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Abstract. We prove generation results of analytic strongly continuous semigroups on L p(Rd ,Rm ) (1 <

p < ∞) for a class of vector-valued Schrödinger operators with unbounded coefficients. We also prove
Gaussian type estimates for such semigroups.

1. Introduction

Systems of elliptic and parabolic equations with (possibly) unbounded coefficients
arise quite naturally in the study of mathematical models which describe physical
phenomena such as Navier Stokes equations (see e.g. [17,19,20]). Differently from
the scalar case, where the theory of elliptic and parabolic operators with unbounded
coefficients is widely studied (see [24] and the reference therein), the interest on the
vector-valued case is quite recent as the quoted references show.
In this paper, we consider realizations in L p-spaces of Schrödinger type vector-

valued elliptic operators defined on smooth functions u : Rd → R
m , (d,m ∈ N), by

Au = div(Q∇u) − V u =: A0u − V u, where the diffusion matrix Q(x) is posi-
tive definite at each x ∈ R

d and V is a measurable matrix-valued function. The first
problem is to find conditions on Q and V and identify a realization of the operatorA
in L p(Rd ,Rm) which generates a strongly continuous semigroup (T p(t))t≥0; after-
wards one is interested in regularity properties of the semigroup, such as analyticity,
ultracontractivity and kernel estimates.
This type of operators have been recently studied in different settings. For an analysis

in the space of bounded and continuous functions we refer the reader to the papers
[1,4,12]. Also the L p-context has been investigated. As shown by the scalar case, the
L p-spaces related to the invariantmeasure represent themost suitable L p-spaceswhere
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to set problems associated with elliptic operators with unbounded coefficients, but, in
the vector-valued case, only partial results in this direction are available so far (see
[2,3]). Nevertheless, the classical L p-context is important in view of the applications.
A perturbation method, due to Monniaux and Prüss, see [29], has been applied in
the seminal paper [18], where generation results in L p(Rd ;Rm) are proved for a
class of nondegenerate weakly coupled elliptic operators containing also a first-order
diagonal term, and more recently in [22], where a class of vector-valued Schrödinger-
type operators is considered, when the matrix-valued function Q is bounded and can
degenerate neither at some x ∈ R

d nor at infinity, while the potential V is quasi
accretive and locally Lipschitz continuous on R

d , and |DjV (−V )−α| ∈ L∞(Rd)

for some α ∈ [0, 1/2). In this case the domain of the L p-realization of A is the
intersection of the domains of the diffusion and the potential part of the operator. By
perturbing V with a scalar potential v ∈ W 1,∞

loc (Rd) satisfying the condition |∇v| ≤ cv
onRd for some positive constant c (in the L2-setting, actually even with more general
matrix-valued perturbation), a larger class of potentials has been considered in [5,25],
by using perturbation results due to N. Okazawa [30]. In [23], assuming again strict
ellipticity and boundedness for the diffusion coefficients, pointwise accretivity and
local boundedness of the potential term, the authors prove that A, endowed with its
maximal domain, generates a strongly continuous semigroup in L p(Rd;Cm).

A different approach has been adopted in [7] to deal with a class of vector-valued
nondegenerate elliptic operators, coupled up to the first order. More precisely, using
the semigroup, obtained in [1] in the space Cb(R

d;Rm), the authors of [7] provide
sufficient conditions which allow to extend this semigroup to the L p scale. It is worth
mentioning that this approach does not provide any sharp description of the domain
of the generator of the semigroup.

A class of vector-valued elliptic operators L, including also a first-order coupling
term, has been considered very recently in [6]. This class contains the operator A,
but the presence of the drift term causes technical problems which prevent us from
both analyzing the L1-setting and proving an integral representation of the semigroup
(T p(t))t≥0 associated with the operator L in L p(Rd;Cm). For this reason, it is of
interest to consider the operatorA on its own. We introduce assumptions on its coef-
ficients that can be made independent of p ∈ [1,∞) and, as a consequence, allow to
prove summability improving properties as ultracontractivity and the integral repre-
sentation of the associated semigroup (T (t))t≥0 in terms of a kernel K . A domination
with a scalar semigroup associated to a suitable form, allows us also to deduce some
Gaussian type estimates satisfied by the kernel K , which are expressed in terms of a
distance associated with the diffusion coefficients. To our knowledge, this result seems
to be new and of interest even in the scalar case.

Notation. Throughout the paper K = R or K = C. The Euclidean inner product
in K

m and the associated norm are denoted by 〈·, ·〉 and | · | respectively. Given a
function u : Ω ⊆ R

d → K
m , we denote by uk its k-th component and we set

sign(u) = |u|−1uχ{u �=0}. For each 1 ≤ p < ∞, L p(Rd ,Km) denotes the classical
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vector-valued Lebesgue space endowed with the norm ‖ f ‖p = (
∫
Rd | f (x)|pdx)1/p .

The pairing between L p(Rd ,Km) and L p′
(Rd ,Km) , where p′ is the conjugate index

of p, is defined by 〈u, v〉p,p′ = ∫
Rd 〈u(x), v(x)〉dx for every u ∈ L p(Rd ,Km) and

v ∈ L p′
(Rd ,Km). If k ∈ N, Wk,p(Rd ,Km) is the classical vector-valued Sobolev

space, namely the space of all functions u ∈ L p(Rd ,Km) whose components have
distributional derivatives up to the order k belonging to L p(Rd ,K). The norm of
Wk,p(Rd ,Km) will be denoted by ‖ · ‖k,p. The spaces Wk,p

loc (Rd ,Km) are defined
analogously. C(Rd ,Km) stands for the space of functions u : R

d → K
m whose

components belong to C(Rd ,K). A similar notation is used for the subspaces of
C(Rd ,Km). The subscript “b“ (resp. “c”) stands for “bounded” (resp. “compactly sup-
ported”). When m = 1 and K = R, we simply write Ck(Rd), L p(Rd) and W 1,2(Rd)

instead of Ck(Rd;R), L p(Rd;R) and W 1,2(Rd ;R). Finally, by B(r) we denote the
ball of Rd centered at 0 and with radius r .

2. Generation results

We are going to consider the elliptic operator A acting on vector-valued smooth
functions u as follows:

Au = div(Q∇u) − V u =: A0u − V u (1)

where the coefficients Q = (qi j )1≤i, j≤d and V = (vhk)1≤h,k≤m satisfy the following
assumptions:

Hypotheses 1. (i) qi j = q ji ∈ C1(Rd) for each i, j = 1, . . . , d and 〈Q(x)ξ, ξ 〉 is
positive for every x ∈ R

d and 0 �= ξ ∈ R
d ;

(ii) vhk : Rd → R are measurable functions for every h, k = 1, . . . ,m;
(iii) there exist a function v ∈ C1(Rd), with positive infimum v0, and positive con-

stants c1, γ and Cγ such that

(a) 〈V (x)ξ, ξ 〉 ≥ v(x)|ξ |2, |V (x)ξ | ≤ c1v(x)|ξ |, x ∈ R
d , ξ ∈ R

m,

(b) 〈Q(x)∇v(x),∇v(x)〉 1
2 ≤ γ v(x)3/2 + Cγ , x ∈ R

d;

(iv) there exists a positive function ψ ∈ C1(Rd) such that lim|x |→∞ ψ(x) = ∞ and
〈Q∇ψ,∇ψ〉
(ψ logψ)2

∈ L∞(Rd).

Hypothesis 1(iii) goes back to the papers [8,9], where the domain of the realization
in L2(Rd) of the scalar Schrödinger operator −Δ + v is characterized under suitable
assumptions on v. Afterwards the same type of assumptions, but for more general
diffusion matrices, have been considered in [26,27]. On the other hand, Hypothesis
1(iv) allows us to apply to the operatorA in (1) the following resultwhich is a particular
case of [6, Theorem 2.3].
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Theorem 1. Let p ∈ (1,∞) and assume that Hypotheses 1(i) and 1(iv) are satisfied.
Further, assume that vhh ∈ L p

loc(R
d) for every h = 1, . . . ,m, vhk ∈ L∞

loc(R
d) for every

h, k = 1, . . . ,m with h �= k and V is pointwise accretive. Then, the realization in
L p(Rd ,Rm) of the operator A with domain

Dp,max = {u ∈ L p(Rd;Rm) ∩ W 2,p
loc (Rd;Rm) | Au ∈ L p(Rd;Rm)}

generates a contraction semigroup in L p(Rd;Rm). Moreover C∞
c (Rd;Rm) is a core

for (A, Dp,max).

For every ξ, η ∈ C
m , we set q(ξ, η) = 〈Q(·)ξ, η〉 and q(ξ) = 〈Q(·)ξ, ξ 〉. We also

recall that for every u ∈ W 1,p(Rd ,Cm) it holds that

∇|u|2 = 2Re
m∑

j=1

(∇u j )u j , q(∇|u|2) ≤ 4|u|2
m∑

j=1

q(∇u j ). (2)

For each p ∈ (1,∞), we consider the realization Ap of the operator A in
L p(Rd;Rm) endowed with the minimal domain

Dp = {u ∈ W 2,p
loc (Rd;Rm) : u,A0u, V u ∈ L p(Rd ;Rm)}

= {u ∈ W 2,p
loc (Rd;Rm) : A0u, vu ∈ L p(Rd ;Rm)}.

On Dp we consider the norm ‖u‖Dp = ‖A0u‖p + ‖vu‖p. By the assumptions on
V and v, ‖ · ‖Dp is clearly equivalent to the norm u �→ ‖u‖p + ‖A0u‖p + ‖V u‖p.
Moreover, (Dp, ‖ · ‖Dp ) is a Banach space, since A0 is a closed operator.

Proposition 1. Let Hypotheses 1(i), (i i), (i i i)(a) be satisfied. Then, the operator
(A,C∞

c (Rd ,Cm)) is regularly dissipative in L p(Rd ,Cm), i.e. there exists φ ∈ (
0, π

2

)

such that e±iφA is dissipative.

Proof. It is well known that
(A,C∞

c (Rd ,Cm)
)
is regularly dissipative if and only if

∣
∣
∣
∣

∫

Rd
〈Au, u〉|u|p−2dx

∣
∣
∣
∣ ≤ −δRe

∫

Rd
〈Au, u〉|u|p−2dx (3)

for some δ > 0 and all u ∈ C∞
c (Rd ,Cm), (see [14, Theorem II.4.6] and [16, Theorem

1.5.9]).
To prove (3), we fix u ∈ C∞

c (Rd ,Cm), ε > 0 and consider the function uε =
(|u|2 + ε)1/2. Integrating by parts, we get

∫

Rd
〈Au, u〉u p−2

ε dx

= −
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx − p − 2

2

m∑

h=1

∫

Rd
q(∇uh,∇|u|2)uhu p−4

ε dx

−
∫

Rd
〈V u, u〉u p−2

ε dx .
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Therefore, using Hypothesis 1(iii)(a), we obtain

−Re
∫

Rd
〈Au, u〉u p−2

ε dx ≥
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx + p − 2

4

∫

Rd
q(∇|u|2)u p−4

ε dx

+
∫

Rd
v|u|2u p−2

ε dx

and, using also both the two formulas in (2), we can estimate
∣
∣
∣
∣

∫

Rd
〈Au, u〉u p−2

ε dx

∣
∣
∣
∣

≤
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx + |p − 2|

2

m∑

h=1

∫

Rd
|q(∇uh,∇|u|2)| |uh |u p−4

ε dx

+ c1

∫

Rd
v|u|2u p−2

ε dx

≤
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx + |p − 2|

4

m∑

h=1

∫

Rd
q(∇uh)|u|2u p−4

ε dx

+ |p − 2|
4

m
∫

Rd
q(∇|u|2)u p−4

ε dx + c1

∫

Rd
v|u|2u p−2

ε dx

≤
(

1 + |p − 2|
4

) m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx + |p − 2|

4
m

∫

Rd
q(∇|u|2)u p−4

ε dx

+ c1

∫

Rd
v|u|2u p−2

ε dx

≤
(

1 + |p − 2|
4

+ |p − 2|m
) m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx + c1

∫

Rd
v|u|2u p−2

ε dx .

If p ≥ 2, then we get that

−Re
∫

Rd
〈Au, u〉u p−2

ε dx ≥
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx +

∫

Rd
v|u|2u p−2

ε dx

≥ δ

∣
∣
∣
∣

∫

Rd
〈Au, u〉u p−2

ε dx

∣
∣
∣
∣ (4)

by choosing δ < min{(1 + 4−1|p − 2| + |p − 2|m)−1, c−1
1 }.

On the other hand, if p ∈ (1, 2), then, by applying the inequality in (2) and observing
that |u|2 ≤ u2ε , we obtain

−Re
∫

Rd
〈Au, u〉u p−2

ε dx ≥ (p − 1)
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε dx +

∫

Rd
v|u|2u p−2

ε dx

≥ δ

∣
∣
∣
∣

∫

Rd
〈Au, u〉u p−2

ε dx

∣
∣
∣
∣, (5)
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by choosing δ < min{(1 + 4−1|p − 2| + |p − 2|m)−1(p − 1), c−1
1 }.

The assertion follows letting ε tend to 0 in (4) and (5). �

Theorem 2. UnderHypotheses 1, if p < 1+4γ −2, then the operator Ap generates an
analytic contraction semigroup (T p(t))t≥0 in L p(Rd ;Rm). Moreover, C∞

c (Rd ;Cm)

is a core of Ap.

Proof. We assume first that Cγ = 0 and prove that there exists a constant C =
C(p, γ ) > 0 such that ‖vu‖p ≤ C‖Au‖p for every u ∈ C∞

c (Rd;Rm). For this
purpose, we fix u ∈ C∞

c (Rd;Rm), set f = −Au and, for every ε > 0, consider
the function uε introduced in Proposition 1. By using both the formulas in (2) and
integrating by parts, we obtain

∫

Rd
〈 f , u〉u p−2

ε v p−1dx

=
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε v p−1dx + p − 2

4

∫

Rd
q(∇|u|2)u p−4

ε v p−1dx

+ p − 1

2

∫

Rd
q(∇|u|2,∇v)u p−2

ε v p−2dx +
∫

Rd
〈V u, u〉u p−2

ε v p−1dx

≥
m∑

h=1

∫

Rd
q(∇uh)u

p−2
ε v p−1dx − 1

4

∫

Rd
q(∇|u|2)u p−4

ε v p−1dx

− p − 1

4
γ 2

∫

supp(u)

v pu p
ε dx +

∫

Rd
v p|u|2u p−2

ε dx

≥ − p − 1

4
γ 2

∫

supp(u)

v pu p
ε dx +

∫

Rd
v p|u|2u p−2

ε dx .

By applying Young’s inequality, we get that for every δ > 0 there exists a positive
constant C = C(δ, p) such that
∫

Rd
v p|u|2u p−2

ε dx− p − 1

4
γ 2

∫

supp(u)

v pu p
ε dx ≤

∫

Rd
〈 f , u〉u p−2

ε v p−1dx

≤ δ

∫

supp(u)

v pu p
ε dx+C

∫

Rd
| f |pdx .

Letting ε tend to 0 yields

(

1 − p − 1

4
γ 2 − δ

) ∫

Rd
v p|u|pdx ≤ C

∫

Rd
| f |pdx

and we get the assertion by the assumptions on γ and p, choosing δ sufficiently small.
As a consequence of the estimate that we have proved, we can show that there exist

positive constants M1 and M2, depending on c0, c1 and γ such that

M1‖u‖Dp ≤ ‖Au − u‖p ≤ M2‖u‖Dp , u ∈ C∞
c (Rd;Rm). (6)
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Indeed, for every u ∈ C∞
c (Rd;Rm), it holds that

‖u‖Dp = ‖A0u‖p + ‖vu‖p ≤ ‖Au‖p + ‖V u‖p + ‖vu‖p

≤ ‖Au‖p + (1 + c1)‖vu‖p ≤ (
(1 + c1)C + 1

)‖Au‖p

≤ 2
(
(1 + c1)C + 1

)‖Au − u‖p

by the dissipativity of A. Moreover,

‖Au − u‖p ≤ ‖A0u‖p + ‖vu‖p + ‖u‖p

≤ ‖A0u‖p + (1 + c−1
0 )‖vu‖p

≤ M2‖u‖Dp . (7)

If Cγ �= 0, then we fix λ > 0 such that V + λI and v + λ satisfy Hypothesis 1(iii)
with Cγ = 0. Applying (6) toA − λI and using the dissipativity of A, we obtain

‖u‖Dp ≤ C̃‖Au−λu−u‖p ≤ C̃‖Au−u‖p+C̃λ‖u‖p ≤ (1 + λ)C̃‖Au − u‖p,

while the other inequality follows as in (7).
Next, we show that Dp = Dp,max. Clearly, we just need to prove that Dp,max ⊂

Dp. We fix u ∈ Dp,max and a sequence (un) ⊂ C∞
c (Rd ;Rm) converging to u in

L p(Rd;Rm) and such thatAun converges toAu in L p(Rd ;Rm) as n tends to∞ (see
Theorem 1). By (6), (un) is a Cauchy sequence in the Banach space Dp (endowed
with the norm ‖ · ‖Dp ). Hence, u ∈ Dp and the inclusion Dp,max ⊂ Dp follows.
In particular, C∞

c (Rd;Rm) is dense in Dp and, by Theorem 1, (A, Dp) generates a
contraction semigroup. �

Theorem 3. UnderHypotheses 1, suppose that v(x) blows up as |x | tends to∞. Then,
for every p ∈ (1, 1 + 4γ −2), the operator Ap has compact resolvent.

Proof. We have to show that the unit ball B of Dp is totally bounded in L p(Rd;Rm).
First let observe that for every ε > 0 there exists R > 0 such that v(x) > ε−1 if
|x | > R. Now, let us fix ε ∈ (0, 1). Then,

∫

|x |≥R
|u(x)|pdx ≤ 1

(infB(R) v)p

∫

Rd
v(x)p|u(x)|pdx ≤ ε p (8)

for every u ∈ B. Let B′ be the set of the restrictions of the elements of B to B(R). By
[15,Theorem9.11],B′ is a bounded subsets ofW 2,p(B(R),Cm) and therefore is totally
bounded in L p(B(R),Cm). So, there exist functions f 1, . . . , f n ∈ L p(B(R),Cm)

such that B′ is contained in the union of the balls of L p(B(R);Cm) centered at f i
(i = 1, . . . , n) with radius ε. Letting f i be the trivial extension of f i to R

d and by
taking (8) into account, we conclude that B is contained in the union of the ball of
L p(Rd;Cm), centered at f i (i = 1, . . . , n) with radius 2ε. �
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3. Consistency and summability properties

Let us define

D(a) = {u ∈ W 1,2
loc (Rd ,Cm) | (q(∇u))

1
2 , v

1
2 |u| ∈ L2(Rd)} (9)

and a : D(a) × D(a) → C by

a(u,w) =
∫

Rd
q(∇u,∇w)dx +

∫

Rd
〈V u,w〉dx . (10)

As usually, we denote by ‖ · ‖a =
√
Re a(·, ·) + ‖ · ‖22 the norm of D(a) associated

with the form a. The following properties hold true:

(i) a is densely defined since C∞
c (Rd ,Cm) ⊆ D(a), it is also continuous and

accretive;
(ii) a is closed: let (un)n∈N be a Cauchy sequence in D(a). Then, (un)n∈N converges

to a function u ∈ W 1,2
loc (Rd;Cm)∩L p(Rd;Cm) and, up to a subsequence, we can

assume that ∇un converges to ∇u and un converges to u almost everywhere in
R
d . Since ‖q(∇un)‖2+‖〈V un, un〉‖2 ≤ M for all n ∈ N and a positive constant

M , by applying Fatou’s lemma we get that u ∈ D(a) and limn→∞ ‖un − u‖a =
0;

(iii) C∞
c (Rd ;Cm) is a core for a: indeed, D(a) is a Hilbert space with respect to

the scalar product 〈u,w〉a = 1
2 [a(u,w) + a(w, u)] + (u,w)L2(Rd ;C). Then,

C∞
c (Rd ;Cm) is a core for a if and only if 〈u,φ〉a = 0 for all φ ∈ C∞

c (Rd;Cm),
implies that u = 0. The proof of this statement runs analogously to that of [6,
Theorem 2.2].

Since the diffusion part in A is diagonal, integrating by parts, we deduce that
the operator B associated with a coincides with −A2 on C∞

c (Rd ,Cm). Thus, since
C∞
c (Rd ,Cm) is a core for A2 (see Theorem 2), B = −A2 follows from the closedness

of B.
Based on these remarks,we can prove the consistency of the semigroups (T p(t))t≥0.

Theorem 4. For every p, q ∈ (1, 1 + 4γ −2), the semigroups (T p(t))t≥0 and
(Tq(t))t≥0 coincide on L p(Rd;Rm) ∩ Lq(Rd;Rm).

Proof. We begin the proof by observing that Hypotheses 1(ii) and (iii)(a) imply that,
for every r ∈ (1,∞), the realization in Lr (Rd ;Rm) of the multiplication operator
u �→ −V u, with D(V ) = {u ∈ Lr (Rd ;Rm) : V u ∈ Lr (Rd;Rm)}, generates the
strongly continuous semigroup of contractions (Sr (t))t≥0, defined by (Sr (t) f )(x) =
e−tV (x) f (x) for every t > 0, f ∈ Lr (Rd ;Rm) and almost every x ∈ R

d . These
semigroups are clearly consistent.
Next, we denote by (T̃ (t))t≥0 the semigroup associated with the form a in (10),

where we take V = 0. This semigroup coincides with the semigroup (that we denote
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by (T0
2(t))t≥0) associated with the operator A0, provided by Theorem 2, since their

generators coincide. Since A0 is diagonal, the semigroup (T0
2(t))t≥0 is diagonal as

well and it consists of m copies of the scalar semigroup (T 0
2 (t))t≥0 associated with

the scalar version as of the form a (with V = 0). The form as satisfies the Beurling-
Deny criterion. Thus, the semigroup (T 0

2 (t))t≥0 can be extended to the Lr -scale (r ≥
2) and these semigroups are consistent, see [11, Theorem 1.4.1]. As a byproduct,
also the semigroup (T0

2(t))t≥0 can be extended from L2(Rd ,Rm) ∩ Lr (Rd ,Rm) to a
strongly continuous semigroup (T̃ r (t))t≥0 on Lr (Rd ,Rm) for every r ∈ [2,∞). These
semigroups are consistent. We claim that T0

r (t) = T̃ r (t) for every r ∈ (2,∞) and t >

0. For this purpose, we observe that [13, Lemma 1.11] (applied to the scalar semigroup
(T 0

2 (t))t≥0) shows that, if f ∈ D(A0
2) is such that f andA0

2 f ∈ Lr (Rd ,Rm), then f
belongs to the domain of the infinitesimal generator Ãr of the semigroup (T̃ r (t))t≥0.
In particular, Ãr f = A0

r f on C∞
c (Rd ;Rm). This fact and Theorem 2 imply that

(λI − Ãr )(C∞
c (Rd ;Rm)) = (λI − A0

r )(C
∞
c (Rd ;Rm)) is dense in L p(Rd;Rm). As

a consequence C∞
c (Rd;Rm) is a core both forA0

r and Ãr and this is enough to infer
that the semigroups (T0

r (t))t≥0 and (T̃ r (t))t≥0 coincide.
Now, we fix p, q as in the statement and we first assume that p, q ∈ [2,∞).

Applying Trotter product formula (see [14, Corollary III.5.8]), we conclude that

T r (t) f = lim
n→∞

(

T0
r

(
t

n

)

◦ Sr

(
t

n

))n

f , f ∈ Lr (Rd;Rm),

for every t > 0 and r ∈ {p, q}. Fix t > 0 and f ∈ L p(Rd ;Rm)∩ Lq(Rd;Rm). Then,
from the above arguments we infer that

T p(t) f = lim
n→∞

(

T0
q

(
t

n

)

◦ Sq

(
t

n

))n

f ,

where the limit is taken in L p(Rd;Rm). Then, up to a subsequence, we obtain that
(T0

q(t/n)◦Sq(t/n))n f converges pointwise both to T p(t) f and to Tq(t) f as n tends
to ∞, so that the equality T p(t) f = Tq(t) f follows.
Next, we assume that p, q ∈ (1, 2] and observe that T p(t) = T̂ p′(t)∗ and Tq(t) =

T̂q ′(t)∗ for every t > 0,where T̂ p′(t) and T̂q ′(t)denote the semigroup in L p′
(Rd ;Rm)

and Lq ′
(Rd ;Rm), respectively, associated with the operator A∗, adjoint to operator

A. Since the potential V ∗ satisfies the same assumptions as the potential V and
p′, q ′ ≥ 2, from the results so far proved we conclude that T̂ p′(t) and T̂q ′(t) coincide
on L p′

(Rd;Rm) ∩ Lq ′
(Rd ;Rm) for every t > 0. Hence, for every t > 0, f ∈

L p(Rd;Rm) ∩ Lq(Rd;Rm) and ϕ ∈ C∞
c (Rd;Rm), we can write

〈T p(t) f ,ϕ〉p,p′ = 〈 f , T̂ p′(t)ϕ〉p,p′ = 〈 f , T̂q ′(t)ϕ〉q,q ′ = 〈Tq(t) f ,ϕ〉q,q ′

and the arbitrariness of ϕ ∈ C∞
c (Rd ;Rm) yields the equality T p(t) f = Tq(t) f .

Finally, if 1 < p < 2 < q, then we observe that T p(t) f = T2(t) f = Tq(t) f for
every t > 0 and f ∈ C∞

c (Rd ;Rm). Since every f ∈ L p(Rd;Rm) ∩ Lq(Rd ;Rm) is
the limit (in L p(Rd;Rm) ∩ Lq(Rd;Rm)) of a sequence of functions which belong to
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C∞
c (Rd;Rm), the equality T p(t) = Tq(t) on L p(Rd ;Rm)∩ Lq(Rd;Rm) follows for

every t > 0. �

Remark 1. As a straightforward consequence of Theorems 3 and 4, we deduce that if,
Hypotheses 1 hold true for every γ > 0 and 〈Q(x)ξ, ξ 〉 ≥ q0|ξ |2 for every x, ξ ∈ R

d

and some positive constant q0, then the spectrum of operatorAp is independent of p
and consists of eigenvalues only.

Based on Theorem 3 we can now prove the following result.

Theorem 5. Assume that Hypotheses 1 hold true for some γ > 0 and let 1 < p < 1+
4γ −2. Then the restriction of the semigroup (T p(t))t≥0 to L p(Rd;Rm)∩L1(Rd ;Rm)

can be extended to a contraction C0-semigroup (T1(t))t≥0 on the space L1(Rd;Rm),
which is consistent with (Tq(t))t≥0 for each q ∈ (1, p). The spaces Xq = {u ∈
Dq ∩L1(Rd;Rm) | Aqu ∈ L1(Rd;Rm)} are cores for the generator A1 of (T1(t))t≥0

and A1u = Aqu = Au for every u ∈ Xq and q < 1 + 4γ −2. Finally, if Hypotheses
1 hold true for every γ < 2 and

(Q(x)ξ, ξ) ≥ q0|ξ |2, ξ, x ∈ R
d , (11)

then, for every t > 0, T1(t) is bounded from L1(Rd;Rm) into L2(Rd;Rm).

Proof. Fix f ∈ L p(Rd;Rm) ∩ L1(Rd ;Rm) and r > 0. Then, f ∈ Lq(Rd ;Rm) for
each 1 < q < p and, since the semigroups (Tq(t))t≥0 are consistent, we can estimate

‖T p(t) f ‖L1(B(r),Rm ) = lim
q→1+ ‖Tq(t) f ‖Lq (B(r),Rm )

≤ lim sup
q→1+

‖ f ‖Lq (Rd ;Rm ) ≤ ‖ f ‖L1(Rd ;Rm ).

From this chain of inequalities and letting r tend to∞, it follows that we can extend the
restriction of the semigroup (T p(t))t≥0 to L p(Rd ;Rm)∩ L1(Rd;Rm)with a contrac-
tion semigroup (T1(t))t≥0 on L1(Rd ;Rm). This semigroup is strongly continuous.
Indeed, since it is uniformly bounded, it suffices to prove that T1(t) f converges to f
in L1(Rd ;Rm) when f ∈ C∞

c (Rd ;Rm). For each f ∈ C∞
c (Rd ;Rm) and q ∈ (1, p),

we can write

T1(t) f − f = Tq(t) f

− f =
∫ t

0
Tq(s)A f ds.

and thus estimate ‖T1(t) f − f ‖Lq (B(r),Rm ) ≤ t‖A f ‖q . Letting q tend to 1 and then
r tend to ∞, we infer that T1(t) f converges to f in L1(Rd;Rm) as t tends to 0.

Next, we observe that

T1(t)u − u
t

= Tq(t)u − u

t
= 1

t

∫ t

0
Tq(s)Aquds = 1

t

∫ t

0
T1(s)Aquds
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for every u ∈ Xq . Thus, the ratio t−1(T1(t)u− u) converges to Aqu in L1(Rd;Rm),
as t tends to 0. This shows that Xq ⊂ D(A1) and A1u = Aqu for u ∈ Xq . To
conclude that the set Xq is a core for A1 for every q < 1 + 4γ −2, it suffices to
apply [14, Proposition II.1.7]. Indeed, the semigroup (T1(t))t≥0 leaves Xq invariant,
since it is consistent with the semigroup (Tq(t))t≥0, and, clearly, Xq is also dense in
L1(Rd;Rm) since it contains C∞

c (Rd;Rm).
To prove the last part of the assertion, we assume that Hypotheses 1 hold true

for every γ < 2 and recall that (T2(t))t≥0 is the semigroup associated with the
quadratic form a. By (11) there exists C > 0 such that a( f , f ) ≥ C‖ f ‖21,2 for
every f ∈ D(a). Since by a straightforward adaptation of Nash’s inequality to the
vector-valued case, ‖ f ‖2+4/d

2 ≤ C1‖ f ‖21,2‖ f ‖4/d1 for some constant C1 > 0 and

every f ∈ W 1,2(Rd ;Rm) ∩ L1(Rd;Rm), we get that ‖ f ‖2+4/d
2 ≤ Ka( f , f )‖ f ‖4/d1

for some constant K > 0 and, therefore, T1(t) is bounded from L1(Rd;Rm) into
L2(Rd;Rm) (see for instance the proof of [18, Lemma 4.1]). �

If Hypotheses 1 hold true for each γ > 0, then, by Theorem 4, the semigroups
(T p(t))t≥0 exist for each p ∈ [1,∞) and are consistent. In this case, we will write
(T (t))t≥0 instead of (T p(t))t≥0.

Theorem 6. Assume that Hypotheses 1 hold true for every γ > 0 and that estimate
(11) is satisfied too. Then, for every t > 0 and 1 ≤ p < q ≤ ∞, (T (t))t≥0 is bounded
from L p(Rd ;Rm) into Lq(Rd;Rm). Moreover, for every t > 0 there exists a kernel
K (t, ·, ·) ∈ L∞(Rd × R

d;Rm×m) such that

(T (t) f )(x) =
∫

Rd
K (t, x, y) f (y)dy, x ∈ R

d , f ∈ L p(Rd ;Rm).

Proof. By observing that A∗u = div(Q∇u) − V ∗u for each u ∈ C∞
c (Rd ;Rm) and

that V ∗ satisfies the same assumptions as V , we deduce that T∗(t) is bounded from
L1(Rd;Rm) into L2(Rd ;Rm) for every t > 0. Thus, by applying the usual duality
argument and the semigroup law, it follows that T (t) is bounded from L1(Rd ;Rm)

into L∞(Rd ;Rm) and, hence, from L p(Rd;Rm) into Lq(Rd ;Rm) for every p, q ∈
(1,∞) ∪ {∞}, with p < q.
To establish the existence of the kernel, observe that

T (t) f =
m∑

i, j=1

Ti j (t)( f j )ei , f = ( f1, . . . , fm) ∈ L p(Rd ;Rm),

where {e1, . . . , em} is the canonical basis of Rm and Ti j (t)u = 〈T (t)(ue j ), ei 〉 for
every u ∈ L p(Rd). Since T (t)maps L1(Rd;Rm) into L∞(Rd ;Rm), also every Ti j (t)
maps L1(Rd) into L∞(Rd), and therefore, by the Dunford–Pettis theorem, there exists
ki j (t, ·, ·) ∈ L∞(Rd × R

d) such that

Ti j (t)u(x) =
∫

Rd
ki j (t, x, y)u(y)dy, x ∈ R

d , u ∈ L1(Rd).
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We get the assertion by defining K (t, x, y) as the matrix with entries ki j (t, x, y) for
every t > 0 and almost every x, y ∈ R

d . �

Finally, we establish a domination property of the semigroup (T (t))t≥0 with the
scalar semigroup generated by A0 − v I .

Proposition 2. Assume Hypotheses 1 with γ < 2 and that (11) holds true. Then,
the semigroup (T (t))t≥0 is dominated by the analogous scalar semigroup (T2(t))t≥0

generated by the realization of the operator div(Q∇) − v I in L2(Rd), namely
|T (t) f | ≤ T2(t)| f | for every t > 0 and f ∈ L2(Rd;Rm).

Proof. As in the proof of Theorem 4, we denote by as the sesquilinear form a in the
scalar case. Observe that for every u ∈ D(a), by the formulas in (2) and using also the
formula∇|u| = |u|−1Re

∑m
j=1(∇u j )u jχ{u �=0}, we can show that |u|belongs to D(as)

and
∑m

k=1 q(∇uk,∇(|u|−1uk)) ≥ 0. Moreover, for every f ∈ D(as), | f |sign(u)

belongs to D(a) if | f | ≤ |u| and

Re a(u, | f |sign(u)) = Re
m∑

j=1

∫

Rd
q(∇u j ,∇(| f |sign(u j )))dx

+
∫

Rd
〈V u, u|u|−1| f |〉dx

≥
∫

Rd
q(∇|u|,∇| f |)dx +

m∑

k=1

∫

Rd
q(∇uk,∇(|u|−1uk))| f |dx

+
∫

Rd
v|u|| f |dx

≥ as(|u|, | f |).
Thus, the assertion follows by applying [31, Theorem 2.30]. �

4. Gaussian estimates

In this section we mainly focus on the scalar operator A0 − v I , where A0 =
div(Q∇), assuming that Hypotheses 1 hold true for some γ ∈ (0, 2) and that condition
(11) is satisfied. We prove a sharp Gaussian estimate for the kernel of the semigroup
generated byA0 − v I , with explicit control on the constants appearing. Based on this
result, we will prove a Gaussian estimate for the kernel of the semigroup (T (t))t≥0.

In the scalar case, we adapt the arguments in [31, Chapter 6] to our situation in
which the matrix Q is allowed to be unbounded. As a consequence, the Gaussian
estimate will be expressed in terms of a distance associated with the diffusion term,
namely

dQ(x, y) = sup{|ψ(x) − ψ(y)| | ψ ∈ Cb(R
d) ∩ C1(Rd), ‖q(∇ψ)‖∞ ≤ 1}

for every x, y ∈ R
d .



Vol. 21 (2021) Vector-valued Schrödinger operators 3193

It is well known (see e.g. [10, Theorem 7]), that this distance is equivalent to the
Euclidean metric if there exist two positive constants q0 and q1 such that q0|ξ |2 ≤
〈Q(x)ξ, ξ 〉 ≤ q1|ξ |2 for every ξ, x ∈ R

d . In our case, only the inequality

dQ(x, y) ≤ 1√
q0

|x − y|, x, y ∈ R
d , (12)

holds true in general. We will provide an example at the end of the section.

Theorem 7. AssumeHypotheses 1 for every γ > 0 and condition (11) hold true. Then
there exist positive constants Hd, Kd and cd , depending only on the dimension d, such
that the kernel of the semigroup generated by A2 in L2(Rd) satisfies the estimate

k(t, x, y) ≤ Hdq
− d

2
0 t−

d
2 e−v0Kdt e− dQ (x,y)2

4t

(

1 + cddQ(x, y)2

8t

) d
2

for all t > 0 and almost every x, y ∈ R
d .

Proof. Observe first that the semigroup generated by A2 in L2(Rd) is positive. Hence
k(t, x, y) ≥ 0 for all t > 0 and a.e. x, y ∈ R

d . Define W = {ψ ∈ Cb(R) ∩ C1(Rd) |
‖q(∇ψ)‖∞ ≤ 1} and observe that for every ψ ∈ W and every ρ ∈ R it holds that
eρψu ∈ D(a) for every u ∈ D(a), where a denotes the sesquilinear form associated
with −A0 + v I , i.e., the scalar version of the form a in (9) and (10). Fix ρ ∈ R,
ψ ∈ W and consider the form aρ,ψ : D(a) × D(a) → C, defined by aρ,ψ(u, w) =
a(e−ρψu, eρψw) for every u, w ∈ D(a). Straightforward computations show that

aρ,ψ(u, w) = a(u, w) − ρ

∫

Rd
q(∇ψ,∇w)udx

+ ρ

∫

Rd
q(∇u,∇ψ)wdx − ρ2

∫

Rd
q(∇ψ)uwdx

for every u, w ∈ D(a). It follows that aρ,ψ is continuous with respect to ‖·‖a. Indeed,
taking into account that a is a continuous form, we can estimate

|aρ,ψ(u, w)| ≤ |a(u, w)| + |ρ|
∫

Rd

(
q(∇u)

1
2 |w| + q(∇w)

1
2 |u|)dx + ρ2

∫

Rd
|u‖w|dx

≤ |a(u, w)| + ρ2‖u‖2‖w‖2
+ |ρ|

∫

Rd
(q(∇u) + |u|2) 1

2 (q(∇w) + |w|2) 1
2 dx

≤ C‖u‖a‖w‖a
for every u, w ∈ D(a), where C is a positive constant not depending on u, w. More-
over, by observing that

Re aρ,ψ(u, u) = a(u, u) −
∫

Rd
ρ2q(∇ψ)|u|2dx ≥ a(u, u) − ρ2‖u‖22, (13)
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we get that aρ,ψ is closed and quasi-accretive. Therefore, the opposite of the operator
associated with aρ,ψ generates a C0-semigroup (T ρ,ψ(t)) on L2(Rd ,C). An easy
calculation shows that T ρ,ψ(t)(·) = eρψT2(t)(e−ρψ ·) for t ≥ 0, where (T2(t))t≥0 is
the (contraction) C0-semigroup associated with a on L2(Rd ,C).
We need to estimate the norm ‖T ρ,ψ(t)‖1→∞ and we do this through several steps.

Step 1. Here, we show that, for every p ∈ [2,∞) and t ≥ 0, the operator T ρ,ψ(t) is
bounded on L p(Rd ,C) and

‖T ρ,ψ(t)‖p→p ≤ e−αp,ρ t , t ≥ 0, (14)

where

αq,ρ = 2v0
q

−
(

q + 4

q
+ 1

)

ρ2, q ≥ 2. (15)

This step is a bit trickier. To prove estimate (14) we decompose the form aρ,ψ into
the sumof two forms, say bρ,ψ and b̃ρ,ψ , which are defined on D(a)×D(a) as follows:

bρ,ψ(u, w) = 1

2

∫

Rd
q(∇u,∇w)dx − ρ

∫

Rd
q(∇ψ,∇(uw))dx + 1

2

∫

Rd
vuwdx

and

b̃ρ,ψ(u, w) = 1

2

∫

Rd
q(∇u,∇w)dx + 2ρ

∫

Rd
q(∇u,∇ψ)wdx

+ 1

2

∫

Rd
vuwdx − ρ2

∫

Rd
q(∇ψ)uwdx

for u, w ∈ D(a). We prove that we can associate two semigroups (T ρ,ψ
1 (t))t≥0 and

(Sρ,ψ(t))t≥0 with these forms and they satisfy the estimates

‖T ρ,ψ
1 (t)‖p→p ≤ e

(
pρ2− v0

p

)
t
, t > 0, (16)

‖Sρ,ψ(t)‖p→p ≤ e− v0
p t e

ρ2
(
4
p +1

)
t
, t > 0. (17)

Applying the Trotter product formula, we can write

T ρ,ψ(t) f = lim
n→∞

(

T ρ,ψ
1

(
t

n

)

◦ Sρ,ψ

(
t

n

))n

f, f ∈ L p(Rd),

so that, using (16) and (17), estimate (14) easily follows.
For every z ∈ C, consider the form bρz,ψ : D(a) × D(a) → C which is defined

as the form bρ,ψ , with ρ being replaced by ρz. Clearly bρz,ψ is densely defined,
continuous with respect to ‖ · ‖a (this can be proved adapting the argument used to
prove the continuity of the form aρ,ψ ). Moreover, it is closed and quasi-accretive since
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for every u ∈ D(a)

Re bρz,ψ (u, u) = 1

2

∫

Rd
q(∇u)dx

− ρRe

(

z
∫

Rd
q(∇ψ, u∇u + u∇u)dx

)

+ 1

2

∫

Rd
v|u|2dx

≥ 1

2

∫

Rd
q(∇u)dx − 2|Re zρ|

∫

Rd
q(∇u)

1
2 |u|dx + 1

2

∫

Rd
v|u|2dx

≥
(
1

2
− ε

) ∫

Rd
q(∇u)dx − ε−1|Rez|2ρ2‖u‖22 + 1

2

∫

Rd
v|u|2dx

(18)

for every ε > 0. Taking ε = 1/4, we deduce that

Re bρz,ψ (u, u) ≥ 1

4
a(u, u) − 4|Rez|2ρ2‖u‖22,

so that the opposite of the operator associated with bρ(z) generates a C0-semigroup

(T ρ,ψ
z (t))t≥0 in L2(Rd ,C). On the other hand, taking ε = 1/2 yields

Re bρz,ψ (u, u) ≥
(

v0

2
− 2|Rez|2ρ2

)

‖u‖22,

which implies that ‖T ρ,ψ
z (t)‖2→2 ≤ e(2|Rez|2ρ2− v0

2 )t for every t > 0.

Now, we prove that the semigroups (T ρ,ψ
is (t))t≥0 are L∞-contractive for every

s ∈ R. By [31, Theorem 2.15], it suffices to show that the function (|u| ∧ 1)sign(u)

belongs to D(a) for every u ∈ D(a) and

Re biρs,ψ ((|u| ∧ 1)sign(u), (|u| − 1)+sign(u)) ≥ 0. (19)

Indeed, observe that for every u ∈ D(a), (|u| ∧ 1)sign(u) ∈ W 1,2
loc (Rd ,C) (see e.g.

[31, Proposition 4.11]) and

∇((|u| ∧ 1)sign(u)) = iIm(sign(u)∇u)

|u| sign(u)χ{|u|>1} + χ{|u|≤1}∇u.

It then follows that q(∇((|u|∧1)sign(u)))
1
2 , v

1
2 (|u|∧1)sign(u) belong to L2(Rd ,C),

and therefore (|u| ∧ 1)sign(u) ∈ D(a). Consequently, (|u|−1)+sign(u) = u− (|u| ∧
1)sign(u) ∈ D(a) and

∇((|u| − 1)+sign(u)) =
(

∇u − iIm(sign(u)∇u)

|u| sign(u)

)

χ{|u|>1}.
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Based on the above remarks, we can write

Re biρs,ψ
(
(|u| ∧ 1)sign(u), (|u| − 1)+sign(u)

)

= 1

2
Re

∫

|u|>1

(

Q
iIm(sign(u)∇u)

|u| sign(u)

)

·
(
iIm(sign(u)∇u)

|u| sign(u)

)

dx

+ 1

2
Re

∫

|u|>1
Q
iIm (sign(u)∇u)

|u| · sign(u)∇u dx + 1

2

∫

|u|>1
v(|u| − 1)dx

= 1

2

∫

|u|>1
Q
Im (sign(u)∇u)

|u| sign(u) ·
(
Im (sign(u)∇u)

|u| sign(u)

)

(|u| − 1)dx

+ 1

2

∫

|u|>1
v(|u| − 1)dx ≥ 0, (20)

where ξ · η = ∑d
i=1 ξiηi for every ξ, η ∈ C

d . This proves (19). Moreover, by [21,

Theorems VII-4.2, IX-2.6], the operators T ρ,ψ
z (t) depend analytically on z for every

t ≥ 0. Hence we can apply Stein’s interpolation theorem and, by interpolating the L2-
and L∞-estimates, we get

‖T ρ,ψ
2
p

(t)‖p→p ≤ e

(
4
p ρ2− v0

p

)
t
, t > 0, (21)

for every p ≥ 2. Since bρ,ψ = b 2
p ρ̃,ψ , where ρ̃ = p

2 ρ, we conclude that T ρ,ψ
1 (t) =

T ρ̃,ψ
2
p

(t) for every t > 0 and estimate (16) follows at once from (21).

Next, we consider the form b̃ρ,ψ : D(a) × D(a) → C, which is densely defined
and continuous with respect to ‖ · ‖a. Moreover, using Cauchy-Schwartz inequality
as in (18), we can estimate

b̃ρ,ψ(u, u) ≥ 1

2

∫

Rd
q(∇u)dx − 2|ρ|

∫

Rd
q(∇ψ)

1
2 q(∇u)

1
2 |u|dx + 1

2

∫

Rd
v|u|2dx

− ρ2
∫

Rd
q(∇ψ)|u|2dx

≥
(
1

2
− ε

) ∫

Rd
q(∇u)dx −

(

1 + 1

ε

)

ρ2
∫

Rd
|u|2dx + 1

2

∫

Rd
v|u|dx

for every u ∈ D(a) and ε > 0. Taking ε = 1/4 and ε = 1/2, we get

b̃ρ,ψ(u, u) ≥ 1

4
a(u, u) − 5ρ2

∫

Rd
|u|2dx,

so that b̃ρ,ψ is closed and quasi-accretive too and the opposite of its associated operator
generates a C0-semigroup (Sρ,ψ(t))t≥0 in L2(Rd ,C), and

b̃ρ,ψ(u, u) ≥
(v0

2
− 3ρ2

) ∫

Rd
|u|2dx,

which shows that ‖Sρ,ψ(t)‖2→2 ≤ e(3ρ2−v0/2)t for every t > 0.
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Arguing as in the proof of (20) we can show that

Re b̃ρ,ψ

(
(|u| ∧ 1)sign(u), (|u| − 1)+sign(u)

)

= 1

2

∫

|u|>1
Q
Im (sign(u)∇u)

|u| sign(u) ·
(
Im (sign(u)∇u)

|u| sign(u)

)

(|u| − 1)dx

+ 1

2

∫

|u|>1
v(|u| − 1)dx − ρ2

∫

|u|>1
(|u| − 1)dx

≥ −ρ2
∫

|u|>1
(|u| − 1)dx

for every u ∈ D(a) Therefore, the semigroup (e−ρ2t Sρ,ψ(t))t≥0 is L∞-contractive by
[31, Theorem 2.15]. Hence, by interpolating between L2 and L∞ using Riesz-Thorin’s
theorem, estimate (17) easily follows.

Step 2. Here, we prove the following properties:

(1) if d ≥ 3, then T ρ,ψ : L2(Rd) → L2∗
(Rd) continuously and

‖T ρ,ψ(t)‖2→2∗ ≤
√

Cd

2q0
t−

1
2 e−α2∗,ρ t , t > 0, (22)

where 2∗ = 2d(d − 2)−1 and Cd is the Sobolev constant such that ‖u‖2∗ ≤
Cd‖∇u‖2 for every u ∈ W 1,2(Rd);

(2) if d ≤ 2, then T ρ,ψ(t) : L2(Rd) → Lq(Rd) continuously for every q > 2 and
there exists a positive constant Cq such that

‖T ρ,ψ(t)‖2→q ≤ Cqq
−d q−2

4q
0 t−d q−2

4q e−αq,ρ t , t > 0. (23)

Let us begin by proving (22). Using Sobolev’s inequality, we can estimate

aρ,ψ(u, u) ≥
∫

Rd
q(∇u)dx − (ρ2 − v0)‖u‖22 ≥ q0

Cd
‖u‖22∗ − (ρ2 − v0)‖u‖22 (24)

for every real-valued function u ∈ D(a) ⊆ W 1,2(Rd). By Step 1, T ρ,ψ(t) maps
L2∗

(Rd) into itself and ‖T ρ,ψ(t)‖2∗→2∗ ≤ e−α2∗,ρ t . For every f ∈ L2(Rd)∩L2∗
(Rd),

we set ν(t) = ‖eα2∗,ρ t T ρ,ψ(t) f ‖22∗ for t ≥ 0. The function ν is decreasing since
(eα2∗,ρ t T ρ,ψ(t))t≥0 is a contraction semigroup on L2∗

(Rd), and therefore, taking (24)
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into account and observing that α2∗,ρ + ρ2 − v0 < 0, we get

tν(t) ≤
∫ t

0
ν(s)ds

≤ Cd

q0

[ ∫ t

0
aρ,ψ(eα2∗,ρsT ρ,ψ(s) f, eα2∗,ρsT ρ,ψ(s) f )ds+(ρ2−v0)

∫ t

0
ν(s)ds

]

= Cd

q0

[

− 1

2

∫ t

0
e2α2∗,ρs

d

ds
‖T ρ,ψ(s) f ‖22ds + (ρ2 − v0)

∫ t

0
ν(s)ds

]

= Cd

q0

[

(α2∗,ρ + ρ2 − v0)

∫ t

0
ν(s)ds − 1

2

∫ t

0
ν′(s)ds

]

≤ Cd

2q0
‖ f ‖22

for every t > 0. Estimate (22) easily follows.

If d ≤ 2, then, by the Gagliardo–Nirenberg interpolation inequality, for every q > 2
(which implies that 0 < d q−2

2q < 1) there exists a positive constant cq > 0 such that,

for every real-valued function u ∈ D(a) ⊆ W 1,2(Rd),

cq‖u‖q ≤ ‖u‖1−d q−2
2q

2 ‖∇u‖d
q−2
2q

2 ,

or equivalently

‖∇u‖22‖u‖
4q

d(q−2) −2

2 ≥ c′
q‖u‖

4q
d(q−2)
q ,

where c′
q = c

4q
d(q−2)
q . Hence, taking (13) into account, we can write

aρ,ψ(u, u)‖u‖
4q

d(q−2) −2

2 ≥ ‖u‖
4q

d(q−2) −2

2

( ∫

Rd
q(∇u)dx − (ρ2 − v0)‖u‖22

)

≥ q0‖u‖
4q

d(q−2) −2

2 ‖∇u‖22 − (ρ2 − v0)‖u‖
4q

d(q−2)
2

≥ q0c
′
q‖u‖

4q
d(q−2)
2 − (ρ2 − v0)‖u‖

4q
d(q−2)
2 . (25)

By Step 1, ‖T ρ,ψ(t)‖q→q ≤ e−αq,ρ t , where αq,ρ is given by (15). Hence, the function
νq(t) = ‖eαq,ρ t T ρ,ψ(t) f ‖q for t ≥ 0, is decreasing for every f ∈ L2(Rd) ∩ Lq(Rd)

and, therefore, taking (25) into account, setting ν2,q(t) = ‖eαq,ρ t T ρ,ψ(t) f ‖22 for every
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t > 0 and arguing as in the case d ≥ 3, we can show that

tνq(t)
4q

d(q−2) ≤ 1

c′
qq0

∫ t

0

[

aρ,ψ(eαq,ρsT ρ,ψ(s) f, eαq,ρsT ρ,ψ(s) f )+(ρ2−v0)ν2,q(s)
2
]

× ν2,q(s)
2q

d(q−2) −2ds

≤ 1

c′
qq0

‖ f ‖
4q

d(q−2) −2

2

∫ t

0

[

aρ,ψ(eαq,ρsT ρ,ψ(s) f, eαq,ρsT ρ,ψ(s) f )

+ (ρ2 − v0)ν2,q(s)

]

ds

≤ 1

c′
qq0

‖ f ‖
4q

d(q−2) −2

2

[

− 1

2

∫ t

0
e2αq,ρs d

ds
‖T ρ,ψ(s) f ‖22ds

+ (ρ2 − v0)

∫ t

0
ν2,q(s)ds

]

= 1

c′
qq0

‖ f ‖
4q

d(q−2) −2

2

[
1

2
‖ f ‖22−

1

2
ν2,q(t)+(αq,ρ +ρ2−v0)

∫ t

0
ν2,q(s)ds

]

≤ 1

2c′
qq0

‖ f ‖
4q

d(q−2)
2

for every t > 0. Estimate (23) follows since αq,ρ + ρ2 − v0 < 0.

Step 3. In this part we prove that there exist strictly positive constants Kd , Md , cd ,
depending only on d, such that for every ρ ∈ R, ψ ∈ W

‖T ρ,ψ(t)‖2→∞ ≤ Mdq
− d

4
0 t−

d
4 e−v0Kd t eρ2t (1 + cdρ

2t)
d
4 , t > 0. (26)

If d ≥ 3, then we interpolate between the estimates (14) and (22) to get

‖T ρ,ψ(t)‖p→ pd
d−1

≤ ‖T ρ,ψ(t)‖
1
p
2→2∗‖T ρ,ψ(t)‖1−

1
p

2(p−1)→2(p−1)

≤
(√

Cd

2q0
t−

1
2 e−α2∗,ρ t

) 1
p (

e−α2(p−1),ρ t
)1− 1

p

=
(
Cd

2q0

) 1
2p

t−
1
2p e

− v0
p

(
2
2∗ +1

)
t
e
ρ2

(
1
p

(
2∗+ 4

2∗ +1
)
+ 2(p−1)2

p +1+ 1
p

)

t
.

By applying the same bootstrap argument as in [31, Theorem 6.8], one gets that
there exist positive constants Bd , Kd and cd such that

‖T ρ,ψ(t)‖2→∞ ≤
(
Cd

2q0

) d
4

Bdt
− d

4 e(cd+1)ρ2t e−v0Kd t , t > 0.
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Since ‖T ρ,ψ(t)‖2→2 ≤ eρ2t for every t > 0, by (13), [31, Lemma 6.5] applied to the
semigroup (e−v0Kd t T ρ,ψ(t))t≥0 yields that

‖T ρ,ψ(t)‖2→∞ ≤
(
Cd

2q0

) d
4

Bdt
− d

4 eρ2t e−v0Kd t (1 + cdρ
2t)

d
4 , t > 0.

The assertion follows by taking Md = 2− d
4C

d
4
d Bd .

If d ≤ 2, we fix a number r > 2 and we apply Step 2 with q = 2r
r−2 . Hence

‖T ρ,ψ(t)‖2→q ≤
√

Cq

2q0
t−d q−2

4q e−αq,ρ t , t > 0.

The same bootstrap argument as in the case d ≥ 3 gives the assertion.

Step 4. Finally, we prove that

‖T ρ,ψ(t)‖1→∞ ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t eρ2t

(

1 + cd
2

ρ2t

) dd
2

, t > 0, (27)

for some strictly positive constant Hd depending only on d.
It is immediate to check that aρ,ψ(w, u) = a−ρ,ψ(u, w) for every u, w ∈ D(a).

Hence the adjoint operator of T ρ,ψ(t) is T−ρ,ψ(t) for every t > 0 and, therefore,

‖T ρ,ψ(t)‖1→2 ≤ Mdq
− d

4
0 t−

d
4 e−v0Kd t eρ2t (1 + cdρ

2t)
d
4 , t > 0.

From this estimate and (26), estimate (27) follows, with Hd = 2d/2M2
d , if we write

‖T ρ,ψ(t)‖1→∞ ≤ ‖T ρ,ψ(t/2)‖2→∞‖T ρ,ψ(t/2)‖1→2.
Now, we have all the tools to prove the assertion of the theorem. By (27), the kernel

of T ρ,ψ(t) satisfies the estimate

0 ≤ eρψ(x)k(t, x, y)e−ρψ(y) ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t eρ2t

(

1 + cd
2

ρ2t

) d
2

for every t > 0, where k is the heat kernel of the semigroup (T (t))t≥0 and therefore

k(t, x, y) ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t eρ(ψ(y)−ψ(x))eρ2t

(

1 + cd
2

ρ2t

) d
2

, t > 0.

Minimizing the sum ρ2t + ρ(ψ(y) − ψ(x)) with respect to ρ > 0, i.e., taking ρ =
(2t)−1(ψ(x) − ψ(y)), we get

k(t, x, y) ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t e− (ψ(y)−ψ(x))2

4t

(

1 + cd(ψ(x) − ψ(y))2

8t

) d
2

≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t e− (ψ(y)−ψ(x))2

4t

(

1 + cddQ(x, y)2

8t

) d
2

for every t > 0. The assertion follows by minimizing over ψ . �
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Example 1. Let Q(x) be a diagonal matrix for every x ∈ R
d , where qii (x) = ai (xi )

and ai ∈ C1(R) has positive infimum over Rd for every i = 1, . . . , d. Set

σi (t) =
∫ t

0

1√
ai (s)

ds, i = 1, . . . , d, t ∈ R,

and σ(x) = (σ1(x1), . . . , σn(xn)) for every x ∈ R
d . Given φ ∈ Cb(R

d) ∩ C1(Rd)

such that ‖∇φ‖∞ ≤ 1, set ψ = φ ◦ σ . Then ψ ∈ Cb(R
d) ∩ C1(Rd) and

q(∇ψ)(x) =
d∑

i=1

ai (xi )(Diψ(x))2 =
d∑

i=1

|Diφ(σ(x))|2 ≤ 1, x ∈ R
d .

It follows that

dQ(x, y) = sup{|ψ(x) − ψ(y)| | ψ ∈ Cb(R
d) ∩ C1(Rd), q(∇ψ) ≤ 1}

≥ sup{|φ(σ(x)) − φ(σ(y))| | φ ∈ Cb(R
d) ∩ C1(Rd), ‖∇φ‖∞ ≤ 1}

≥ |σ(x) − σ(y)|, x, y ∈ R
d .

The last inequality is obtained by considering the function φε,y : Rd → R, defined
by

φε,y(x) =
√

ε + |x − σ(y)|2
1 + ε

√
ε + |x − σ(y)|2 , x ∈ R

d ,

for fixed y ∈ R
d and letting ε → 0. Taking (12) into account, the Gaussian estimate

becomes, in this case,

k(t, x, y) ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t e− |σ(x)−σ(y)|2

4t

(

1 + cd
q0

|x − y|2
8t

) d
2

, t > 0.

As a concrete example, we take ai (s) = 1 + s2 for every s ∈ R and i = 1, . . . , d,
and obtain that σi (t) = log(t + √

1 + t2) for every t ∈ R.

As an immediate consequence of Proposition 2, Theorem 6 and Theorem 7, we can
prove the following Gaussian type estimates for the matrix-valued kernel K which
generalizes Theorem 5.4 in [25].

Corollary 1. Under the assumptions of Theorem 6, there exist constants Hd, Kd ,
cd > 0, depending only on the dimension d, such that

|ki j (t, x, y)| ≤ Hdq
− d

2
0 t−

d
2 e−v0Kd t e− dQ (x,y)2

4t

(

1 + cddQ(x, y)2

8t

) d
2

for every t > 0, i, j = 1, . . . ,m and almost every x, y ∈ R
d .
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Proof. From the proof of Theorem 6, we know that

T (t) f =
m∑

i, j=1

Ti j (t)( f j )ei , f ∈ L2(Rd ,Rm),

where {e1, . . . , em} is the canonical basis of Rm and Ti j (t)u = 〈T (t)(ue j ), ei 〉 =∫
Rd ki j (t, x, y)u(y) dy for t > 0, i, j = 1, . . . ,m, u ∈ L2(Rd). Moreover, Proposi-
tion 2 shows that |Ti j (t)u(x)| ≤ (T (t)|u|)(x) and hence

∣
∣
∣
∣

∫

Rd
ki j (t, x, y)u(y)dy

∣
∣
∣
∣ ≤

∫

Rd
k(t, x, y)|u(y)|dy

for all t > 0, u ∈ L2(Rd) and a.e. x ∈ R
d . Applying [28, Theorem 3.3.5] we deduce

that |ki j (t, x, y)| ≤ k(t, x, y) holds true for all t > 0, i, j = 1, . . . ,m and almost
every x, y ∈ R

d . So, the assertion follows from Theorem 7. �
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