
Vol.:(0123456789)

SN Computer Science (2024) 5:488
https://doi.org/10.1007/s42979-024-02830-4

SN Computer Science

ORIGINAL RESEARCH

Explainable Anomaly Detection of Synthetic Medical IoT Traffic Using
Machine Learning

Lerina Aversano1 · Mario Luca Bernardi2 · Marta Cimitile3 · Debora Montano4 · Riccardo Pecori5,6  · Luca Veltri7

Received: 21 November 2023 / Accepted: 25 March 2024
© The Author(s) 2024

Abstract
In the context of the Internet of Things (IoT), particularly within medical facilities, the detection and categorization of
Internet traffic remain significant challenges. While conventional methods for IoT traffic analysis can be applied, obtaining
suitable medical traffic data is challenging due to the stringent privacy constraints associated with the health domain. To
address this, this study proposes a network traffic simulation approach using an open-source tool called IoT Flock, which
supports both CoAP and MQTT protocols. The tool is used to create a synthetic dataset, to simulate IoT traffic originating
from various smart devices in different hospital rooms. The study shows a complete anomaly detection analysis of IoT-Flock-
generated traffic, both normal and malicious, by leveraging and comparing traditional machine learning techniques, deep
learning models with multiple hidden layers, and explainable artificial intelligence techniques. The results are very promising.
For the binary classification, for example, the obtained accuracy is close to 100% in the case of the CoAP protocol. Good
results are also obtained when the multinomial classification is performed, observing that CoAP packets are classified better
than MQTT packets, even if the identification of the different MQTT packets reaches very high metrics for the most of the
considered algorithms. Moreover, the obtained classification rules are also meaningful in the considered IoT context. The
results indicate that IoT-Flock synthetic data can effectively be used to train and test machine and deep learning models for
detecting abnormal IoT traffic in medical scenarios. This research attempts also to bridge the gap between IoT security and
healthcare, providing useful insights into securing medical IoT networks in general.

Keywords  Medical internet of things · Anomaly detection · Intrusion detection systems · Machine learning · Explainable
artificial intelligence · Deep neural networks

Introduction

The Internet of Things (IoT) refers to the integration of dif-
ferent devices across various technologies, enabling them
to connect and communicate autonomously, without human

This article is part of the topical collection “Recent Trends on Data
Science, Technology and Applications” guest edited by Slimane
Hammoudi, Alfredo Cuzzocrea and Oleg Gusikhin.

 *	 Riccardo Pecori
	 riccardo.pecori@cnr.it

	 Lerina Aversano
	 lerina.aversano@unifg.it

	 Mario Luca Bernardi
	 bernardi@unisannio.it

	 Marta Cimitile
	 marta.cimitile@unitelmasapienza.it

	 Luca Veltri
	 luca.veltri@unipr.it

1	 Department of Agricultural Science, Food, Natural
Resources and Engineering, University of Foggia,
71122 Foggia, Italy

2	 Department of Engineering, University of Sannio,
82100 Benevento, Italy

3	 Department of Law and Digital Society, Unitelma Sapienza
University, 00161 Rome, Italy

4	 CeRICT Scrl, 82100 Benevento, Italy
5	 SMARTEST Research Centre, eCampus University,

22060 Novedrate, CO, Italy
6	 Institute of Materials for Electronics and Magnetism,

National Research Council of Italy, 43124 Parma, Italy
7	 Department of Engineering and Architecture, University

of Parma, 43124 Parma, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02830-4&domain=pdf
http://orcid.org/0000-0002-5948-5845

	 SN Computer Science (2024) 5:488 488   Page 2 of 15

SN Computer Science

intervention. These IoT devices not only interact with each
other, but also with a wide array of equipment, including
industrial machinery, robots, drones, and energy genera-
tion systems, making them applicable in numerous sec-
tors, including healthcare. IoT devices, especially when
deployed in critical settings like healthcare, raise signifi-
cant security concerns [1]. Traditional security measures,
such as firewalls, intrusion detection systems (IDSs), and
intrusion prevention systems (IPSs), are commonly used to
safeguard devices and networks against cyber-threats. Pres-
ently, many firewalls and IPSs rely on predefined rules to
filter out abnormal or malicious traffic. However, certain
IDS and IPS systems also leverage Artificial Intelligence
(AI) techniques to identify malicious traffic effectively [2].
As a matter of fact, combining AI methods with predefined
rules enhances the ability to detect attack traffic compared
with using only static rules. AI-based IDS and IPS systems
are typically trained and tested using datasets that encom-
pass both normal and attacking traffic. These datasets can
be acquired through two approaches: (i) collecting actual
traffic data from live systems to capture both malicious and
normal traffic, or (ii) utilizing synthetic traffic generators
that simulate real-time network traffic patterns. This research
aims at a medical IoT environment, where obtaining real IoT
traffic data proves challenging due to the stringent privacy
constraints associated with patients’ health information,
even when anonymized. To address this issue and study this
critical IoT scenario, we employed a network traffic simula-
tion approach using an open-source tool called “IoT-Flock”
[3]. IoT-Flock is capable of generating IoT traffic originat-
ing from various smart devices and supports two distinct
application layer protocols commonly used in IoT scenarios:
CoAP and MQTT. Furthermore, IoT-Flock offers the flex-
ibility to create customized IoT use cases, allowing the inclu-
sion of as many custom IoT devices as needed and the gen-
eration of both malicious and normal IoT traffic associated
with these scenarios. This approach was chosen to overcome
the challenges of acquiring real medical IoT traffic data and
facilitate the study of this complex environment.

Major Contributions of the Work

The major contributions of this paper, which is an extension
of the preliminary paper presented at DATA 2023 confer-
ence [4], include:

•	 The identification, for the first time as we know, of IoT-
Flock-generated CoAP traffic;

•	 The comparison, for the first time as we know, of both
machine and deep learning models on synthetic traffic
generated by IoT-Flock;

•	 A thorough analysis of IoT-Flock-generated traffic by
means of a packet-based feature model, thus consider-

ing features of single packets, through both a binary and
a multinomial classification;

•	 The application of an inherent explainable machine
learning technique, i.e., fuzzy Hoeffding decision tree,
to extract useful rules to interpret the classification out-
comes and evaluate if the obtained results have a signifi-
cant meaning in the real-world context.

The final aim is to encourage the large usage of IoT-Flock
as a tool to create IoT-based traffic datasets useful to train
real-world effective AI-based IDSs in both hospitals and
healthcare-related buildings.

Structure of the work

This work is structured as follows:

•	 Section “ Background” offers background information
concerning the IoT attacks that are under consideration
in this paper and the algorithms used for the analyses of
the considered IoT traffic;

•	 Section “Related Work” discusses related researches on
the application of machine and deep learning algorithms
for IoT attack categorization;

•	 Section “IoT-Flock” explains the utilization of IoT-Flock
and outlines the considered use-cases;

•	 Section Experimental Settings” provides a detailed expla-
nation of the regarded attributes, the considered data,
the hyper parameters of the machine and deep learning
models that we used for the classification analysis, as
well as the evaluated performance metrics;

•	 Section “Results” reports the results of all the analyses
we conducted, using both machine and deep learning
models, and shows some explainable rules we extracted;

•	 Section “Discussion and Threats to the Validity” dis-
cusses the obtained results, the meaning of the output
rules and some threats to the validity of the study;

•	 Section “Conclusions and Future work” concludes the
article by offering guidance and proposals for future
research developments.

Background

Attack Description

In this study, we examine the traffic generated by two widely
used IoT protocols, namely MQTT (Message Queue Telem-
etry Transfer) [5] and CoAP (Constrained Application Pro-
tocol) [6]. Additionally, we investigate two types of attack
for each protocol currently supported by IoT-Flock,1 an

1  https://​github.​com/​Thing​zDefe​nse/​IoT-​Flock.

https://github.com/ThingzDefense/IoT-Flock

SN Computer Science (2024) 5:488 	 Page 3 of 15  488

SN Computer Science

open-source tool, designed for generating synthetic IoT traf-
fic, whose users can construct various IoT use-case scenarios
with specific IoT devices and produce both legitimate and
malignant IoT packets over a real-time synthetic network.
A brief summary of the attacks analyzed in this paper is
provided hereinafter:

•	 MQTT packet crafting attack: in this attack, MQTT pack-
ets are deliberately crafted to disrupt the MQTT broker.
The attacker initiates a connection with the MQTT bro-
ker at the transport level and sends a malformed MQTT
packet. This malicious packet has the potential to trigger
a buffer overflow, causing certain MQTT broker imple-
mentations to crash, thereby rendering a Denial of Ser-
vice (DoS) attack possible [7].

•	 MQTT publish flood attack: in this attack, MQTT publish
messages are directed at a broker with high rate, with
the intention of potentially initiating a Denial of Service
(DoS) attack, by filling all the memory and/or processing
capabilities of the broker.

•	 CoAP segmentation fault attack: this attack utilizes a vul-
nerability of a specific CoAP library, the LibNyoci,2 for
embedded systems that let a malformed Uri-Path option
cause a possible segmentation fault, leading to a denial
of service attack versus the received CoAP server device
[8].

•	 CoAP memory leak attack: like the previous one, also this
attack exploits a vulnerability in a CoAP implementation,
the Eclipse Wakaama,3 which gets a crafted packet with
invalid options leading to a possible memory leak/waste
(of 24 bytes) on the server side. This second-hand attack
can be also used to exhaust memory resources leading to
a DoS [9].

Employed Machine and Deep Learning Techniques

In this subsection, we summarize the main characteristics
of the used machine and deep learning techniques, focus-
ing also on the Fuzzy Hoeffding Decision Tree chosen as
explainable AI model.

Machine Learning

Machine Learning (ML) is composed of algorithms and
techniques capable of creating systems that learn and
enhance their performance over time by leveraging the
information inside the data themselves. The quality and
nature of the data significantly impact the effectiveness of
ML algorithms, as various data representations can either
reveal or obscure the underlying explanatory factors driving

the variations of the data. In recent years, many studies have
been conducted on the classification of IoT traffic using often
a supervised ML technique [4, 10].

This study, in particular, employs several algorithms such
as:

•	 Naïve Bayes [11], a popular algorithm used for classifica-
tion and probabilistic modeling. It is based on the Bayes’
theorem, which is a probability theory that calculates the
likelihood of an event occurring given prior knowledge.
Naïve Bayes is particularly well-suited for scenarios with
high-dimensional data, where other algorithms might
struggle. However, its performance can be sub-optimal
when the independence assumption is strongly violated,
or when dealing with complex relationships within the
data.

•	 Support vector machine (SVM) [12], a powerful and
versatile supervised algorithm used for classification,
regression, and outlier detection tasks. It works by find-
ing an optimal hyperplane that best separates data-points
in different classes. The term “support vector” refers to
the data-points that are closest to the decision boundary
(the hyperplane), in fact, they play a crucial role in SVM
operations. SVM is widely used due to its flexibility and
ability to handle both linear and non-linear problems
effectively.

•	 Logistic regression [13] is a statistical and ML technique
used for binary classification, which is employed to pre-
dict one of two possible outcomes based on one or more
predictor features. Despite its name, it is not a regression
algorithm, but a classification algorithm. Its simplicity,
efficiency, and interpretability make it a really valuable
classification technique.

•	 Decision tree [14], an algorithm that learns to make deci-
sions by recursively splitting data into subsets based on
the most significant features. All the decision rules form
a tree-like structure, where each internal node represents
a decision or test on an attribute, and each leaf node rep-
resents the outcome or class label.

More details about the settings of ML algorithms used in this
work are discussed in subsection “Models Settings”.

Deep Learning

Deep learning (DL) is a subset of ML, a field of AI that
focuses on algorithms and models inspired by the structure
and function of the human brain’s neural networks. DL algo-
rithms, also known as deep neural networks, are designed
to model and understand complex patterns in large datasets.
They have gained significant attention and success in various
AI applications due to their ability to automatically learn
hierarchical representations from data. DL is applied in a

2  https://​github.​com/​darco​neous/​libny​oci.
3  https://​www.​eclip​se.​org/​wakaa​ma/.

https://github.com/darconeous/libnyoci
https://www.eclipse.org/wakaama/

	 SN Computer Science (2024) 5:488 488   Page 4 of 15

SN Computer Science

wide range of fields, such as image and speech recognition,
autonomous vehicles, recommendation systems, healthcare,
finance, and natural language understanding. In recent years,
there has been a growing interest in utilizing deep learning
techniques also for the classification of IoT traffic [15–17].

In our work, we use a Deep Neural Network (DNN) to
classify synthetic IoT traffic. A DNN has multiple layers
between the input and output layers. These intermediate lay-
ers, the hidden layers, enable the network to learn increas-
ingly abstract and complex representations of the data, mak-
ing it capable of solving more intricate tasks, and they are
a fundamental component of DL. More details about the
architecture of our DNN model are reported in subsection
“Models Settings”.

Fuzzy Hoeffding Decision Tree

The fuzzified version of the Hoeffding Decision Tree
(FHDT) has been also used in this research work. This model
entails a fuzzy discretization of the input features, resulting
into a linguistic fuzzy partition [18]. FHDT can help in tack-
ling explainability and interpretability issues because (i) it
guarantees a balance between classification performance and
the complexity of the model, (ii) fuzzy partitions associated
with linguistic terms can make the interpretability of the
extracted rules easier for a human being [19].

Two details make FHDT different from its traditional ver-
sion [18]:

•	 The update process of the statistics in the internal nodes,
because in this variant a training instance can reach
more than one leaf, encompassing the fuzzy membership
degree, the local fuzzy cardinality of the whole node, and
the fuzzy cardinalities per class in a node;

•	 The computation of the fuzzy Information Gain and of
the fuzzy Hoeffding bound that exploit the fuzzy cardi-
nality instead of the traditional cardinality.

Moreover, the FHDT model can be explained through lin-
guistic IF-THEN rules extracted from the tree model, by fol-
lowing the paths from the initial node (root) to the terminal
nodes (leaves). Each rule is composed of some antecedents,
regarding the attributes described through the linguistic
terms associated with the fuzzy partitions, and a consequent
returning the decided class.

Related Work

The concept of smart health and smart devices has under-
gone a radical transformation with the rapid growth of the
IoT. As IoT-based health monitoring systems continue to
evolve and become more intelligent, an increasing number

of IoT-based smart health monitoring systems are being
introduced and integrated into daily healthcare practices.
However, in terms of security of healthcare systems, the
IoT is still in its early stages of development. Unfortu-
nately, given that the resources of IoT smart devices are
truly limited, and given that the security requirements to
be met are increasingly greater, especially in the health-
care sector, it is not possible to use the normal security
solutions usually deployed for the protection of network
traffic in a scenario dedicated to the medical IoT [20, 21].
Furthermore, IoT intelligent objects record information
based on the specific use case, and, therefore, normal
security solutions and protocols must be adapted, from
time to time, based on the specific use and needs of the
IoT scenario to be protected [20]. Therefore, it is neces-
sary to ensure that there are no external attacks on the
network of smart health devices, taking into account that
IoT solutions applied in the medical field have limited
resources. There are many studies regarding the security
solutions to be adopted to protect IoT healthcare systems
from external attacks. A first proposal in this sense details
a technique for identifying replay attacks against battery-
powered IoT healthcare equipment [22]. To detect and pre-
vent such attacks, the authors suggest examining battery
drain behavior, unique device IDs, and timestamps. The
solution proposed by Rathore et al. [21] involves instead
the adoption of the semi-supervised Fuzzy C-Means tech-
nique, based on Extreme Learning Machine (ELM), so that
cyber-attacks can be detected in fog-based IoT systems.
The use of Fuzzy C-Means is effective in addressing the
difficulties associated with labeling datasets, while ELM
techniques are useful for quickly and effectively detecting
cyber-attacks. Furthermore, Alradashi et al. [23] propose
a strategy capable of identifying malicious devices in a
fog-based IoT healthcare scenario; in particular, this is
a smart home equipped with a remote patient monitor-
ing system. The authors use a system of online sequential
ELMs capable of detecting different types of attacks such
as distributed denial of service, man-in-the-middle, and
other potential threats to the patient’s health. As already
said, IoT security is currently a major concern. Currently,
the most used solutions to protect IoT flows are anti-intru-
sion IDSs and IPSs. In fact, if you use datasets relating to
both malicious and normal IoT network traffic it is pos-
sible to carry out an evaluation of the traffic. However,
this involves the use of a large amount of data relating
to IoT traffic to better train IDS and IPS. Multiple recent
studies provide collections of real-world IoT data [15–17];
however, in these studies, it is possible to detect one of
the main difficulties of the medical IoT scenario, as it is
hard to collect adequate data, which follows all the rigor-
ous delivery requirements that all hospitals and healthcare
institutions are required to comply with. Furthermore, it is

SN Computer Science (2024) 5:488 	 Page 5 of 15  488

SN Computer Science

very difficult to collect useful traffic data via IoT systems
in the real world, this is due to the very low throughput
of some IoT devices and the various difficulties in col-
lecting a large-enough number of instances of both nor-
mal and malicious traffic. Furthermore, various datasets
are available online, mostly used for training and testing
IDSs and IPSs, and they refer to both traditional networks
and IoT networks. Indeed, the major studies in the sec-
tor in recent years use such data precisely. In particular,
some are generated using real-time systems, and can be
considered on a par with real datasets, while others are
generated through simulation techniques, thus they are
labeled as simulated and/or synthetic datasets [24–30].
Concerning the application of explainable models to the
anomaly detection of IoT traffic, such a research topic has
been investigated more and more in the last years [31]. For
example, in [32], explainable deep learning, specifically,
autoencoder-based LSTM and DNNs, is applied to an
industrial IoT scenario and to a real world GSP system. In
[33], an explainable variational autoencoder is applied to
detect anomalies in NetFlow traffic. The explanations are
provided through a gradient based fingerprinting technique
applied to the UGR16 dataset containing anonymized
NetFlow traces. The work in [34] is the closest to ours
in terms of explainability applied to an IoT scenario: the
authors apply a fuzzy decision tree to a real-world data-
set containing flow-based features, while we focused on
a synthetic dataset with packet-based attributes. In [35],
the focus is on explaining the best anomaly detection tech-
niques for a certain IoT dataset, while in [36], there is the
claim that explainable neural networks have been applied
to an Internet of Vehicles scenario by exploiting K-means
clustering for feature scoring and ranking using two public
datasets, namely CICIDS2019 and UNSW-NB15. How-
ever, explainable results are not discussed, focusing on
performance metrics instead. In [37], the focus is again
on an industrial scenario, specifically industrial control
systems, and the explainability is provided through an
LSTM-based autoencoder, with one class SVM and gra-
dient SHAP values applied to a SCADA dataset.

For the work we propose, we have taken inspiration from
the Bot-IoT dataset [38], which simulates IoT traffic pro-
duced by some normal and attacker virtual machines. Unlike
this, however, the traffic we generated uses IoT-Flock as a
simulator, which, unlike Bot-IoT, takes the traffic gener-
ated by both MQTT and CoAP protocols into account. This
allowed us not only to recognize the type of traffic, be it
normal or malicious, but also to classify the types of attacks
based on the used IoT protocol. Moreover, we applied, for
the first time, ante-hoc explainable ML to the synthetic traf-
fic generated by IoT-flock, in order to verify whether the
resulting rules have a real-world meaning and thus confirm-
ing the feasibility of using IoT-Flock as a tool for training

AI models to be tested in real-world scenarios afterwards.
We have chosen to use the fuzzy version of the Hoeffding
Decision Tree as an explainable ML algorithm, an algorithm
usually adopted in stream mining and so perfectly matching
the variable nature of IoT traffic flows.

IoT‑Flock

In order to generate the data used in this study, we lever-
aged IoT-Flock [3], an open-source IoT traffic generator
that operates in real-time and through which different use
cases may be designed, characterizing them with different
intelligent devices. IoT-Flock manages to generate both
regular and anomalous IoT traffic, a function most com-
mercial and open-source tools lack; more precisely, they
do not support the creation of malicious devices in the
same use case. This functionality is particularly useful
because it allows one to provide more adequate IDSs and
IPSs. Furthermore, IoT-Flock provides for the possibility
of exporting the designed use cases in XML format and of
importing the XML generated using both IoT-Flock itself
and other tools. Furthermore, the tool also allows one to
generate a series of recent attacks, specifying them based
on the protocol in use, MQTT and COAP; this feature is
not present in any of the open-source IoT traffic generators.

IoT-Flock can work in two ways, i.e., via a GUI or via
a command line. In both modes, to generate a single intel-
ligent device, it is necessary to provide a series of relevant
information about it, both functional and non-functional.
In particular, the first type of information concerns the
working behavior of the device, such as the type of device
(normal or malicious), the used protocol (MQTT and/or
CoAP), the data profile (type and scope of transmitted
data), the time profile (periodic or random), the type of
command (Subscribe or Publish in MQTT, Post or Get in
CoAP). It is the latest information that distinguishes one
IoT device from another one by IP address, device name,
number of devices of the same type, etc.

Considered Use Case

In our research, we explored a scenario similar to the one
discussed in a previous study [39]. This scenario involves
two hospital rooms, each equipped with various devices
that are meticulously controlled through smart sensors and
actuators connected to the Internet. In both rooms, we can
distinguish two categories of devices:

•	 The devices responsible for monitoring and regulating
the environment of the room. These devices use the
MQTT protocol to communicate through a dedicated

	 SN Computer Science (2024) 5:488 488   Page 6 of 15

SN Computer Science

broker. Their primary role is to autonomously manage
and maintain the comfort of the room and environmen-
tal conditions.

•	 The devices designed for monitoring the physical sta-
tus of the patients occupying the room. These devices
employ the CoAP protocol to communicate with a des-
ignated server, which can be accessed by healthcare
personnel. Their purpose is to supervise and report on
the health and well-being of the patients.

This setup illustrates how IoT technology is applied in a
healthcare environment, facilitating both patient care and
the management of the hospital environmental conditions.

Specifically, the smart devices that use the MQTT pro-
tocol establish communication with a broker that functions
as an environment control unit. These MQTT-based smart
devices encompass nine distinct types and operate at three
different Quality-of-Service (QoS) levels. To provide a
concise overview, the nine types of MQTT-based smart
devices are summarized hereinafter:

•	 Light intensity sensor/actuator: publisher/subscriber
type devices. The sensor publishes periodically, namely
every second, data on the light detected in the envi-
ronment on the “Light Intensity” topic. The actuator
receives data from both the light publisher device and
the movement sensor to fade in or out the light on the
basis of the external illumination of the room and the
movements in the room itself;

•	 Temperature sensor/actuator: publisher/subscriber type
devices. The sensor publishes periodically, every 2 sec-
onds, ambient temperature data on the topic “Tempera-
tures”. The actuator receives the temperature values
and tries to keep the room temperature at a constant
level, i.e., about 20◦C;

•	 Humidity sensor: every 1 second it publishes ambient
humidity data in the “Humidity” topic. It is a publisher-
type device;

•	 Motion sensor: publishes data on movements, occur-
ring in the room, in the “Movement” topic. Unlike the
other sensors that publish data periodically at constant
time intervals, the sensor of motion publishes data
pseudo-randomly in the 1 − 5-second interval;

•	 CO-GAS sensor: it receives and publishes data relat-
ing to gases detected in the room in the “CO-GAS”
topic. The frequency of the publications is random in
the range between 1 and 5 seconds;

•	 Smoke sensor: it is a publisher device. On the topic
“Smoke”, it shares in random intervals, in the range
between 1 and 5 seconds, the data relating to the sur-
veys on the presence of smoke;

•	 Fan sensor: it publishes data every 3 seconds related to
fan operations in the “Fan” topic;

•	 Fan speed controller: it is an actuator and every second
it receives data on the topic “Fan Speed”, related to the
speed of the fan present in the room. It receives also
data from the topics “Smoke”, “CO-GAS”, “Humid-
ity”, “Door Lock”, and “Temperatures”;

•	 Lock: it publishes data relating to the status of the lock
with a random frequency between 1 and 5 seconds in
the “Door Lock” topic.

In the case of CoAP devices, each bed in the rooms is
equipped with nine smart devices, and there is a CoAP
server that works as central control unit. The CoAP server
has various duties, including: managing time profiles for
patients, regulating the quantity of medication adminis-
tered to the patient through an infusion pump, initiating
alarms for the medical staff based on the patient’s health
status as monitored by the smart sensors. The nine smart
devices that utilize CoAP for communication are the fol-
lowing and are described below:

•	 ECG sensor: it provides information about the heart
beat rhythm every 1 second;

•	 Infusion pump: an actuator used to deliver possible
nutrients and drugs to the patients, retrieving data from
the server every 10 minutes;

•	 Pulsoximeter: a smart sensor furnishing the oxygen
saturation in the blood every 1 second;

•	 Mouth airflow sensor: a smart sensor providing the
breathing rate of the patient every 1 second;

•	 Blood pressure sensor: a smart sensor conveying infor-
mation about blood pressure every 2 seconds;

•	 Glucometer: a smart sensor providing information
about the glucose in the blood every 10 minutes;

•	 Body temperature sensor: a smart sensor measuring the
temperature of the patient every 1 hour;

•	 EMG sensor: a smart sensor measuring the electromi-
ography, i.e., the potential produced by the body mus-
cles, every 5 minutes;

•	 GSR sensor: a smart sensor measuring the galvanic skin
response, i.e., the electrical conductance of the skin,
every 5 minutes.

In Fig. 1, we illustrate the medical IoT scenario simu-
lated in this study. In this scenario, all devices share a
uniform configuration, utilizing the same range of private
IP addresses for both MQTT and CoAP devices. The sen-
sor network is confined to a secure and controlled access
area, where the devices establish communication with the
MQTT broker or the CoAP server. Notably, the simulated
network does not include additional components such as
firewalls or routers. The traffic within the network is moni-
tored and captured by a Tshark process running in the

SN Computer Science (2024) 5:488 	 Page 7 of 15  488

SN Computer Science

background on the computer that is executing IoT-Flock,
facilitating the collection and analysis of IoT traffic data.

Simulated Attacks

For the malicious traffic simulated in this study, we assumed
that there is a specific number of malicious devices within
the private network, controlled remotely by an attacker, and
that this is not adequately protected.

During the simulation of an attack, malicious intelligent
devices are directly connected to the MQTT broker or CoAP
server to execute one of the considered attacks. In this study,
we focused on the analysis of the type of attack and the traf-
fic corresponding to it, while the methodology used to carry
out the attacks and/or the way in which the attacker gained
control of the node were not discussed as they go beyond the
scope of this work.

Experimental Settings

The IoT Traffic Dataset

After the setup of the scenarios, we ran IoT-Flock for the
actual generation of IoT packets. While the traffic was being
generated, we captured IoT packets, with the help of Tshark,4
a tool capable of analyzing the traffic generated through
IoT-Flock in real-time. The output of running Tshark was a
standard.pcap file which we have further processed in order
to obtain the considered features and a final.csv file. The
capturing phase of IoT packets lasted about 48 hours, 24

hours per considered protocol, on a machine equipped with
an Intel Core i7 7th generation CPU, 16GB of RAM, and
one NVIDIA GeForce GPU. More precisely, the duration of
capturing normal packets was 12 hours, while MQTT and
CoAP attack packets have been captured for 6 hours each.
When considering the attacks, we supposed the presence of
4 malicious smart devices, in the corresponding private net-
work, that were sending packets following either a periodic
(1s) or random ( 1 − 5 s range) time profile.

In order to discriminate between malicious and benign
traffic, we have extracted, by using a BASH script outputting
the final.csv file, all the features available in Tshark for both
the MQTT5 and the CoAP6 protocols.

Thereafter, we performed, using a proper Python script,
a cleaning phase in order to tear out the features having no
values (NaN), the source and destination IP addresses, as
well as the non-significant, and to divide features incorporat-
ing multiple meaning into different columns.

Fig. 1   The smart health sce-
nario we considered: MQTT
devices are on the left and
monitor the environment, CoAP
devices can be seen on the
right and control the patient
conditions. MQTT publish
messages or CoAP POST and
GET packets are represented
by means of blue dashed lines,
while MQTT delivery messages
or CoAP response messages
are represented through orange
solid lines. Malicious nodes are
present in both networks

Hospital Room

secivedPAoCsecivedTTQM

MQTT
Broker

CoAP
Server

Table 1   Description of the considered IoT traffic dataset

Protocol Number of instances Type of traffic

CoAP 834,881 Normal traffic
200,003 Segmentation fault attack
198,090 Memory leak attack

MQTT 593,363 Normal traffic
29,406 Publish flood attack

1532 Packet crafting attack

4  https://​tshark.​dev/​setup/​insta​ll/.

5  https://​www.​wires​hark.​org/​docs/​dfref/m/​mqtt.​html.
6  https://​www.​wires​hark.​org/​docs/​dfref/c/​coap.​html.

https://tshark.dev/setup/install/
https://www.wireshark.org/docs/dfref/m/mqtt.html
https://www.wireshark.org/docs/dfref/c/coap.html

	 SN Computer Science (2024) 5:488 488   Page 8 of 15

SN Computer Science

The final dataset, used for our analyses, consists of
1, 857, 275 instances, each of them corresponding to a
packet. Table 1 describes the dataset, in particular, the first
column reports the application protocol, the second one
shows the number of records per type of traffic, shown in
the third column. The type of traffic represents the classifica-
tion label considered in the following analyses, performed
independently for each considered application protocols, i.e.,
MQTT and CoAP.

Hence, the dataset described in Table 1 has been split in 2
different subdatasets, one for CoAP traffic with 1, 232, 974
packets, and one for MQTT traffic with 624, 301 packets.

Moreover, we used both a binary dataset, with instances/
packets assigned only to the “Normal” or “Attack” class, and
a multinomial dataset, to classify the four particular types
of attacks as described in Subsection “Attack Description”
and the two types of normal traffic (MQTT and CoAP).
In the binary classification we had 1, 428, 244 packets for
the “Normal” class and 429, 031 packets for the general
“Attack” class.

The Feature Set

Since Tshark extracts a total of 78 features for MQTT pack-
ets and 86 features for CoAP packets, we decided to reduce
them by trying to consider only the most significant ones.
This was done by means of a thorough analysis campaign
leveraging both automated statistical analyses and manual

inspections. The outcome of this preliminary phase is shown
in Tables 2 and 3, reporting the selected features for MQTT
and CoAP, respectively, as well as their inherent type
(numeric or categorical).

As concerns MQTT, we considered the following 6
features:

•	 Packet type (CONNECT, AUTH, PUBLISH, SUB-
SCRIBE, etc.): this feature and the next one have been
extracted from the Tshark feature ‘mqtt.hdrflags’;

•	 Header flags, that is the flag bits present in the first byte
of the fixed header of an MQTT packet;

•	 Keep alive interval (measured in seconds), that is the
maximum time interval between two MQTT control
packets sent by the client;

•	 Clean session flag of CONNECT message;
•	 Connect acknowledge flags, that is flag bits of CON-

NACK packets;
•	 Packet length.

Since each captured IP packet concerning the MQTT traf-
fic, that corresponds to a TCP segment in turn, may con-
tain more than one MQTT packet, for most of the features
mentioned above Tshark provides three different values
corresponding to possible three different MQTT packets
within the same IP packet (it considers a maximum of
three concatenated packets). Therefore, concerning MQTT
traffic we considered a total of 3 × 6 = 18 features per sin-
gle IP packet.

As regards CoAP, we considered the following 9
features:

•	 CoAP code: it discriminates between requests and
responses and provides either the type of request (GET,
POST, PUT, or DELETE) or response code;

•	 Option type: when one or more options are present, it
indicates the type of each option;

•	 Option length: the size (in bytes) of the option;
•	 Option descA: it distinguishes between critical or elec-

tive options;
•	 Option descB: it distinguishes between safe or unsafe

options;
•	 Option block size: the transfer block size specified in

the Block1 and Block2 options in case the CoAP block-
wise transfer extension is used [40];

•	 Option observe value: the number used to identify a
given notification within a sequence of resource obser-
vations, when the CoAP Observe extension is used
[41];

•	 Option end marker: it indicates the end of the options
field when a payload is present;

•	 Payload length: the payload size in bytes.

Table 2   Considered MQTT features

Name Type

mqtt.packet_type1,2,3 Categorical
mqtt.hdr_flags1,2,3 Categorical
mqtt.kalive1,2,3 Numeric
mqtt.conflag.cleansess1,2,3 Categorical
mqtt.conack.flags1,2,3 Categorical
mqtt.len1,2,3 Numeric

Table 3   Considered CoAP features

Name Type

coap.code Categorical
coap.opt.type1,2,3 Categorical
coap.opt.length1,2,3 Numeric
coap.opt.desc1A,2A,3A Categorical
coap.opt.desc1B,2B,3B Categorical
coap.opt.block_size Categorical
coap.opt.observe Categorical
coap.opt.end_marker Categorical
coap.payload_length Numeric

SN Computer Science (2024) 5:488 	 Page 9 of 15  488

SN Computer Science

Since more than one option may be present within the same
CoAP message, the Tshark tool provides the feature values
for the first three options of each packet. This allowed us
to consider triples of features for the option type, option
length, option descA, and option descB, leading to a total of
17 features for each packet.

Models Settings

For the classification tasks, both binary and multinomial, we
analyze different ML models and one Deep Neural Network
(DNN) architecture. Moreover we have also applied an ante-
hoc explainable model, the already mentioned FHDT.

In Table 4, we present the hyper-parameters used for the
ML models of the study. The table is structured as follows:
the first column shows the ML classifier, the second col-
umn lists the name of the hyper-parameter, the third col-
umn offers a short description of the hyper-parameter itself
and its purpose, while the last column indicates the specific
values that have been employed in the analysis. The hyper-
parameter settings presented in the table were chosen fol-
lowing a grid-search optimization process. These settings
were determined using an 80/20 ratio to divide the dataset
into training and test sets, and they represent the configura-
tions that yielded the best performance in the experiments.

On the contrary, the provided DNN model architecture is
outlined in Table 5. In particular, the first column designates
the hidden layer level, the second column specifies the type
of the hidden layer used at that particular level, while the last
column details the number of neurons within that specific
layer. In this architecture, two different types of layers have
been employed, each serving distinct purposes within the
DNN model:

•	 Dense layer, a fully connected layer, in which every neu-
ron in the next layer is connected to every other neuron

in the previous layer. Its output value becomes the input
for the next neuron layer;

•	 Dropout layer, a layer used to set input units to 0 at a
chosen rate at each step during training. When the input
is not set to 0, it is increased according to the formula
1∕(1 − rate) so that the total number of input is constant.

The other components of the DNN models can be detailed
as follows:

•	 As an Activation function we chose the rectified linear
unit activation function via ‘relu activation’ to all neu-
rons in all considered layers;

•	 As an Optimizer we applied the Adam optimizer, a par-
ticular type of stochastic gradient descent. It is useful
and widely used because it converges in a short time
and, therefore, makes the network less demanding from
a computational point of view compared with the classic
SDG which converges to ‘flat minima’ [42];

•	 Concerning the Dropout rate of the relative layer, we set
it to 0.20.

Table 4   Hyper-parameters of the ML models we considered

Classifier Hyper-parameters Description Used value

Naïve Bayes Priors This is the prior probability of the classes. If the value is ’none’ the prior probabilities are
calculated based on the data

None

Var_smoothing It is the portion of the biggest function variance of all features, and shows how it contrib-
uted to the others for computation stability

10
−9

SVM Gamma Kernel coefficient 2
C It is a parameter of regularization; in particular, regularization is inversely proportional to

the value of C
Squared L2

Logistic Penalty The value of the considered penalty L2 penalty
Class_weight The value of the class-specific weights 1 (for all classes)

Decision tree Max_depth The maximum depth of the tree 10
Criterion The criterion selected to perform splits at each internal node of the tree Gini impurity

Table 5   The DNN model
architecture we used

Layer Type Neurons

Ia Dense 1024
Ib Drop out –
IIa Dense 512
IIb Drop out –
IIIa Dense 128
IIIb Drop out –
IVa Dense 32
IVa Drop out –
V Softmax 4

	 SN Computer Science (2024) 5:488 488   Page 10 of 15

SN Computer Science

The architectural design of the DNN was implemented using
Python, with a specific focus on TensorFlow7 and Keras8
libraries:

•	 TensorFlow is an open-source software framework
widely used in the various sub-fields of AI. It is particu-
larly valuable for tasks related to training and inference
in DNNs.

•	 Keras is a Python package that serves as a user-friendly
interface to the TensorFlow library. It simplifies the pro-
cess of building and working with artificial neural net-
works, making it easier for developers and researchers to
create complex models efficiently.

These libraries provide the tools and resources necessary for
developing and training DNNs for a variety of applications,
including the analysis and classification of IoT traffic in the
context of the proposed research. In this study, all the neu-
ral network models were trained for a total of 100 epochs.
The training data have been divided into three sets using a
60/20/20 splitting ratio for the training, validation, and test
sets, respectively. The specific hyper-parameters, including
the dropout rate, number of epochs, and batch size, were
meticulously selected after a process of grid-search opti-
mization, involving the evaluation of various combinations
to determine the most effective configuration for the neural
network models. The chosen settings reflect the combination
that yielded the best performance and results for the objec-
tives of the study.

As concerns the FHDT, only triangular, strong, and uni-
form fuzzy partitions have been used, considering 3, 5, and
7 triangles in the [0 − 1] range. Each partition triangle has
been associated with a particular linguistic term, e.g., Low,
Medium, and High in case of three triangles, or Very Low,
Low, Medium, High, and Very High in case of five trian-
gles. As for the categorical features, we took care to assign
fixed numerical values in the considered range [0 − 1] , cor-
responding to the upper vertex of a triangle, while numeric
features were simply normalized accordingly. In Table 6,
we detail the main hyper-parameters of the FHDT model we
considered as well as their corresponding considered values,
obtained after a grid search optimization procedure. Also

in the case of FHDT, we used as a training set 80% of the
whole dataset and 20% for testing.

Evaluation Metrics

In order to evaluate the performance, we used several spe-
cific metrics to gain a comprehensive understanding. In this
work, the following evaluation metrics, in addition to confu-
sion matrices, have been taken into account:

•	 Accuracy, which provides an overall measure of how
often the model correctly classifies items in the dataset
concerning the total number of instances. It is a useful
general indicator of the performance of a model.

•	 Weighted precision, which is calculated by dividing the
number of true positives by the total number of instances
marked as belonging to a particular class. It provides
insight into the precision of the classifier, taking into
account class imbalances.

•	 Weighted recall, which is defined as the number of true
positives divided by the total number of instances that
genuinely belong to a specific class. It assesses the abil-
ity of the classifier to correctly identify instances of a
particular class while considering the class distribution.

•	 Weighted F1-score, which is the harmonic mean between
precision and recall. It balances the trade-off between
precision and recall, offering a more comprehensive
measure of the performance of a model, especially in
cases of class imbalance.

The considered performance metrics, in combination with
confusion matrices, provide a well-rounded view of how
well each classifier is performing, especially in our case
study with unbalanced datasets wherein it is essential to
account for the differences in class distribution.

Beside the aforementioned metrics, when considering
FHDT, we have also regarded the total number of nodes
in the tree and the number of leaves as metrics useful to
assess the complexity of the model and so of its interpret-
ability: less nodes and leaves allow for better interpretabil-
ity of the corresponding rules. Moreover, the criterion we
used to perform inference in the FHDT, given that a testing
instance could reach more than one leaf, was the majority
voting strategy.

Results

Hereunder we presents the results obtained in the analyses
carried out for this research. The evaluation of all models is
carried out separately for both MQTT and CoAP protocols.
To enhance the readability of the presented results, this sec-
tion is divided into two subsections. First, we present the

Table 6   Values of the main
hyper-parameters for FHDT

Parameter Value

Split confidence ( �) 10
−7

Tie threshold (TT) 2.5
Grace period (GP) 25
Minimum fraction (MF) 0.01

7  https://​www.​tenso​rflow.​org/.
8  https://​keras.​io/.

https://www.tensorflow.org/
https://keras.io/

SN Computer Science (2024) 5:488 	 Page 11 of 15  488

SN Computer Science

results of the binary classification (see subsection “Binary
Classification”), followed by the results obtained through
the multiclassification (see subsection “Classification
of Attacks»). This division facilitates a clear and organ-
ized presentation of the outcomes for each classification
approach.

Binary Classification

This subsection discusses the results of the binary classifica-
tion; hence, in this phase, we have considered the packets
referring to the studied attacks as a single malicious class.

Table 7 shows the values of the evaluation metrics con-
sidering the CoAP and MQTT datasets separately. The
analysis shows that the classification accuracy is very high,
reaching, in the case of the CoAP protocol, values close to
100% for both some ML models and the DNN, while FHDT
performs slightly worse, considering all three types of fuzzy
sets (FSs), but, anyway, close to 90% of accuracy and with
much more explainable and compact models as described
in Subsection “Explainable Rules”. Furthermore, all the
considered metrics achieve close to optimal results, indicat-
ing that the considered algorithms classify the data really
well even in cases of unbalanced classes. The best model,
if one considers the CoAP protocol and takes a look at all

Table 7   Results of the binary
classification

AI model CoAP MQTT

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Naïve Bayes 0.915 0.966 0.937 0.939 0.917 0.866 0.942 0.905
SVM 0.991 0.990 0.988 0.989 0.975 0.979 0.975 0.977
Logistic reg. 0.969 0.977 0.981 0.979 0.981 0.988 0.984 0.986
Decision tree 0.988 0.989 0.989 0.989 0.979 0.979 0.965 0.977
DNN 0.993 0.992 0.995 0.994 0.989 0.990 0.989 0.990
FHDT-3FS 0.864 0.983 0.981 0.981 0.984 0.997 0.997 0.997
FHDT-5FS 0.885 0.993 0.991 0.991 0.994 0.998 0.998 0.998
FHDT-7FS 0.893 0.994 0.992 0.992 0.995 0.998 0.997 0.998

Table 8   Results of the
multinomial classification

AI model CoAP MQTT

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Naïve Bayes 0.948 0.936 0.929 0.948 0.835 0.670 0.921 0.642
SVM 0.971 0.982 0.970 0.983 0.928 0.929 0.948 0.949
Logistic reg. 0.966 0.945 0.956 0.966 0.929 0.918 0.969 0.939
Decision tree 0.991 0.992 0.996 0.997 0.999 0.999 0.979 0.989
DNN 0.999 0.999 1.00 0.999 0.999 0.993 0.994 0.993
FHDT-3FS 0.866 0.981 0.983 0.983 0.983 0.961 0.997 0.961
FHDT-5FS 0.871 0.99 0.989 0.989 0.984 0.971 0.996 0.972
FHDT-7FS 0.895 0.991 0.99 0.99 0.985 0.973 0.995 0.982

Fig. 2   Confusion matrices of both MQTT and CoAP multinomial classification as regards some considered classification models

	 SN Computer Science (2024) 5:488 488   Page 12 of 15

SN Computer Science

the metrics, is the DNN we have taken into account, but one
can see that the difference with SVM or Decision Tree is
very small. When considering the MQTT protocol alone,
the models that best classify are the DNN and the FHDT,
in this latter case with a slight increase in the performance,
experienced also in the CoAP case, moving from 3 fuzzy
sets (3FS) to seven fuzzy sets (7FS).

Classification of Attacks

This subsection reports the results arising from the multino-
mial classification analysis for both MQTT and CoAP. The
specific results are shown in Table 8. CoAP packets, both
normal and malicious, are classified better than MQTT pack-
ets. Furthermore, the identification of the different MQTT
packets reaches very high figures for all the algorithms we
considered, except for the Naïve Bayes classifier, which

presents the worst performance, also worse than all versions
of FHDT.

Finally, Fig. 2 shows the confusion matrices for the mul-
tinomial classification of the MQTT and CoAP protocols.
In particular, we have only reported the results obtained for
Naïve Bayes, Decision Tree, and the DNN model, for the
sake of brevity. From the figure, it can be inferred that for the
CoAP protocol, the only relevant misclassifications occur
when using the Naïve Bayes classifier; in particular, the nor-
mal packets are those most confused with the segmentation
attack packets. In contrast, the decision tree classifier and
the DNN architecture we considered are the ones with fewer
classification errors: for these algorithms, errors between
predicted data and real data are very rare and mainly involve
normal traffic when classified with decision trees.

By the same token, when considering MQTT, no model
produces a perfect diagonal matrix and when using Naïve
Bayes we obtain the worst outcome whose main criticality
entails the identification of Publish Flood packets as normal
ones. In the decision tree model, the main criticality con-
cerns the confusion of packet crafting packets with publish
flood packets or vice versa. This reciprocal misclassifca-
tion of attack packets does not happen in the case of the
considered DNN model, which has only a few problems in
discriminating packet-crafting packets from publish-flood
packets.

Explainable Rules

In this subsection, we report the graphical representation
of some of the obtained FHDTs, limiting the analysis to the
binary case because the multinomial trees are exactly the
same but, obviously, with more than two outcomes. We have

desc2A

length1

desc3A

VHVL

Attack Normal

Normal

VL

VL

L

VH

VH

Attack Normal Normal

M

Fig. 3   FHDT resulting after training on the CoAP binary dataset
when considering a partition of 5 fuzzy sets

Fig. 4   FHDT resulting after
training on the MQTT binary
dataset when considering a
partition of 3 fuzzy sets

hdrflags2

hdrflags3
packet
Type

len1

HighLow

length2
Normal Attack

Attack

Low

Medium

hdrflags1
packet
Type

Normal Attack

Low

High

Medium

Normal Attack

Low

HighLow

High

SN Computer Science (2024) 5:488 	 Page 13 of 15  488

SN Computer Science

not reported the traditional decision trees, because they were
poorly interpretable for their complexity as well as for the
lack of associated linguistic terms.

In Fig. 3, we report the binary FHDT when considering
5 fuzzy sets applied to the features of the CoAP protocol,
while, in Fig. 4, we show the binary FHDT applied to the
features of the MQTT dataset when considering 3 fuzzy
sets. The trees we have shown are the most compact and
interpretable we obtained among the various combinations
of fuzzy sets, although they all have achieved very similar
performance results as shown in Tables 7 and 8. Indeed, the
5-fuzzy-set FHDT for CoAP has 9 total nodes and 6 leaves,
while the 3-fuzzy-set version has 13 total nodes and 8 leaves,
and the 7-fuzzy-set version features 29 total nodes and 24
leaves. As regards MQTT, the 3-fuzzy-set FHDT has 12 total
nodes and 7 leaves, while the 5-fuzzy-set version has 21 total
nodes, and 16 leaves and the 7-fuzzy-set version has 29 total
nodes and 24 leaves.

In the case of CoAP, a very high value of the desc2A
attribute leads to the normal classification, while a very
low value requires a test of the length1 feature. Attacks take
place when length1 is low as well as desc2A is very low, or
when length1 is very low and desc3A is very low as well as
desc2A.

In the case of MQTT, the most discriminating feature is
hdrflags2 and attacks can take place when it is both low or
high. In the first case len1 has to be high or medium, but
with a high value associated to hdrflags1_packet_Type . In
the second case when hdrflags3_packet_Type is high or it is
low, but with a medium value for length2.

Two examples of the extracted rules, for both CoAP and
MQTT, are the following:

Discussion and Threats to the Validity

When considering both the binary and multinomial clas-
sification, we may see that the CoAP protocol is classified
better than the MQTT protocol, except when using the
FHDT. However, this could arise from the extreme light-
ness and simplicity implicit in CoAP implementations.
As a matter of fact, such a protocol is routinely used on
battery-powered devices and in case of limited CPU and
RAM. Moreover, it is fair to say that a CoAP packet can
be only 4B long, as opposed to a HTTP messages that can

R1: IF desc2A is VERY LOW AND length1

is LOW THEN CoAP Attack

R2: IF hdrflags2 is LOW AND length1

is HIGH THEN MQTT Attack

have a minimum of 33 bytes for a request and 16B for a
response and that are usually significantly longer (hun-
dreds or thousands of bytes). Additionally, during the
testing phase of the hyper-parameter configuration for the
regarded models, the CoAP protocol returned results with
metrics always close to 100% , regardless of the adopted
configuration. Therefore, we have been able to notice that
packets related to the CoAP protocol can be subject to
the so-called “benign overfitting”: this condition occurs
when a classifier adapts perfectly to noisy training data,
while keeping the error between predicted data and real
data very low [43]. As a corroborating information, in our
study, the loss function related to CoAP always tends to 0
when using the DNN model.

Contrary to what occurred for the CoAP protocol, the
MQTT protocol is classified with a higher error between
predicted data and observed data. However, we have to
remember that the MQTT protocol involves both a connec-
tion, being encapsulated in TCP, and three distinct entities
(the publisher, the broker, and the subscriber), compared
with the only two involved in CoAP (client and server);
this makes it a much more complex protocol to identify.

As regards the obtained rules, for CoAP traffic we see
that a deciding aspect appears to be whether the packet
contains some options (at least two), and they belong to
the ‘critical’ class (that corresponds to the features descA
with value very low), that means that the given option
needs to be understood and processed by the message des-
tination. This requires at least a processing overhead at
the receiver side and may be used for exploiting possible
software vulnerabilities in case they are present.

On the other hand, for detecting MQTT attacks, we have
that it is important whether the IP packet contains different
MQTT messages; this is evident because of the presence
of features marked with 1, 2, and 3, related to three dif-
ferent MQTT messages within a single TCP/IP packet.
This conditions may be more probable in case of flooding/
DoS attacks. In addition, also the type of MQTT packet
is relevant, since some methods like UNSUBSCRIBE or
DISCONNECT, corresponding to the ‘packet_type’ fea-
ture with high values, are mainly used in some attacks.

As for the threats to the validity of our study, we dis-
cuss construct, internal, and external validity threats in
the following.

Regarding construct validity threats, they usually entail
how well a set of indicators represents or reflects a con-
cept that is not directly measurable. In our study, we have
focused on the main features of the packets of both MQTT
and CoAP created during various simulation sessions with
different random seeds and we have accurately removed
statistically non-significant features.

	 SN Computer Science (2024) 5:488 488   Page 14 of 15

SN Computer Science

When focusing on the internal validity, we exclude any
labeling issues because the traffic was synthetically created
through IoT-Flock in a controlled environment.

Concerning the threats to external validity, which affect
the generalization of the discussed outcomes, we still have
to test whether training on the synthetic traffic generated
through IoT-Flock and testing on real-world data could
lead to similar very good results. However, the rules
extracted from the FHDT confirm a real-world significant
meaning in the identification of the CoAP and MQTT
attacks and thus we can envisage its useful application
also to a real-world scenario.

Conclusions and Future work

In this paper, we have applied a complete and explainable
anomaly detection analysis, performed via machine and
deep learning techniques, to the synthetic traffic produced
trough IoT-Flock when considering a smart health sce-
nario. The research has encompassed both a binary and a
multinomial classification; moreover, we have considered
both MQTT and CoAP messages, i.e., the most used appli-
cation protocols in the IoT scenario, and both normal and
malicious traffic, trying to identify four different attacks
by using application-layer packet features. Furthermore we
have also applied an explainable machine learning tech-
nique in order to extract potential classification rules to be
applied in a real-world scenario. The results we obtained
have demonstrated the full feasibility in using synthetic
traffic produced by IoT-Flock as a base for the anomaly
detection of IoT medical traffic, providing also meaningful
classification rules.

As for future research directions, we are committed
to train the models on the synthetic traffic coming from
IoT-Flock and perform the testing phase on real labeled
medical IoT traffic. Moreover, we intend also to perform a
per-flow analysis considering features related to a certain
traffic flow rather than to the single packets, and to enrich
the overall study with a feature selection analysis, in order
to verify if, even with a reduction of the considered fea-
tures, we could output similar outcomes.

Acknowledgements  Riccardo Pecori is a member of the INdAM
GNCS research group. The authors would like to thank Mr. Antonio
Enrico Buonocore, for carefully proofreading the whole manuscript,
and Guido Iannone for creating and testing the IoT-Flock scenarios.

Author Contributions  Debora Montano collected the data and per-
formed the analyses using ML and DL techniques. She also contributed
in writing the paper. Riccardo Pecori performed the analyses using
FHDT and contributed in writing the paper. Luca Veltri helped in ana-
lyzing the features and provide an interpretation of the extracted rules,
contributing also in writing some parts of the paper. Lerina Aversano,
Mario Luca Bernardi, and Marta Cimitile supervised the work.

Funding  Open access funding provided by Consiglio Nazionale Delle
Ricerche (CNR) within the CRUI-CARE Agreement. The authors
declare not to have received any funding for carrying out this research

Data Availability  the obtained dataset will be available upon request

Declarations 

 Conflict of interest  The authors declare no competing nor financial
conflicts of interest.

Research Involving Human and /or Animals  ’Not Applicable’

Informed Consent  ’Not Applicable’

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Hossain E, Khan I, Un-Noor F, Sikander SS, Sunny MSH.
Application of big data and machine learning in smart grid,
and associated security concerns: a review. IEEE Access.
2019;7:13960–88. https://​doi.​org/​10.​1109/​ACCESS.​2019.​28948​
19.

	 2.	 Ajagbe SA, Awotunde JB, Florez H. Ensuring intrusion detec-
tion for iot services through an improved CNN. SN Comput Sci.
2023;5(1):49. https://​doi.​org/​10.​1007/​s42979-​023-​02448-y.

	 3.	 Ghazanfar S, Hussain F, Rehman AU, Fayyaz UU, Shahzad F,
Shah GA. IoT-Flock: an open-source framework for IoT traf-
fic generation. In: 2020 International Conference on Emerging
Trends in Smart Technologies (ICETST), 2020;1–6. https://​doi.​
org/​10.​1109/​ICETS​T49965.​2020.​90807​32.

	 4.	 Aversano L, Bernardi M, Cimitile M, Montano D, Pecori R,
Veltri L. anomaly detection of medical IoT traffic using machine
learning. In: Proceedings of the 12th International Confer-
ence on Data Science, Technology and Applications-DATA,
2023:173–182. SciTePress

	 5.	 OASIS Standard: MQTT Version 5.0. OASIS Standard. Version
5. (2019). https://​docs.​oasis-​open.​org/​mqtt/​mqtt/​v5.0/​os/​mqtt-​
v5.0-​os.​html. Accessed Jan 2023

	 6.	 Internet Engineering Task Force (IETF): The Constrained
Application Protocol (CoAP). Internet Engineering Task Force
(IETF). Updated by: RFC 7959, 8613, 8974, 9175. (2019).
https://​www.​rfc-​editor.​org/​rfc/​rfc72​52. Accessed Jan 2023

	 7.	 CVE-2016-10523, Common Enumeration of Vulnerabili-
ties. https://www.cve.org/CVERecord?id=CVE-2016-10523.
Accessed 30 Jan 2023.

	 8.	 CVE-2019-12101, Common Enumeration of Vulnerabili-
ties. https://www.cve.org/CVERecord?id=CVE-2019-12101.
Accessed 30 Jan 2023.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2019.2894819
https://doi.org/10.1109/ACCESS.2019.2894819
https://doi.org/10.1007/s42979-023-02448-y
https://doi.org/10.1109/ICETST49965.2020.9080732
https://doi.org/10.1109/ICETST49965.2020.9080732
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://www.rfc-editor.org/rfc/rfc7252

SN Computer Science (2024) 5:488 	 Page 15 of 15  488

SN Computer Science

	 9.	 CVE-2019-9004, Common Enumeration of Vulnerabili-
ties. https://www.cve.org/CVERecord?id=CVE-2019-9004.
Accessed 30 Jan 2023.

	10.	 Aversano L, Bernardi ML, Cimitile M, Pecori R. A systematic
review on Deep Learning approaches for IoT security. Comput
Sci Rev. 2021;40: 100389.

	11.	 Rish, I. An empirical study of the naive bayes classifier. In:
IJCAI 2001 Workshop on Empirical Methods in Artificial Intel-
ligence, 2001;3:41–46.

	12.	 Suthaharan, S. Machine learning models and algorithms for
big data classification. In: Integrated Series in Information
Systems, Springer, 2016;36:1–12. https://​doi.​org/​10.​1007/​
978-1-​4899-​7641-3

	13.	 Wright, RE. Logistic regression. (1995).
	14.	 Magee JF. Decision Trees for Decision Making. MA, USA: Har-

vard Business Review Brighton; 1964.
	15.	 Aversano L, Bernardi ML, Cimitile M, Pecori R, Veltri L. effec-

tive anomaly detection using deep learning in IoT systems.
Wirel Commun Mobile Comput. 2021. https://​doi.​org/​10.​1155/​
2021/​90543​36.

	16.	 Pecori R, Tayebi A, Vannucci A, Veltri L. IoT Attack detection
with deep learning analysis. In: 2020 International Joint Confer-
ence on Neural Networks (IJCNN), 2020:1–8. https://​doi.​org/​
10.​1109/​IJCNN​48605.​2020.​92071​71.

	17.	 Aversano L, Bernardi ML, Cimitile M, Pecori R. Anomaly
detection of actual IoT traffic flows through deep learning. In:
2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA), 2021:1736–1741. https://​doi.​org/​
10.​1109/​ICMLA​52953.​2021.​00275.

	18.	 Ducange P, Marcelloni F, Pecori R. Fuzzy Hoeffding decision
tree for data stream classification. Int J Comput Intell Syst.
2021;14:946–64.

	19.	 Gacto MJ, Alcalá R, Herrera F. Interpretability of linguistic fuzzy
rule-based systems: an overview of interpretability measures. Inf
Sci. 2011;181(20):4340–60.

	20.	 Pundir S, Wazid M, Singh DP, Das AK, Rodrigues JJ, Park Y.
Intrusion detection protocols in wireless sensor networks inte-
grated to Internet of Things deployment: survey and future chal-
lenges. IEEE Access. 2019;8:3343–63.

	21.	 Rathore S, Park JH. Semi-supervised learning based distrib-
uted attack detection framework for IoT. Appl Soft Comput.
2018;72:79–89.

	22.	 Rughoobur P, Nagowah L. A lightweight replay attack detection
framework for battery depended IoT devices designed for health-
care. In: 2017 International Conference on Infocom Technologies
and Unmanned Systems (Trends and Future Directions)(ICTUS),
2017:811–817. IEEE.

	23.	 Alrashdi I, Alqazzaz A, Alharthi R, Aloufi E, Zohdy MA, Ming
H. FBAD: fog-based attack detection for IoT healthcare in smart
cities. In: 2019 IEEE 10th Annual Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference (UEMCON),
2019:0515–0522. IEEE.

	24.	 DARPA Intrusion Detection Evaluation Dataset. (1998). https://​
www.​ll.​mit.​edu/r-​d/​datas​ets/​1998-​darpa-​intru​sion-​detec​tion-​evalu​
ation-​datas​et. Accessed Jan 2023.

	25.	 KDD Cup 1999 Data. (1998). (http://​kdd.​ics.​uci.​edu/​datab​ases/​
kddcu​p99/​kddcu​p99.​html. Accessed Jan 2023.

	26.	 NSL-KDD Dataset. (1999). htps://​www.​unb.​ca/​cic/​datas​ets/​nsl.​
html. Accessed Jan 2023.

	27.	 (2023). https://​defcon.​org/​html/​links/​dc-​ctf.​html. Accessed Jan
2023.

	28.	 LBNL/ICSI Enterprise Tracing Project. (2023). (http://​www.​icir.​
org/​enter​prise-​traci​ng/. Accessed Jan 2023.

	29.	 Center for Applied Internet Data Analysis (CAIDA). (2023).
https://​catal​og.​caida.​org/. Accessed Jan 2023

	30.	 UNIBS: Data Sharing. (2009). http://​netweb.​ing.​unibs.​it/​~ntw/​
tools/​traces/​index.​php. Accessed Jan 2023

	31.	 Moustafa N, Koroniotis N, Keshk M, Zomaya AY, Tari Z.
Explainable intrusion detection for cyber defences in the internet
of things: opportunities and solutions. IEEE Commun Surv Tutor.
2023;3:1775–807. https://​doi.​org/​10.​1109/​COMST.​2023.​32804​
65.

	32.	 Khan IA, Moustafa N, Pi D, Sallam KM, Zomaya AY, Li B. A new
explainable deep learning framework for cyber threat discovery in
industrial IoT networks. IEEE Internet Things J. 2022;13:11604–
13. https://​doi.​org/​10.​1109/​JIOT.​2021.​31301​56.

	33.	 Nguyen QP, Lim KW, Divakaran DM, Low KH, Chan MC. GEE:
A gradient-based explainable variational autoencoder for network
anomaly detection. In: 2019 IEEE Conference on Communica-
tions and Network Security (CNS), 2019:91–99. https://​doi.​org/​
10.​1109/​CNS.​2019.​88028​33.

	34.	 Fazzolari M, Ducange P, Marcelloni F. An explainable intrusion
detection system for IoT networks. In: 2023 IEEE International
Conference on Fuzzy Systems (FUZZ), 2023:1–6. https://​doi.​org/​
10.​1109/​FUZZ5​2849.​2023.​10309​785.

	35.	 Khelifati A, Khayati M, Cudré-Mauroux P, Hänni A, Liu Q,
Hauswirth M. VADETIS: an explainable evaluator for anomaly
detection techniques. In: 2021 IEEE 37th International Confer-
ence on Data Engineering (ICDE), 2021;2661–2664. https://​doi.​
org/​10.​1109/​ICDE5​1399.​2021.​00298.

	36.	 Aziz S, Faiz MT, Adeniyi AM, Loo K-H, Hasan KN, Xu L, Irshad
M. Anomaly detection in the internet of vehicular networks using
explainable neural networks (xNN). Mathematics. 2022. https://​
doi.​org/​10.​3390/​math1​00812​67.

	37.	 Ha DT, Hoang NX, Hoang NV, Du NH, Huong TT, Tran KP.
Explainable anomaly detection for industrial control system
cybersecurity. In: 10th IFAC Conference on Manufacturing Mod-
elling, Management and Control MIM 2022, IFAC-PapersOnLine
2022;(10):1183–1188. . https://​doi.​org/​10.​1016/j.​ifacol.​2022.​09.​
550

	38.	 Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the
development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-IoT dataset. Future Gener Comput
Syst. 2019;100:779–96.

	39.	 Hussain F, Abbas SG, Shah GA, Pires IM, Fayyaz UU, Shahzad
F, Garcia NM, Zdravevski E. a framework for malicious traffic
detection in IoT healthcare environment. Sensors. 2021;9:3025.
https://​doi.​org/​10.​3390/​s2109​3025.

	40.	 Bormann C. Block-wise transfers in the constrained applica-
tion protocol (CoAP). Internet Engineering Task Force (IETF).
Internet Engineering Task Force (IETF). Updated by: RFC 8323.
(2016). https://​www.​rfc-​editor.​org/​rfc/​rfc79​59. Accessed Jan
2023.

	41.	 Hartke K. Observing resources in the constrained application pro-
tocol (CoAP). Internet Engineering Task Force (IETF). Internet
Engineering Task Force (IETF). Updated by: RFC 8323. (2015).
https://​www.​rfc-​editor.​org/​rfc/​rfc76​41. Accessed Jan 2023.

	42.	 Kingma DP, Ba J. Adam: A method for stochastic optimization.
arXiv preprint. (2014). arXiv:​1412.​6980.

	43.	 Shamir O. the implicit bias of benign overfitting. In: Loh, P.-L.,
Raginsky, M. (eds.) Proceedings of Thirty Fifth Conference on
Learning Theory. Proceedings of Machine Learning Research,
vol. 178, pp. 448–478. PMLR, USA 2022.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-1-4899-7641-3
https://doi.org/10.1007/978-1-4899-7641-3
https://doi.org/10.1155/2021/9054336
https://doi.org/10.1155/2021/9054336
https://doi.org/10.1109/IJCNN48605.2020.9207171
https://doi.org/10.1109/IJCNN48605.2020.9207171
https://doi.org/10.1109/ICMLA52953.2021.00275
https://doi.org/10.1109/ICMLA52953.2021.00275
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
htps://www.unb.ca/cic/datasets/nsl.html
htps://www.unb.ca/cic/datasets/nsl.html
https://defcon.org/html/links/dc-ctf.html
http://www.icir.org/enterprise-tracing/
http://www.icir.org/enterprise-tracing/
https://catalog.caida.org/
http://netweb.ing.unibs.it/%7entw/tools/traces/index.php
http://netweb.ing.unibs.it/%7entw/tools/traces/index.php
https://doi.org/10.1109/COMST.2023.3280465
https://doi.org/10.1109/COMST.2023.3280465
https://doi.org/10.1109/JIOT.2021.3130156
https://doi.org/10.1109/CNS.2019.8802833
https://doi.org/10.1109/CNS.2019.8802833
https://doi.org/10.1109/FUZZ52849.2023.10309785
https://doi.org/10.1109/FUZZ52849.2023.10309785
https://doi.org/10.1109/ICDE51399.2021.00298
https://doi.org/10.1109/ICDE51399.2021.00298
https://doi.org/10.3390/math10081267
https://doi.org/10.3390/math10081267
10.1016/j.ifacol.2022.09.550
10.1016/j.ifacol.2022.09.550
https://doi.org/10.3390/s21093025
https://www.rfc-editor.org/rfc/rfc7959
https://www.rfc-editor.org/rfc/rfc7641
https://arxiv.org/abs/1412.6980

	Explainable Anomaly Detection of Synthetic Medical IoT Traffic Using Machine Learning
	Abstract
	Introduction
	Major Contributions of the Work
	Structure of the work

	Background
	Attack Description
	Employed Machine and Deep Learning Techniques
	Machine Learning
	Deep Learning
	Fuzzy Hoeffding Decision Tree

	Related Work
	IoT-Flock
	Considered Use Case
	Simulated Attacks

	Experimental Settings
	The IoT Traffic Dataset
	The Feature Set
	Models Settings
	Evaluation Metrics

	Results
	Binary Classification
	Classification of Attacks
	Explainable Rules

	Discussion and Threats to the Validity
	Conclusions and Future work
	Acknowledgements
	References

