In this section we present a
general approach for developing a strategy for efficiently
solving Problem (6), in case the discrete states exhibit an
ordering. Here, we directly consider graph G, associated
to Problem (6) and introduced in Section II. Note that
graph G already carries the information about finite state
machine A allowed transitions. Our goal is to partition
graph G in such a way that the obtained partition allows for
a more efficient graph traversal when solving Problem (6).
In order to do so, we introduce the following binary
relation ∼ on nodes of G. Given v,w ∈ V we say that
v ∼ w if there is a directed path that connects v to w

and viceversa. Relation ∼ is an equivalence one, hence,
it induces a partition of graph G into equivalence classes
which are subgraphs of G that are called strongly con-
nected components (SCCs). Thus, we compute the SCCs
of graph G and reduce each one of them into a single node,
obtaining a new graph C which is called the condensation
of G. More formally, C = (W,A) is a quotient graph
in which W := V/ ∼ and A is the edge set defined as
follows A := {a∈W×W | a= ([w], [w′])∧(∃v,v′ ∈V) v 6∼
v′ ∧ v ∈ [w]∧ v′ ∈ [w′]∧ (v,v′) ∈ E}, that is, there is an
edge from a node [w] to another one [w′] in condensation
graph C only if a node of SCC [w] in G has an edge
in E that connects it to a node of SCC [w′] in G. Graph
C is known to be a directed acyclic graph (DAG). DAGs
naturally carry a partial order on their nodes based on
the concept of reachability. However, any DAG always
admits, at least, one total order (see, for instance, [46]);
in other words, there is at least one way for extending the
partial order on C to a total order (see, for instance, [47]).
This information on the total order on the nodes of C
allows us to avoid many unnecessary computations when
solving Problem (6). We solve the subproblem associated
to the least (in the total order on C) SCC G′ of G,
using a priority queue policy. Note that SCC G′ contains
only those edges connecting nodes within it. This means
that, when solving the subproblem associated to G′, we
are avoiding to perform all those updates due to edges
going from a node of G′ to a node outside of it. Once
an ε-solution of the subproblem has been computed, we
consider all those nodes in G and not in G′ that are
reachable from a node of G′ through one edge and update
their value. Then, we move to the next SCC given by the
total order on C and proceed, as we just explained, until
the greatest element of the total order is processed.

The advantages of this algorithm with respect to the
state order corrected policy introduced in [38] are that the
graph partitioning is automated and does not require any
knowledge of the finite state machine A for performing the
partitioning and it can produce a finer partitioning with
respect to the introduced in [38], allowing for a further
reduction of unnecessary node updates.

There are efficient algorithms for computing the SCCs
of a graph, the Tarjan’s algorithm (see [48]), among others,
has a linear time complexity with respect to the number
of edges and nodes of the graph.

Another way for exploiting the condensation of G is
to consider the partial order ≤ on C and use it for
parallelizing the computation of the solution of those SCCs
that are not comparable to each other according to the
partial order, that is, of those [v], [w]∈C, [v] 6= [w] such that
[v] 6≤ [w], and [v] 6≤ [w], allowing for an overall decrease
of the computational time for solving Problem (6).

VI. NUMERICAL EXPERIMENTS

We consider three urban scenarios: a cross parking one
(S1), in which a vehicle has to back into a perpendicular
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parking lot; a parallel parking one (S2), in which a vehicle
has to park into a parallel parking lot; and a turn-around
one (S3) in which a vehicle has to perform a 180◦ turn
in a narrow space. The geometry of these scenarios are
taken from real-life parking lots. For each scenario, we
computed the optimal path with the 4 models presented
in Section IV. For each model, we used the algorithm
introduced in [35] for solving them using FIFO policy and
largest node variation policy (i.e., first update nodes with
largest error) for the priority queue. For Models 2 and 4,
we also used the SCC decomposition coupled with FIFO
and largest node variation policies. For these simulations,
we considered a vehicle of the size of a typical B-segment
passenger car with a length of 4.053 m and a width of
1.751 m. We discretized the state space using a grid with
31 334 vertices for S1, 57 844 vertices for S2, and 63
274 for S3. Moreover, the transition function of finite state
machines associated to Models 2 and 4 are modeled with a
limited number of direction changes fixed to K = 8 for S1,
to K = 10 for S2 and to K = 12 for S3 and with a switching
penalty ¯̀= 10. Tests were run on a 2.7 GHz Intel Core i5
dual-core with 8 GB of RAM and the algorithm has been
implemented in C++ We computed the numerical solution
of the switching Bellman equation and the computational
time results are reported in Table I. The table shows how
the solution time varies according to which finite state
machine is used for modeling the switchings and to which
priority queue policy is adopted for solving the problem.

As we can see from the table, neither of the proposed
policies prevails in terms of computational times for all
the four introduced models. However, for Models 1 and 3
it seems that the largest node variation policy provides
better computational times, whilst, on the contrary, for
Models 2 and 4 it seems that the SCC decomposition
coupled with the FIFO policy is faster. Note that, in this
work we omitted to introduce other policies that we proved
being outperformed by the FIFO and largest node variation
policies in an earlier work (see [35]). Moreover, as we
already pointed out in Section III, a commercial solver
for linear problems like Gurobi is strongly outperformed
by the algorithm used in this section.

Note that the computational times shown in Table I
refer to solving the switching Bellman equation on the
whole discretized state space whilst the time needed for
computing a path from a given initial position is negligible
as it is of the order of milliseconds. This is also why we do
not present comparisons in terms of computational times
with other methods. Since they all aim at computing one
single path given a specific initial position, as opposed
to our approach, which allows obtaining a path for any
initial position of the scenario, the juxtaposition of such
results would be difficult to interpret. Besides, note that
the best computational times in Table I are compatible
with the waiting time of a final user of an autonomous
vehicle from the moment a parking space is detected

to the moment the vehicle starts performing the parking
maneuver. Moreover, parallelizing the algorithm from [35]
exploiting equivalence relation ∼ introduced in Section V,
together with further optimizations of the code, could lead
to better computational times. We also generated several
paths starting from different initial positions of the vehicle
in the parking scenario. In Figure 4, we present some
of them to give an idea of the generated paths from a
qualitative point of view. In each subfigure, the green
vehicle represents the final target position, the magenta
vehicle represents the initial position, the black and red
lines represent the generated path with black representing
forward motion and red representing backward motion,
the blue vehicle represents the attained final position,
the red area represents the obstacles of the scenario, the
small white box containing the green vehicle represents
the parking lot, the one containing the magenta vehicle
represents the roadway, whilst the wider red box represents
the boundaries of the parking scenario. Comparisons of
the obtained paths from the qualitative point of view can
be done with respect to [11], which considers similar
scenarios. In particular, the obtained paths are qualitatively
similar to those presented in [11]. In fact, our method
allows to obtain paths that have a simpler structure, that
is, a smaller number of direction changes, with respect to
RRT on all the three presented scenarios and also with
respect to SEHS on the turn-around scenario of [11].

Model Policy S1 S2 S3
1 FIFO 4.28 s 5.33 s 6.92 s
2 SCC + FIFO 1.82 s 2.51 s 6.08 s
3 FIFO 4.22 s 7.23 s 8.80 s
4 SCC + FIFO 2.60 s 6.27 s 11.30 s
1 variation 1.14 s 2.78 s 3.51 s
2 SCC + var. 2.67 s 5.52 s 13.90 s
3 variation 1.95 s 4.37 s 7.20 s
4 SCC + var. 2.64 s 8.14 s 13.97 s

TABLE I: Computational times for solving the problem on
the 3 scenarios using the 4 models and priority policies.

APPENDIX

Here we present the proof of Proposition II.3 starting
from some instrumental results. Note that the material
presented here is an adaptation to our setting of standard
arguments on the solution of Bellman equation (see [41])
and its numerical solution (see [33]).

By Assumption II.2, note that ∃L fx ,L fu ,L`x ,L`u ≥ 0 such
that (∀x1,x2 ∈ X) (∀ι ∈ I) (∀u ∈U) (∀σ ∈ Σ∪{ε})

‖ f (x1, ι ,u)− f (x2, ι ,u)‖ ≤ L fx‖x1− x2‖,
|`((x1, ι),(u,σ))− `((x2, ι),(u,σ))| ≤ L`x‖x1− x2‖,

(∀x ∈ X) (∀ι ∈ I) (∀u1,u2 ∈U) (∀σ ∈ Σ∪{ε})

‖ f (x, ι ,u1)− f (x, ι ,u2)‖ ≤ L fu‖u1−u2‖,
|`((x, ι),(u1,σ))− `((x, ι),(u2,σ))| ≤ L`u‖u1−u2‖ .
In the following proposition and corollary, we show

that, under certain conditions, set VL is invariant under
T defined as in (4).
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(l) S3, Model 4.
Fig. 4: Paths obtained from the 4 models over 3 scenarios.

Proposition A.1. βL fx<1⇒ (∀L > 0)T [VL]⊆VβLL fx+L`x
.

Proof. Let V ∈ VL, ι ∈ I and ξ1 = (x1, ι),ξ2 = (x2, ι) ∈ Ξ.
Let assume wlog that T [V ](ξ1) ≥ T [V ](ξ2) and let υ∗ =
(u∗, ι∗):=argminυ∈ϒ{βV (φ(ξ2,υ))+ `(ξ2,υ)}, that is well
defined since ϒ is compact. Then |T [V ](ξ1)−T [V ](ξ2)|=
= |min

υ∈ϒ
{βV (φ(ξ1,υ))+ `(ξ1,υ)}−βV (φ(ξ2,υ

∗))− `(ξ2,υ
∗)|

≤ β |V (φ(ξ1,υ
∗))−V (φ(ξ2,υ

∗))|+ |`(ξ1,υ
∗)− `(ξ2,υ

∗)|
≤ βL‖φ(ξ1,υ

∗)−φ(ξ1,υ
∗)‖+ |`(ξ1,υ

∗)− `(ξ2,υ
∗)|

= βL‖ f ((x1, ι),u∗)− f ((x2, ι),u∗)‖+
+|`((x1, ι),υ

∗)− `((x2, ι),υ
∗)| ≤ (βLL fx +L`x)‖x1− x2‖. �

Corollary A.2. If L≥ L`x
1−βL fx

, then T [VL]⊆ VL.

Now, the Bellman equation associated to system (2) and
cost function (3) is given by V = T [V ]. The following
proposition shows that T is a contractive mapping.

Proposition A.3. If V1,V2 ∈ VL, then ‖T [V1]− T [V2]‖ ≤
β‖V1−V2‖.

Proof. Let ξ ∈ Ξ, w.l.o.g., T [V1](ξ )≥ T [V2](ξ ) and let
υ∗ := argminυ∈ϒ {βV2(φ(ξ ,υ))+ `(ξ ,υ)}, then (T [V1]−
T [V2])(ξ )≤ β (V1−V2)(φ(ξ ,υ

∗))≤ β‖V1−V2‖.

Since (VL,‖·‖) is a complete normed space (see Lemma
8.1.4 in [49]), by the Banach-Caccioppoli fixed-point
theorem, T has a unique fixed point, denoted by V ∗, that
corresponds to the solution of Bellman equation.

Similarly as before, one can prove that T̄ defined as
in (5) is a contraction on V̄L and denote by V̄ ∗ its fixed
point. The following proposition serves to show that V̄ ∗ is
a good approximation of V ∗.

Proposition A.4. There exists a positive constant C1
such that (∀ξ ∈ Ξ̄) |T̄ [V ∗|Ξ̄](ξ )−T [V ∗](ξ )| ≤C1(δu+δx),
where V ∗|Ξ̄ represents the restriction of V ∗ to Ξ̄

Proof. Let υ∗ ∈ ϒ be the value corresponding to the
minimum at T [V ∗](ξ ), let ῡ be the element in ϒ̄ closest
to υ∗, and let Ṽ ∗ :=V ∗|Ξ̄, then, if T̄ [Ṽ ∗](ξ )≥ T [V ∗](ξ ),

T̄ [Ṽ ∗](ξ )−T [V ∗](ξ )≤
≤ β (ΛṼ ∗(φ(ξ , ῡ))−V ∗(φ(ξ ,υ∗)))+ `(ξ , ῡ)− `(ξ ,υ∗)

≤ β (ΛṼ ∗(φ(ξ , ῡ))−ΛṼ ∗(φ(ξ ,υ
∗))+

+ΛṼ ∗(φ(ξ ,υ
∗))−V ∗(φ(ξ ,υ∗)))+ `(ξ , ῡ)− `(ξ ,υ∗).

Now, since f is Lipschitz and also ΛṼ ∗ , since it is the con-
vex combination of Ṽ ∗ ∈ V̄L, we have that |ΛṼ ∗(φ(ξ , ῡ))−
ΛṼ ∗(φ(ξ ,υ

∗))| ≤ LL fuδu. By Theorem 4.1 (iii) of [50],
we have that |ΛṼ ∗(φ(ξ ,υ

∗))−V ∗(φ(ξ ,υ∗))| ≤ LL fx δx.
Finally, by the lipschitzianity of `, we have that |`(ξ , ῡ)−
`(ξ ,υ∗)| ≤ L`uδu. Hence, by setting C1 := max{βLL fu +
L`u ,βLL fx}, we obtain |T̄ [Ṽ ∗](ξ )− T [V ∗](ξ )| ≤ C1(δu +
δx). Otherwise, if T̄ [Ṽ ∗](ξ ) < T [V ∗](ξ ), let ῡ∗ ∈ ϒ̄

be the value that corresponds to the minimum at
T̄ [Ṽ ∗](ξ ), then T [V ∗](ξ )− T̄ [Ṽ ∗](ξ )≤ β (V ∗(φ(ξ , ῡ∗))−
ΛṼ ∗(φ(ξ , ῡ

∗)))≤ βLL fx δx ≤C1(δu +δx).

Proof of Proposition II.3. Set Ṽ ∗ := V ∗|Ξ̄, then |V̄ ∗(ξ )−
V ∗(ξ )|= |T̄ [V̄ ∗](ξ )−T [V ∗](ξ )|= |T̄ [V̄ ∗](ξ )− T̄ [Ṽ ∗](ξ )+
T̄ [Ṽ ∗](ξ )−T [V ∗](ξ )|. By Proposition A.4, it follows that
|V̄ ∗(ξ )−V ∗(ξ )| ≤ |T̄ [V̄ ∗](ξ )− T̄ [Ṽ ∗](ξ )|+C1(δu + δx).
Now, by Proposition A.3 and by definition of Ṽ ∗, we have
that |T̄ [V̄ ∗](ξ )− T̄ [Ṽ ∗](ξ )| ≤ β |V̄ ∗(ξ )−V ∗(ξ )|. Hence,
|V̄ ∗(ξ )−V ∗(ξ )| ≤C(δu +δx), with C := C1

1−β
.
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[49] Ştefan Cobzaş, R. Miculescu, and A. Nicolae, Lipschitz Functions,

ser. Lecture Notes in Mathematics 2241. Springer, 2019.
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