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Abstract
In the context of the Internet of Things (IoT), particularly within medical facilities, the detection and categorization of 
Internet traffic remain significant challenges. While conventional methods for IoT traffic analysis can be applied, obtaining 
suitable medical traffic data is challenging due to the stringent privacy constraints associated with the health domain. To 
address this, this study proposes a network traffic simulation approach using an open-source tool called IoT Flock, which 
supports both CoAP and MQTT protocols. The tool is used to create a synthetic dataset, to simulate IoT traffic originating 
from various smart devices in different hospital rooms. The study shows a complete anomaly detection analysis of IoT-Flock-
generated traffic, both normal and malicious, by leveraging and comparing traditional machine learning techniques, deep 
learning models with multiple hidden layers, and explainable artificial intelligence techniques. The results are very promising. 
For the binary classification, for example, the obtained accuracy is close to 100% in the case of the CoAP protocol. Good 
results are also obtained when the multinomial classification is performed, observing that CoAP packets are classified better 
than MQTT packets, even if the identification of the different MQTT packets reaches very high metrics for the most of the 
considered algorithms. Moreover, the obtained classification rules are also meaningful in the considered IoT context. The 
results indicate that IoT-Flock synthetic data can effectively be used to train and test machine and deep learning models for 
detecting abnormal IoT traffic in medical scenarios. This research attempts also to bridge the gap between IoT security and 
healthcare, providing useful insights into securing medical IoT networks in general.

Keywords  Medical internet of things · Anomaly detection · Intrusion detection systems · Machine learning · Explainable 
artificial intelligence · Deep neural networks

Introduction

The Internet of Things (IoT) refers to the integration of dif-
ferent devices across various technologies, enabling them 
to connect and communicate autonomously, without human 
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intervention. These IoT devices not only interact with each 
other, but also with a wide array of equipment, including 
industrial machinery, robots, drones, and energy genera-
tion systems, making them applicable in numerous sec-
tors, including healthcare. IoT devices, especially when 
deployed in critical settings like healthcare, raise signifi-
cant security concerns [1]. Traditional security measures, 
such as firewalls, intrusion detection systems (IDSs), and 
intrusion prevention systems (IPSs), are commonly used to 
safeguard devices and networks against cyber-threats. Pres-
ently, many firewalls and IPSs rely on predefined rules to 
filter out abnormal or malicious traffic. However, certain 
IDS and IPS systems also leverage Artificial Intelligence 
(AI) techniques to identify malicious traffic effectively [2]. 
As a matter of fact, combining AI methods with predefined 
rules enhances the ability to detect attack traffic compared 
with using only static rules. AI-based IDS and IPS systems 
are typically trained and tested using datasets that encom-
pass both normal and attacking traffic. These datasets can 
be acquired through two approaches: (i) collecting actual 
traffic data from live systems to capture both malicious and 
normal traffic, or (ii) utilizing synthetic traffic generators 
that simulate real-time network traffic patterns. This research 
aims at a medical IoT environment, where obtaining real IoT 
traffic data proves challenging due to the stringent privacy 
constraints associated with patients’ health information, 
even when anonymized. To address this issue and study this 
critical IoT scenario, we employed a network traffic simula-
tion approach using an open-source tool called “IoT-Flock” 
[3]. IoT-Flock is capable of generating IoT traffic originat-
ing from various smart devices and supports two distinct 
application layer protocols commonly used in IoT scenarios: 
CoAP and MQTT. Furthermore, IoT-Flock offers the flex-
ibility to create customized IoT use cases, allowing the inclu-
sion of as many custom IoT devices as needed and the gen-
eration of both malicious and normal IoT traffic associated 
with these scenarios. This approach was chosen to overcome 
the challenges of acquiring real medical IoT traffic data and 
facilitate the study of this complex environment.

Major Contributions of the Work

The major contributions of this paper, which is an extension 
of the preliminary paper presented at DATA 2023 confer-
ence [4], include:

•	 The identification, for the first time as we know, of IoT-
Flock-generated CoAP traffic;

•	 The comparison, for the first time as we know, of both 
machine and deep learning models on synthetic traffic 
generated by IoT-Flock;

•	 A thorough analysis of IoT-Flock-generated traffic by 
means of a packet-based feature model, thus consider-

ing features of single packets, through both a binary and 
a multinomial classification;

•	 The application of an inherent explainable machine 
learning technique, i.e., fuzzy Hoeffding decision tree, 
to extract useful rules to interpret the classification out-
comes and evaluate if the obtained results have a signifi-
cant meaning in the real-world context.

The final aim is to encourage the large usage of IoT-Flock 
as a tool to create IoT-based traffic datasets useful to train 
real-world effective AI-based IDSs in both hospitals and 
healthcare-related buildings.

Structure of the work

This work is structured as follows:

•	 Section “ Background” offers background information 
concerning the IoT attacks that are under consideration 
in this paper and the algorithms used for the analyses of 
the considered IoT traffic;

•	 Section “Related Work” discusses related researches on 
the application of machine and deep learning algorithms 
for IoT attack categorization;

•	 Section “IoT-Flock” explains the utilization of IoT-Flock 
and outlines the considered use-cases;

•	 Section Experimental Settings” provides a detailed expla-
nation of the regarded attributes, the considered data, 
the hyper parameters of the machine and deep learning 
models that we used for the classification analysis, as 
well as the evaluated performance metrics;

•	 Section “Results” reports the results of all the analyses 
we conducted, using both machine and deep learning 
models, and shows some explainable rules we extracted;

•	 Section “Discussion and Threats to the Validity” dis-
cusses the obtained results, the meaning of the output 
rules and some threats to the validity of the study;

•	 Section “Conclusions and Future work” concludes the 
article by offering guidance and proposals for future 
research developments.

Background

Attack Description

In this study, we examine the traffic generated by two widely 
used IoT protocols, namely MQTT (Message Queue Telem-
etry Transfer) [5] and CoAP (Constrained Application Pro-
tocol) [6]. Additionally, we investigate two types of attack 
for each protocol currently supported by IoT-Flock,1 an 

1  https://​github.​com/​Thing​zDefe​nse/​IoT-​Flock.

https://github.com/ThingzDefense/IoT-Flock
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open-source tool, designed for generating synthetic IoT traf-
fic, whose users can construct various IoT use-case scenarios 
with specific IoT devices and produce both legitimate and 
malignant IoT packets over a real-time synthetic network. 
A brief summary of the attacks analyzed in this paper is 
provided hereinafter:

•	 MQTT packet crafting attack: in this attack, MQTT pack-
ets are deliberately crafted to disrupt the MQTT broker. 
The attacker initiates a connection with the MQTT bro-
ker at the transport level and sends a malformed MQTT 
packet. This malicious packet has the potential to trigger 
a buffer overflow, causing certain MQTT broker imple-
mentations to crash, thereby rendering a Denial of Ser-
vice (DoS) attack possible [7].

•	 MQTT publish flood attack: in this attack, MQTT publish 
messages are directed at a broker with high rate, with 
the intention of potentially initiating a Denial of Service 
(DoS) attack, by filling all the memory and/or processing 
capabilities of the broker.

•	 CoAP segmentation fault attack: this attack utilizes a vul-
nerability of a specific CoAP library, the LibNyoci,2 for 
embedded systems that let a malformed Uri-Path option 
cause a possible segmentation fault, leading to a denial 
of service attack versus the received CoAP server device 
[8].

•	 CoAP memory leak attack: like the previous one, also this 
attack exploits a vulnerability in a CoAP implementation, 
the Eclipse Wakaama,3 which gets a crafted packet with 
invalid options leading to a possible memory leak/waste 
(of 24 bytes) on the server side. This second-hand attack 
can be also used to exhaust memory resources leading to 
a DoS [9].

Employed Machine and Deep Learning Techniques

In this subsection, we summarize the main characteristics 
of the used machine and deep learning techniques, focus-
ing also on the Fuzzy Hoeffding Decision Tree chosen as 
explainable AI model.

Machine Learning

Machine Learning (ML) is composed of algorithms and 
techniques capable of creating systems that learn and 
enhance their performance over time by leveraging the 
information inside the data themselves. The quality and 
nature of the data significantly impact the effectiveness of 
ML algorithms, as various data representations can either 
reveal or obscure the underlying explanatory factors driving 

the variations of the data. In recent years, many studies have 
been conducted on the classification of IoT traffic using often 
a supervised ML technique [4, 10].

This study, in particular, employs several algorithms such 
as:

•	 Naïve Bayes [11], a popular algorithm used for classifica-
tion and probabilistic modeling. It is based on the Bayes’ 
theorem, which is a probability theory that calculates the 
likelihood of an event occurring given prior knowledge. 
Naïve Bayes is particularly well-suited for scenarios with 
high-dimensional data, where other algorithms might 
struggle. However, its performance can be sub-optimal 
when the independence assumption is strongly violated, 
or when dealing with complex relationships within the 
data.

•	 Support vector machine (SVM) [12], a powerful and 
versatile supervised algorithm used for classification, 
regression, and outlier detection tasks. It works by find-
ing an optimal hyperplane that best separates data-points 
in different classes. The term “support vector” refers to 
the data-points that are closest to the decision boundary 
(the hyperplane), in fact, they play a crucial role in SVM 
operations. SVM is widely used due to its flexibility and 
ability to handle both linear and non-linear problems 
effectively.

•	 Logistic regression [13] is a statistical and ML technique 
used for binary classification, which is employed to pre-
dict one of two possible outcomes based on one or more 
predictor features. Despite its name, it is not a regression 
algorithm, but a classification algorithm. Its simplicity, 
efficiency, and interpretability make it a really valuable 
classification technique.

•	 Decision tree [14], an algorithm that learns to make deci-
sions by recursively splitting data into subsets based on 
the most significant features. All the decision rules form 
a tree-like structure, where each internal node represents 
a decision or test on an attribute, and each leaf node rep-
resents the outcome or class label.

More details about the settings of ML algorithms used in this 
work are discussed in subsection “Models Settings”.

Deep Learning

Deep learning (DL) is a subset of ML, a field of AI that 
focuses on algorithms and models inspired by the structure 
and function of the human brain’s neural networks. DL algo-
rithms, also known as deep neural networks, are designed 
to model and understand complex patterns in large datasets. 
They have gained significant attention and success in various 
AI applications due to their ability to automatically learn 
hierarchical representations from data. DL is applied in a 

2  https://​github.​com/​darco​neous/​libny​oci.
3  https://​www.​eclip​se.​org/​wakaa​ma/.

https://github.com/darconeous/libnyoci
https://www.eclipse.org/wakaama/
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wide range of fields, such as image and speech recognition, 
autonomous vehicles, recommendation systems, healthcare, 
finance, and natural language understanding. In recent years, 
there has been a growing interest in utilizing deep learning 
techniques also for the classification of IoT traffic [15–17].

In our work, we use a Deep Neural Network (DNN) to 
classify synthetic IoT traffic. A DNN has multiple layers 
between the input and output layers. These intermediate lay-
ers, the hidden layers, enable the network to learn increas-
ingly abstract and complex representations of the data, mak-
ing it capable of solving more intricate tasks, and they are 
a fundamental component of DL. More details about the 
architecture of our DNN model are reported in subsection 
“Models Settings”.

Fuzzy Hoeffding Decision Tree

The fuzzified version of the Hoeffding Decision Tree 
(FHDT) has been also used in this research work. This model 
entails a fuzzy discretization of the input features, resulting 
into a linguistic fuzzy partition [18]. FHDT can help in tack-
ling explainability and interpretability issues because (i) it 
guarantees a balance between classification performance and 
the complexity of the model, (ii) fuzzy partitions associated 
with linguistic terms can make the interpretability of the 
extracted rules easier for a human being [19].

Two details make FHDT different from its traditional ver-
sion [18]:

•	 The update process of the statistics in the internal nodes, 
because in this variant a training instance can reach 
more than one leaf, encompassing the fuzzy membership 
degree, the local fuzzy cardinality of the whole node, and 
the fuzzy cardinalities per class in a node;

•	 The computation of the fuzzy Information Gain and of 
the fuzzy Hoeffding bound that exploit the fuzzy cardi-
nality instead of the traditional cardinality.

Moreover, the FHDT model can be explained through lin-
guistic IF-THEN rules extracted from the tree model, by fol-
lowing the paths from the initial node (root) to the terminal 
nodes (leaves). Each rule is composed of some antecedents, 
regarding the attributes described through the linguistic 
terms associated with the fuzzy partitions, and a consequent 
returning the decided class.

Related Work

The concept of smart health and smart devices has under-
gone a radical transformation with the rapid growth of the 
IoT. As IoT-based health monitoring systems continue to 
evolve and become more intelligent, an increasing number 

of IoT-based smart health monitoring systems are being 
introduced and integrated into daily healthcare practices. 
However, in terms of security of healthcare systems, the 
IoT is still in its early stages of development. Unfortu-
nately, given that the resources of IoT smart devices are 
truly limited, and given that the security requirements to 
be met are increasingly greater, especially in the health-
care sector, it is not possible to use the normal security 
solutions usually deployed for the protection of network 
traffic in a scenario dedicated to the medical IoT [20, 21]. 
Furthermore, IoT intelligent objects record information 
based on the specific use case, and, therefore, normal 
security solutions and protocols must be adapted, from 
time to time, based on the specific use and needs of the 
IoT scenario to be protected [20]. Therefore, it is neces-
sary to ensure that there are no external attacks on the 
network of smart health devices, taking into account that 
IoT solutions applied in the medical field have limited 
resources. There are many studies regarding the security 
solutions to be adopted to protect IoT healthcare systems 
from external attacks. A first proposal in this sense details 
a technique for identifying replay attacks against battery-
powered IoT healthcare equipment [22]. To detect and pre-
vent such attacks, the authors suggest examining battery 
drain behavior, unique device IDs, and timestamps. The 
solution proposed by Rathore et al. [21] involves instead 
the adoption of the semi-supervised Fuzzy C-Means tech-
nique, based on Extreme Learning Machine (ELM), so that 
cyber-attacks can be detected in fog-based IoT systems. 
The use of Fuzzy C-Means is effective in addressing the 
difficulties associated with labeling datasets, while ELM 
techniques are useful for quickly and effectively detecting 
cyber-attacks. Furthermore, Alradashi et al. [23] propose 
a strategy capable of identifying malicious devices in a 
fog-based IoT healthcare scenario; in particular, this is 
a smart home equipped with a remote patient monitor-
ing system. The authors use a system of online sequential 
ELMs capable of detecting different types of attacks such 
as distributed denial of service, man-in-the-middle, and 
other potential threats to the patient’s health. As already 
said, IoT security is currently a major concern. Currently, 
the most used solutions to protect IoT flows are anti-intru-
sion IDSs and IPSs. In fact, if you use datasets relating to 
both malicious and normal IoT network traffic it is pos-
sible to carry out an evaluation of the traffic. However, 
this involves the use of a large amount of data relating 
to IoT traffic to better train IDS and IPS. Multiple recent 
studies provide collections of real-world IoT data [15–17]; 
however, in these studies, it is possible to detect one of 
the main difficulties of the medical IoT scenario, as it is 
hard to collect adequate data, which follows all the rigor-
ous delivery requirements that all hospitals and healthcare 
institutions are required to comply with. Furthermore, it is 
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very difficult to collect useful traffic data via IoT systems 
in the real world, this is due to the very low throughput 
of some IoT devices and the various difficulties in col-
lecting a large-enough number of instances of both nor-
mal and malicious traffic. Furthermore, various datasets 
are available online, mostly used for training and testing 
IDSs and IPSs, and they refer to both traditional networks 
and IoT networks. Indeed, the major studies in the sec-
tor in recent years use such data precisely. In particular, 
some are generated using real-time systems, and can be 
considered on a par with real datasets, while others are 
generated through simulation techniques, thus they are 
labeled as simulated and/or synthetic datasets [24–30]. 
Concerning the application of explainable models to the 
anomaly detection of IoT traffic, such a research topic has 
been investigated more and more in the last years [31]. For 
example, in [32], explainable deep learning, specifically, 
autoencoder-based LSTM and DNNs, is applied to an 
industrial IoT scenario and to a real world GSP system. In 
[33], an explainable variational autoencoder is applied to 
detect anomalies in NetFlow traffic. The explanations are 
provided through a gradient based fingerprinting technique 
applied to the UGR16 dataset containing anonymized 
NetFlow traces. The work in [34] is the closest to ours 
in terms of explainability applied to an IoT scenario: the 
authors apply a fuzzy decision tree to a real-world data-
set containing flow-based features, while we focused on 
a synthetic dataset with packet-based attributes. In [35], 
the focus is on explaining the best anomaly detection tech-
niques for a certain IoT dataset, while in [36], there is the 
claim that explainable neural networks have been applied 
to an Internet of Vehicles scenario by exploiting K-means 
clustering for feature scoring and ranking using two public 
datasets, namely CICIDS2019 and UNSW-NB15. How-
ever, explainable results are not discussed, focusing on 
performance metrics instead. In [37], the focus is again 
on an industrial scenario, specifically industrial control 
systems, and the explainability is provided through an 
LSTM-based autoencoder, with one class SVM and gra-
dient SHAP values applied to a SCADA dataset.

For the work we propose, we have taken inspiration from 
the Bot-IoT dataset [38], which simulates IoT traffic pro-
duced by some normal and attacker virtual machines. Unlike 
this, however, the traffic we generated uses IoT-Flock as a 
simulator, which, unlike Bot-IoT, takes the traffic gener-
ated by both MQTT and CoAP protocols into account. This 
allowed us not only to recognize the type of traffic, be it 
normal or malicious, but also to classify the types of attacks 
based on the used IoT protocol. Moreover, we applied, for 
the first time, ante-hoc explainable ML to the synthetic traf-
fic generated by IoT-flock, in order to verify whether the 
resulting rules have a real-world meaning and thus confirm-
ing the feasibility of using IoT-Flock as a tool for training 

AI models to be tested in real-world scenarios afterwards. 
We have chosen to use the fuzzy version of the Hoeffding 
Decision Tree as an explainable ML algorithm, an algorithm 
usually adopted in stream mining and so perfectly matching 
the variable nature of IoT traffic flows.

IoT‑Flock

In order to generate the data used in this study, we lever-
aged IoT-Flock [3], an open-source IoT traffic generator 
that operates in real-time and through which different use 
cases may be designed, characterizing them with different 
intelligent devices. IoT-Flock manages to generate both 
regular and anomalous IoT traffic, a function most com-
mercial and open-source tools lack; more precisely, they 
do not support the creation of malicious devices in the 
same use case. This functionality is particularly useful 
because it allows one to provide more adequate IDSs and 
IPSs. Furthermore, IoT-Flock provides for the possibility 
of exporting the designed use cases in XML format and of 
importing the XML generated using both IoT-Flock itself 
and other tools. Furthermore, the tool also allows one to 
generate a series of recent attacks, specifying them based 
on the protocol in use, MQTT and COAP; this feature is 
not present in any of the open-source IoT traffic generators.

IoT-Flock can work in two ways, i.e., via a GUI or via 
a command line. In both modes, to generate a single intel-
ligent device, it is necessary to provide a series of relevant 
information about it, both functional and non-functional. 
In particular, the first type of information concerns the 
working behavior of the device, such as the type of device 
(normal or malicious), the used protocol (MQTT and/or 
CoAP), the data profile (type and scope of transmitted 
data), the time profile (periodic or random), the type of 
command (Subscribe or Publish in MQTT, Post or Get in 
CoAP). It is the latest information that distinguishes one 
IoT device from another one by IP address, device name, 
number of devices of the same type, etc.

Considered Use Case

In our research, we explored a scenario similar to the one 
discussed in a previous study [39]. This scenario involves 
two hospital rooms, each equipped with various devices 
that are meticulously controlled through smart sensors and 
actuators connected to the Internet. In both rooms, we can 
distinguish two categories of devices:

•	 The devices responsible for monitoring and regulating 
the environment of the room. These devices use the 
MQTT protocol to communicate through a dedicated 
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broker. Their primary role is to autonomously manage 
and maintain the comfort of the room and environmen-
tal conditions.

•	 The devices designed for monitoring the physical sta-
tus of the patients occupying the room. These devices 
employ the CoAP protocol to communicate with a des-
ignated server, which can be accessed by healthcare 
personnel. Their purpose is to supervise and report on 
the health and well-being of the patients.

This setup illustrates how IoT technology is applied in a 
healthcare environment, facilitating both patient care and 
the management of the hospital environmental conditions.

Specifically, the smart devices that use the MQTT pro-
tocol establish communication with a broker that functions 
as an environment control unit. These MQTT-based smart 
devices encompass nine distinct types and operate at three 
different Quality-of-Service (QoS) levels. To provide a 
concise overview, the nine types of MQTT-based smart 
devices are summarized hereinafter:

•	 Light intensity sensor/actuator: publisher/subscriber 
type devices. The sensor publishes periodically, namely 
every second, data on the light detected in the envi-
ronment on the “Light Intensity” topic. The actuator 
receives data from both the light publisher device and 
the movement sensor to fade in or out the light on the 
basis of the external illumination of the room and the 
movements in the room itself;

•	 Temperature sensor/actuator: publisher/subscriber type 
devices. The sensor publishes periodically, every 2 sec-
onds, ambient temperature data on the topic “Tempera-
tures”. The actuator receives the temperature values 
and tries to keep the room temperature at a constant 
level, i.e., about 20◦C;

•	 Humidity sensor: every 1 second it publishes ambient 
humidity data in the “Humidity” topic. It is a publisher-
type device;

•	 Motion sensor: publishes data on movements, occur-
ring in the room, in the “Movement” topic. Unlike the 
other sensors that publish data periodically at constant 
time intervals, the sensor of motion publishes data 
pseudo-randomly in the 1 − 5-second interval;

•	 CO-GAS sensor: it receives and publishes data relat-
ing to gases detected in the room in the “CO-GAS” 
topic. The frequency of the publications is random in 
the range between 1 and 5 seconds;

•	 Smoke sensor: it is a publisher device. On the topic 
“Smoke”, it shares in random intervals, in the range 
between 1 and 5 seconds, the data relating to the sur-
veys on the presence of smoke;

•	 Fan sensor: it publishes data every 3 seconds related to 
fan operations in the “Fan” topic;

•	 Fan speed controller: it is an actuator and every second 
it receives data on the topic “Fan Speed”, related to the 
speed of the fan present in the room. It receives also 
data from the topics “Smoke”, “CO-GAS”, “Humid-
ity”, “Door Lock”, and “Temperatures”;

•	 Lock: it publishes data relating to the status of the lock 
with a random frequency between 1 and 5 seconds in 
the “Door Lock” topic.

In the case of CoAP devices, each bed in the rooms is 
equipped with nine smart devices, and there is a CoAP 
server that works as central control unit. The CoAP server 
has various duties, including: managing time profiles for 
patients, regulating the quantity of medication adminis-
tered to the patient through an infusion pump, initiating 
alarms for the medical staff based on the patient’s health 
status as monitored by the smart sensors. The nine smart 
devices that utilize CoAP for communication are the fol-
lowing and are described below:

•	 ECG sensor: it provides information about the heart 
beat rhythm every 1 second;

•	 Infusion pump: an actuator used to deliver possible 
nutrients and drugs to the patients, retrieving data from 
the server every 10 minutes;

•	 Pulsoximeter: a smart sensor furnishing the oxygen 
saturation in the blood every 1 second;

•	 Mouth airflow sensor: a smart sensor providing the 
breathing rate of the patient every 1 second;

•	 Blood pressure sensor: a smart sensor conveying infor-
mation about blood pressure every 2 seconds;

•	 Glucometer: a smart sensor providing information 
about the glucose in the blood every 10 minutes;

•	 Body temperature sensor: a smart sensor measuring the 
temperature of the patient every 1 hour;

•	 EMG sensor: a smart sensor measuring the electromi-
ography, i.e., the potential produced by the body mus-
cles, every 5 minutes;

•	 GSR sensor: a smart sensor measuring the galvanic skin 
response, i.e., the electrical conductance of the skin, 
every 5 minutes.

In Fig. 1, we illustrate the medical IoT scenario simu-
lated in this study. In this scenario, all devices share a 
uniform configuration, utilizing the same range of private 
IP addresses for both MQTT and CoAP devices. The sen-
sor network is confined to a secure and controlled access 
area, where the devices establish communication with the 
MQTT broker or the CoAP server. Notably, the simulated 
network does not include additional components such as 
firewalls or routers. The traffic within the network is moni-
tored and captured by a Tshark process running in the 
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background on the computer that is executing IoT-Flock, 
facilitating the collection and analysis of IoT traffic data.

Simulated Attacks

For the malicious traffic simulated in this study, we assumed 
that there is a specific number of malicious devices within 
the private network, controlled remotely by an attacker, and 
that this is not adequately protected.

During the simulation of an attack, malicious intelligent 
devices are directly connected to the MQTT broker or CoAP 
server to execute one of the considered attacks. In this study, 
we focused on the analysis of the type of attack and the traf-
fic corresponding to it, while the methodology used to carry 
out the attacks and/or the way in which the attacker gained 
control of the node were not discussed as they go beyond the 
scope of this work.

Experimental Settings

The IoT Traffic Dataset

After the setup of the scenarios, we ran IoT-Flock for the 
actual generation of IoT packets. While the traffic was being 
generated, we captured IoT packets, with the help of Tshark,4 
a tool capable of analyzing the traffic generated through 
IoT-Flock in real-time. The output of running Tshark was a 
standard.pcap file which we have further processed in order 
to obtain the considered features and a final.csv file. The 
capturing phase of IoT packets lasted about 48 hours, 24 

hours per considered protocol, on a machine equipped with 
an Intel Core i7 7th generation CPU, 16GB of RAM, and 
one NVIDIA GeForce GPU. More precisely, the duration of 
capturing normal packets was 12 hours, while MQTT and 
CoAP attack packets have been captured for 6 hours each. 
When considering the attacks, we supposed the presence of 
4 malicious smart devices, in the corresponding private net-
work, that were sending packets following either a periodic 
(1s) or random ( 1 − 5 s range) time profile.

In order to discriminate between malicious and benign 
traffic, we have extracted, by using a BASH script outputting 
the final.csv file, all the features available in Tshark for both 
the MQTT5 and the CoAP6 protocols.

Thereafter, we performed, using a proper Python script, 
a cleaning phase in order to tear out the features having no 
values (NaN), the source and destination IP addresses, as 
well as the non-significant, and to divide features incorporat-
ing multiple meaning into different columns.

Fig. 1   The smart health sce-
nario we considered: MQTT 
devices are on the left and 
monitor the environment, CoAP 
devices can be seen on the 
right and control the patient 
conditions. MQTT publish 
messages or CoAP POST and 
GET packets are represented 
by means of blue dashed lines, 
while MQTT delivery messages 
or CoAP response messages 
are represented through orange 
solid lines. Malicious nodes are 
present in both networks

Hospital Room

secivedPAoCsecivedTTQM

MQTT
Broker

CoAP
Server

Table 1   Description of the considered IoT traffic dataset

Protocol Number of instances Type of traffic

CoAP 834,881 Normal traffic
200,003 Segmentation fault attack
198,090 Memory leak attack

MQTT 593,363 Normal traffic
29,406 Publish flood attack

1532 Packet crafting attack

4  https://​tshark.​dev/​setup/​insta​ll/.

5  https://​www.​wires​hark.​org/​docs/​dfref/m/​mqtt.​html.
6  https://​www.​wires​hark.​org/​docs/​dfref/c/​coap.​html.

https://tshark.dev/setup/install/
https://www.wireshark.org/docs/dfref/m/mqtt.html
https://www.wireshark.org/docs/dfref/c/coap.html
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The final dataset, used for our analyses, consists of 
1, 857, 275 instances, each of them corresponding to a 
packet. Table 1 describes the dataset, in particular, the first 
column reports the application protocol, the second one 
shows the number of records per type of traffic, shown in 
the third column. The type of traffic represents the classifica-
tion label considered in the following analyses, performed 
independently for each considered application protocols, i.e., 
MQTT and CoAP.

Hence, the dataset described in Table 1 has been split in 2 
different subdatasets, one for CoAP traffic with 1, 232, 974 
packets, and one for MQTT traffic with 624, 301 packets.

Moreover, we used both a binary dataset, with instances/
packets assigned only to the “Normal” or “Attack” class, and 
a multinomial dataset, to classify the four particular types 
of attacks as described in Subsection “Attack Description” 
and the two types of normal traffic (MQTT and CoAP). 
In the binary classification we had 1, 428, 244 packets for 
the “Normal” class and 429, 031 packets for the general 
“Attack” class.

The Feature Set

Since Tshark extracts a total of 78 features for MQTT pack-
ets and 86 features for CoAP packets, we decided to reduce 
them by trying to consider only the most significant ones. 
This was done by means of a thorough analysis campaign 
leveraging both automated statistical analyses and manual 

inspections. The outcome of this preliminary phase is shown 
in Tables 2 and 3, reporting the selected features for MQTT 
and CoAP, respectively, as well as their inherent type 
(numeric or categorical).

As concerns MQTT, we considered the following 6 
features:

•	 Packet type (CONNECT, AUTH, PUBLISH, SUB-
SCRIBE, etc.): this feature and the next one have been 
extracted from the Tshark feature ‘mqtt.hdrflags’;

•	 Header flags, that is the flag bits present in the first byte 
of the fixed header of an MQTT packet;

•	 Keep alive interval (measured in seconds), that is the 
maximum time interval between two MQTT control 
packets sent by the client;

•	 Clean session flag of CONNECT message;
•	 Connect acknowledge flags, that is flag bits of CON-

NACK packets;
•	 Packet length.

Since each captured IP packet concerning the MQTT traf-
fic, that corresponds to a TCP segment in turn, may con-
tain more than one MQTT packet, for most of the features 
mentioned above Tshark provides three different values 
corresponding to possible three different MQTT packets 
within the same IP packet (it considers a maximum of 
three concatenated packets). Therefore, concerning MQTT 
traffic we considered a total of 3 × 6 = 18 features per sin-
gle IP packet.

As regards CoAP, we considered the following 9 
features:

•	 CoAP code: it discriminates between requests and 
responses and provides either the type of request (GET, 
POST, PUT, or DELETE) or response code;

•	 Option type: when one or more options are present, it 
indicates the type of each option;

•	 Option length: the size (in bytes) of the option;
•	 Option descA: it distinguishes between critical or elec-

tive options;
•	 Option descB: it distinguishes between safe or unsafe 

options;
•	 Option block size: the transfer block size specified in 

the Block1 and Block2 options in case the CoAP block-
wise transfer extension is used [40];

•	 Option observe value: the number used to identify a 
given notification within a sequence of resource obser-
vations, when the CoAP Observe extension is used 
[41];

•	 Option end marker: it indicates the end of the options 
field when a payload is present;

•	 Payload length: the payload size in bytes.

Table 2   Considered MQTT features

Name Type

mqtt.packet_type1,2,3 Categorical
mqtt.hdr_flags1,2,3 Categorical
mqtt.kalive1,2,3 Numeric
mqtt.conflag.cleansess1,2,3 Categorical
mqtt.conack.flags1,2,3 Categorical
mqtt.len1,2,3 Numeric

Table 3   Considered CoAP features

Name Type

coap.code Categorical
coap.opt.type1,2,3 Categorical
coap.opt.length1,2,3 Numeric
coap.opt.desc1A,2A,3A Categorical
coap.opt.desc1B,2B,3B Categorical
coap.opt.block_size Categorical
coap.opt.observe Categorical
coap.opt.end_marker Categorical
coap.payload_length Numeric
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Since more than one option may be present within the same 
CoAP message, the Tshark tool provides the feature values 
for the first three options of each packet. This allowed us 
to consider triples of features for the option type, option 
length, option descA, and option descB, leading to a total of 
17 features for each packet.

Models Settings

For the classification tasks, both binary and multinomial, we 
analyze different ML models and one Deep Neural Network 
(DNN) architecture. Moreover we have also applied an ante-
hoc explainable model, the already mentioned FHDT.

In Table 4, we present the hyper-parameters used for the 
ML models of the study. The table is structured as follows: 
the first column shows the ML classifier, the second col-
umn lists the name of the hyper-parameter, the third col-
umn offers a short description of the hyper-parameter itself 
and its purpose, while the last column indicates the specific 
values that have been employed in the analysis. The hyper-
parameter settings presented in the table were chosen fol-
lowing a grid-search optimization process. These settings 
were determined using an 80/20 ratio to divide the dataset 
into training and test sets, and they represent the configura-
tions that yielded the best performance in the experiments.

On the contrary, the provided DNN model architecture is 
outlined in Table 5. In particular, the first column designates 
the hidden layer level, the second column specifies the type 
of the hidden layer used at that particular level, while the last 
column details the number of neurons within that specific 
layer. In this architecture, two different types of layers have 
been employed, each serving distinct purposes within the 
DNN model:

•	 Dense layer, a fully connected layer, in which every neu-
ron in the next layer is connected to every other neuron 

in the previous layer. Its output value becomes the input 
for the next neuron layer;

•	 Dropout layer, a layer used to set input units to 0 at a 
chosen rate at each step during training. When the input 
is not set to 0, it is increased according to the formula 
1∕(1 − rate) so that the total number of input is constant.

The other components of the DNN models can be detailed 
as follows:

•	 As an Activation function we chose the rectified linear 
unit activation function via ‘relu activation’ to all neu-
rons in all considered layers;

•	 As an Optimizer we applied the Adam optimizer, a par-
ticular type of stochastic gradient descent. It is useful 
and widely used because it converges in a short time 
and, therefore, makes the network less demanding from 
a computational point of view compared with the classic 
SDG which converges to ‘flat minima’ [42];

•	 Concerning the Dropout rate of the relative layer, we set 
it to 0.20.

Table 4   Hyper-parameters of the ML models we considered

Classifier Hyper-parameters Description Used value

Naïve Bayes Priors This is the prior probability of the classes. If the value is ’none’ the prior probabilities are 
calculated based on the data

None

Var_smoothing It is the portion of the biggest function variance of all features, and shows how it contrib-
uted to the others for computation stability

10
−9

SVM Gamma Kernel coefficient 2
C It is a parameter of regularization; in particular, regularization is inversely proportional to 

the value of C
Squared L2

Logistic Penalty The value of the considered penalty L2 penalty
Class_weight The value of the class-specific weights 1 (for all classes)

Decision tree Max_depth The maximum depth of the tree 10
Criterion The criterion selected to perform splits at each internal node of the tree Gini impurity

Table 5   The DNN model 
architecture we used

Layer Type Neurons

Ia Dense 1024
Ib Drop out –
IIa Dense 512
IIb Drop out –
IIIa Dense 128
IIIb Drop out –
IVa Dense 32
IVa Drop out –
V Softmax 4
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The architectural design of the DNN was implemented using 
Python, with a specific focus on TensorFlow7 and Keras8 
libraries:

•	 TensorFlow is an open-source software framework 
widely used in the various sub-fields of AI. It is particu-
larly valuable for tasks related to training and inference 
in DNNs.

•	 Keras is a Python package that serves as a user-friendly 
interface to the TensorFlow library. It simplifies the pro-
cess of building and working with artificial neural net-
works, making it easier for developers and researchers to 
create complex models efficiently.

These libraries provide the tools and resources necessary for 
developing and training DNNs for a variety of applications, 
including the analysis and classification of IoT traffic in the 
context of the proposed research. In this study, all the neu-
ral network models were trained for a total of 100 epochs. 
The training data have been divided into three sets using a 
60/20/20 splitting ratio for the training, validation, and test 
sets, respectively. The specific hyper-parameters, including 
the dropout rate, number of epochs, and batch size, were 
meticulously selected after a process of grid-search opti-
mization, involving the evaluation of various combinations 
to determine the most effective configuration for the neural 
network models. The chosen settings reflect the combination 
that yielded the best performance and results for the objec-
tives of the study.

As concerns the FHDT, only triangular, strong, and uni-
form fuzzy partitions have been used, considering 3, 5, and 
7 triangles in the [0 − 1] range. Each partition triangle has 
been associated with a particular linguistic term, e.g., Low, 
Medium, and High in case of three triangles, or Very Low, 
Low, Medium, High, and Very High in case of five trian-
gles. As for the categorical features, we took care to assign 
fixed numerical values in the considered range [0 − 1] , cor-
responding to the upper vertex of a triangle, while numeric 
features were simply normalized accordingly. In Table 6, 
we detail the main hyper-parameters of the FHDT model we 
considered as well as their corresponding considered values, 
obtained after a grid search optimization procedure. Also 

in the case of FHDT, we used as a training set 80% of the 
whole dataset and 20% for testing.

Evaluation Metrics

In order to evaluate the performance, we used several spe-
cific metrics to gain a comprehensive understanding. In this 
work, the following evaluation metrics, in addition to confu-
sion matrices, have been taken into account:

•	 Accuracy, which provides an overall measure of how 
often the model correctly classifies items in the dataset 
concerning the total number of instances. It is a useful 
general indicator of the performance of a model.

•	 Weighted precision, which is calculated by dividing the 
number of true positives by the total number of instances 
marked as belonging to a particular class. It provides 
insight into the precision of the classifier, taking into 
account class imbalances.

•	 Weighted recall, which is defined as the number of true 
positives divided by the total number of instances that 
genuinely belong to a specific class. It assesses the abil-
ity of the classifier to correctly identify instances of a 
particular class while considering the class distribution.

•	 Weighted F1-score, which is the harmonic mean between 
precision and recall. It balances the trade-off between 
precision and recall, offering a more comprehensive 
measure of the performance of a model, especially in 
cases of class imbalance.

The considered performance metrics, in combination with 
confusion matrices, provide a well-rounded view of how 
well each classifier is performing, especially in our case 
study with unbalanced datasets wherein it is essential to 
account for the differences in class distribution.

Beside the aforementioned metrics, when considering 
FHDT, we have also regarded the total number of nodes 
in the tree and the number of leaves as metrics useful to 
assess the complexity of the model and so of its interpret-
ability: less nodes and leaves allow for better interpretabil-
ity of the corresponding rules. Moreover, the criterion we 
used to perform inference in the FHDT, given that a testing 
instance could reach more than one leaf, was the majority 
voting strategy.

Results

Hereunder we presents the results obtained in the analyses 
carried out for this research. The evaluation of all models is 
carried out separately for both MQTT and CoAP protocols. 
To enhance the readability of the presented results, this sec-
tion is divided into two subsections. First, we present the 

Table 6   Values of the main 
hyper-parameters for FHDT

Parameter Value

Split confidence ( �) 10
−7

Tie threshold (TT) 2.5
Grace period (GP) 25
Minimum fraction (MF) 0.01

7  https://​www.​tenso​rflow.​org/.
8  https://​keras.​io/.

https://www.tensorflow.org/
https://keras.io/
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results of the binary classification (see subsection “Binary 
Classification”), followed by the results obtained through 
the multiclassification (see subsection “Classification 
of Attacks»). This division facilitates a clear and organ-
ized presentation of the outcomes for each classification 
approach.

Binary Classification

This subsection discusses the results of the binary classifica-
tion; hence, in this phase, we have considered the packets 
referring to the studied attacks as a single malicious class.

Table 7 shows the values of the evaluation metrics con-
sidering the CoAP and MQTT datasets separately. The 
analysis shows that the classification accuracy is very high, 
reaching, in the case of the CoAP protocol, values close to 
100% for both some ML models and the DNN, while FHDT 
performs slightly worse, considering all three types of fuzzy 
sets (FSs), but, anyway, close to 90% of accuracy and with 
much more explainable and compact models as described 
in Subsection “Explainable Rules”. Furthermore, all the 
considered metrics achieve close to optimal results, indicat-
ing that the considered algorithms classify the data really 
well even in cases of unbalanced classes. The best model, 
if one considers the CoAP protocol and takes a look at all 

Table 7   Results of the binary 
classification

AI model CoAP MQTT

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Naïve Bayes 0.915 0.966 0.937 0.939 0.917 0.866 0.942 0.905
SVM 0.991 0.990 0.988 0.989 0.975 0.979 0.975 0.977
Logistic reg. 0.969 0.977 0.981 0.979 0.981 0.988 0.984 0.986
Decision tree 0.988 0.989 0.989 0.989 0.979 0.979 0.965 0.977
DNN 0.993 0.992 0.995 0.994 0.989 0.990 0.989 0.990
FHDT-3FS 0.864 0.983 0.981 0.981 0.984 0.997 0.997 0.997
FHDT-5FS 0.885 0.993 0.991 0.991 0.994 0.998 0.998 0.998
FHDT-7FS 0.893 0.994 0.992 0.992 0.995 0.998 0.997 0.998

Table 8   Results of the 
multinomial classification

AI model CoAP MQTT

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Naïve Bayes 0.948 0.936 0.929 0.948 0.835 0.670 0.921 0.642
SVM 0.971 0.982 0.970 0.983 0.928 0.929 0.948 0.949
Logistic reg. 0.966 0.945 0.956 0.966 0.929 0.918 0.969 0.939
Decision tree 0.991 0.992 0.996 0.997 0.999 0.999 0.979 0.989
DNN 0.999 0.999 1.00 0.999 0.999 0.993 0.994 0.993
FHDT-3FS 0.866 0.981 0.983 0.983 0.983 0.961 0.997 0.961
FHDT-5FS 0.871 0.99 0.989 0.989 0.984 0.971 0.996 0.972
FHDT-7FS 0.895 0.991 0.99 0.99 0.985 0.973 0.995 0.982

Fig. 2   Confusion matrices of both MQTT and CoAP multinomial classification as regards some considered classification models
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the metrics, is the DNN we have taken into account, but one 
can see that the difference with SVM or Decision Tree is 
very small. When considering the MQTT protocol alone, 
the models that best classify are the DNN and the FHDT, 
in this latter case with a slight increase in the performance, 
experienced also in the CoAP case, moving from 3 fuzzy 
sets (3FS) to seven fuzzy sets (7FS).

Classification of Attacks

This subsection reports the results arising from the multino-
mial classification analysis for both MQTT and CoAP. The 
specific results are shown in Table 8. CoAP packets, both 
normal and malicious, are classified better than MQTT pack-
ets. Furthermore, the identification of the different MQTT 
packets reaches very high figures for all the algorithms we 
considered, except for the Naïve Bayes classifier, which 

presents the worst performance, also worse than all versions 
of FHDT.

Finally, Fig. 2 shows the confusion matrices for the mul-
tinomial classification of the MQTT and CoAP protocols. 
In particular, we have only reported the results obtained for 
Naïve Bayes, Decision Tree, and the DNN model, for the 
sake of brevity. From the figure, it can be inferred that for the 
CoAP protocol, the only relevant misclassifications occur 
when using the Naïve Bayes classifier; in particular, the nor-
mal packets are those most confused with the segmentation 
attack packets. In contrast, the decision tree classifier and 
the DNN architecture we considered are the ones with fewer 
classification errors: for these algorithms, errors between 
predicted data and real data are very rare and mainly involve 
normal traffic when classified with decision trees.

By the same token, when considering MQTT, no model 
produces a perfect diagonal matrix and when using Naïve 
Bayes we obtain the worst outcome whose main criticality 
entails the identification of Publish Flood packets as normal 
ones. In the decision tree model, the main criticality con-
cerns the confusion of packet crafting packets with publish 
flood packets or vice versa. This reciprocal misclassifca-
tion of attack packets does not happen in the case of the 
considered DNN model, which has only a few problems in 
discriminating packet-crafting packets from publish-flood 
packets.

Explainable Rules

In this subsection, we report the graphical representation 
of some of the obtained FHDTs, limiting the analysis to the 
binary case because the multinomial trees are exactly the 
same but, obviously, with more than two outcomes. We have 
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not reported the traditional decision trees, because they were 
poorly interpretable for their complexity as well as for the 
lack of associated linguistic terms.

In Fig. 3, we report the binary FHDT when considering 
5 fuzzy sets applied to the features of the CoAP protocol, 
while, in Fig. 4, we show the binary FHDT applied to the 
features of the MQTT dataset when considering 3 fuzzy 
sets. The trees we have shown are the most compact and 
interpretable we obtained among the various combinations 
of fuzzy sets, although they all have achieved very similar 
performance results as shown in Tables 7 and 8. Indeed, the 
5-fuzzy-set FHDT for CoAP has 9 total nodes and 6 leaves, 
while the 3-fuzzy-set version has 13 total nodes and 8 leaves, 
and the 7-fuzzy-set version features 29 total nodes and 24 
leaves. As regards MQTT, the 3-fuzzy-set FHDT has 12 total 
nodes and 7 leaves, while the 5-fuzzy-set version has 21 total 
nodes, and 16 leaves and the 7-fuzzy-set version has 29 total 
nodes and 24 leaves.

In the case of CoAP, a very high value of the desc2A 
attribute leads to the normal classification, while a very 
low value requires a test of the length1 feature. Attacks take 
place when length1 is low as well as desc2A is very low, or 
when length1 is very low and desc3A is very low as well as 
desc2A.

In the case of MQTT, the most discriminating feature is 
hdrflags2 and attacks can take place when it is both low or 
high. In the first case len1 has to be high or medium, but 
with a high value associated to hdrflags1_packet_Type . In 
the second case when hdrflags3_packet_Type is high or it is 
low, but with a medium value for length2.

Two examples of the extracted rules, for both CoAP and 
MQTT, are the following:

Discussion and Threats to the Validity

When considering both the binary and multinomial clas-
sification, we may see that the CoAP protocol is classified 
better than the MQTT protocol, except when using the 
FHDT. However, this could arise from the extreme light-
ness and simplicity implicit in CoAP implementations. 
As a matter of fact, such a protocol is routinely used on 
battery-powered devices and in case of limited CPU and 
RAM. Moreover, it is fair to say that a CoAP packet can 
be only 4B long, as opposed to a HTTP messages that can 

R1: IF desc2A is VERY LOW AND length1

is LOW THEN CoAP Attack

R2: IF hdrflags2 is LOW AND length1

is HIGH THEN MQTT Attack

have a minimum of 33 bytes for a request and 16B for a 
response and that are usually significantly longer (hun-
dreds or thousands of bytes). Additionally, during the 
testing phase of the hyper-parameter configuration for the 
regarded models, the CoAP protocol returned results with 
metrics always close to 100% , regardless of the adopted 
configuration. Therefore, we have been able to notice that 
packets related to the CoAP protocol can be subject to 
the so-called “benign overfitting”: this condition occurs 
when a classifier adapts perfectly to noisy training data, 
while keeping the error between predicted data and real 
data very low [43]. As a corroborating information, in our 
study, the loss function related to CoAP always tends to 0 
when using the DNN model.

Contrary to what occurred for the CoAP protocol, the 
MQTT protocol is classified with a higher error between 
predicted data and observed data. However, we have to 
remember that the MQTT protocol involves both a connec-
tion, being encapsulated in TCP, and three distinct entities 
(the publisher, the broker, and the subscriber), compared 
with the only two involved in CoAP (client and server); 
this makes it a much more complex protocol to identify.

As regards the obtained rules, for CoAP traffic we see 
that a deciding aspect appears to be whether the packet 
contains some options (at least two), and they belong to 
the ‘critical’ class (that corresponds to the features descA 
with value very low), that means that the given option 
needs to be understood and processed by the message des-
tination. This requires at least a processing overhead at 
the receiver side and may be used for exploiting possible 
software vulnerabilities in case they are present.

On the other hand, for detecting MQTT attacks, we have 
that it is important whether the IP packet contains different 
MQTT messages; this is evident because of the presence 
of features marked with 1, 2, and 3, related to three dif-
ferent MQTT messages within a single TCP/IP packet. 
This conditions may be more probable in case of flooding/
DoS attacks. In addition, also the type of MQTT packet 
is relevant, since some methods like UNSUBSCRIBE or 
DISCONNECT, corresponding to the ‘packet_type’ fea-
ture with high values, are mainly used in some attacks.

As for the threats to the validity of our study, we dis-
cuss construct, internal, and external validity threats in 
the following.

Regarding construct validity threats, they usually entail 
how well a set of indicators represents or reflects a con-
cept that is not directly measurable. In our study, we have 
focused on the main features of the packets of both MQTT 
and CoAP created during various simulation sessions with 
different random seeds and we have accurately removed 
statistically non-significant features.



	 SN Computer Science           (2024) 5:488   488   Page 14 of 15

SN Computer Science

When focusing on the internal validity, we exclude any 
labeling issues because the traffic was synthetically created 
through IoT-Flock in a controlled environment.

Concerning the threats to external validity, which affect 
the generalization of the discussed outcomes, we still have 
to test whether training on the synthetic traffic generated 
through IoT-Flock and testing on real-world data could 
lead to similar very good results. However, the rules 
extracted from the FHDT confirm a real-world significant 
meaning in the identification of the CoAP and MQTT 
attacks and thus we can envisage its useful application 
also to a real-world scenario.

Conclusions and Future work

In this paper, we have applied a complete and explainable 
anomaly detection analysis, performed via machine and 
deep learning techniques, to the synthetic traffic produced 
trough IoT-Flock when considering a smart health sce-
nario. The research has encompassed both a binary and a 
multinomial classification; moreover, we have considered 
both MQTT and CoAP messages, i.e., the most used appli-
cation protocols in the IoT scenario, and both normal and 
malicious traffic, trying to identify four different attacks 
by using application-layer packet features. Furthermore we 
have also applied an explainable machine learning tech-
nique in order to extract potential classification rules to be 
applied in a real-world scenario. The results we obtained 
have demonstrated the full feasibility in using synthetic 
traffic produced by IoT-Flock as a base for the anomaly 
detection of IoT medical traffic, providing also meaningful 
classification rules.

As for future research directions, we are committed 
to train the models on the synthetic traffic coming from 
IoT-Flock and perform the testing phase on real labeled 
medical IoT traffic. Moreover, we intend also to perform a 
per-flow analysis considering features related to a certain 
traffic flow rather than to the single packets, and to enrich 
the overall study with a feature selection analysis, in order 
to verify if, even with a reduction of the considered fea-
tures, we could output similar outcomes.
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