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Abstract

In this paper we introduce a special class of partially

filled arrays. A magic partially filled array MPFΩ

m n s k( , ; , ) on a subset Ω of an abelian group (Γ, +)

is a partially filled array of sizem n× with entries inΩ

such that (i) every ∈ω Ω appears once in the array;

(ii) each row contains s filled cells and each column

contains k filled cells; (iii) there exist (not necessarily

distinct) elements ∈x y, Γ such that the sum of the

elements in each row is x and the sum of the elements

in each column is y. In particular, if x y= = 0Γ, we

have a zero‐sum magic partially filled array

m n s kMPF ( , ; , )Ω
0 . Examples of these objects are magic

rectangles, Γ‐magic rectangles, signed magic ar-

rays, (integer or noninteger) Heffter arrays. Here, we

give necessary and sufficient conditions for the

existence of a magic rectangle with empty cells, that

is, of an m n s kMPF ( , ; , )Ω where ⊂nkΩ = {1, 2, …, } .

We also construct zero‐sum magic partially filled

arrays when Ω is the abelian group Γ or the set of its

nonzero elements.
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1 | INTRODUCTION

The aim of this paper is to introduce and study the following class of partially filled arrays (i.e.,
matrices where some cells are allowed to be empty), whose elements belong to an abelian
group.

Definition 1.1. A magic partially filled array m n s kMPF ( , ; , )Ω on a subset Ω of an
abelian group (Γ, +) is a partially filled array of size m n× with entries in Ω such that

(a) every ∈ω Ω appears once in the array;
(b) each row contains s filled cells and each column contains k filled cells;
(c) there exist (not necessarily distinct) elements ∈x y, Γ such that the sum of the

elements in each row is x and the sum of the elements in each column is y.

Throughout this paper, we will always assume  Ω > 1. So, necessary conditions for the
existence of an m n s kMPF ( , ; , )Ω are ≤ ≤s n2 , ≤ ≤k m2 , and ≥  ms nkΩ = = 4.

We came along with this definition considering two recent generalizations of magic
rectangles. We recall that a magic rectangle m nMR( , ) is an m n× array whose entries are the
integers mn1, 2, …, , each appearing once in such a way that the sum of the elements in each
row is a constant x and the sum of the elements in each column is a constant y. These are well‐
known objects: as shown in [23, 24], an m nMR( , ) exists if and only if m n, > 1, mn > 4, and
≡m n (mod 2). In our terms, a magic rectangle is a tight m n n mMPF ( , ; , )Ω where

⊂mnΩ = {1, 2, …, } ( , +). In [26], Khodkar and Leach considered magic rectangles with
some empty cells. They gave partial results about the existence of an m n s kMR( , ; , ), that is, in
our terminology, of an m n s kMPF ( , ; , )Ω , where ⊂nkΩ = {0, 1, …, − 1} . Clearly, such

m n s kMPF ( , ; , )Ω exists if and only if an m n s kMPF ( , ; , )Ω′ exists, where nkΩ′ = {1, 2, …, }. On
the other hand, starting from the concept of a magic square with elements on an abelian group
[32], Cichacz studied in [7] the existence of a magic m n× rectangle with elements in an
abelian group Γ of order mn (i.e., an m n n mMPF ( , ; , )Γ ).

In [18, 19], Froncek introduced the notion of magic rectangle set m n cMRS( , ; ). Similarly,
also Cichacz was interested in magic rectangle sets on abelian groups.

Definition 1.2 (Cichacz [7]). A Γ‐magic rectangle set m n cMRS ( , ; )Γ on an abelian group
(Γ, +) of ordermnc is a set of c arrays of sizem n× , whose entries are elements of Γ, each
appearing once, with all row sums in each rectangle equal to a constant ∈x Γ and all
column sums in each rectangle equal to a constant ∈y Γ.

Even if Froncek provided in [20] necessary and sufficient conditions for the existence of
magic rectangle sets, the construction of an m n cMRS ( , ; )Γ is, in general, still an open problem,
see [8, 9]. In particular, the following conjecture has been proposed by Cichacz and Hinc,
where  denotes the set of all finite abelian groups that either have odd order or contain more
than one involution (i.e., an element of order two).

Conjecture 1.3 (Cichacz and Hinc [8]). Letm n, > 1 and ≥c 1. An m n cMRS ( , ; )Γ exists
if and only if m and n are both even or ∈Γ and ≠m n{ , } {2ℓ + 1, 2}.

In the same spirit, we introduce the following definition.
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Definition 1.4. A magic partially filled array set m n s k cMPFS ( , ; , ; )Ω on a subset Ω of
an abelian group (Γ, +) is a set of c partially filled arrays of sizem n× with entries in Ω
such that

(a) every ∈ω Ω appears once and in a unique array;
(b) for every array, each row contains s filled cells and each column contains k filled

cells;
(c) there exist (not necessarily distinct) elements ∈x y, Γ such that, for every array,

the sum of the elements in each row is x and the sum of the elements in each column is y.

One of our main goals is the construction of magic rectangle sets with empty cells, denoted
by m n s k cMRS( , ; , ; ), which are nothing but m n s k cMPFS ( , ; , ; )Ω , where ⊂nkcΩ = {1, …, } .
Note that the aforementioned (tight) magic rectangle sets m n cMRS( , ; ) studied by Froncek
correspond to the case m n n m cMPFS ( , ; , ; )Ω , where ⊂mncΩ = {1, …, } . We are also
interested in constructing magic partially filled arrays (sets), where the elements of each row
and of each column add up to zero.

Definition 1.5. Given a subset Ω of an abelian group (Γ, +), we say that an
m n s kMPF ( , ; , )Ω is a zero‐sum magic partially filled array (and we write
m n s kMPF ( , ; , )Ω

0 ) if the elements in each row and in each column add up to 0Γ.
Similarly, we speak about a zero‐sum magic partially filled array set (writing

m n s k cMPFS ( , ; , ; )Ω
0 ) if, for every array, the elements in each row and in each
column add up to 0Γ.

Examples of m n s kMPF ( , ; , )Ω
0 are the signed magic arrays, denoted by m n s kSMA( , ; , ) in

[27]: they correspond to the case ∕ ⊂nkΩ = {±1, ±2, …, ± 2} if nk is even, or
∕ ⊂nkΩ = {0, ±1, ±2, …, ±( − 1) 2} if nk is odd, in which case we will prove their existence

in Corollary 3.5. Also the Heffter arrays, introduced by Archdeacon in [2], can be viewed as
zero‐sum magic partially filled arrays.

Definition 1.6. A Heffter array m n s kH( , ; , ) is an m n× partially filled array with
elements in the cyclic group ( , +)nk2 +1 such that

(a) for every ∈ ⧹x {0}nk2 +1 , either x or x− appears in the array;
(b) each row contains s filled cells and each column contains k filled cells;
(c) the elements in every row and column add up to 0 in nk2 +1.

In [5] it was proved that a square Heffter array n n k kH( , ; , ) exists for all ≥ ≥n k 3, while in
[3] the authors proved the existence of an m n n mH( , ; , ) for all ≥m n, 3. The first results about
nonsquare Heffter arrays with empty cells have been obtained in [28, 30]. They provide strong
evidences for the validity of the following.

Conjecture 1.7 (Archdeacon [2, Conjecture 6.3]). Given four integersm n s k, , , such that
≤ ≤s n3 , ≤ ≤k m3 , and ms nk= , there exists a Heffter array m n s kH( , ; , ).

A Heffter array m n s kH( , ; , ) is a m n s kMPF ( , ; , )Ω
0 where Ω is a subset of size nk of

⧹{0}nk2 +1 such that ∩ ∅Ω −Ω = . In other words, ∪Ω −Ω is a partition of ⧹{0}nk2 +1 . In [13]
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the authors proposed a generalization of the notion of Heffter array studying relative Heffter
arrays: a relative Heffter array m n s kH ( , ; , )t is a m n s kMPF ( , ; , )Ω

0 where ∪Ω −Ω is a
partition of ⧹Jnk t2 + , with J being the subgroup of nk t2 + of size t . We refer to [4, 6, 12, 15–17,
30] for results about the existence and the properties of these objects. Further generalizations of
Heffter arrays are described in [10, 11, 14, 29].

Magic and zero‐sum magic partially filled arrays are worth to be studied not only because
they generalize several combinatorial objects, as we previously explained, but also because of
their connection with magic labelings (see [22, Sections 5.1 and 5.7]). We briefly describe how
these labelings can be obtained.

A bipartite biregular graph G V E( , ) is a graph whose vertex set can be written as disjoint
union ∪V V V= 1 2 with  V m=1 ,  V n=2 , and where each vertex of V1 is connected with exactly
s vertices ofV2, and each vertex ofV2 is connected with exactly k vertices ofV1. Now, let M be an

m n s kMPF ( , ; , )Ω (or, a m n s kMPF ( , ; , )Ω
0 ). We associate to M a bipartite biregular graph

G V EΦ = ( , )M by taking a set V1 of m points, a set V2 of n points, and drawing an edge ei j,
between the ith vertex ofV1 and the jth vertex ofV2 if the cell i j( , ) ofM is not empty. Define the
labeling → ⊆f E: Ω ΓM , where f e( )M i j, is the entry of the corresponding cell i j( , ) of M .

According to [31], a graph is magic if there is a labeling of its edges with distinct positive
integers such that for each vertex v the sum of the labels of all edges incident with v is the same
for all v. Such labeling is said to be a magic labeling. A magic labeling is called supermagic if
the set of edge labels consists of consecutive positive integers. It is clear that a square

n n k kMR( , ; , ), say M , produces a supermagic labeling of the graph ΦM , since M has the same
row and column sums.

Now, take a finite abelian group Γ of order ℓ > 1, and write Γ* for ⧹Γ {0 }Γ . A Γ‐supermagic
labeling of a graphG V E( , ) with  E = ℓ is a bijection from E to Γ such that the sum of labels of
all incident edges of every vertex ∈v V is equal to the same element ∈x Γ, see [21]. If M is a

m n s kMPF ( , ; , )Γ
0 , then the function fM is a Γ‐supermagic labeling of ΦM , where the constant
x is 0Γ.

A graph G is said to be zero‐sum Γ‐magic if there exists a labeling of the edges of G with
elements of Γ* such that, for each vertex v, the sum of the labels of the edges incident with v is
equal to 0Γ, see [1]. If M is a m n s kMPF ( , ; , )Γ*

0 , then ΦM is a zero‐sum Γ‐magic graph. Note
that in this case the labeling fM is a bijection.

When the zero‐sum magic array m n s kMPF ( , ; , )Ω
0 is actually a Heffter array, there are

further applications to cyclic cycle decompositions (see [2]); when it is a tight Γ‐magic
rectangle, there are applications to cryptography, scheduling and statistical design of
experiments (see [8] and the references therein).

Finally, we briefly describe our main achievements. The first one, proved in Section 3,
extends Froncek's result about tight magic rectangle sets, providing necessary and sufficient
conditions for the existence of an m n s k cMRS( , ; , ; ).

Theorem 1.8. Let m n s k c, , , , be five positive integers such that ≤ ≤s n2 , ≤ ≤k m2 ,
and ms nk= . An m n s k cMRS( , ; , ; ) exists if and only if either nkc is odd, or s and k are
both even and sk > 4.

Next, keeping in mind the connection with Γ‐supermagic labelings and zero‐sum Γ‐magic
graphs, we will focus our attention on zero‐sum magic partially filled arrays (sets) whereΩ is a
finite abelian group Γ, or the set Γ* of its nonzero elements. In particular, we will prove the
following result.
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Theorem 1.9. Let m n s k c, , , , be five positive integers such that ≤ ≤s n2 , ≤ ≤k m2 ,
and ms nk= . Set d s k= gcd( , ).

(1) A m n s k cMPFS ( , ; , ; )0
nkc

exists if and only if nkc is odd.
(2) If ≡d 0 (mod 4), then there exists a m n s k cMPFS ( , ; , ; )Γ

0 for every abelian group
∈Γ of order nkc.

(3) If nk is odd and n dgcd( , − 1) = 1, then there exists a ⊕ ∕
m n s kMPF ( , ; , )0

d nk d
.

(4) A n n cMPFS (2, ; , 2; )*
0

nc2 +1

exists if and only if ≥n 3.

(5) A m n n mMPF ( , ; , )*
0

mn+1

exists if and only if mn > 5 is even.

(6) Let Γ be an abelian group of order n2 + 1. There exists a tight n nMPF (2, ; , 2)Γ*
0 if and

only if ∉ ⊕Γ { , }5 3 3 .

2 | NOTATION, EXAMPLES, AND PRELIMINARY
RESULTS

Given two integers ≤a b, we denote by a b[ , ] the set consisting of the integers a a b, + 1, …, . If
a b> , then a b[ , ] is empty. We denote by i j( , ) the cell in the ith row and the jth column of a
partially filled array A, while  A( ) denotes the list of the entries of the filled cells of A. We also
write  i j( , ) to indicate the entry of the cell i j( , ) of A. Given a sequence S B B B= ( , , …, )r1 2 of
partially filled arrays, we set  ∪S B( ) = ( )i i .

We recall that a finite nontrivial abelian group can be written as a direct sum

⊕ ⊕ ⊕…n n n1 2 ℓ

of cyclic groups ni of order n > 1i . In particular, we can take these integers ni in such a way
that ni divides ni+1 for all ∈i [1, ℓ − 1]. The elements of a cyclic group ( , +)n of order n will
be denoted by x[ ]n. In other words, x[ ]n is the image of ∈x by the canonical projection

→π : n. More in general, given a direct sum ⊕ ⊕ ⊕Γ Γ … Γ1 2 ℓ of abelian groups, its
elements will be denoted by x x x( , , …, )1 2 ℓ , where ∈x Γi i for all i = 1, 2, …, ℓ.

In the following, it will be convenient to denote an n n k kMPF ( , ; , )Ω , an
n n k k cMPFS ( , ; , ; )Ω , a n n k kMPF ( , ; , )Ω

0 and a n n k k cMPFS ( , ; , ; )Ω
0 , respectively, by

n kMPF ( ; )Ω , n k cMPFS ( ; ; )Ω , n kMPF ( ; )Ω
0 , and n k cMPFS ( ; ; )Ω

0 . Furthermore, we denote a
tight m n n mMPF ( , ; , )Ω

0 by m nMPF ( , )Ω
0 , and a tight m n n m cMPFS ( , ; , ; )Ω

0

by m n cMPFS ( , ; )Ω
0 .
For example, the arrays

are two magic rectangles: on the left‐hand side we have anMPF (2; 2)
4

; on the right‐hand side,
we have an ⊕MPF (2; 2)

2 2
. The arrays
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and

are, respectively, a MPF (3, 4)Γ
0 and a MPF (4; 3)Γ

0 , where ⊕Γ = 2 6.

Example 2.1. For any odd ≥n 3, the sum of the integers n1, 2, …, is a multiple of n,
being equal to ⋅n

n + 1

2
. Then, the array A a= ( )i j, , defined by a i j= ([ ] , [ ] )i j n n, for all

∈i j n, [1, ], is a ⊕ n nMPF ( , )0
n n

.

We recall that, given an abelian group Γ, we set ⧹Γ* = Γ {0 }Γ . Furthermore,  denotes the
set of all finite abelian groups that either have odd order or contain more than one involution.
Since the sum of all the elements of Γ is equal to the sum of its involutions, it is easy to see that

∈ ∈
  g x

ι ι
= =

if Γ has a unique involution ,

0 otherwise.g x

x
Γ Γ,

2 =0

Remark 2.2. It follows that if a m n s k cMPFS ( , ; , ; )Ω
0 exists for some ∈Ω {Γ, Γ*}, then

∈Γ ; in particular, Γ cannot be a cyclic group of even order. Moreover, if there exists a
m n s k cMPFS ( , ; , ; )Γ

0 , then either   nkcΓ = is odd or ≡nkc 0 (mod 4).

The arrays

are, respectively, a MPF (4; 3)*
0

13

and a MPF (4, 6; 3, 2)*
0

13

.

Let A a= ( )i j, be a partially filled square array of size n. We say that the element ai j, belongs
to the diagonal Dr if ≡j i r n− (mod ). We say that A is ℓ‐diagonal if the nonempty cells of A
are exactly those of ℓ consecutive diagonals. In particular, if A is an n kMPF ( ; )Ω , then we say
that A is diagonal if it is k‐diagonal. We also say that an n k cMPFS ( ; ; )Ω is diagonal if every
member of this set is a k‐diagonal partially filled array (similarly for a zero‐sum magic array).
For instance, this is a diagonal MPF (5; 4)*

0

21

:
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The following theorem shows how it is possible to construct rectangular magic partially
filled arrays starting from diagonal square ones. This result was actually proven in [30] for
Heffter arrays, but the proof can be easily adapted to the more general context of magic
partially filled array sets.

Theorem 2.3. Letm n s k c, , , , be five positive integers such that ≤ ≤s n2 , ≤ ≤k m2 , and
ms nk= . LetΩ be a subset of size nkc of an abelian group Γ. Set d s k= gcd( , ). If there exists a

diagonal ( )d cMPFS ; ;
nk

dΩ , then there exists an m n s k cMPFS ( , ; , ; )Ω . In particular, if there

exists a diagonal ( )d cMPFS ; ;
nk

dΩ
0 , then there exists a m n s k cMPFS ( , ; , ; )Ω

0 .

Sets of zero‐sum magic partially filled arrays can be constructed using a sort of Kronecker
product. For i = 1, 2, let Ai be a partially filled array of size a b×i i whose elements belong to an
abelian group Γi. We define the “Kronecker product” between A1 and A2 as the partially filled
array ⊗A A1 2 of size a a b b( ) × ( )1 2 1 2 obtained as follows. Set A u= ( )i j1 , and A v= ( )x y2 , , and
take hℓ, in such a way that ∈ a aℓ [1, ]1 2 and ∈h b b[1, ]1 2 . Write q a rℓ = +1 2 1

and h q b r= +2 2 2 with ≤ ≤r a1 1 2 and ≤ ≤r b1 2 2. Then, the cell h(ℓ, ) of ⊗A A1 2 is
nonempty if and only if the cell q q( + 1, + 1)1 2 of A1 and the cell r r( , )1 2 of A2 are nonempty. In
such case,  ∈ ⊕( )h u v(ℓ, ) = , Γ Γq q r r+1, +1 , 1 21 2 1 2

.

For instance, take the following partially filled arrays:

Then, the product ⊗A A1 2 is

Lemma 2.4. If there exist a m n s k cMPFS ( , ; , ; )Ω
0

1 1 1 1 11
and a m n s k cMPFS ( , ; , ; )Ω

0
2 2 2 2 22

,

where ⊆Ω Γ1 1 and ⊆Ω Γ2 2, then there exists a m m n n s s k k c cMPFS ( , ; , ; )Ω ×Ω
0

1 2 1 2 1 2 1 2 1 21 2
,

where ⊆ ⊕Ω × Ω Γ Γ1 2 1 2.

Proof. Let Ai be an array of the set m n s k cMPFS ( , ; , ; )Ω
0

1 1 1 1 11
for ∈i c[1, ]1 and Bj be an

array of the set m n s k cMPFS ( , ; , ; )Ω
0

2 2 2 2 22
for ∈j c[1, ]2 . Then ⊗C A B= i j is a partially

filled array of size m m n n( ) × ( )1 2 1 2 such that: every row of C contains s s1 2 elements
and each column of C contains k k1 2 elements; the elements of each row of C add
up to ⋅ ⋅s s( 0 , 0 ) = 02 Γ 1 Γ Γ1 2

; the elements of each column of C add up to
⋅ ⋅k k( 0 , 0 ) = 02 Γ 1 Γ Γ1 2

;   ∈ ∈C x y x A y B( ) = {( , ) ( ), ( )}i j . We conclude that the set
⊗A B{ i j ∈ ∈i c j c[1, ], [1, ]}1 2 is a m m n n s s k k c cMPFS ( , ; , ; )Ω ×Ω

0
1 2 1 2 1 2 1 2 1 21 2

. □
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3 | MAGIC RECTANGLE SETS WITH EMPTY CELLS

In this section we solve the existence problem of a magic rectangle set with empty cells. Our
starting point is Froncek's result about (tight) magic rectangle sets. As we recalled in Section 1,
Froncek studied these objects, proving the following.

Theorem 3.1 (Froncek [20, Theorem 3.2]). Let m n c, , be positive integers such that
≥m n, 2. A magic rectangle set m n n m cMRS( , ; , ; ) exists if and only if eithermnc is odd,

or m n, are both even and mn > 4 (c arbitrary).

Remark 3.2. Suppose that an m n s k cMRS( , ; , ; ) exists. Then, for every array of this set,
the elements of each row and of each column add up, respectively, to s nkc( + 1)

2
and to

k nkc( + 1)

2
. So, if nkc is even, then s and k must be both even.

First, we consider the case when k (or s) is equal to 2.

Proposition 3.3. Letm n s c, , , be four positive integers such that ≤ ≤s n2 andms n= 2 .
An m n s cMRS( , ; , 2; ) exists if and only if ≥s 4 is even.

Proof. Set N nc= 2 + 1. Suppose that an m n s cMRS( , ; , 2; ) exists. By Remark 3.2, s
must be even. Furthermore, an n n cMRS( , ; 2, 2; ) does not exist. In fact, let j(1, )1 and

j(1, )2 be the two filled cells of the first row of any array in n n cMRS( , ; 2, 2; ), and let
i j( , )1 be the other filled cell of the j1th column of this array. By Remark 3.2 we have
 j j N(1, ) + (1, ) =1 2 and  j i j N(1, ) + ( , ) =1 1 , whence  j i j(1, ) = ( , )2 1 , a
contradiction. We conclude that s must be an even integer greater than 2.

Now, suppose that ≥s 4 is even and write s s= 2¯. Hence, we have n ms= ¯. Our
construction of an m ms s cMRS( , ¯; 2¯, 2; ) depends on the parity of s̄ , and uses some basic
blocks. Given an integer ≥x 0, we construct two 2‐diagonalm m× partially filled arrays
U V,x x:

In both cases, the elements of each column add up to N ; the row sums of Ux are
N N N m( − 1, …, − 1, + − 1), while the row sums of Vx are N N( + 1, …, +

N m1, − + 1). Furthermore,   ∪U V x x m N x m N( ) = ( ) = [ + 1, + ] [ − ( + ), −x x

x( + 1)]. Now, let Ax be the partially filled array obtained by the juxtaposition of Ux
and Vx m+ . Then, Ax is an m mMPF ( , 2 ; 4, 2)Ω , where  ∪A x x mΩ = ( ) = [ + 1, + 2 ]x
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N x m N x[ − ( + 2 ), − ( + 1)], the elements of every column add up to N , and the
elements of every row add up to N2 .

Assume s t¯ = 2 with ≥t 1. For every ≥ℓ 0, let Rℓ be the m n× partially filled array
obtained by the juxtaposition of A A A, , …,m t m t m t t2 ( ℓ) 2 ( ℓ+1) 2 ( ℓ+ −1). By construction, every
column of Rℓ contains two filled cells, and every row contains t s4 = filled cells. The
elements of each column add up to N , while the elements of each row add up to
Nt Ns2 = ¯. Furthermore,

 ∪R ms ms N ms N ms( ) = [ ¯ ℓ + 1, ¯ (ℓ + 1)] [ − ¯ (ℓ + 1), − ( ¯ ℓ + 1)].ℓ

Our m n s cMRS( , ; , 2; ) consists of R R R, , …, c0 1 −1. In fact,

 ∪ ∪ R ms c N ms c N nc nc nc nc( ) = [1, ¯ ] [ − ¯ , − 1] = [1, ] [ + 1, 2 ] = [1, 2 ].
c

ℓ=0

−1

ℓ

Next, assume s t¯ = 2 + 1 with ≥t 1. Given an integer ≥x 0, we construct a 2‐diagonal
m m× partially filled arrayWx as follows:

The elements of each column of Wx add up to N , while the row
sums are N N N m( + 2, …, + 2, + 2 − 2 ). Furthermore,  W x x x( ) = { + 1, + 3, …, +x

∪m N x m N x m N x(2 − 1)} { − ( + 2 − 1), − ( + 2 − 3), …, − ( + 1)}.
Let

∼
Y Y,x x be the partially filled arrays obtained by the juxtaposition ofU U W, ,x x m x m+ +2

and of W U U, ,x x m x m+1 +2 +3 , respectively. Then, Yx and
∼
Yx are two m mMPF ( , 3 ; 6, 2)Ω ,

where





∪

∪

∪

∪

∪ ∪

∼

Y x x m N x m N x

x m x m x m

N x m N x m N x m

Y x x x m N x m N x m

N x x m x m N x m N x m

Ω = ( ) = [ + 1, + 2 ] [ − ( + 2 ), − ( + 1)]

{ + 2 + 1, + 2 + 3, …, + 4 − 1}

{ − ( + 4 − 1), − ( + 4 − 3), …, − ( + 2 + 1)},

Ω = ( ) = { + 2, + 4, …, + 2 } { − ( + 2 ), − ( + 2 − 2), …,

− ( + 2)} [ + 2 + 1, + 4 ] [ − ( + 4 ), − ( + 2 + 1)].

x

x

In both cases, the elements of each row and each column add up, respectively, to N3

and to N .
For every ≥ℓ 0, let R R,2ℓ 2ℓ+1 be the m n× partially filled arrays obtained by the

juxtaposition, respectively, of

A A A Y, , …, , ,m t m t m t t m t t2 (2 +1)ℓ 2 ((2 +1)ℓ+1) 2 ((2 +1)ℓ+ −2) 2 ((2 +1)ℓ+ −1)

and of
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∼
Y A A A, , , …, .m t t m t t m t t m t t2 ((2 +1)ℓ+ ) 2 ((2 +1)ℓ+ +2) 2 ((2 +1)ℓ+ +3) 2 ((2 +1)ℓ+2 )

In both cases, every column contains two filled cells and every row contains
t s4( − 1) + 6 = filled cells; the elements of each column add up to N , while the

elements of each row add up to N t N Ns2 ( − 1) + 3 = ¯. Furthermore,





∪

∪

∪

∪

∪

∪

R ms ms mt N ms mt N ms

ms mt ms mt ms mt m

N ms mt m N ms mt m

N ms mt

R ms mt ms mt ms mt m

N ms mt m N ms mt m

N ms mt ms m t ms

N ms N ms m t

( ) = [ ℓ + 1, ℓ + 2 ] [ − ( ℓ + 2 ), − ( ℓ + 1)]

{ ℓ + 2 + 1, ℓ + 2 + 3, …, ℓ + 2 + 2 − 1}

{ − ( ℓ + 2 + 2 − 1), − ( ℓ + 2 + 2 − 3), …,

− ( ℓ + 2 + 1)},

( ) = { ℓ + 2 + 2, ℓ + 2 + 4, …, ℓ + 2 + 2 }

{ − ( ℓ + 2 + 2 ), − ( ℓ + 2 + 2 − 2), …,

− ( ℓ + 2 + 2)} [ ℓ + 2 ( + 1) + 1, (ℓ + 1)]

[ − (ℓ + 1), − ( ℓ + 2 ( + 1) + 1)].

2ℓ

2ℓ+1

Note that

 ∪ ∪R R ms ms N ms N ms( ) ( ) = [ ℓ + 1, (ℓ + 1)] [ − (ℓ + 1), − ( ℓ + 1)].2ℓ 2ℓ+1

Our m n s cMRS( , ; , 2; ) consists of R R R, , …, c0 1 −1. In fact, if c is even, then

 ∪ ∪
∕

 R R ms c N ms c N nc( ( ) ( )) = [1, ¯ ] [ − ¯ , − 1] = [1, 2 ].
c

ℓ=0

( −2) 2

2ℓ 2ℓ+1

If c is odd, then  R ms c ms c( ) = [ ¯ ( − 1) + 1, ¯ ( + 1)]c−1 and

  ∪∪ ∪ ∪

∪

∕

R R R ms c ms c ms c

ms c ms c

nc

( ) ( ( ) ( )) = [ ¯ ( − 1) + 1, ¯ ( + 1)] [1, ¯ ( − 1)]

[ ¯ ( + 1) + 1, 2 ¯ ]

= [1, 2 ].

c

c

−1
ℓ=0

( −3) 2

2ℓ 2ℓ+1

This concludes our proof. □

As recalled in Section 1, a signed magic array m n s kSMA( , ; , ) is a m n s kMPF ( , ; , )Ω
0 , where






Ω = − , +

nk nk− 1

2

− 1

2
if nk is odd or ∪















Ω = − , −1 1,

nk nk

2 2
if nk is even.

Proposition 3.4. Letm n s k c, , , , be five positive integers such that ≤ ≤s n3 , ≤ ≤k m3 ,
andms nk= . There exists an m n s k cMRS( , ; , ; ) if and only if either nkc is odd, or s and k
are both even.

Proof. Set d s k= gcd( , ) and suppose that the product nkc is odd. Assume ≠d 1, hence

≥d 3. By [26, Corollary 7], there exists a diagonal ( )d cMRS ; ;
nk

d
: hence, the existence of an
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m n s k cMRS( , ; , ; ) follows from Theorem 2.3. Assume d = 1. Since s and k are coprime, we
can writem kr= and n sr= , where ≥r 1 is an odd integer. Let A A, …, rc0 −1 be the arrays of
a magic rectangle set k s rcMRS( , ; ), whose existence is guaranteed by Theorem 3.1. Write
A a= ( )i jℓ ,

(ℓ) , with ∈i k[1, ], ∈j s[1, ] and ∈ rcℓ [0, − 1]. We construct c partially filled

arrays of size m n× by taking empty arrays Rt, ∈t c[0, − 1], of size kr sr( ) × ( ) and filling
them in such a way that the entry of the cell ku i su j( + , + ), ∈u r[0, − 1], of Rt is ai j

rt u
,
( + ).

Hence, the arrays R R, …, c0 −1 so constructed are the members of an m n s k cMRS( , ; , ; ). In
fact, its entries are the integers of ksrc nkc[1, ] = [1, ], each row of Rt contains s filled cells

and each column contains k filled cells; the elements of every row add up to s s=
ksrc nkc+ 1

2

+ 1

2
,

while the elements of every column add up to k nkc+ 1

2
.

Now, suppose that s and k are both even. By [30, Proposition 5.7] there exists a shiftable
m n s kSMA( , ; , ), say A, that is, a signed magic array where every row and every column

contains an equal number of positive and negative entries. For every ∈ cℓ [1, ], let Rℓ be the

array obtained from A by replacing every positive entry x of A with x c+ (2 − ℓ)
nk

2
and

replacing every negative entry y with y + ℓ + 1
nk

2
. So, the elements of each row of

Rℓ add up to ( )c nkc(2 − ℓ) + ℓ + 1 = ( + 1)
s nk nk s

2 2 2 2
and the elements of each column add

up to nkc( + 1)
k

2
. Furthermore,  ∪











R c( ) = (ℓ − 1) + 1, ℓ (2 − ℓ)+

nk nk nk
ℓ 2 2 2


c1, (2 + 1 − ℓ)

nk

2
. It follows that

 ∪














R

nk
c

nk
c

nk
c nkc( ) = 1,

2 2
+ 1,

2
2 = [1, ],

c

ℓ=1
ℓ

and so R R, …, c1 are the members of an m n s k cMRS( , ; , ; ).
This proves the existence of an m n s k cMRS( , ; , ; ) whenever nkc is odd or n and k are

both even. Vice versa, if an m n s k cMRS( , ; , ; ) exists, either nkc is odd, or s and k are both
even, by Remark 3.2. □

Proof of Theorem 1.8. If ≥s k, 3, the result follows from Proposition 3.4. Also, since the
transpose of an m n s kMPF ( , ; , )Ω is an n m k sMPF ( , ; , )Ω , we may assume k = 2, and
hence the result follows from Proposition 3.3. □

Corollary 3.5. Let m n s k, , , be four integers such that ≤ ≤s n3 , ≤ ≤k m3 , and
ms nk= . If nk is odd, then there exists an m n s kSMA( , ; , ).

Proof. Let A be an m n s kMR( , ; , ), whose existence follows from Theorem 1.8 for c = 1.

Set w =
nk + 1

2
, so that the elements of each row of A add up to sw, while the elements of

each column add up to kw. Replacing each entry ∈x nk[1, ] of A with x w− , we obtain

an m n s kSMA( , ; , ), say B. In fact, 






B w nk w( ) = [1 − , − ] = − , +

nk nk− 1

2

− 1

2
.

Moreover, the elements of each row of B add up to sw sw− = 0; similarly, the
elements of each column add up to 0. □
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4 | SOME CONSTRUCTIONS FOR THE CASE Ω = Γ

First, we consider the case when Γ is a cyclic group. Thanks to the results of Section 3 we obtain
the following.

Corollary 4.1. Let m n s k c, , , , be five positive integers such that ≤ ≤s n2 , ≤ ≤k m2 ,
and ms nk= . A m n s k cMPFS ( , ; , ; )0

nkc
exists if and only if nkc is odd.

Proof. If a m n s k cMPFS ( , ; , ; )0
nkc

exists, then nkc must be odd (see Remark 2.2). In this

case, by Theorem 1.8 there exists an m n s k cMRS( , ; , ; ), whose members are, say, A A, …, c1 .

Write w =
nkc+ 1

2
and replace each entry ∈x nkc[1, ] of Aℓ with ∈x w[ − ]nkc nkc,

obtaining a partially filled array Bℓ. Then, B B{ , …, }c1 is a m n s k cMPFS ( , ; , ; )0
nkc

. In fact, the

elements of each row of Bℓ add up to sw s w[ ] − [ ] = [0]nkc nkc nkc; similarly, the elements of
each column add up to [0]nkc. Furthermore,































B w w nkc w

nk nk nk

( ) = {[1 − ] , [2 − ] , …, [ − ] }

= −
− 1

2
, −

− 1

2
+ 1 , …,

− 1

2
= .

c

nkc nkc nkc

nkc nkc nkc
nkc

ℓ=1
ℓ

□

Example 4.2. We start by taking the arrays A A A, ,0 1 2 of an MRS(3, 5; 3):

Following the proofs of Proposition 3.4 and Corollary 4.1, we get the MPF (9, 15; 5, 3)0
45

of Figure 1.

FIGURE 1 A MPF (9, 15; 5, 3)0
45

, where each entry x must be read as x[ ]45.
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Now, we completely solve the case when ≡k 0 (mod 4) (there is no need to assume that Γ is
noncyclic).

Proposition 4.3. Suppose ≥ ≥n k 4 with ≡k 0 (mod 4). Then, there exists a diagonal
n k cMPFS ( ; ; )Γ

0 for every ∈Γ of order nkc.

Proof. Since ≡k 0 (mod 4) and ∈Γ , we can write ⊕ ⊕Γ = Γ′a b2 2 , where
≥a b, 1 and ≥ Γ′ 1. Let ⊂ ⊕ ⊕a bΛ = [1, ] × [1, ] × Γ′ Γ′. For any ∈x y g( , , ) Λ,

consider the following 3 × 2 partially filled array with elements in Γ:

Note that the elements in the nonempty rows add up to ([−1] , [0] , 0 )a b2 2 Γ′ and to
([1] , [0] , 0 )a b2 2 Γ′ , while the elements of the columns add up to ([0] , [−1] , 0 )a b2 2 Γ′ and
to ([0] , [1] , 0 )a b2 2 Γ′ . We use this 3 × 2 block for constructing partially filled arrays
whose rows and columns add up to 0Γ. Define  ∈B x y g x y g= { ( , , ) ( , , ) Λ}: this is a

set of cardinality    
ab Γ′ = =

nkcΓ

4 4
. So, write  X X X= ( , , …, )nc1 2 k

4
. Taking an empty

n n× array A1, arrange the first n blocks of  in such a way that the element of the
cell (1, 1) of Xj fills the cell j j( , ) of A1 (we work modulo n on row/column indices).
In this way, we fill the diagonals D D D D, , ,n n−2 −1 0 1. In particular, every row has
four filled cells and every column has four filled cells. Looking at the rows, the
elements belonging to the diagonals D D,0 1 add up to ([−1] , [0] , 0 )a b2 2 Γ′ , while the
elements belonging to the diagonals D D,n n−2 −1 add up to ([1] , [0] , 0 )a b2 2 Γ′ . Looking at
the columns, the elements belonging to the diagonals D D, n0 −2 add up to
([0] , [−1] , 0 )a b2 2 Γ′ , while the elements belonging to the diagonals D D, n1 −1 add up
to ([0] , [1] , 0 )a b2 2 Γ′ . Then A1 has row/column sums equal to 0Γ.

Applying this process k

4
times (working with X X X, , …,n n n+1 +2 2 on the diagonals

D D D D, , ,2 3 4 5, and so on), we obtain a partially filled array A1, whose rows and
columns have exactly k filled cells. Finally, we repeat this entire process
c − 1 times, obtaining a set A A, …, c1 of partially filled arrays. To prove that this
set is a diagonal n k cMPFS ( ; ; )Γ

0 it suffices to check that    A( ) = ( )c
ℓ=1 ℓ is

equal to Γ.
Considering the four entries of each Xi, we can write   ∪ ∪ ∪S S S S( ) = 1 2 3 4,

where

∈

∈

∈

∈







S x y g x y g

S x y g x y g

S x y g x y g

S x y g x y g

= {([2 ] , [2 ] , ) ( , , ) Λ},

= {−([2 + 1] , [2 ] , ) ( , , ) Λ},

= {−([2 ] , [2 + 1] , ) ( , , ) Λ},

= {([2 + 1] , [2 + 1] , ) ( , , ) Λ}.

a b

a b

a b

a b

1 2 2

2 2 2

3 2 2

4 2 2

Clearly, the sets S S S S, , ,1 2 3 4 are pairwise disjoint. Fixed ∈x y, , we have
x x−[2 + 1] = [2 ′ + 1]a a2 2 and y y−[2 ] = [2 ′]b b2 2 for some ∈x a′ [1, ] and some
∈y b′ [1, ]. It follows that
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∈

∈




S x y g x y g

S x y g x y g

= {([2 + 1] , [2 ] , ) ( , , ) Λ},

= {([2 ] , [2 + 1] , ) ( , , ) Λ}.

a b

a b

2 2 2

3 2 2

Then   ⊕ ⊕( ) = Γ′ = Γa b2 2 . □

Following the proof of the previous proposition, we construct a ⊕ ⊕MPFS (6; 4; 2)0
6 2 4

,
where each entry xyz must be read as x y z([ ] , [ ] , [ ] )6 2 4 :

Now, we provide a construction when k is odd.

Proposition 4.4. Suppose that ≥ ≥n k 3 are odd integers such that n kgcd( , − 1) = 1.
Then there exists a diagonal ⊕ n kMPF ( ; )0

k n
.

Proof. Write n a= 2 + 1 and k b= 2 + 1. Take an empty n n× array and fill the
diagonals D D D D D, …, , , , …,n b n b− −1 0 1 as follows. Note that we give the elements for each
diagonal, starting with those belonging to the first row. For ∈ bℓ [1, ],

D n

D n

D k k n k

: ([2ℓ] , [1] ), ([2ℓ] , [2] ), …, ([2ℓ] , [ ] );

: ([2ℓ − 1] , [1] ), ([2ℓ − 1] , [2] ), …, ([2ℓ − 1] , [ ] );

: ([0] , [1 − ] ), ([0] , [2(1 − )] ) …, ([0] , [ (1 − )] ).

k n k n k n

n k n k n k n

k n k n k n

ℓ

−ℓ

0

Call A the partially filled array so obtained. By construction, we fill k cells in each row
and each column of A. Also, we have

 ∪ ∈ ∈ { }D D x y x y( ( ) ( )) = ( , ) *, .
b

n k n
ℓ=1

ℓ −ℓ

Since n kgcd( , − 1) = 1, the function →ψ : n n, defined as ψ z z k([ ] ) = [ (1 − )]n n, is
an automorphism. This gives  ∈D y y( ) = {([0] , ) }k n0 , whence  ⊕A( ) = k n. For
every ∈i n[1, ], the ith row of A contains the element i k([0] , [ (1 − )] )k n and the
elements x i([ ] , [ ] )k n with ∈x k[1, − 1]. The sum of these elements is

i k x i i k k i([0] , [ (1 − )] ) + ([ ] , [ ] ) = ([0] , [ (1 − ) + ( − 1) ] ) = ([0] , [0] ).k n

x

k

k n k n k n

=1

−1

The ith column of A contains the element i k([0] , [ (1 − )] )k n and the elements
i([2ℓ − 1] , [ℓ + ] )k n , n i([2ℓ] , [ − ℓ + ] )k n with ∈ bℓ [1, ]. The sum of these elements is
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i k i i

i k ib i k i k

([0] , [ (1 − )] ) + (([2ℓ − 1] , [ℓ + ] ) + ([2ℓ] , [ − ℓ] ))

= ([0] , [ (1 − )] ) + ([0] , [2 ] ) = ([0] , [ (1 − ) + ( − 1)] )

= ([0] , [0] ).

k n

b

k n k n

k n k n k n

k n

ℓ=1

This proves that A is a ⊕ n kMPF ( ; )0
k n

. □

Here, a diagonal ⊕MPF (7; 5)0
5 7

obtained following the proof of the previous proposition:

5 | SOME CONSTRUCTIONS FOR THE CASE Ω = Γ*

Also in this case, we first consider the cyclic case. Due to Theorem 1.8 we obtain the following.

Lemma 5.1. Let m n s k c, , , , be five positive integers such that ≤ ≤s n2 , ≤ ≤k m2 ,
andms nk= . Suppose that s and k are both even and such that ≠s k( , ) (2, 2). Then, there
exists a m n s k cMPFS ( , ; , ; )*

0

nkc+1

.

Proof. By Theorem 1.8, there exists an m n s k cMRS( , ; , ; ), say  A A A= { , , …, }c1 2 . Call


∼

B B B= { , , …, }c1 2 the set obtained by replacing each entry ∈x of Ai

with ∈x[ ]nkc nkc+1 +1. Then,   ∈
∼ x x nkc( ) = {[ ] [1, ]} = *nkc nkc+1 +1. Since s is even

and the elements of each row of Ai add up to nkc( + 1)
s

2
, the elements of each

row of Bi add up to [0]nkc+1. Similarly for the columns. We conclude that 
∼

is a
m n s k cMPFS ( , ; , ; )*

0

nkc+1

. □

We also make use of the known results about signed magic arrays. We recall that in [25] it
was proved that an m n sSMA( , ; , 2) exists if and only if eitherm = 2 and ≡n s= 0, 3 (mod 4)

or ≥m s, 3 and ms n= 2 . Furthermore, an m n n mSMA( , ; , ) exists for all ≥m n, 3.

Theorem 5.2 (Morini and Pellegrini [30]). Let m n s k, , , be four integers such that
≤ ≤s n3 , ≤ ≤k m3 and ms nk= . There exists an m n s kSMA( , ; , ) whenever

≥s kgcd( , ) 2, or ≡s 0 (mod 4), or ≡k 0 (mod 4). Furthermore, there exists a diagonal
n n k kSMA( , ; , ) for any ≥ ≥n k 3.

Replacing the entry ∈x of an m n s kSMA( , ; , ), with the element x[ ]nk+1 of nk+1, we get
the following.
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Lemma 5.3. Suppose there exists an m n s kSMA( , ; , ), where nk is even. Then there exists
a m n s kMPF ( , ; , )*

0

nk+1

.

From Theorem 5.2 and Lemma 5.3 we obtain the following result.

Corollary 5.4. Let m n s k, , , be four integers such that ≤ ≤s n2 , ≤ ≤k m2 , and
ms nk= . If nk is even, then there exists a m n s kMPF ( , ; , )*

0

nk+1

in each of the following

cases:

(1) ≥s n= 3 and ≥k m= 3;
(2) m = 2 and ≡s n= 0, 3 (mod 4), or n = 2 and ≡k m= 0, 3 (mod 4);
(3) s = 2 and ≥n k, 3, or k = 2 and ≥m s, 3;
(4) ≡s 0 (mod 4) or ≡k 0 (mod 4);
(5) ≥s k, 3 are not coprime.

Proposition 5.5. A tight n cMPFS (2, ; )*
0

nc2 +1

exists if and only if ≥n 3.

Proof. As already observed, there is no n cMPFS (2, ; )*
0

nc2 +1

when n = 1, 2. If ≥n 4 is

even, we apply Lemma 5.1 takingm k= = 2 and n s= . So, we may assume that ≥n 3 is
odd.

We first consider the case ≥c 3. Let H be a Heffter array c n n cH( , ; , ) (see Definition
1.6), whose existence was proved in [3]. So, there exists a subset Ω of nc2 +1 such that
∪Ω −Ω is a partition of *nc2 +1. Let R R R, , …, c1 2 be the rows of H : by definition, the

elements of each Ri add up to [0] nc2 +1. For every ∈i c[1, ]we construct the n2 × array Ai,
by taking

By construction, the elements of each column of Ai add up to [0] nc2 +1. Also, taking
 A A A= { , , …, }c1 2 , we have   ∪( ) = Ω −Ω = *nc2 +1, showing that  is a

n cMPFS (2, ; )*
0

nc2 +1

.

Now, we deal with the case c = 1. If ≡n 3 (mod 4), then the result follows from
Corollary 5.4. So, suppose ≡n 1 (mod 4), and write n = 4ℓ + 5 with ≥ℓ 0. Take the
following subsets of n[1, ]:

∪ ∪ ∪Λ = {ℓ + 1} [ℓ + 3, 3ℓ + 5] and Λ = [1, ℓ] {ℓ + 2} [3ℓ + 6, 4ℓ + 5].+ −

Then ∪ nΛ Λ = [1, ]+ − and

∈

∈






 


 


 






 


 


 


 


 




λ

λ

= (ℓ + 1) +
3ℓ + 6

2
−

ℓ + 3

2
= 4ℓ + 15ℓ + 13,

=
ℓ + 1

2
+ (ℓ + 2) +

4ℓ + 6

2
−

3ℓ + 6

2
= 4ℓ + 7ℓ + 2.

λ

λ

Λ

2

Λ

2

+

−
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Now, let i i( , …, )1 2ℓ+4 be any ordering of Λ+ and j j( , …, )1 2ℓ+1 be any ordering of Λ−. Take
the following n2 × array with elements in *n2 +1:

Clearly, the elements of each column add up to [0] n2 +1. Furthermore, the elements of the first
row of A add up to [4ℓ + 15ℓ + 13] − [4ℓ + 7ℓ + 2] = [8ℓ + 11] = [0]n n n n

2
2 +1

2
2 +1 2 +1 2 +1.

This shows that A is a nMPF (2, )*
0

n2 +1

, that is, a nMPFS (2, ; 1)*
0

n2 +1

.

Finally, we consider the case c = 2. Set N n= 4 + 1 and define the following blocks
with elements in N , where x is a positive integer:

Note that, in all these blocks, the elements of each row and each column add up to [0]N .
If n = 5, we take

If ≡n 3 (mod 4), write n = 4ℓ + 3 and define A1 as the n2 × array obtained by the
juxtaposition of U3 and the blocks W j6+4 with ∈j [0, ℓ − 1] (so, A1 coincides
with U3 when n = 3). Also, let A2 be the n2 × array defined by the juxtaposition of V3
and the blocks Wn j+3+4 with ∈j [0, ℓ − 1]. We have  ∈A z z( ) = {±[ ] Ψ }N1 1 and
 ∈A z z( ) = {±[ ] Ψ }N2 2 , where

∪ ∪ ∪

∪ ∪ ∪

n n

n n n n

Ψ = {1, 3, 4} {6} [8, + 2] { + 4},

Ψ = {2, 5, 7} { + 3} [ + 5, 2 − 1] {2 + 1}.
1

2

If ≡n 1 (mod 4), with ≥n 9, write n = 4ℓ + 9 and define A1 as the n2 ×

array obtained by the juxtaposition of U9 and the blocks W j18+4 with ∈j [0, ℓ − 1].
Also, let A2 be the n2 × array defined by the juxtaposition of V9 and the
blocks Wn j+9+4 with ∈j [0, ℓ − 1]. We have  ∈A z z( ) = {±[ ] Ψ }N1 1 and
 ∈A z z( ) = {±[ ] Ψ }N2 2 , where
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∪ ∪ ∪

∪ ∪ ∪

n n

n n n n

Ψ = {1, 2, 3, 4, 5, 12, 13, 14, 16} {18} [20, + 8] { + 10},

Ψ = {6, 7, 8, 9, 10, 11, 15, 17, 19} { + 9} [ + 11, 2 − 1] {2 + 1}.
1

2

In all the previous cases, we get  ∪ ∈A A z z n( ) ( ) = {±[ ] [1, 2 ]} = *n n1 2 4 +1 4 +1, and
hence the set A A{ , }1 2 is a nMPFS (2, ; 2)*

0

n4 +1

. □

For instance, we can construct a MPF (2, 9)*
0

19

following the proof of the previous

proposition. In this case, Λ = {2, 4, 5, 6, 7, 8}+ and Λ = {1, 3, 9}− :

Corollary 5.6. Let ≥m n, 2. There exists a m nMPF ( , )*
0

mn+1

if and only if mn + 1 is odd

and greater than 5.

We now consider the general case of any finite abelian group, not necessarily cyclic.

Lemma 5.7. Let Γ , Γ1 2 be two finite abelian groups with   aΓ = 2 + 11 and   bΓ = 2 + 12 .
Suppose that a2 + 1 divides b2 + 1 and that there exists a bMPF (2, )

Γ*
0

2

. Then, there exists

a a b abMPF (2, + + 2 )Γ*
0 , where ⊕Γ = Γ Γ1 2.

Proof. Note that Γ , Γ1 2 belong to  , since they both have odd order. Let g g( , …, )a1 2 be any
ordering of the elements of Γ*1 such that g g= −a+ℓ ℓ for all ∈ aℓ [1, ], and let h h( , …, )b1 2 +1

be any ordering of the elements of Γ2. Let V v= ( )i j, be a bMPF (2, )
Γ*

0

2

. We construct a

a b ab2 × ( + + 2 ) array C as follows.
First, take the b2 × array T t= ( )i j, , where t v= (0 , )i j i j, Γ ,1

for any i = 1, 2 and any
∈j b[1, ]. Since the elements of each row and of each column ofV add up to 0Γ2, the elements

of each row and of each column of T add up to (0 , 0 )Γ Γ1 2
. Now, for every ∈ aℓ [1, ], we

construct a b2 × (2 + 1) array U u= ( )i rℓ ,
(ℓ) setting u g h= ( , )r r1,

(ℓ)
ℓ and u g h= (− , − )r r2,

(ℓ)
ℓ for

every ∈r b[1, 2 + 1]. Note that the elements of each column of Uℓ add up to

(0 , 0 )Γ Γ1 2
, while the elements of each row add up to     g h g±( Γ , ) = (± Γ , 0 )r

b
r2 ℓ =1

2 +1
2 ℓ Γ2 .

Since the order of Γ1 divides the order of Γ2, applying Lagrange's theorem, we obtain
 gΓ = 02 ℓ Γ1, whence  g(± Γ , 0 ) = (0 , 0 )2 ℓ Γ Γ Γ2 1 2

. Finally, we construct the array C:

By the previous observations, the elements of each row and each column of C add up to
0Γ. Furthermore,  ∈T h h( ) = {(0, ) Γ*}2 and  ∈U g h h( ) = {±( , ) Γ }ℓ ℓ 2 . Hence,

  ∪ C T U( ) = ( ) ( ( )) = Γ*a
ℓ=1 ℓ . This proves that C is a a b abMPF (2, + + 2 )Γ*

0 . □

Corollary 5.8. Let Γ be an abelian group of order ≥n2 + 1 3. There exists a
nMPF (2, )Γ*

0 if and only if ∉ ⊕Γ { , , }3 5 3 3 .
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Proof. First, decompose Γ as the direct sum ⊕ ⊕…n n2 +1 2 +1r1
of cyclic groups of

order n2 + 1i such that n2 + 1i divides n2 + 1i+1 for all ∈i r[1, − 1]. Suppose
≥n2 + 1 7r . In this case, there exists a nMPF (2, )r*

0

nr2 +1

by Proposition 5.5. If r = 1,

our proof is complete. If ≥r 2, applying Lemma 5.7, there also exists a

( )MPF 2,
n n

Γ*
0 (2 + 1)(2 + 1) − 1

2
r r

2

−1 , where ⊕Γ = n n2 2 +1 2 +1r r−1
. Again, if r = 2, our proof

is complete; otherwise, we apply repeatedly Lemma 5.7, obtaining at the end a
nMPF (2, )Γ*

0 .
So, we are left to consider the cases when Γ is an elementary abelian group of

exponent ∈n2 + 1 {3, 5}r . We have already seen that there is no MPF (2, 1)*
0

3

and no

MPF (2, 2)*
0

5

. Also, suppose that A is a MPF (2, 4)Γ*
0 , where ⊕Γ = 3 3. Without loss

of generality, we may assume that  ∈(1, 1) = ([0] , [1] ) Γ3 3 , which implies
(2, 1) = ([0] , [2] )3 3 . Now, to fill the remaining cells of the first row of A we use three
distinct elements x y([ ] , [ ] )1 3 1 3 , x y([ ] , [ ] )2 3 2 3 , x y([ ] , [ ] )3 3 3 3 such that x x x[ + + ] = [0]1 2 3 3 3.
This implies that x x x z[ ] = [ ] = [ ] = [ ]1 3 2 3 3 3 3 with ∈z {1, 2}. For both values of z, we have
y y y[ + + ] = [0]1 2 3 3 3: this implies that the elements of the first row of A add up to
([0] , [1] )3 3 , a contradiction. Hence, there is no ⊕MPF (2, 4)( )*

0
3 3

.

Assume n2 + 1 = 3r and ≥r 3. We first take the following ⊕ ⊕MPF (2, 13)( )*
0

3 3 3
,

where the entry xyz must be read as x y z([ ] , [ ] , [ ] )3 3 3 :

Then, we proceed as before applying repeatedly Lemma 5.7 until we obtain a
nMPF (2, )Γ*

0 . Assume n2 + 1 = 5r and ≥r 2. In this case, it suffices to apply the
previous argument starting with the following ⊕MPF (2, 12)( )*

0
5 5

, where the entry xy

must be read as x y([ ] , [ ] )5 5 :

□

6 | CONCLUSIONS

In this paper we introduced the concepts of magic and zero‐sum magic partially filled
array whose elements belong to a subset Ω of an abelian group Γ. We think these arrays
are worth to be studied not only because they generalize well‐known objects, such as
magic rectangles, Γ‐magic rectangles, signed magic arrays, integer/noninteger/relative
Heffter arrays, but also because of their connection with Γ‐supermagic labelings and with
zero‐sum Γ‐magic graphs.

One of our main achievements is the complete solution for the existence of
magic rectangle sets with empty cells m n s k cMRS( , ; , ; ) (Theorem 1.8), which extends
Froncek's result about tight magic rectangle sets. We have also investigated two
significant cases: when Ω is the full group Γ and when Ω is the set Γ* of nonzero
elements of Γ. The main results about these two cases are described in Theorem 1.9, that
we can now prove.
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Proof of Theorem 1.9. Items (1), (5), and (6) follow from Corollaries 4.1, 5.6, and 5.8; item (4)
follows from Proposition 5.5. To prove (2) and (3), set d s k= gcd( , ). If ≡d 0 (mod 4), there

exists a diagonal ( )d cMPFS ; ;
nk

dΓ
0 for every ∈Γ of order nkc, by Proposition 4.3. If nk is

odd and n dgcd( , − 1) = 1, then ≥d 3 is odd: so, there exists a diagonal

⊕ ∕ ( )dMPF ;
nk

d

0
d nk d

by Proposition 4.4. In both cases, we apply Theorem 2.3. □

ORCID
Marco Antonio Pellegrini http://orcid.org/0000-0003-1742-1314

REFERENCES
1. S. Akbari, F. Rahmati, and S. Zare, Zero‐sum magic labelings and null sets of regular graphs, Electron.

J. Combin. 21 (2014), #P2.17.
2. D. S. Archdeacon, Heffter arrays and biembedding graphs on surfaces, Electron. J. Combin. 22

(2015), #P1.74.
3. D. S. Archdeacon, T. Boothby, and J. H. Dinitz, Tight Heffter arrays exist for all possible values, J. Combin.

Des. 25 (2017), 5–35.
4. K. Burrage, D. M. Donovan, N. J. Cavenagh, and E. Ş. Yazıcı, Globally simple Heffter arrays H n k( ; ) when

≡k 0, 3 (mod 4), Discrete Math. 343 (2020), #111787.
5. N. J. Cavenagh, J. H. Dinitz, D. M. Donovan, and E. Ş. Yazıcı, The existence of square non‐integer Heffter

arrays, Ars Math. Contemp. 17 (2019), 369–395.
6. N. J. Cavenagh, D. M. Donovan, and E. Ş. Yazıcı, Biembeddings of cycle systems using integer Heffter arrays,

J. Combin. Des. 28 (2020), 900–922.
7. S. Cichacz, A Γ‐magic rectangle set and group distance magic labeling, In: Combinatorial algorithms.

Revised selected papers from the 25th International Workshop (IWOCA 2014). Lecture Notes in Computer
Sci. (J. Kratochvíl, M. Miller and D. Froncek, eds.) 8986, Springer, Cham, 2015, pp. 122–127.

8. S. Cichacz and T. Hinc, A magic rectangle set on Abelian groups and its application, Discrete Appl. Math.
288 (2021), no. 24, 201–210.

9. S. Cichacz and T. Hinc, A note on magic rectangle set k lMRS (2 + 1, 4; 4 + 2)Γ , J. Combin. Des. 29 (2021),
502–507.

10. S. Costa and S. Della Fiore, Existence of λ‐fold non‐zero sum Heffter arrays through local considerations,
preprint available at https://arxiv.org/abs/2209.02309

11. S. Costa, S. Della Fiore, and A. Pasotti, Non‐zero sum Heffter arrays and their applications, Discrete Math.
345 (2022), #112952.

12. S. Costa, F. Morini, A. Pasotti, and M. A. Pellegrini, Globally simple Heffter arrays and orthogonal cyclic
cycle decompositions, Australas. J. Combin. 72 (2018), 549–593.

13. S. Costa, F. Morini, A. Pasotti, and M. A. Pellegrini, A generalization of Heffter arrays, J. Combin. Des. 28
(2020), 171–206.

14. S. Costa and A. Pasotti, On λ‐fold relative Heffter arrays and biembedding multigraphs on surfaces, European
J. Combin. 97 (2021), #103370.

15. S. Costa, A. Pasotti, and M. A. Pellegrini, Relative Heffter arrays and biembeddings, Ars Math. Contemp. 18
(2020), 241–271.

16. J. H. Dinitz and A. R. W. Mattern, Biembedding Steiner triple systems and n ‐cycle systems on orientable
surfaces, Australas. J. Combin. 67 (2017), 327–344.

17. J. H. Dinitz and A. Pasotti, A survey of Heffter arrays, preprint available at https://arxiv.org/abs/2209.13879
18. D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Comb.

10 (2013), 119–127.
19. D. Froncek, Handicap incomplete tournaments and ordered distance antimagic graphs, Congr. Numer. 217

(2013), 93–99.
20. D. Froncek, Magic rectangle sets of odd order, Australas. J. Combin. 67 (2017), 345–351.

366 | MORINI and PELLEGRINI

 15206610, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21886 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://orcid.org/0000-0003-1742-1314
https://arxiv.org/abs/2209.02309
https://arxiv.org/abs/2209.13879


21. D. Froncek, J. McKeown, J. McKeown, and M. McKeown, Z nm2 ‐supermagic labeling of □C Cn m, Indones.
J. Comb. 2 (2018), 57–71.

22. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (1998), #DS6(24th ed.).
23. T. Harmuth, Über magische Quadrate und ähniche Zahlenfiguren, Arch. Math. Phys. 66 (1881), 286–313.
24. T. Harmuth, Über magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881), 413–447.
25. A. Khodkar and B. Ellis, Signed magic rectangles with two filled cells in each column, preprint available at

https://arxiv.org/abs/1901.05502
26. A. Khodkar and D. Leach, Magic rectangles with empty cells, Util. Math. 116 (2020), 45–56.
27. A. Khodkar, C. Schulz, and N. Wagner, Existence of some signed magic arrays, Discrete Math. 340 (2017), no. 5,

906–926.
28. F. Morini and M. A. Pellegrini, On the existence of integer relative Heffter arrays, Discrete Math. 343 (2020),

#112088.
29. F. Morini and M. A. Pellegrini, Magic rectangles, signed magic arrays and integer λ‐fold relative Heffter

arrays, Australas. J. Combin. 80 (2021), 249–280.
30. F. Morini and M. A. Pellegrini, Rectangular Heffter arrays: A reduction theorem, Discrete Math. 345 (2022),

#113073.
31. B. M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967), 427–438.
32. Y. Wen and H. Sun, Note on magic squares and magic cubes on abelian groups, Exposition. 17 (1997), 176–178.

How to cite this article: F. Morini and M. A. Pellegrini, Magic partially filled arrays on
abelian groups, J. Combin. Des. (2023), 31, 347–367. https://doi.org/10.1002/jcd.21886

MORINI and PELLEGRINI | 367

 15206610, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21886 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://arxiv.org/abs/1901.05502
https://doi.org/10.1002/jcd.21886

	Magic partially filled arrays on abelian groups
	1 INTRODUCTION
	2 NOTATION, EXAMPLES, AND PRELIMINARY RESULTS
	3 MAGIC RECTANGLE SETS WITH EMPTY CELLS
	4 SOME CONSTRUCTIONS FOR THE CASE Ω=Γ
	5 SOME CONSTRUCTIONS FOR THE CASE Ω=Γ*
	6 CONCLUSIONS
	ORCID
	REFERENCES




