
31 January 2025

University of Parma Research Repository

The first twenty years of agent-based software development with JADE / Bergenti, Federico; Caire,
Giovanni; Monica, Stefania; Poggi, Agostino. - In: AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS. -
ISSN 1387-2532. - 34:(2020), pp. 36.1-36.19. [10.1007/s10458-020-09460-z]

Original

The first twenty years of agent-based software development with JADE

Publisher:

Published
DOI:10.1007/s10458-020-09460-z

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2876325 since: 2023-11-03T06:44:59Z

Springer

This is the peer reviewd version of the followng article:

note finali coverpage



JAAMAS manuscript No.
(will be inserted by the editor)

The First Twenty Years of Agent-Based Software
Development with JADE

Federico Bergenti · Giovanni Caire ·
Stefania Monica · Agostino Poggi

Received: September 9, 2018 / Accepted: January 27, 2020

Abstract A recent survey provides convincing evidence that JADE is among the
most widely used tools to develop agent-based software systems. It finds appli-
cation in industrial settings and to support research, and it has been used to
introduce students to software agents in various universities. This paper offers a
perspective on the current state of JADE by first presenting a chronicle of the
relevant events that contributed to make JADE what it is today. Then, this paper
enumerates some of the abstractions that JADE helped to identify and that are
now commonly adopted in the community of researchers and practitioners inter-
ested in software agents and agent-based software development. Such abstractions
have been successfully applied to construct relevant software systems, and among
them, this paper reports on a mission-critical system that uses the abstractions
that JADE contributed to identify to serve millions of users every day. Finally,
this paper discusses an outlook on the near future of JADE by sketching a recent
project that could contribute to provide a new perspective on the use of JADE.

Keywords JADE · Agent-Oriented Software Engineering · Software Agents

F. Bergenti, S. Monica
Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Università degli Studi di Parma
Parco Area delle Scienze 53/A, 43124 Parma, Italy
Tel.: +39-0521-{906929,906913}
E-mail: {federico.bergenti,stefania.monica}@unipr.it

G. Caire
TIM – Innovation
Via Reiss Romoli 274, 10148 Torino, Italy
Tel.: +39-011-2286107
E-mail: giovanni.caire@telecomitalia.it

A. Poggi
Dipartimento di Ingegneria e Architettura
Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43124 Parma, Italy
Tel.: +39-0521-905728
E-mail: agostino.poggi@unipr.it



2 F. Bergenti, G. Caire, S. Monica, A. Poggi

1 Introduction

The Java Agent DEvelopment framework (JADE) (e.g., [6]) consists of the well-
known framework to build software agents together with some tools needed to
effectively operate agent-based software systems. JADE has been offered to the
open-source community of Java developers through its official Web site [44] for
more than twenty years. A recent survey [45] provides convincing evidence that
JADE is still among the most widely used tools to develop agent-based software
systems in various contexts. The results of the survey clearly show that JADE
has been intensively used in the academia to support research on software agents
and to introduce students to Agent-Oriented Software Engineering (AOSE) [14].
In addition, JADE has been successfully used in industrial projects all over the
world, as documented in another recent survey [52] that focuses on the practical
applications of software agents and agent-based software development.

Besides its applications to the relevant contexts mentioned above, JADE con-
tributed to shape the understanding of software agents and agent-based software
development that the research community shares today. For example, JADE con-
tributed, together with other platforms (e.g., [29,32]), to the idea, which is now
commonly adopted to design agent-based software systems, that an agent platform
is an ensemble of connected agent containers spread across a network.

This paper is intended to account for the role of JADE in the process of un-
derstanding software agents, agent-based software development, and their pecu-
liar abstractions. The abstractions that JADE contributed to introduce emerged
through a slow community process that is tightly connected with the historical
development of the JADE project. This is the reason why, before discussing the
abstractions that JADE contributed to identify, this paper provides in Section 2
a brief chronicle of the most relevant steps that led to the framework that is used
today. It is by far not a complete chronicle, and it is definitely biased toward
emphasizing the steps that contributed to evolve the framework, rather than to-
ward enumerating its relevant uses. The description of how JADE contributed to
significant projects is left for papers written by researchers and practitioners that
actually worked on such projects. After the chronicle of relevant developments, this
paper briefly summarizes, in Section 3, the abstractions that JADE contributed
to identify and that are now core elements of the abstract view of software agents
and agent-based software development that the framework advocates. Note that
such an abstract view is accepted today by a significant research community also
because it showed to be effective to use software agents in relevant applications.
One of such applications is in the context of network and service management,
and it is briefly described in Section 4. Such an application contributed to provide
practical evidence that software agents, and JADE agents in particular, can be ef-
fectively used to deploy mission-critical systems designed to serve millions of users
every day. Finally, the twenty years that elapsed from the initial prototypes to the
current version of JADE witness significant changes in software engineering and
related technologies, which need to be taken into serious consideration to ensure
that JADE would have a prosper future. Such changes, and a possible way to
take them into account, are briefly discussed in Section 5, where one of the latest
projects that use JADE is succinctly described. Such a project is intended to offer
a new way to use the framework, which is proposed to effectively relocate software
agents in the software development landscape of today.



The First Twenty Years of Agent-Based Software Development with JADE 3

2 A Short Chronicle of the History of JADE

The two decades of the Java Agent Development Environment, almost immedi-
ately renamed to Java Agent DEvelopment framework (JADE), started in 1998 to
support a relevant initiative of the time called Foundation for Intelligent Physical
Agents (FIPA) [54]. FIPA was established in 1996 as an international non-profit
association of companies, and since then it counted more than 60 members from
20 countries [60], which included companies, research centers, and universities, to
produce interoperability specifications for software agents and agent-based soft-
ware systems. Since its establishment, FIPA played a crucial role in the devel-
opment of interoperability specifications for software agents, and it promoted a
number of initiatives that contributed to the development and uptake of agent
technologies. Interested readers should consult the official Web site of the founda-
tion [35] to access current specifications and to review its interesting history [60].

The establishment of FIPA was promoted by its first president, Leonardo
Chiariglione, who had already been considered a distinguished researcher at the
time for his leading role in the Moving Picture Experts Group (MPEG) [51]. His
prominent role in FIPA contributed to promote the foundation to important inter-
national players, and to consolidate the role of FIPA in the research community.
He and colleagues envisioned that software agents could play a relevant role in the
provision of next-generation multimedia services, and they also quickly understood
that a set of accepted specifications to support interoperability among technolo-
gies from different vendors was necessary to promote the construction of open and
dynamic services. FIPA initially received relevant attention, and it significantly
contributed to attract fundings on an international scale.

The interoperability specifications that FIPA started to deliver in 1997 needed
a reference implementation to ensure that technical decisions were, at least, not
contradictory. In addition, several competing implementations of FIPA specifica-
tions quickly appeared [46], and periodic interoperability checks were considered
necessary. At the time, Fabio Bellifemine was working for Telecom Italia [71], which
was one of the five funding members of FIPA, and he was asked to contribute to
some of the specifications that FIPA was about to deliver. He quickly became
an active contributor to FIPA specifications, and he helped to spread the idea,
also shared by other researchers (e.g., [61]), that FIPA necessitated a reference
implementation to validate specifications. The scarcity of internal development ef-
fort, and the solid competences on software agents that the research group lead
by Agostino Poggi at the University of Parma had already shown, contributed to
make Telecom Italia decide to jointly develop an implementation of FIPA speci-
fications with researchers working in Parma, namely, Giovanni Rimassa, Federico
Bergenti, and others. The result of such a joint venture, which also received pub-
lic funding (e.g., [1,58]), is the core of JADE. Even if JADE is now a worldwide
community project, researchers working for Telecom Italia (now TIM) and for the
University of Parma are still active in the project.

It is worth noting that, concurrently with the establishment of FIPA, also the
Object Management Group (OMG) [55] launched an initiative to support the stan-
dardization of mobile agents and related technologies. The Mobile Agent System
Interoperability Facility (MASIF ) [47] was delivered by OMG to support inter-
operability among technologies for mobile agents, and the specifications delivered
by FIPA and by OMG were quickly requested to become compatible (e.g., [43]).



4 F. Bergenti, G. Caire, S. Monica, A. Poggi

The traditional separation between mobile agents and intelligent agents started to
fade when the corresponding standards bodies aimed at compatible specifications,
which ultimately generated relevant implementations like Grasshopper [5].

FIPA ceased to exist as a standalone foundation in 2005, when the Board of
Directors opted for the opportunity to become an IEEE Computer Society Stan-
dards Committee. Since then, FIPA is better known as IEEE FIPA, but its mission
statement firmly remains to deliver interoperability specifications to support the
widespread adoption of software agents and agent-based software technologies.

JADE in its mature form was first described in a scientific journal in a dedi-
cated article [8] published in 2000. The paper emphasizes that software agents can
be effectively used as software components (e.g., [9,15]), and that JADE can pro-
vide the practical means to do it. Concurrently, other agent platforms started to
be presented at scientific fora, and some of such platforms, namely, FIPA-OS [63],
Zeus [53], and many others [46], significantly contributed to validate FIPA spec-
ifications and to suggest corrections and improvements. Besides the relevance of
the mentioned platforms, and of some others (e.g., [26,45]), it is worth noting that
JADE played a singular role in the development of FIPA specifications because of
two projects co-funded by the European Commission, as follows.

JADE was chosen to experiment the deployment of software agents on mobile
devices by three of the most important telephony manufacturers of the time, which
were all prominent FIPA members. Motorola [50], Siemens [69], and Broadcom [30]
teamed with Telecom Italia, ADAC [2], and the University of Parma to work
on a project intended to experiment the deployment of software agents on in-
novative devices called Java-enabled telephones. The project, called Lightweight
and Extensible Agent Platform (LEAP) [21,22], was co-funded by the European
Commission to deliver a branch of JADE intended to work under the limitations
of Java-enabled telephones, both in terms of available resources and of processing
power. The branch was accurately designed to be reintegrated into the principal
development line, and right after the end of the project JADE was equipped with
a dedicated build procedure to deliver a downsized version of the framework for
Java-enabled telephones. Even if Java-enabled telephones are no longer a target
for the deployment of software agents, it is worth recalling the LEAP project for,
at least, two reasons. First, it contributed to emphasize the role of software agents
to support mobile applications and services. Second, the flexible build procedure
designed in the scope of the LEAP project was later used to make JADE deploy-
able on Android devices [12]. The porting of JADE to Android devices is no longer
a matter of constrained resources or limited processing power, but it regards the
support of the peculiarities of smart devices [62] like, for example, the possibility
to interface onboard sensors [18,48,49] and the possibility to provide users with
sophisticated interfaces for highly interactive applications [11].

The second project co-funded by the European Commission that contributed
to spread the use of JADE was called Agentcities.NET (e.g., [59]). It was the first
effort intended to create an open society of software agents by deploying a world-
wide network of FIPA-compliant agent platforms. The objective of the project was
to explore the deployment of software agents in an open environment, and to this
end, it focused on the application of existing tools and technologies rather than
on the development of new ones. By the end of the project, the Agentcities.NET
network counted more than 160 registered agent containers [59], which were based
on more than ten heterogeneous platforms that included JADE, FIPA-OS, and



The First Twenty Years of Agent-Based Software Development with JADE 5

Zeus. More than 75% of the active platforms [59] were based on JADE, and this
fact marked an important result to quantify the diffusion of JADE among FIPA
members. JADE started to be considered the de facto reference implementation
of FIPA specifications [61], and the compliance with FIPA specifications was often
measured in terms of the interoperability with JADE.

The community of researchers and practitioners interested in software agents
and agent-based software development is still habitually using JADE, as witnessed
by the two recent surveys [45,52] mentioned in the previous section. JADE is gen-
erally considered a commodity to be used freely to support research and experi-
mentation on agents and multi-agent systems. Many authors no longer cite papers
on JADE when they acknowledge that they used it for their research, and some
of them do not even feel the need to expand the acronym. Independently of the
number of missing citations that the habitual use of JADE causes, its relevance
for the research on software agents and agent-based software development can be
measured in terms of the number of scientific papers that mention it explicitly.
Scopus [66] counted on August, 5th 2019 more than 1,100 papers that mention the
two words JADE and agent in their titles, abstracts, or keywords, in the Com-
puter Science subject area from 2000. Actually, a close inspection of the results
that Scopus produced shows that, in the last 10 years, more than 60 papers ev-
ery year describe research that is somehow related with JADE. In addition, it is
worth noting that when the query was restricted to consider the titles of the pa-
pers only, Scopus counted 140 papers, on the same day and for the same period,
independently of the subject area. Such a modified query is relevant because it
can be used also with Google Scholar [40] to have a wider coverage of considered
sources. Google Scholar counted more than 300 papers that match the modified
query, which suggests that the results obtained using Scopus underestimate the
actual bibliographic impact of the research that uses JADE. A close inspection
of the results obtained with Google Scholar shows that all obtained papers either
discuss developments of JADE or present projects implemented with JADE.

3 Major Abstractions Contributed by JADE

This section briefly discusses the principal abstractions that JADE contributed to
identify and that are now part of the common knowledge of the research commu-
nity that works on software agents and agent-based software development. Note
that the abstract view of software agents that JADE adopts is closely related
to the descriptions of software agents and agent-based software systems found in
FIPA specifications, mostly because of the tight link between JADE and FIPA
discussed in the previous section. More specifically, a subset of the abstractions
that JADE contributed to identify were generalized and included in the FIPA
abstract architecture [37], while some of the abstractions in FIPA specifications,
like, for example, Agent Communication Language (ACL) messages and interac-
tion protocols, are implemented by JADE. In the remaining of this section, only the
abstractions that were originally conceived in the design of JADE are discussed.

JADE agents are single-threaded software entities that execute in a runtime
environment composed of (agent) platforms and (agent) containers, with each
platform composed of at least one container. Each container executes on a host
of the network, and therefore a platform is naturally distributed across multiple



6 F. Bergenti, G. Caire, S. Monica, A. Poggi

hosts. Each platform is managed by a special container called main container,
and the other (peripheral) containers register with it to join the platform. The
major duty of containers is to provide agents with runtime environments to enable
their executions and interactions. Among the possible types of interactions in a
multi-agent system (e.g., [24]), message passing is the form of interaction primar-
ily enabled by containers. Independently of the platforms and the containers that
host senders and receivers, agents send messages to other agents by explicitly ad-
dressing receivers using Agent Identifiers (AIDs), which are strings of characters
that uniquely identify agents. The design of platforms as set of connected con-
tainers roots in JADE and it is borrowed from distributed software components.
Distributed software components are normally hosted in runtime environments
distributed across heterogeneous networks. Such runtime environments provide
the essential functionality needed to manage the lifecycle of components, and they
support message passing across networks. JADE containers are applications of
such an approach to software agents.

A JADE agent performs transitions among several lifecycle states during its
execution. Such transitions are managed by the container that hosts the agent,
and each transition can be associated with an event handler that the agent ex-
ecutes just after the transition has actually occurred. For example, as soon as a
container starts an agent, the agent enters the initialized state, which normally
triggers an event handler associated with the transition. Initialized agents cannot
communicate with other agents because they are not yet associated with a valid
AID. Right after the initialization, and as soon as a valid AID becomes available,
an agent enters the active state, which makes the agent ready to send messages to
other agents. In order to process received messages, an agent enters the waiting
state, which makes the agent start waiting for external events to occur. When an
agent in the waiting state receives a messages, the agent promptly returns to the
active state to react to the reception of the message. Finally, agents that are about
to terminate their execution enter the deleted state, and their AIDs become in-
valid. Note that JADE supports other lifecycle states (e.g., [7]) besides the states
mentioned above. The identification of the current set of lifecycle states was per-
formed in multiple phases during the design of the framework to support managed
deployment of agents across containers and to provide for agent mobility. In par-
ticular, the lifecycle states that support agent mobility were designed to couple
the runtime model of JADE agents, as discussed below, with the specific form of
weak mobility [38] that JADE implements.

The runtime model of JADE agents assumes that each agent engages one
or more behaviours to perform relevant tasks. The behaviour is the abstraction
that the framework introduced to manage the procedures that agents follow to
perform tasks. JADE supports several types of behaviours. The most commonly
used behaviours are one-shot behaviours, which are executed only once, and cyclic
behaviours, which are repeatedly executed until they are explicitly deactivated.
Behaviours are provided in terms of actions, and a single behaviour identifies at
most one action. The behaviour action is the piece of code that the agent executes
when the behaviour is activated, which normally occurs in reaction to external
events. Note that JADE provides specific support in terms of behaviours for the
important events that correspond to the reception of messages. A JADE agent
can activate multiple behaviours, which are internally stored in a private queue.
The (internal) behaviour scheduler associated with each agent uses such a queue to



The First Twenty Years of Agent-Based Software Development with JADE 7

activate behaviours and to make the agent react to events. The peculiar scheduling
of behaviours adopted by JADE is cooperative rather than preemptive, which
ensures that the execution of a behaviour is never interrupted in favor of another
behaviour. Such a specific form of scheduling was chosen during the early phases
of the design of the framework to ensure that a single thread of control is sufficient
to execute behaviours. In the view of agent-based software systems promoted by
JADE, the interactions among agents are concurrent and distributed, but each
agent is a single-threaded (centralized) entity. Actually, the fact that JADE agents
are single-threaded entities is rooted, together with the behaviour abstraction, in
the runtime model of agents as special forms of actors [3,23] that JADE advocates
and contributed to introduce.

In the abstract view of agent-based software systems promoted by FIPA, in-
teractions among agents are grounded on the exchange of ACL messages. Message
passing is assumed to be independent of the hosts of the network where agents
execute, and the delivery of messages is assumed to be transparent to agents. This
is the reason why JADE is in charge of transparently handling the conveyance of
messages across containers and platforms. The programmers that use JADE do
not need to care about connection, addresses, and hosts because the communi-
cation among agents is location-independent, and the underlying communication
channels are transparent. The ACL messages that JADE agents exchange comply
with FIPA specifications, which ensures interoperability.

Following the approach that FIPA has been advocating since the early ver-
sions of its specifications, messages are associated with shared ontologies. FIPA
does not mandate which types of ontologies should be used, or how agents should
use ontologies to support reasoning. Ontologies for FIPA are just tags attached to
messages, and each agent is in charge of using them properly. In order to offer to
programmers a set of useful tools to effectively adopt ontologies, JADE restricted
the supported ontologies to the so-called communication ontologies (e.g., [72]).
Actually, JADE introduced a particular type of ontologies that describes concep-
tualizations in terms of schemas of concepts, actions, predicates, and propositions.
Instances of such schemas are automatically serialized by JADE when a message
is sent, and automatically deserialized when a message is received. Such a mecha-
nism allows JADE agents to communicate using shared conceptualizations of the
application domain. In detail, concepts are entities of ontologies composed of sev-
eral properties, and they can be defined as extensions of other concepts. Not to
be confused with behaviour actions, actions in ontologies are entities that denote
the actions that agents can mention in messages. Just like concepts, actions have
properties, and they can extend other actions. Predicates are used by agents to
state logical expressions in messages. Predicates can extend other predicates, and
they can have properties. Finally, propositions are atomic predicates that have no
properties. Note that ontologies can be constructed by extending other ontologies,
and JADE provides a set of basic ontologies that can be used as building blocks
to construct domain-specific ontologies.

The support for ontologies that JADE introduced is rooted in the specific use of
ontologies to enable communication. In the view of agent-based software systems
that JADE contributed to identify, ontologies are not intended to drive reasoning,
and they are only intended to precisely identify the structure of messages. Ontolo-
gies are the means used to support interoperability, and each JADE agent is free
to choose whether to use them to drive automated reasoning.



8 F. Bergenti, G. Caire, S. Monica, A. Poggi

4 Network and Service Management with JADE

The previous section briefly described the major abstractions that JADE con-
tributed to the common knowledge of researchers and practitioners interested in
software agents and agent-based software development. This section shows how
JADE and such abstractions were used to implement a mission-critical system for
a large company. The discussed case study is not the unique example of the use
of JADE to develop mission-critical systems (e.g., [52]), but it is notable for the
large scale of the application domain that it targets.

Telecom Italia, now better known as TIM, is one of the leading operators in
the European telecommunications market, with more than 9 million broadband
connections in Italy for retail and business clients. It has one of the most penetrat-
ing networks in Europe, with over 114 million kilometers of copper lines and over
5.7 million kilometers of optical fibers. Given the enormous business volume that
such a network generates, the software systems in charge of ordinary business op-
erations on the network have strict requirements in terms of scalability, robustness,
and extensibility. The common opinion shared by researchers and practitioners in-
terested in network and service management is that the traditional approaches are
not sufficient when networks are so complex. After more than a decade of daily
use, practical evidence suggests that the agent-based software system discussed
in this section is a viable alternative to traditional approaches to network and
service management. The presentation of the system reported in this section is
by far not complete, and it is mainly intended to discuss the role of JADE, and
of the abstractions that it contributed to identify, in the implementation of the
system. Interested readers should consult a dedicated paper [13] for further details
on the roles played by agents in the system, on the hierarchical architecture of the
multi-agent system, and on the connections with the underlying network and with
other systems. It is worth noting that another system [39] based on an approach
to network and service management closely related to the approach used to design
the system described in this section was experimented by Telefónica [70].

Traditionally, network and service management is performed by means of two
types of dedicated software systems, which are normally called Operations Support
Systems (OSSs) and Business Support Systems (BSSs) [42]. An OSS is a system
that supports the back-office activities that operate a network and that are needed
for the provision of services to clients. Complementary, a BSS is a system that sup-
ports activities directly related to clients, like billing and order management. A
BSS typically interfaces an OSS for some of its activities, such as trouble ticketing
and service assurance. In the traditional approaches to network and service man-
agement, the relationships between OSSs and BSSs are rigid, and they are often
called Orders Down, Faults Up (ODFU ) because orders are passed from BSSs to
associated OSSs, and faults take the opposite direction, from OSSs to associated
BSSs. The interfaces among OSSs and BSSs are involved in many operations, and
the rigidity of the ODFU approach is generally perceived as a serious limitation
when the size of the managed network is large.

In order to provide more flexibility and a higher level of robustness, Telecom
Italia left the traditional approach based on OSSs and BSSs, and it internally
developed a system called Workflows and ageNTS (WANTS) [13]. WANTS is a
network and service management system that uses software agents programmed
in terms of hierarchical workflows to ensure improved flexibility and robustness.



The First Twenty Years of Agent-Based Software Development with JADE 9

Among its major functionality, WANTS manages a model inventory that stores the
executable descriptions of the business processes that can be deployed to agents
in terms of workflows. The model inventory also contains the descriptions of the
actual network resources, and WANTS automatically synchronizes the model in-
ventory with actual resources, so that changes in the network are immediately
propagated to agents to possibly change active workflows. Finally, WANTS adapts
to the fluctuations of the network load because it uses real-time traffic observa-
tions to promptly react to interesting events by means of adaptive management
techniques for resource allocation. At the time of writing, WANTS manages the
part of the broadband network called access network. The access network is the
part of the network that reaches clients’ premises, and it includes the lines to the
over 4 million modems used by clients. The lines in the access network generate
an average of 300 events per second, and WANTS gathers and monitors them to
enable real-time control over the quality of service provided to clients.

WANTS is an agent-based software system entirely implemented using the
Workflows and Agents Development Environment (WADE) [31], which is noth-
ing but JADE enriched with workflow engines embedded in agents together with
platform-level functionality related to fault tolerance and scalability. Note that
WADE agents are JADE agents whose behaviours can be expressed either by ex-
plicitly writing Java code or in terms of hierarchical workflows. Also note that
WADE is incremental with respect to JADE because it adds features to support
fault tolerance and scalability, but it does not remove or alter other features.

The architecture of the multi-agent system that WANTS implements is based
on a set of roles played by agents [13], as schematically shown in Fig. 1 for a sim-
ple illustrative network. Resource Proxy (RP) agents are responsible for creating,
maintaining, and managing the images of the resources deployed in the network.
The Agent Applications (AAs) agents implement the so called Fault, Configu-
ration, Accounting, Performance, and Security (FCAPS) functionality [42]. AAs
work together by means of dedicated interaction protocols to implement the co-
operative and distributed execution of business processes related to network and
service management. In particular, AAs are responsible for local performance mon-
itoring, and they are in charge of sending messages to interested agents about the
actual load of the network. AAs communicate with RPs to interface network re-
sources. Finally, Manager Application (MA) agents manage the distribution of
workflows to other agents, and they manage the distribution of the descriptions of
the actual network resources. In addition, MAs monitor the state of the network
using the information provided by AAs, and they interact with external legacy sys-
tems. Note that the agents in the architecture do not require software updates to
support new services or new types of network resources because the business pro-
cesses that they execute are described in terms of hot deployable agent behaviours
expressed as WADE workflows.

The decade that have passed since the introduction of WANTS generated in-
teresting methodological and practical outcomes [13]. The successful adoption of
WANTS to manage part of one of the most complex networks in Europe provided
practical evidence that agent-based software systems are a viable alternative to
mainstream technologies for this type of systems, especially for large networks, in
which the rigidity of the ODFU approach is generally perceived as a limitation.
Actually, WANTS is normally regarded as a best in class system that can compete
with alternatives from major software vendors in terms of functionality, maturity,



10 F. Bergenti, G. Caire, S. Monica, A. Poggi

AA4

AA1

AA2

AA3 MA

RP3,1

RP3,2

RP3,3

RP1,1

RP1,2

RP1,3

RP2,1

RP4,1 RP4,2

Fig. 1 The high-level view of the multi-agent architecture implemented by WANTS for an
illustrative (very simple) system that comprises one MA, four AAs, and nine RPs.

and return on investment. In addition, WANTS is one of the rare cases in which
a large service company changed its ordinary buy strategy to the more risky and
ambitious make-open-source strategy. The major reasons for the change in the
case of WANTS can be enumerated as follows. First, the network that WANTS
manages has many peculiarities caused by its protracted stratification, and solu-
tions designed for networks with less stratification are not sufficient. Second, the
network is still considered the most specific part of the core business of the com-
pany, and therefore the knowledge of the network must be securely kept within
the boundaries of the company.

The major reasons for the successful development of WANTS can be briefly
summarized as follows [13]. The developers that worked on WANTS could bring
in the project their advanced knowledge of the most recent trends in network and
service management. The system was developed using medium-term plans, which
took advantage of the fact that WANTS is based on JADE, and it can count on
the large community of JADE users. The design of the system could be based
on the systematic use of open-source components, and only the components that
could list a significant number of successful applications in industrial settings were
chosen. Actually, the development effort needed to implement WANTS, measured
in terms of the fraction of significant components that were developed specifically
for the system, is less than 30%.

Finally, the adopted make-open-source strategy is considered by some of the
researchers that worked on the development of WANTS as one of the causes that
contributed to the effective implementation of the system. Developers that worked
on the project could improve their personal skills on cutting-edge technologies,
and this opportunity generated appreciation for WANTS for medium-term career
plans. In addition, managers could make sure that the competencies and best prac-
tices regarding network and service management were kept inside the boundaries
of the company, which was set as a strict requirement for a project intended to
deliver the software system in charge of the daily management of one of the most
valuable assets of the company.



The First Twenty Years of Agent-Based Software Development with JADE 11

5 Toward Next Decades: JADE without Java?

The common practice of using JADE for the construction of agent-based software
systems ranging from simple didactic examples to mission-critical applications, like
the one described in the previous section and many others (e.g., [52]), provides
evidence that JADE is a valuable tool with wide applicability. Unfortunately, infor-
mal observations of students during artificial intelligence and software engineering
classes at the University of Parma in the last ten years suggest that approach-
ing agent-based software development with JADE is often perceived as a difficult
task. The reasons for such a perception are multiple, but the following are two
of the most relevant. First, the continuous growth of the framework in the last
twenty years has been increasing its inherent complexity, and the number of de-
tails that programmers are demanded to master has equally grown. The support
offered by the community in terms of documentation, examples, and participation
in the mailing list has been constantly relevant since the early days of JADE, but
the opinion that students currently share is that JADE is a difficult framework
to approach if no specific background on software agents is available. Second, the
choice of Java as the unique programming language for the construction of JADE
agents is now considered inappropriate in many situations, especially when a na-
tive support of the abstractions of Agent-Oriented Programming (AOP) [67,68]
would be valuable. Note that a first attempt to detach JADE from Java was tried
with WADE and its workflows. WADE workflows are diagrammatic views of JADE
behaviours, and they can be used to program agents instead of using Java. Es-
sentially, they provide abstract views of JADE behaviours in terms of flowcharts
that programmers can easily produce using a dedicated tool [31] integrated with
Eclipse [33]. Unfortunately, the limited expressive power of the diagrammatic no-
tation that WADE uses often forces programmers to embed significant pieces of
Java code into workflows, even to make agents perform simple tasks.

In order to seriously address both mentioned issues, which have the ultimate
effect of limiting the adoption of JADE for new projects, a new programming
language called Jadescript [19,20,56,57] has been recently proposed to provide
support for the construction of JADE agents without using Java. Jadescript is
an AOP language designed to offer to programmers a rich set of agent-oriented
abstractions, most of which were originally introduced by JADE, and to reduce the
complexity of using such abstractions by means of a dedicated syntax. The main
goal addressed with the introduction of Jadescript is to give to programmers the
possibility of effectively using agents without major methodological changes with
respect to the direct use of JADE. In particular, Jadescript provides support for
the major abstractions that JADE provides, and the addition of other abstractions,
like the ones provided, for example, by Jadex [28], is left for future works.

Even if the literature counts a number of proposals for various AOP languages
(e.g., [27,36,41,64,65] and [4,26]), Jadescript is somehow singular because it at-
tempts to couple the original understanding of AOP (e.g. [67,68]) with the expe-
rience gained during the last twenty years of development and use of JADE. In
particular, Jadescript capitalizes the lesson learned from JADE by providing pro-
grammers with the same abstractions that characterize JADE. Jadescript isolates
such abstractions and equips them with a dedicated syntax to ensure that they can
be used effectively. Note that the goal that motivates the introduction of Jadescript
is perfectly coherent with the original understanding of AOP. Actually, AOP is



12 F. Bergenti, G. Caire, S. Monica, A. Poggi

equally related to the abstractions that programmers use for the construction of
agents, and to the concrete syntax, and underlying semantics, that programmers
adopt to manage such abstractions. The fact that Jadescript provides a dedicated
syntax to easily adopt the principal abstractions that characterize JADE is ex-
pected to simplify the correct and effective use of such abstractions.

Jadescript follows the path traced by its predecessor, a domain-specific lan-
guage for AOP called JADEL (e.g., [10,16,17]), to carve the link between JADE
and Java. However, Jadescript is significantly different from JADEL because all
recollections of object-oriented programming still present in JADEL have been
completely removed from Jadescript. The procedural parts of JADEL agents are
written using an enriched version of Xtend [25], which is an extensible dialect of
Java tightly coupled with the Xtext infrastructure [34]. The choice of adopting a
dialect of Java for the procedural parts of the language had the effect of bringing
object-oriented abstractions into the core of JADEL, which ultimately contributed
to suggest frequent misuses. Jadescript originates from the choice of removing all
references to Xtend from JADEL, and to replace them with syntactic constructs
explicitly designed for the purpose. The result is that Jadescript shares some char-
acteristics with popular scripting languages, like semantically-relevant indentation
and type inference. Note that the current implementation of Jadescript tools, which
include a compiler that generates Java classes and a syntax-highlighting editor for
Eclipse, still depends on Xtext, but the language is completely independent of it.

The most relevant abstractions that Jadescript borrowed from JADE are pre-
sented in the remaining of this section using a simple illustrative example. The
chosen example is a variation of the music shop example, which is well-known to
JADE programmers because its implementation is analyzed in one of the most
popular tutorials on JADE available from the Web site of the project [44]. Inter-
ested readers should consult the mentioned tutorial to compare the JADE imple-
mentation described there with the Jadescript implementation described in this
section. Even a superficial comparison between the two implementations reveals
that Jadescript ensures much higher readability, and therefore maintainability,
because programmers are provided with dedicated constructs to use the major
abstractions that JADE offers.

The considered example implements a multi-agent system that contains a group
of seller agents and a disjoint group of buyer agents. Each seller agent manages
a music shop that sells two types of items, books and DVDs, to interested buyer
agents. The application domain is intentionally minimalistic, and all items are
described in terms of a unique title and a price. Each DVD is also associated with
a list of tracks, each of which has a unique title and a duration. The considered
scenario starts when a buyer agent decides to buy an item, and therefore the seller
agent that offers the lowest price for the chosen item must be identified. In order to
obtain the lowest price, the buyer agent uses a simple strategy: it sends requests to
all seller agents, and selects the seller agent that returns the best offer. In detail, the
buyer agent sends call-for-proposal messages to all seller agents to ask them for the
price of the desired item. Seller agents quote the requested item, if available at their
shops, and they send a propose message back to the buyer agent. If the requested
item is not available at the shop managed by a seller agent, the seller agent returns
a refuse message. If no seller agent returned a valid offer, the buyer agent drops
the intention to buy the item. In all other cases, one of the seller agents that
returned the best offer is chosen and the buyer agent completes the transaction.



The First Twenty Years of Agent-Based Software Development with JADE 13

Listing 1 Declaration of the ontology used to implement the music shop example
in Jadescript.

1 ontology MusicShop
2 concept item(title as text , price as double)
3 concept track(duration as double)
4 concept book extends item
5 concept DVD(tracks as list of track) extends item
6
7 predicate owns(title as text)
8 predicate quote(buyer as text , good as item)
9

10 action sell(buyer as text , title as text)

The described scenario is nothing but a FIPA contract-net protocol [37], but this
fact is not used both in the discussed Jadescript implementation and in the original
JADE implementation. Note that the discussed Jadescript implementation is not
intended to be interoperable with the corresponding JADE implementation. The
purpose of the presented Jadescript implementation is to exemplify the use of the
language by means of a didactic example that shows some of the features that
Jadescript offers to programmers.

As discussed in Section 3, the peculiar type of ontologies that JADE supports
is among the most relevant abstractions that JADE contributed to introduce.
The adopted type of ontologies is considered adequate to support communica-
tion among agents, even if it is not sufficiently expressive to support reasoning
in many contexts. The ontologies that JADE contributed to introduce are used
by agents to share descriptions of concepts, actions, predicates, and propositions.
Jadescript adopts the same type of ontologies, and Listing 1 shows the decla-
ration of the ontology used to implement the music shop example. Note that
Listing 1 also shows some of the characteristics of the language. First, the use of
semantically-relevant indentation, which makes Jadescript follow a consolidated
practice of modern scripting languages. Second, the use of the keyword as to stat-
ically associate a data type with a name (e.g., line 2). Third, the use of statically
typed expressions. Jadescript provides a rich set of primitive data types, which
includes text and double (e.g., line 2), and it also supports structured data types
in terms of lists and maps, and of domain-specific concepts, actions, predicates,
and propositions declared in ontologies (e.g., line 5).

Behaviours were introduced in the design of JADE to describe how agents op-
erate during their lifecycle, and to specify how agents should react to events. In
Jadescript, behaviours are built on top of JADE behaviours, and they are char-
acterized by the peculiar scheduling mechanisms of JADE behaviours. A minimal
behaviour is declared in Jadescript by stating its name and its type, which can be
cyclic or one-shot. More complex types of behaviours, as supported by JADE,
are planned for future versions of the language. In Jadescript, the declaration of
a behaviour can restrict the agents that can adopt the behaviour by means of
the construct for-agent, and it can link the behaviour to an ontology with the
construct uses-ontology. The declaration of a behaviour is completed with a list
of features to be used to actually implement the behaviour. Such features are
properties, functions, procedures, actions, and (event) handlers.



14 F. Bergenti, G. Caire, S. Monica, A. Poggi

Listing 2 Declaration of a behaviour used by seller agents to implement the music
shop example in Jadescript.

1 cyclic behaviour WaitForRequests for agent Seller uses
2 ontology MusicShop
3 on message m when performative of m is cfp and
4 content of m is owns do
5 content = content of m as owns
6
7 buyer = sender of m
8
9 catalogue = catalogue of agent

10
11 title = title of content
12
13 if catalogue contains title do
14 good = catalogue[title]
15
16 send propose quote(buyer , good) to buyer
17 else do
18 send refuse sell(buyer , title) to buyer

Listing 2 shows a behaviour used to implement the music shop example. The
WaitForRequests behaviour is scheduled by seller agents to wait for incoming call-
for-proposal messages. When one of such messages is received, the behaviour is
used to check if the requested item is available at the shop and to reply accordingly.
Note that the behaviour uses an event handler to execute a sequence of statements
upon the reception of a message. The handler specifies a condition that is used to
filter appropriate messages (lines 3 and 4). The condition refers to the properties
of the received message expressed using the elements of the referenced ontology,
which is declared with the uses-ontology construct (lines 1 and 2). The two parts
of the condition shown in Listing 2 use the of operator to access the elements
of a structured value, and the is operator to check if the type of the left-hand
operand is compatible with the type used as right-hand operand. When a message
satisfies the condition, the behaviour extracts the content of the message to react
appropriately. The content of the message is extracted using the = operator, the
of operator, and the as operator (line 5). Jadescript provides a single statement
to declare variables and to perform assignments using the common = operator.
In Jadescript, the types of variables are inferred by the compiler from mandatory
initialization expressions, and there is no need to make them explicit. Note that
it is always possible to make data types explicit by means of the as operator.

For all processed messages, the WaitForRequests behaviour uses the list of
items available at the shop, called catalogue in the example (line 9), to respond
appropriately. The catalogue is a property of the agent that is currently executing
the behaviour, whose type is specified using the for-agent construct (line 1). Note
that the keyword agent (line 9) can be used in a behaviour to refer to the agent that
is currently executing the behaviour. Besides mentioned primitive and structured
data types, behaviour types and agent types are provided by Jadescript for the
manipulation of behaviours and agents, respectively. The catalogue is a map that
contains values that represent the items available at the shop, which are described
using the elements of the ontology referenced by the behaviour. Listing 2 shows



The First Twenty Years of Agent-Based Software Development with JADE 15

Listing 3 Declaration of the buyer agents used to implement the music shop
example in Jadescript.

1 agent Buyer uses ontology MusicShop
2 on create with arguments as list of text do
3 title = arguments [0]
4
5 create shops as list of text
6
7 skip = true
8
9 for seller in arguments do

10 if skip do
11 skip = false
12 else do
13 add seller to shops
14
15 activate behaviour SendCFPs with shops = shops ,
16 title = title
17
18 activate behaviour WaitForReplies

some examples of the features that Jadescript offers to manipulate lists and maps.
Ordinary square brackets are available to access the elements of lists and maps
(line 14). When applied to lists, they require a nonnegative integer to be used as
index. When applied to maps, they require a value compatible with the type of
the keys to access the corresponding value in the map. Note that square brackets
can also be used at the left-hand side of the = operator to modify lists and maps.
In addition, the contains operator (line 13) is provided to check if the collection
used as left-hand operand contains the value used as right-hand operand. The
contains operator works on the elements of lists and on the keys of maps.

Jadescript provides the classic if-else statement to express conditional se-
quences of statements (lines 13–18) that can be nested in multiple branches. In
the example shown in Listing 2, the if-else statement is used to choose between
two send statements intended to send appropriate replies (lines 16 and 18). The
send statement is used in Jadescript to create a message and send it. Only the
performative, the list of receivers, the content, and, implicitly, the ontology can
be specified in the send statement.

Finally, Jadescript allows declaring agents, which are essentially JADE agents,
in terms of the following features: properties, procedures, functions, and (event)
handlers. Listing 3 shows the Jadescript implementation of the buyer agents of
the music shop example. The actions that buyer agents perform to implement
the example are declared in the referenced behaviours SendCFPs (line 15) and
WaitForReplies (line 18). The names of such behaviours are evocative of their
roles in the example. The shown on-create handler (lines 2–18) has a parameter
called arguments that is associated with the command line arguments passed to
the agent upon creation. The first of such arguments is the title of the item that the
user intends to buy (line 3). The remaining arguments are the AIDs of seller agents,
which are collected in the shops list. Jadescript provides the create statement to
create instances of structured data types (line 5) and, if needed, a list of named
arguments can be provided after the optional keyword with.



16 F. Bergenti, G. Caire, S. Monica, A. Poggi

Jadescript supports iteration over lists and maps with the for-in-do statement
(lines 9–13). At each iteration, an element from the collection that follows the
keyword in is extracted and, before the body of the statement is executed, the
element is assigned to the variable whose name is declared after the keyword
for. A set of statements is provided by Jadescript to work on collections, and,
in particular, the add-to statement can be used to modify lists (line 13). Finally,
Jadescript provides the activate-behaviour statement to instantiate and activate
behaviours (lines 15 and 18). Such a statement can be used in the scope of the
actions of agents and behaviours to instantiate a behaviour and to activate it. Some
behaviours need a set of arguments to be properly initialized, and such arguments
can be provided by means of the optional keyword with (line 15 and 16).

6 Conclusions

This paper presented a perspective on the first twenty years of agent-based software
development with JADE. The introductory chronicle on the history of JADE was
meant to highlight the major steps of the development of the framework and to
clarify the relationships between JADE and other projects and initiatives. JADE
was considered the de facto reference implementation of FIPA specifications, which
were intended to support interoperability and to bring the concept of open multi-
agent system in the landscape of the research on software agents and agent-based
software development. As such, JADE had some influence on the applied research
on software agent and agent-based software development, and it is worth noting
that, after more than twenty years, scientific papers still mention the use of JADE
for prototyping and to support experiments.

JADE is important also because it contributed a set of abstractions to the
research on software agents and agent-based software development that are now
part of the common knowledge of the community. For example, the design of agent
platforms in terms of connected containers, which JADE contributed to promote,
is now part of the common nomenclature of agent-based software development,
and terms like main container, peripheral container, and behaviour are known to
researchers, practitioners, and students.

The two decades of JADE witness its successful adoption in relevant application
domains. Among the various examples documented in the literature, the use of
JADE to support the management of a large telecommunication network can be
considered as a notable success, and it can also be considered as a relevant success
for the research on software agents and agent-based software development. The
successful adoption of JADE in such a high-profile domain witnesses that the
technology delivered by the research on software agents and agent-based software
development is mature, and that it is ready for mainstream adoption in synergy
with other stable technologies.

In order to relocate JADE in the contemporary landscape of software technolo-
gies, a new way to deal with its characteristic abstractions was recently proposed.
We claim that the introduction of a dedicated language, characterized by expres-
sivity and readability, is the first step to provide programmers with a high-level
way to construct software agents and agent-based software systems, and we be-
lieve that such an higher level of abstraction is presumably needed to ensure that
JADE would be ready for the challenges of the next decades.



The First Twenty Years of Agent-Based Software Development with JADE 17

Acknowledgements Authors would like to gratefully thank the large and lively community
of researchers, practitioners, students, and enthusiasts that contributed to the development
and the application of JADE during its first twenty years. Authors would like to fondly and
admiringly dedicate this paper to the memory of Fabio Bellifemine for his prominent con-
tributions to the area of software agents and agent-based software development, and for his
propulsive role in the conception and in the launch of JADE.

References

1. van Aart, C., Caire, G., Pels, R., Bergenti, F.: Creating and using ontologies in agent
communication. In: S. Cranefield, T. Finin, S. Willmott (eds.) Proceedings of the 2002
Workshop on Ontologies in Agent Systems (OAS 2002), CEUR Workshop Proceedings,
vol. 66. RWTH Aachen (2002)

2. ADAC Web site: www.adac.de
3. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation. Journal

of Functional Programming 7(1), 1–72 (1997)
4. Bădică, C., Budimac, Z., Burkhard, H.D., Ivanovic, M.: Software agents: Languages, tools,

platforms. Computer Science and Information Systems 8(2), 255–298 (2011)
5. Bäumer, C., Magedanz, T.: Grasshopper–A mobile agent platform for active telecommu-

nication. In: Proceedings of the 3rd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA 1999), pp. 19–32. Springer-Verlag (1999)

6. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE–A Java agent development frame-
work. In: R.H. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (eds.) Multi-Agent
Programming: Languages, Platforms and Applications, pp. 125–147. Springer Interna-
tional Publishing (2005)

7. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with JADE.
Wiley Series in Agent Technology. John Wiley & Sons (2007)

8. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Software: Practice and Experience 31, 103–128 (2001)

9. Bergenti, F.: A discussion of two major benefits of using agents in software development.
In: P. Petta, R. Tolksdorf, F. Zambonelli (eds.) Engineering Societies in the Agents World
III, Lecture Notes in Artificial Intelligence, vol. 2577, pp. 1–12. Springer International
Publishing (2003)

10. Bergenti, F.: An introduction to the JADEL programming language. In: Proceeding of
the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014),
pp. 974–978. IEEE (2014)

11. Bergenti, F., Caire, G., Gotta, D.: An overview of the AMUSE social gaming platform.
In: Proceedings of the 14th Workshop “From Objects to Agents” (WOA 2013), CEUR
Workshop Proceedings, vol. 1099. RWTH Aachen (2013)

12. Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for Android devices. In: Pro-
ceedings of the 15th Workshop “From Objects to Agents” (WOA 2014), CEUR Workshop
Proceedings, vol. 1260. RWTH Aachen (2014)

13. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management with
WANTS. In: P. Leitão, S. Karnouskos (eds.) Industrial Agents: Emerging Applications of
Software Agents in Industry, pp. 231–246. Elsevier (2015)

14. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software Engineer-
ing for Agent Systems: The Agent-Oriented Software Engineering Handbook, Multiagent
Systems, Artificial Societies, and Simulated Organizations, vol. 11. Springer International
Publishing (2004)

15. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems. In:
F. Bergenti, M.P. Gleizes, F. Zambonelli (eds.) Methodologies and Software Engineer-
ing for Agent Systems: The Agent-Oriented Software Engineering Handbook, Multiagent
Systems, Artificial Societies, and Simulated Organizations, vol. 11, pp. 19–31. Springer
International Publishing (2004)

16. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Interaction protocols in the JADEL program-
ming language. In: Proceeding of the 6th International Workshop “Programming Based
on Actors, Agents, and Decentralized Control” (AGERE 2016) at ACM SIGPLAN Con-
ference “Systems, Programming, Languages and Applications: Software for Humanity”
(SPLASH 2016), pp. 11–20. ACM (2016)



18 F. Bergenti, G. Caire, S. Monica, A. Poggi

17. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven development
for JADE with the JADEL programming language. Computer Languages, Systems &
Structures 50, 142–158 (2017)

18. Bergenti, F., Monica, S.: Location-aware social gaming with AMUSE. In: Y. Demazeau,
T. Ito, J. Bajo, M.J. Escalona (eds.) Advances in Practical Applications of Scalable Multi-
agent Systems, pp. 36–47. Springer International Publishing (2016)

19. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-oriented
programming. In: Proceeding of the 8th International Workshop “Programming Based on
Actors, Agents, and Decentralized Control” (AGERE 2018) at ACM SIGPLAN Conference
“Systems, Programming, Languages and Applications: Software for Humanity” (SPLASH
2018), pp. 62–71. ACM (2018)

20. Bergenti, F., Petrosino, G.: Overview of a scripting language for JADE-based multi-agent
systems. In: Proceedings of the 19th Workshop “From Objects to Agents” (WOA 2018),
CEUR Workshop Proceedings, vol. 2215, pp. 57–62. RWTH Aachen (2018)

21. Bergenti, F., Poggi, A.: Ubiquitous information agents. International Journal of Cooper-
ative Information Systems 11(34), 231–244 (2002)

22. Bergenti, F., Poggi, A., Burg, B., Caire, G.: Deploying FIPA-compliant systems on hand-
held devices. IEEE Internet Computing 5(4), 20–25 (2001)

23. Bergenti, F., Poggi, A., Tomaiuolo, M.: An actor based software framework for scalable
applications. In: Proceedings of the 7th International Conference on Internet and Dis-
tributed Computing Systems (IDCS 2014), Lecture Notes in Computer Science, vol. 8729,
pp. 26–35 (2014)

24. Bergenti, F., Ricci, A.: Three approaches to the coordination of multiagent systems. In:
Proceedings of the 17th ACM Symposium on Applied Computing, pp. 367–373. ACM
(2002)

25. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Pub-
lishing (2013)

26. Bordini, R.H., Braubach, L., Dastani, M., El Fallah Seghrouchni, A., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and
platforms for multi-agent systems. Informatica 30(1) (2006)

27. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. John Wiley & Sons (2007)

28. Braubach, L., Pokahr, A.: Developing distributed systems with active components and
Jadex. Scalable Computing: Practice and Experience 13(2) (2012)

29. Breugst, M., Magedanz, T.: Mobile agents-enabling technology for active intelligent net-
work implementation. IEEE Network 12(3), 53–60 (1998)

30. Broadcom Web site: www.broadcom.com
31. Caire, G., Gotta, D., Banzi, M.: WADE: A software platform to develop mission critical

applications exploiting agents and workflows. In: Proceeding of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 29–36.
IFAAMAS (2008)

32. Collis, J.C., Ndumu, D.T., Nwana, H.S., Lee, L.C.: The ZEUS agent building tool-kit. BT
Technology Journal 16(3), 60–68 (1998)

33. Eclipse Web site: www.eclipse.org
34. Eysholdt, M., Behrens, H.: Xtext: Implement your language faster than the quick and

dirty way. In: Proceedings of the ACM International Conference “Object-Oriented Pro-
gramming, Systems, Languages, and Applications” (OOPSLA 2010), pp. 307–309. ACM
(2010)

35. FIPA Web site: www.fipa.org
36. Fisher, M.: MetateM: The story so far. In: R.H. Bordini, M. Dastani,

A. El Fallah Seghrouchni (eds.) Proceedings of the 3rd International Conference on Pro-
gramming Multi-Agent Systems (ProMAS 2005), pp. 3–22. Springer-Verlag (2006)

37. Foundation for Intelligent Physical Agents: FIPA specifications (2002). Available online
at www.fipa.org

38. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Transactions on
software engineering 24, 342–361 (1998)

39. Garćıa-Gómez, S., González-Ordás, J., Garćıa-Algarra, F.J., Toribio-Sardón, R., Sedano-
Frade, A., Buisán-Garćıa, F.: KOWLAN: A multi agent system for Bayesian diagnosis in
telecommunication networks. In: Proceedings of the 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology (WI&IAT 2009),
vol. 3, pp. 195–198. IEEE (2009)



The First Twenty Years of Agent-Based Software Development with JADE 19

40. Google Scholar Web site: scholar.google.com
41. Hindriks, K.V., Dix, J.: Goal: A multi-agent programming language applied to an explo-

ration game. In: O. Shehory, A. Sturm (eds.) Agent-Oriented Software Engineering, pp.
235–258. Springer International Publishing (2014)

42. International Telecommunication Union: M.3400 TMN management functions (1997).
Available online at www.itu.int

43. Islam, N., Mallah, G.A., Shaikh, Z.A.: FIPA and MASIF standards: A comparative study
and strategies for integration. In: Proceedings of the 2010 National Software Engineering
Conference (NSEC 2010), pp. 7:1–7:6. ACM (2010)

44. JADE Web site: jade.tilab.com
45. Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial Societies

and Social Simulation 18(1), 11 (2015)
46. Mangina, E.: Review of software products for multi-agent systems (2002). Available online

at www.agentlink.org
47. Milojicic, D., Breugst, M., Busse, I., Campbell, J., Covaci, S., Friedman, B., Kosaka, K.,

Lange, D., Ono, K., Oshima, M., Tham, C., Virdhagriswaran, S., White, J.: MASIF: The
OMG mobile agent system interoperability facility. Personal Technologies 2(2), 117–129
(1998)

48. Monica, S., Bergenti, F.: Location-aware JADE agents in indoor scenarios. In: Proceed-
ings of the 16th Workshop “From Objects to Agents” (WOA 2015), CEUR Workshop
Proceedings, vol. 1382, pp. 103–108. RWTH Aachen (2015)

49. Monica, S., Bergenti, F.: A comparison of accurate indoor localization of static targets
via WiFi and UWB ranging. In: Trends in Practical Applications of Scalable Multi-Agent
Systems, Advances in Intelligent Systems and Computing, vol. 473, pp. 111–123. Springer
International Publishing (2016)

50. Motorola Web site: www.motorola.com
51. MPEG Web site: mpeg.chiariglione.org
52. Müller, J.P., Fischer, K.: Application impact of multi-agent systems and technologies: A

survey. In: O. Shehory, A. Sturm (eds.) Agent-Oriented Software Engineering, pp. 27–53.
Springer International Publishing (2014)

53. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: ZEUS: A toolkit for building distributed
multiagent systems. Applied Artificial Intelligence 13, 129–185 (1999)

54. O’Brien, P.D., Nicol, R.: FIPA: Towards a standard for software agents. BT Technology
Journal 16(3), 51–59 (1998)

55. OMG Web site: www.omg.org
56. Petrosino, G., Bergenti, F.: An introduction to the major features of a scripting language

for JADE agents. In: Proceedings of the 17th Conference of the Italian Association for
Artificial Intelligence (AI*IA 2018), Lecture Notes in Artificial Intelligence, vol. 11298,
pp. 3–14. Springer International Publishing (2018)

57. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching in the
Jadescript programming language. In: Proceedings of the 20th Workshop “From Objects
to Agents” (WOA 2019), CEUR Workshop Proceedings, vol. 2404, pp. 113–118. RWTH
Aachen (2019)

58. Pitt, J., Bellifemine, F.: A protocol-based semantics for FIPA’97 ACL and its implementa-
tion in JADE. In: Proceedings of the 6th Congress of the Italian Association for Artificial
Intelligence (AI*IA 1999). Italian Association for Artificial Intelligence (1999)

59. Poggi, A., Tomaiuolo, M., Turci, P.: A testbed for agent mediated service composition.
In: Proceedings of the 4th International Symposium “From Agent Theory to Agent Im-
plementation” (AT2AI-4), vol. 2, pp. 529–534. Austrian Society for Cybernetics Studies
(2004)

60. Poslad, S.: History of FIPA (2005). Available online at www.fipa.org
61. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Transactions

on Autonomous and Adaptive Systems 2(4) (2007)
62. Poslad, S.: Ubiquitous Computing: Smart Devices, Environments and Interactions. John

Wiley & Sons (2009)
63. Poslad, S., Buckle, P., Hadingham, R.: Open source, standards and scaleable agencies. In:

Proceedings of the Workshop “Infrastructure for Scalable Multi-Agent Systems”, Lecture
Notes in Computer Science, vol. 1887, pp. 296–303. Springer-Verlag (2001)

64. Ricci, A., Santi, A.: Designing a general-purpose programming language based on agent-
oriented abstractions: The simpAL project. In: Proceeding of the 1st International Work-
shop “Programming Based on Actors, Agents, and Decentralized Control” (AGERE 2011)



20 F. Bergenti, G. Caire, S. Monica, A. Poggi

at ACM SIGPLAN Conference “Systems, Programming, Languages and Applications:
Software for Humanity” (SPLASH 2011), pp. 159–170. ACM (2011)

65. Rodriguez, S., Gaud, N., Galland, S.: SARL: A general-purpose agent-oriented program-
ming language. In: Proceedings of the 2014 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI&IAT 2014 ), pp. 103–110.
IEEE (2014)

66. Scopus Web site: www.scopus.com
67. Shoham, Y.: AGENT-0: A simple agent language and its interpreter. In: Proceedings of

the 9th National Conference on Artificial Intelligence (AAAI 1991), vol. 91, pp. 704–709.
AAAI (1991)

68. Shoham, Y.: An overview of agent-oriented programming. In: J.M. Bradshaw (ed.) Soft-
ware Agents, pp. 271–290. MIT Press (1997)

69. Siemens Web site: www.siemens.de
70. Telefónica Web site: www.telefonica.com
71. TIM Web site: www.tim.it
72. Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A.: An ontology support for semantic aware

agents. In: Proceedings of the 7th International Workshop “Agent-Oriented Information
Systems III” (AOIS 2005), Lecture Notes in Artificial Intelligence, vol. 3529, pp. 140–153.
Springer International Publishing (2006)


