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Abstract

This work discusses an efficient formulation of a geometrically exact three-

dimensional beam which can be used in dynamical simulations involving large

displacements, collisions and non-linear materials. To this end, we base our

model on the shear-flexible Cosserat rod theory and we implement it in the

context of Isogeometric Analysis (IGA). According to the IGA approach, the

centerline of the beam is parameterized using splines; in our work the rotation

of the section is parameterized by a spline interpolation of quaternions, and

time integration of rotations is performed using the exponential map of quater-

nions. Aiming at an efficient and robust simulation of contacts, we propose the

adoption of a non-smooth dynamics formulation based on differential-variational

inequalities. The model has been implemented in an open-source physics sim-

ulation library that can simulate actuators, finite elements, rigid bodies, con-

straints, collisions and frictional contacts. This beam model has been tested

on various benchmarks in order to assess its validity in non-linear static and

dynamic analysis; in all cases the model behaved consistently with theoretical

results and experimental data.
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1. Introduction

Deformable three-dimensional beams withstanding large displacements can

be found in many scenarios of practical interest, this is the case of the blades in a

helicopter rotor, for instance, or the case of the torsion bar in a car suspension, or

the case of a flexible robot arm. In the last decades, similar problems motivated

extensive research in the area of fast, robust and reliable computer methods

for the simulation of beams, and most of those methods are based on Finite

Element (FE) discretizations.

Recently, the Isogeometric Analysis (IGA) computational approach gained

increased popularity as it blends the concept of spline interpolation in the con-

text of FE. While traditional FE methods discretize the continuum using finite

elements that share end nodes, the IGA approach uses a single spline with sev-

eral nodes. Indeed, nowadays most CAD tools are based on splines of NURBS

or B-spline type, hence one of the relevant advantages of IGA is that these

geometries can be imported directly in the simulation, whereas FE methods

require an intermediate pre-processing step in order to generate a mesh approx-

imation of the original geometry [29]. Moreover, conventional finite elements

using Lagrange polynomials feature C0 continuity at nodal points regardless of

their order, while spline functions of order p provide Cp−1 continuity at all non-

multiple knots. This means that for the same amount of degrees of freedom,

IGA shows better robustness and accuracy compared to C0-continuous FE [16].

Although the most obvious application of IGA is in the modeling of struc-

tural elements which can map to a line parameterization, such as cables and

beams, the same concept can be extended to generic PDEs involving mem-

branes, shells and volumes [17, 11]. Among the vast literature on IGA, we

cite in passing the developments on hierarchical refinement [60], the general-

ization to T-splines [9], the application to fluid dynamics [8] and to contact

problems [20, 58].

In this paper we use IGA to implement a geometrically exact three-

dimensional beam based on the Cosserat rod theory, hence capable of arbitrary
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large rotations and displacements [33]. Non-linear geometric effects in beams

have been studied extensively in computational mechanics and different ap-

proaches have been put forward: for example a straightforward method still used

nowadays is based on reusing linear finite elements developed for infinitesimal-

strain conventional beams of Euler-Bernoulli or Timoshenko type, by updating

a local corotational reference frame that can have large displacements and ro-

tations [18, 23]. In contrast to this, but at the cost of a more sophisticated for-

mulation, the geometrically exact beam model, also referred to as Simo-Reissner

beam model, draws on the theory of 1D Cosserat continua [15] and leads to a

general formulation that makes no assumption on the amount of rotations and

that allows finite strains, including shear and torsion [53, 4, 54]. The Cosserat

rod theory does not require that cross-sections must be orthogonal to the tan-

gent of the centerline, hence it can account for shear effects similarly to the

Timoshenko beam theory, of whom it can be considered a generalization to the

3D case [59]. In fact, Reissner, Kirchhoff-Love, Timoshenko and Euler-Bernoulli

beams can be interpreted as special cases of Cosserat rods.

Many references on IGA-based beams can be found in literature: for instance

IGA for Kirchhoff-Love and Euler-Bernoulli beams are discussed in [26] and [63],

straight and curved 2D Timoshenko beams are discussed in [12], to name a few.

Similarly to FE beams, numerical locking artifacts can affect IGA beams when

shear is taken into account. In this context, a collocation approach was used

in [19, 5] to obtain a locking-free spatial IGA beam.

Contact between three-dimensional rods has been dealt in literature by var-

ious authors. Among the first results, in [65] a frictionless point-wise contact

formulation was developed between pairs of cables with circular section, later

extended to the frictional case [66]. The problem of contact between beams of

rectangular section, that might generate multiple contact points between the

edges, has been discussed in [39, 38]. The issue of self-contact between beams

has been studied in [14, 24], a topic of great importance if one needs to simulate

problems such as the tightening of knots, knitting machines or winches. Most

contact models in literature are based on point-based formulations where the
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position of contact points is obtained by solving local sub-problems of distance

minimization between curved geometries [36]. However this approach is near

singular when beams intersect with small contact angles: in [45, 46] an efficient

method has been proposed that can solve this issue. In [62] the simulation of

frictional contact and self collision is discussed for a class of efficient IGA-based

Cosserat rods.

Similarly to [64], we address the case of a three-dimensional Cosserat rod

of high generality, hence accounting for shear, torsion, geometric and material

non-linearity. As an alternative to penalty-based beam contact formulations as

presented in [61], we express it with a formalism that fits well in a time stepper

for non-smooth multibody dynamics, using the theory of Differential Variational

Inequality (DVI). To our knowledge, this is the first time an IGA formulation

has been used in the framework of DVI non-smooth dynamics; the benefit being

the fact that DVI formulations provide a robust and stable way to simulate

contact problems even with large time-steps and many simultaneous contacts.

Early work on non-smooth dynamics can be traced back to the seminal

research of Jean-Jacques Moreau on measure-differential inclusions, a special

type of DVI [47, 32]. The non-smooth nature of dynamical problems originates

from various phenomena, most often it is a consequence of the Coulomb friction

model and impulsive collisions at contact points; instead than regularizing the

contact forces -a conventional method that leads to smooth but stiff differen-

tial problems- Moreau proposed to embed such set-valued force laws directly

in the formulation. This can be done at the cost of assuming that velocities

can be discontinuous, hence accelerations are considered as distributions of vec-

tor signed measures. Since then, different authors contributed to the field of

non-smooth dynamics, see for example [56, 3, 52]. The robustness and stabil-

ity of DVI methods motivated their use in scenarios that involve millions of

simultaneous contacts, such as granular dynamics [50], or in contexts that re-

quire real-time performance and large time steps, such as robotics and virtual

reality [10]. Most time stepping schemes for DVI require the solution of a varia-

tional inequality (VI) per each time step: early approaches were based on fixed
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point iterations that both represented a major computational bottleneck and

performed badly in presence of finite elements, but recent researches address

both issues and stimulate novel applications of DVI methods also to flexible

structures [44, 27, 40].

In order to test our geometrically-exact rod formulation, we implemented

it using the C++ language and we embedded it in our CHRONO open source

simulation library [43]. We used this library to simulate IGA beams in a broader

context involving rigid body dynamics, finite elements, motors, actuators and

non-smooth frictional contacts: tests presented at the end of the paper show

that the geometrically-exact IGA beam represents an efficient, compact and

general way to simulate complex problems involving deformable beams.

2. B-Splines and NURBS

Since our beam model draws on Basis splines (B-Splines) or Non-Uniform

Rational B-Splines (NURBS), basic concepts about these functions are intro-

duced here.

2.1. B-Splines

A B-Spline of order p is a piecewise polynomial function of degree p-1 in a

parametric variable τ ∈ R (a curvilinear abscissa).

We introduce a set of n+1 control points xi ∈ R3 i = 0...n and a set n+p+1

of non-decreasing breaking points defining a knot vector T = (τ0, τ1...τn+p).

Basis Functions. Ni,p is an order p and p-1 degree Basis Function on the i-th

knot of the B-Spline and it is recursively defined as follows:

Ni,1(τ) =

1 for τi ≤ τ ≤ τi+1

0 otherwise

(1)

And, for p > 1:

Ni,p(τ) =
τ − τi

τi+p−1 − τi
Ni,p−1(τ) +

τi+p − τ
τi+p − τi+1

Ni+1,p−1(τ) (2)
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Basis Function are a partition of unity: it means that
∑n
i=0Ni,p(τ) = 1 ∀τ ∈

[τo, τn]. The span of Basis Function increases with the order p.

Is useful to remind the derivative of the Basis Function with respect to the

parametric variable since it is frequently used:

N̊i,p(τ) =
dNi,p(τ)

dτ
=

p− 1

τi+p−1 − τi
Ni,p−1(τ)− p− 1

τi+p − τi+1
Ni+1,p−1(τ) (3)

B-Splines formulation. A B-Spline is a linear combination of control points xi

and Basis Functions Ni,p(τ)

r(τ) =

n∑
i=0

xiNi,p(τ) n ≥ p− 1 (4)

Given the number of control points n+1 and the order of the curve p the number

of knots is n + p + 1, which means there are more knots than control points,

so some knots can be coincident on the same control point. When knots are

distinct the first p− 1 derivatives are continuous; when r nodes are coincident,

only the first p− r derivatives are continuous. In general, control points do not

lie on the curve. When p knots are coincident, the spline passes through the

control point with C0 continuity.

2.2. NURBS

Non-Uniform Rational B-Splines introduce additional weights wi > 0, (i =

1...n), so that rational basis Ri,p(τ) are used in place of Ni,p(τ):

Ri,p(τ) =
Ni,p(τ)wi∑n
j=1Nj,p(τ)wj

(5)

NURBS have the same properties listed for B-Splines: in particular for wi =

1 ∀i, NURBS reduce to B-Splines. In addition, by using proper weights and few

coarse control points, NURBS allow the exact (not approximated) representa-

tion of conic sections like circles and ellipses; this is a relevant feature because

canonical primitives in CAD models are most often built from conical sections.

3. Kinematics of Cosserat rods

Our implementation of IGA beams draws on the Cosserat rod theory. This

implies that the rotation of the beam section is independent from the centerline
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position. This differs from the Euler-Bernoulli or Kirchhoff beam theory which

implies that sections remain orthogonal to the centerline, an assumption that

holds only for thin beams, because shear effects cannot be modelled.

3.1. Configuration

A Cosserat beam is represented by the line of its mass centroids (centerline),

which is described by a curve parameterized [64] by a curvilinear abscissa s ∈

[0, T ]:

r = r(s) ∈ R3 (6)

Section rotations R are parameterized by the same curvilinear abscissa s ∈

[0, T ] (even though not mandatory [5] ), assuming that the X axis of the R

frame represents the normal of the beam section, and Y and Z axes represent

the height and width directions, respectively:

R = R(s) ∈ SO(3) (7)

That is, at some point sa along the curve we have independent positions and

rotations: r(sa), R(sa).

We remark a first source of complication: R is a 3D rotation matrix, that

is a 3x3 orthogonal matrix (hence the special orthogonal group SO(3) in the

terminology of Lie groups). Its 3x3 elements are not independent as RRT = I

must hold: in general it is better to avoid using all nine elements of such matrix

and use quaternions or rotation angles to parameterize rotation frames [37].

3.2. Strains

Following [55], we can express ε and κ, hereafter called translational strains

and rotational strains, respectively. The translational strain ε is:

ε = RTr′ − ex (8)

where we introduced ex = {1, 0, 0} and we introduced the curve gradient

r′ =
dr

ds
. (9)
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Note that for an undeformed beam we have RTr′ = {1, 0, 0}, that is we

assume that s is a uniform arc-length parameterization. Is other words, at

the initial state, the curvilinear length of a curve from s = a to s = b, i.e.

L =
∫ b
a
||r′||ds, is exactly b−a. Usually, however, splines are not parameterized

with uniform arc-length abscissa, because a generic abscissa τ is used instead.

If so, we have

r′ =
dr

dτ

dτ

ds
= r̊J−1 (10)

where a jacobian is defined as Jsτ = ds
dτ , and r̊ = dr

dτ is the parametric derivative

(something that is quite easy to compute when dealing with splines).

During an initialization phase, when the beam is still undeformed, values of

jacobians Jsτ are computed and stored in memory for all the integration points

- they will be used later, when computing the internal forces.

The rotational strain κ is computed as [64]:

κ̃ = RTR′ (11)

Here R′ = dR
ds , while the tilde operator means:

κ̃ =


0 −κz κy

κz 0 −κx
−κy κx 0

 (12)

so it is obvious that one can build κ from κ̃ or vice versa.

Finally, in case the beam starts in an initially-curved configuration, initial

values ε0 and κ0 can be computed using the expression above, then one would

compute effective strains with:

ε = ε− ε0 (13)

κ = κ− κ0 (14)

3.3. Constitutive model

Once ε and κ are computed, with some generic constitutive model one can

compute their conjugate vectors, i.e. the generalized cut-section forces n and

cut-section torques m, henceforth called translational stresses and rotational
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stresses, respectively. The most generic constitutive model is expressed by a

non-linear function:

{ε,κ} ∈ R6 → {n,m} ∈ R6 (15)

Note that n and m are expressed in the local coordinate system of the

section frame: if one needs the absolute values of such vectors, they can be

computed easily, later, as

na = Rn (16)

ma = Rm (17)

When structural damping is needed, instead of (15) we use:

{ε,κ, ε̇, κ̇} ∈ R12 → {n,m} ∈ R6 (18)

by introducing the strain derivative as ε̇ and the curvature derivative as κ̇.

See Appendix A for more details on the methods for computing generalized

strains.

3.4. Equilibrium

The strong form for the equilibrium of the Cosserat beam is:

n′a + na = 0 (19)

m′a + r′a × na +ma = 0 (20)

where, if provided, na is the external force distributed on the beam, and ma is

the external torque distributed on the beam, both expressed in absolute coor-

dinates. The subscript a means we are using absolute coordinates for r′ too.

4. Discretization with IGA elements

The beam is approximated with IGA. To this end we assume that the beam

is represented as a B-spline whose control points are nodes, each i-th node being

a coordinate system {xi,Ri} with position xi ∈ R3 and rotation Ri ∈ SO(3), as

shown in Fig. 1. For the rotation, however, we choose to parameterize rotation
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Figure 1: Spline discretization of the beam with independent position and rotation fields.

matrices R using unit-length quaternions ρ ∈ H1, so the configuration of each

node is a compact set of 7 scalars: {xi,ρi}. We recall the basic properties

of quaternions: ρ = ρ0 + iρ1 + jρ2 + kρ3 with i2 = j2 = k2 = ijk = −1,

often written succinctly ρ = [ρs,ρv] to facilitate the expression of quaternion

multiplication:

τρ = [τsρs − τ v · ρv, τsρv + ρsτ v + τ v × ρv] (21)

If needed, one can always convert quaternions into rotation matrices, as

Ri = R(ρi), using the following property:

R(ρ) =


ρ20 + ρ21 − ρ22 − ρ23 2(ρ1ρ2 − ρ3q0) 2(ρ1ρ3 + ρ2ρ0)

2(ρ1ρ2 + ρ3ρ0) ρ20 − ρ21 + ρ22 − ρ23 2(−ρ1ρ0 + ρ2ρ3)

2(ρ1ρ3 − ρ2ρ0) 2(ρ1ρ0 + ρ2ρ3) ρ20 − ρ21 − ρ22 + ρ23

 (22)

Finally we denote the quaternion conjugate as ρ∗, with ρ∗ = ρ0−iρ1−jρ2−

kρ3, such that R(ρ∗i )R(ρj) = R(ρi)
TR(ρj).

4.1. System state vectors

The state of the system contains velocities and angular velocities of each

frame {ẋi,ωi}. We consider ωi expressed in frame-local coordinates.

This means that the state of the system, for nn nodes, is given by the
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system-level configuration q and the system-state velocity v as:

q = {x1,ρ1,x2,ρ2, . . . ,xnn
,ρnn

} (23)

v = {ẋ1,ω1, ẋ2,ω2, . . . , ẋnn ,ωnn} (24)

In both statics and dynamics analysis it happens that one has to update

by updating the q configuration by applying some computed increment. For

instance, in a linear static problem one has Kδq = b and qnew = q + δq. Also

numerical methods for DAEs and ODEs in dynamics proceed by performing

updates on the configurations at each time step. The problem is that, within

our state q, positions can be updated with straight sums as xi,new = xi + δxi,

but quaternions cannot be updated as easily. In fact doing a straight sum with

a δρi ∈ H1 as in ρi,new = ρi + δρi could invalidate the unit-length of ρi,new.

A more rigorous solution is to do incremental updates of quaternions using the

exponential map. This requires some basic concepts of Lie algebras.

Recalling concepts of differential geometry, for an element R in Lie group

SO(3) and an element δΘ in the corresponding Lie algebra so(3), one has

R = exp(δΘ) (25)

δΘ = log(R) (26)

One can extract the three dimensional rotation pseudovector δθ from δΘ via

δθ = axis(δΘ), recalling that δΘ = skew(δθ) = δθ̃. For our purposes, δθ can

be considered a (not necessarily infinitesimal) incremental rotation; for example

in a time stepper it could be δθ = ωdt.

For sake of compactness and performance, we avoid updating R and we

rather exploit the fact that H1 is a double cover of SO(3). Just like in (25)

and (26), an exponential map links H1, (unit quaternions), and its Lie algebra

Im(H) of pure quaternions δρ = [0, δθ]:

ρ = exp(δρ) (27)

δρ = log(ρ) (28)
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We can define two operators to convert pure quaternions from and to rotation

pseudovectors: δθ = imag([0, δθ]), and [0, δθ] = pure(δθ). The exponential

map (27) can be explicitly computed from δθ as ρ = exp(pure(δθ)) using the

following closed-form expression:

ρ = exp([0, δθ]) =

{
cos

(
||δθ||

2

)
,
δθ

||δθ||
sin

(
||δθ||

2

)}
(29)

This said, in our code we can work with increments in the following form:

δq = {δx1, δθ1, δx2, δθ2, . . . , δxnn , δθnn} (30)

and, where one has to perform the incremental update to find qnew, the rota-

tional parts are incremented pre-multiplying the quaternion by an exponential

map, as:

xi,new = xi + δxi (31)

ρi,new = ρδiρi (32)

where one computes ρδi = exp([0, δθi]) using (29), then computes the product

ρδiρi using (21). More succinctly, the incremental update is a map qnew =

Λ(q, δq).

In the following, for expressing formulas in a easier way, we group all the

translational degrees of freedom and all the rotational degrees of freedom in two

separate vectors qx and qρ, and we do the same for the increments δqx and δqρ:

qx = {δx1, δx2, . . . , δxnn} (33)

qρ = {ρ1,ρ2, . . . ,ρnn
} (34)

δqx = {δx1, δx2, . . . , δxnn} (35)

δqρ = {δθ1, δθ2, . . . , δθnn
} (36)

4.2. Interpolation

In IGA, the role of FEA shape functions is done by Basis Functions of the

spline. For a given knot abscissa τ along the spline, one can compute interpo-

lated position and gradient using Basis Functions Ni(τ) and their derivatives
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N̊i(τ) = dNi(τ)
dτ , that is:

r(τ) =
∑
i

Ni(τ)xi (37)

r′(τ) =
dr(τ)

dτ
J−1sτ (38)

=
∑
i

N̊i(τ)xiJ
−1
sτ (39)

Once this is computed, ε(τ) can be computed with (8).

Similarly, one would be tempted to interpolate the rotation at a given ab-

scissa τ using a similar method, however applying directly ρ(τ) =
∑
iNi(τ)ρi

is not possible because the linear sum of unit quaternions does not represent, in

general, a rotation. In fact, the spline interpolation of quaternions is still a de-

bated problem and exact solutions presented in literature, such as [35, 34], often

lead to complex formulas that add complication and computational overhead.

As a simplification we introduce an auxiliary co-rotated system ρ, for instance

an average of rotations of the closest nodes, and we interpolate rotations by do-

ing a weighted sum of rotation pseudovectors later recast as a quaternion using

the exponential map:

ρ(τ) = ρ exp

(
pure

∑
i

Ni(τ)imag(log(ρ∗ρi))

)
(40)

Then, the R matrix can be computed as R(ρ). Also, the curvature κ is com-

puted as:

κ(τ) =
∑
i

J−1sτ N̊i(τ)imag(log(ρ(τ)∗ρi)) (41)

These allow the computation of local stresses m(τ) and n(τ) according to

(15). If a constitutive material includes damping effects, one can compute also

ε̇(τ) = RT ∑
i N̊i(τ)ẋiJ

−1
sτ and κ̇(τ) = RT ∑

i N̊i(τ)RiωiJ
−1
sτ to be used in

(18).

4.3. Gauss quadrature

As in most FEA frameworks, also in IGA the backbone of the process is the

computation of three main ingredients: the vector of internal forces f int, the
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tangent stiffness matrix Kt, and the mass matrixM . Once these are computed,

one can solve, for instance, linear elastic problems as Ktδq = fext, non linear

elastic problems that iterate on Ktδq = fext + f int up to convergence, explicit

dynamic integration as in Mq̈ = fext + f int and so on. Therefore, in the

following, we present the procedure for computing these terms, starting from

the most relevant part, that is the vector of internal forces f int.

Here we focus on computing f int via typical Gauss integration. We remark

that an appropriate choice of integration points must be used in order to avoid

shear locking phenomena, to this end we used selective reduced integration re-

quiring fewer quadrature points than standard integration techniques. Efficient

choice of Gauss points is discussed by various authors, for instance [30, 28, 1].

In fact, a more recent and efficient approach to IGA consists in using collocation

instead of Gauss integration [5, 41, 62].

Also, we use the same idea of FEA of computing internal forces and ma-

trices on a per-element basis, where later all element terms will be assem-

bled/overlapped in global system-level matrices and vectors. In this sense, in

our embodiment the j-th element is the j-th span of the B-spline, so for each

element we compute f int,j , and later all those per-element internal forces are

assembled in a single vector 1.

Over the j-th span from s = sA to s = sB the weak form of the equilibrium

reads:

δΠ =

∫ sB

sA

(δεana + δκama) ds−
∫ sB

sA

(δxana + δθama) ds (42)

Recalling (8), evaluating its increment and referring it to the global coordinates:

δεa = δr′a − δθa × r′a (43)

So, at a point at abscissa τ along the spline, δε and δκ can be expressed

1Differently from FEA, in IGA one could compute the system-level vector without passing
through intermediate per-element vectors, but here for clarity we develop our formulation on
a per-element basis
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using interpolation of the B-spline given the following terms:

δr′a =
∑
i

J−1sτ N̊iδxi (44)

δκa =
∑
i

J−1sτ N̊iRiδθi (45)

δθa =
∑
i

NiRiδθi (46)

We rewrite the weak equilibrium introducing the vector of internal forces

δqTj f int,j − δqTj fext,j = 0 (47)

where f int,j and fext,j are the internal and external forces acting on the

j-th node.

Looking at the expressions above, one can write the expression of the con-

tribution from the i-th control node to f int,j as an integral in s arc-length

coordinate:

f int,j,i =

∫ sB

sA

 J−1sτ N̊iI NiRir̃
′

0 J−1sτ N̊iRi

T  na

ma

 ds (48)

The integral is computed with a sum over ngp Gauss points, so we introduce

Gauss point weights wk, jacobians Jτζ = dτ
dζ where ζ ∈ [−1,+1] is the coordinate

used for Gauss quadrature. Because of change of coordinates, we also have to

multiply the integrand by Jsτ , so some jacobians will simplify as J−1sτ Jsτ = 1.

Finally one has:

f int,j,i =

ngp∑
k

wkJτζ

 N̊iI JsτNiRir̃
′

0 N̊iRi

T  na

ma

 (49)

Here all the terms of the integrand (namely, Ni, N̊i, Jsτ , r̃′, na and ma)

must be computed for the k-th knot abscissa τk =
(
sB−sA

2 ζk + sB+sA
2

)
where ζk

is one of the ngp tabulated abscissas for Gauss integration, i.e. coupled to the

corresponding weight wk. By the way one can see that Jτζ = sB−sA
2 .

We remark that control points will affect neighbouring spans (elements)

hence terms f int,j,i from different spans will overlap and must be summed to

obtain f int,j .
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The number of nodes influencing a single span increases with the spline order.

IGA spline Basis Functions can be considered like shape functions affecting more

knot spans, combining each other in the shared segments of support. For this

reason an higher spline order leads to more overlapped Basis Functions, while

increasing the element order in FE analysis adds nodes within the element but

internal nodes do not affect adjacent elements. This leads to a band-diagonal

stiffness matrix whose band width increases with the spline order, as opposed

to traditional FE elements characterized by a block-diagonal stiffness matrix

whose blocks overlap only at the boundary nodes.

5. Stiffness, mass and damping matrices

For the time integration of the equations of motion, the mass matrix is

needed. If implicit integration schemes are used, also the tangent stiffness and

damping matrices are required.

In our implementation we use a lumped mass matrix where each i-th IGA

control point has an atomic mass mi and a tensor of inertia Ii ∈ R3×3. This

has a computational advantage with respect to the explicit quadrature of the

beam shape, because the tensor of inertia Ii = diag(Ixxi
, Iyyi , Izzi) is diagonal

and constant as a consequence of the fact that we assumed angular velocities

ωi to be expressed in the local coordinate system. Values of mi, Ixxi , Iyyi , Izzi

can be computed from the geometry of the section and from the density of the

material.

The tangent stiffness matrix and the damping matrix are computed by nu-

merical differentiation of f int.

Kt = −∇qf int = −
[
∂f int
∂q

]
, Rt = −∇vf int = −

[
∂f int
∂v

]
(50)

Since the procedure for computing (49) is quite simple, the computational

overhead is not excessive with respect to an analytic evaluation of the matrix,

yet it has the useful property of being of general validity even when using black-

box nonlinear constitutive laws for materials. For a practical implementation,

for the sake of high performance, one should exploit the sparsity pattern of Kt.
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In detail, the numerical differentiation operates on a per-span basis, to obtain

per-span stiffness matrices Ktj that are summed afterward to obtain the large

and sparse Kt system-level matrix.

6. Contacts

Figure 2: Sampling the beam with contact shapes (proxies) for fast collision detection.

We developed a framework for simulating contacts between moving parts,

either beams and other objects (rigid bodies, other finite elements, etc.).

When targeting complex scenarios with thousands of elements, we expe-

rienced that an efficient approach is to sample the rod with simple collision

geometries that can be easily handled by fast collision algorithms. For example

a rod with a circular section can be approximated with invisible collision spheres

Si, evenly spaced along the beam centerline, at given parametric abscissas τi, as

shown in Fig. 2. Those proxies are passed to the collision engine that computes

candidate collision points at each time step: to this end we use a Sweep-And-

Prune (SAP) broad-phase optimization that allows a near linear-time complex-

ity even in case of many shapes, and a Gilbert-Johnson-Keerthi (GJK) algorithm

for the narrow-phase.

The narrow-phase returns a variable number of candidate contact pairs, each

represented by two points P and Q belonging to two colliding shapes, and a

coordinate system Rc whose x axis represent the contact normal. We assume
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that the contact distance Φ = |P −Q| is differentiable. The distance vector, in

the contact coordinates, is D = Rc
T (P −Q).

In order to write the equation of motion in the following section, we need to

express the relative speed of the two points, u = Rc
T (Ṗ − Q̇) as a function of

generalized coordinates v.

Assuming point P belongs to a beam, we can recover τP , the abscissa at

which the colliding shape was sampled. This allows the immediate 2 compu-

tation of R(τP ), the rotation of the section at the contact, and pc, the po-

sition of the contact point in the section coordinate system, as in P (τP ) =

r(τP ) +R(τP )pc.

Taking the time derivative, simplifying for ṗc = 0 and recalling the spline

Basis Functions:

Ṗ (τP ) = ṙ(τB) + Ṙ(τP )pc +R(τP )ṗc (51a)

=
∑
i

Ni(τP )ẋi +R(τP )ω̃(τP )pc + 0 (51b)

=
∑
i

Ni(τP )ẋi −R(τP )p̃cω(τP ) (51c)

=
∑
i

Ni(τP )ẋi −
∑
i

Ni(τP )R(τP )p̃cωi (51d)

At this point it is possible to write the contact speed of the k-th contact using

generalized coordinates, uk = ∇TvDkv, where the jacobian ∇TvDk ∈ R3×nv has

a sparse structure with two blocks:

∇TvDk =
[
. . . ,∇TvDkP , . . . ,∇TvDkQ, . . .

]
. (52)

2An optional refinement can happen at this point: since the collision shape -a sphere,
a capsule...- was only an approximation of the smoothly bent surface of the beam, one can
iteratively correct the (discrete-sampled) contact abscissa in order to satisfy P (τP ) = r(τB)+
R(τP )pc until the position of the contact point in the beam section frame, pc, has perfectly
zero off-section value: pc,x = 0
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In detail, from (51d) one has

∇TvDkP =
[
N1(τP )Rc

T ,−N1(τP )Rc
TR(τP )p̃c,

N2(τP )Rc
T ,−N2(τP )Rc

TR(τP )p̃c,

. . . , Nn(τP )Rc
T ,−Nn(τP )Rc

TR(τP )p̃c

]
(53)

whereas an equivalent expression holds for ∇TvDkQ if also Q belongs to a beam

3.

As a special case, very thin beams have ||pc|| ≈ 0 hence

−Nn(τP )Rc
TR(τP )p̃c terms could be removed from the jacobian in sake of

performance.

Finally, it is possible to group all nc contact jacobians in a system-level

sparse matrix ∇TvD ∈ R3nc×nv .

7. Time stepping and implementation

In the most general setting, we assume that the system is made by a several

IGA beams, as well as other finite elements and rigid bodies, and we assume

that all their states are grouped in the system-level vectors q and v. Also,

we assume that the configuration is subject to holonomic-rheonomic constraint

equations C(q, t) = 0. Differentiation of constraints leads to ∂C
∂q

∂q
∂t + ∂C

∂t = 0,

that is ∇TvCv + Ct = 0 where ∇TvC = ∂C
∂q Γ(q) is the constraint jacobian,

Γ(q) is a linear operator for q̇ = Γ(q)v, and Ct is a null term in case of

scleronomic constraints, but can appear in case of time-dependant constraints

(motors, imposed trajectories, etc.).

We perform time integration either with implicit integrators 4 for smooth

Differential-Algebraic-Equations (DAE), or with a custom time stepper for non-

smooth DVI. The latter allows also an efficient treatment of contacts. In fact,

3For instance, if Q belongs to a rigid body, the corresponding jacobian block has a simpler
expression: ∇T

vDkQ =
[
−Rc

T ,Rc
TRbq̃c

]
where Rb is the rotation of the body and qc is

the position of Q in body local coordinates.
4HHT [31] or Newmark [48] in our implementation, here not described for compactness.
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if one wants to simulate contacts in the framework of conventional smooth dy-

namics, in most cases contact constraints would be dealt with regularization,

i.e. penalty functions that would require very short time steps. On the other

hand, the DVI approach embeds the set-valued non-smooth nature of contact

forces directly in the formulation [49]. At l-th time step we solve:
H ∇vC ∇vD

∇TvC 0 0

∇TvD 0 0



v(l+1)

λC

λD

−

Hv(l) + h(f int + fest)

− 1
hC(q, t)−Ct

− 1
hΦ(q)

 =


0

0

y

 (54)

y ∈ Υ∗⊥λD ∈ Υ (55)

q(l+1) = Λ(q(l), hv(l+1)) (56)

where H = M + h2Kt + hRt is a sparse matrix, h is the time step,

contact jacobians are computed as in (53), Υ = ⊕iΥi is the Cartesian

product of all Coulomb friction cones generated by contacts, and Υ∗ =

{λD ∈ Υ∗ : 〈λD, z〉 ≥ 0 ∀z ∈ Υ} = ⊕iΥ∗i is its dual. Finally, (56) is updated

with exponential maps as in (31)-(32).

In absence of contacts, it can be demonstrated that the algorithm (54)-(56)

simplifies to a backward Euler linearly implicit integrator, of whom it inherits

the same properties of first order accuracy in time and L-stability. If higher or-

der accuracy or less numerical damping is needed, recent research demonstrated

the possibility of second-order DVI time steppers at the cost of additional com-

plexity in the implementation [13].

The problem (54)-(55) is a Second-Order Cone Complementarity Problem

(SO-CCP) with unknowns v(l+1), the speed at the end of time step, and λ,

the reaction impulses in contacts or bilateral constraints. The convex cone

complementarity problem is also a special case of a Variational Inequality (VI),

hence the DVI acronym [51].

The complementarity constraint (55) introduces a major numerical diffi-

culty, however the monolithic SO-CCP (54)-(55) can be solved efficiently using

the primal-dual interior point method that we presented in [40] and that we

implemented in C++.
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Although the DVI integrator (54)-(56) is stable also when using large time

steps, we remark that there are scenarios where the time step must be extremely

short anyway, for example because one wants to simulate collisions between

very thin beams, a case that requires small steps in order to avoid tunneling

and aliasing effects in the computation of contact points; in such cases, the

advantage of using the DVI is less evident.

Comparing this non-smooth DVI integrator to conventional smooth explicit

integrators, one can see that DVI requires more computational effort per each

time step, because of the SO-CCP overhead. On the other hand, explicit integra-

tors require a much larger number of time steps to achieve stability, depending

on how stiff is the contact formulation.

Comparing the DVI integrator to conventional smooth implicit integrators

embedded with penalty formulations leads to similar conclusions: the SO-CCP

solver overhead is still higher than the few linear system solves required in the

Newton iterations of implicit steppers, but on the other side the total number

of time steps can be smaller. Implicit solvers, in fact, could use large time steps

as the DVI, but the highly non-linear nature of the contact forces often impair

their performance to the point that they need short time steps anyway.

In general, since the SO-CCP solution dominates the overall computational

effort per each time step of the DVI, the efficiency of the DVI method respect

to smooth integrators depends mostly on how optimized is the SO-CCP solver.

In order to maximize the computational performance, the inner loop of our

interior-point method leverages the MKL parallel direct solver from Intel. As

an alternative, we tested also CVXOPT, a Python library for large-scale cone

programming, again based on an interior-point method [2].

8. Numerical tests

8.1. The ring bending test

This is a classical benchmark where a cantilever beam is subject to a concen-

trated torque T acting on the tip to obtain a ring bending deformation. Since

the length of the neutral axis is constant under pure bending, the initial beam
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length L must be equal to the final circumference, hence the curvature radius

must be ρ = L
2π . For a linear elastic rod it holds ρ = EI

T , so the torque required

to obtain a perfect circle must be

T =
2πEI

L

Because of the large deformations, we performed a non-linear static analysis

where the torque value has been increased gradually to avoid divergence. Our

simulations converge consistently with the analytical solution, as shown in Fig. 3.

Figure 3: Progression of ring bending

8.2. Princeton beam experiment

A thin beam, depicted in Fig. 4, is subject to large deformations and large

rotations because of a tip load at E, for different angles θ. A non-linear analysis

shows that, for large displacements, a strong twisting action couples to the

bending action, hence obtaining out-of-plane displacements even if the load is

vertical.

Three loading conditions are tested: P1 = 4.448N, P2 = 8.896N, and P3 =

13.345N, for θ ranging in the [0◦, 90◦] interval. The beam has length L = 0.508m,

section height H = 12.77mm, section thickness T = 3.2024mm, Young modulus

E = 71.7GPa, ν = 0.31, G = E (1+ν)
2 = 27.37GPa.

Because of the geometric nonlinearities, the solver must perform Newton-

Raphson steps before obtaining a zero residual in the equations of static equi-

librium.
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Results in Figs. 5, 6 and 7 show a good agreement between the present IGA

formulation and reference data [6]. In detail, there is a good agreement with

other geometrically-exact beam formulations (non IGA-based) discussed in [7]

for Dymore and in [25] for MBDyn, as well as an agreement with the exper-

imental results in [21, 22], obtained with a beam made with 7075 aluminium

alloy.

Figure 4: Setup of the benchmark for the
Princeton beam experiment.
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Figure 5: Twist rotation of the beam for the
Princeton experiment.
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Figure 6: Flapwise displacement at the beam
tip versus loading angle for three loading con-
ditions.
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Figure 7: Chordwise displacement at the
beam tip versus loading angle for three load-
ing conditions.

8.3. Jeffcott rotor

This benchmark explores the reliability of the numerical method in the non-

linear dynamical analysis of a flexible system rotating at finite angular velocity.

A rotating unbalanced shaft of length L = 6 m is integrated in time. As shown

in Fig. 8, a rigid disk is connected to the shaft at mid-span, above the reference

shaft axis by an offset d = 0.05 m. The shaft is made of steel (density ρ =
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Figure 8: Setup of the unbalanced ro-
tating shaft benchmark.
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Figure 9: Mid-point transverse displacement of un-
balanced rotating shaft.

7800kg/m3, Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3). The cross

section is annular (ri = 0.045 m, ro = 0.05 m). The mass of the disk is md =

70.573kg, the radius is rd = 0.24m, and the thickness is td = 0.05m. The system

is subjected to gravity (g = 9.81 m s−2) directed transversely. The end R of the

shaft is connected to the ground by a cylindrical joint (displacement along and

rotation about the shaft’s axis are permitted). The end T is supported by a

revolute joint; the relative angular velocity about the shaft axis is prescribed as

a function of time,

Ω(t) =



A1ω(1− cos(πt/T1))/2 0 ≤ t ≤ T1
A1ω T1 < t ≤ T2
A1ω + (A2 −A1)ω(1− cos(π(t− T2)/(T3 − T2)))/2 T2 < t ≤ T3
A2ω T3 < t

with A1 = 0.8, A2 = 1.2, T1 = 0.5s, T2 = 1s, T3 = 1.25s, and ω = 60 rad s−1,

close to the first natural frequency of the system. The shaft accelerates from

zero and passes from sub-critical to super-critical regime; when passing through

the first natural bending frequency of the system, lateral oscillations occur and

significant forces take place, as predicted by the linear theory of unbalanced

rotors.

Results plotted in Fig.9 for the case of a 3rd order IGA with nine nodes,

using a second order implicit time stepping integrator, show a good agreement

with reference results obtained with MBDyn.
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Figure 10: Setup of the benchmark for lateral
buckling dynamics.
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Figure 11: Static displacement of the beam
along i2, at the mid point.

8.4. Lateral buckling

This is a benchmark that tests the beam formulation in the context of a

dynamical problem of difficult integration.

In detail, a flat beam is bent in its plane of highest flexural rigidity, up to the

point where lateral buckling is instantly triggered. In a quasi-static non-linear

analysis, results are visible in Fig. 11. In the context of dynamics, when buckling

occurs, the beam snaps laterally and twists, inducing highly oscillatory motions.

The IGA beam discussed in this paper can capture the nonlinear nature of this

phenomena.

As depicted in Fig. 10, a RC beam with length L = 1m and rectangular

section H = 100mm, B = 10mm, is clamped at the R end point. The snapping

is caused by a tip load at C, generated by mean of a rotating crank GB and

a vertical rod TB, with a spherical joint in C and a revolute joint in B. An

initial imperfection is simulated by introducing a small offset d = 0.1mm in the

off-plane direction i2 between the crank and the vertical bar.

The crank has length Lc = 0.05m and its circular section has diameter

Dr = 24mm, the vertical rod has length Lr = 0.25m and its circular section has

diameter Dr = 48mm. The rotation of the crank is enforced by a prescribed

motion function φc(t) = π(1− cos(πt/Tc))/2, with Tc = 0.4s, then after t > Tc

it holds φc(t) = π.
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Figure 12: Displacement of the beam along
i2, at the mid point.
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Figure 13: Angular velocity of the beam, at
the mid point.

All parts have Young modulus E = 73GPa and Poisson ratio ν = 0.3. For

the three beams, inertia values Izz and Iyy and torsion constants J are computed

using formulas available in classical textbooks.

In our tests the crank and the rod are modeled with 4 nodes each, using first

order IGA beams, whereas the RC beam is modeled with 12 nodes, using third

order IGA beams.

We performed the dynamical analysis both with a conventional HHT time

integrator and with the DVI time stepper of (54)-(55). Comparing the results

with the reference data obtained with MBDyn in Figs. 12 and 13, a remarkable

fact is that the lateral buckling is triggered exactly at the same moment for all

the formulations, and the resulting oscillations have the same period. However,

as expected, the DVI time stepper introduces some numerical damping. In fact,

in scenarios that do not involve frictional contacts as in this benchmark, the

conic complementarity constraint (55) disappears and the DVI time stepper

boils down to a linearly-implicit first-order scheme, hence it shows the same

damping effect of an implicit Euler method [57]. When using the HHT second-

order implicit time integrator, results are affected by numerical damping to a

lower degree. The drawback of the numerical damping in the DVI method can

still be accepted when its superior stability and its efficiency in contact problems

are attractive, as shown in the following example.
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8.5. Contacts with rigid body

This benchmark shows that the proposed IGA beam performs well in a

dynamical simulation with complex spatial contacts, especially when using the

non-smooth formulation embedded in the DVI time stepper. A bundle of IGA

beams has been fixed between two shafts, one of which is rotating at constant

speed. A fixed central rod has been added, so that it will be wrapped by the

IGA beams during the simulation, see Fig. 14.

The bundle consists in a set of eight beams, each being an IGA beam of third

order with 57 nodes, for a total length of 0.5 m. The section is circular with

a diameter of 0.01 m, the Young modulus is E = 0.5 GPa, the shear modulus

G = 0.35 GPa, the density is ρ = 1000 kg m−3. The internal cylinder diameter

is 0.5 m, while the beams are distributed on a circular pattern of diameter 0.5 m.

The rotation speed is 1 rad s−1.

The interior-point solver used in this simulation is request to achieve a tol-

erance of 1× 10−10 over the residuals and complementarity gap.

The dynamical analysis has been performed using the DVI time stepper (54)-

(55). For this non-smooth dynamics problem, frictional contacts are enforced

as complementarity constraints that do not require any tuning of penalty. Note

that when using conventional implicit or explicit integrators for smooth dynam-

ics, high penalty stiffness would be needed to approximate contact between rigid

materials without contact compenetration, but in turn this requires very short

time steps to avoid numerical instability.

Multiple tests have been run with increasing time steps, from 1 ms up

to 75 ms. This range includes values that are unusually large for this type

of analysis; just for reference we report that we ran the same benchmark using

the HHT time stepper and penalty contacts, but to avoid divergence the time

step could not be larger than h = 1× 10−5 s.

The forces induced by beams on the shafts have been reported in Fig.15 and

the relative error respect to a reference solution (computed with much shorter

time step) is shown: being always under 3% even for the largest time step is

a good proof for the robustness of the DVI solver. It is remarkable that the
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(a) Rotation: 0◦ (b) Rotation: 120◦

(c) Rotation: 240◦ (d) Rotation: 360◦

Figure 14: Contact with rigid body (in red, elements that are fixed; in blue, the rotating
shaft; in green, the IGA beams).

solver was stable even for time steps larger than 100 ms, but at that point the

precision started to be compromised by other factors such as the precision of

the collision detection algorithms etc.

8.6. Woven mesh

In order to assess the performance of the DVI method for the case of mutual

contact between IGA beams, a woven mesh of IGA beams has been reproduced

and compared to literature [62]. The experiment consists in a 7x7 mesh where

wires are clamped at one end, free at the other. Each wire is modeled with 64

nodes and a third-order IGA rod with cross-sectional radius of 1 mm, Young

modulus E = 10× 108 and Poisson ratio of ν = 0.5, for a total length L =

4Lw = 0.12 m where Lw = 0.03 m is the wavelength of the curve used to weave
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Figure 15: Reaction force on the shaft for different time steps. In the legend, labels like
NSC010 means Non-Smooth Contact test with time step h =10 ms

the mesh. Because of the non-smooth contact model no additional compliance

parameter is required.

A distributed load of 0.1 N/m is gradually applied to the beams in the vertical

direction, and the DVI method is used to perform a non-linear analysis with

a time step of 10 ms using the Interior-Point solver described in the previous

example. Results are shown in Fig.16. We remark that the time step could be

increased up to 50 ms without incurring in divergence. Although the tolerance

of the solver has been kept at the very strict threshold of 1× 10−10 on residuals

and complementarity, the computational time never exceeded 0.997 s/step on a

2.4 GHz Intel i7-4700 processor.

9. Conclusions

A geometrically-exact spatial Cosserat rod has been implemented via IGA

discretization, using quaternions as rotational coordinates. We implemented the

model in a open-source physics library using C++ language and we tested it in

various non-linear static and dynamic problems, showing generality, robustness

and efficiency of the formulation.

Using a DVI time stepping scheme and a SO-CCP solver, we proved that

simulations with non-smooth frictional contacts between IGA beams and moving
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(a) Load: 0% (b) Load: 30%

(c) Load: 60% (d) Load: 100%

Figure 16: Snapshots from the simulation of the woven mesh, for increasing load.

shapes can be performed with large time steps. The enhanced robustness and

stability indicate that the DVI method is a viable alternative to conventional

methods based on contact penalty.
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Appendix A. Constitutive models for beams

In the most generic case, (15) may be a non-linear function, but in the

following we present special cases of practical interest.

Appendix A.1. Generic linear elasticity

The generic case of constitutive model for the Cosserat rod, with linear

elasticity, requires a matrix E ∈ R6x6, not necessarily sparse. Such matrix

can be provided by some detailed 3D FEA analysis of a chunk of beam, in a

preprocessing stage.  n

m

 = E

 ε

κ

 (A.1)
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We remark that, depending on the 36 values used in the 6x6 E matrix, n

and m might have coupled effects. Figure A.17 shows the reference coordinate

system of the section.

Figure A.17: Section of the beam. Generic case.

Appendix A.2. Basic diagonal linear elasticity

For centered symmetric sections, the previous relation can be simplified. In

fact one can express the constitutive relation via a linear mapping where n and

m effects are uncoupled:

n = n(ε) (A.2)

m = m(κ) (A.3)

In detail, with linear elasticity, a very common case is the linear mapping:

n = Cε (A.4)

m = Dκ (A.5)

where one simply uses the material matrices:

C =


EA 0 0

0 GAky 0

0 0 GAkz

 D =


GJ 0 0

0 EIy 0

0 0 EIz

 (A.6)

for given material Young’ modulus E, shear modulus G, area A, Timoshenko

shear correction factors ky, kz, torsion constant J , and second moments of area

Iy, Iz computed in the section reference. Note that the center of axial forces Ca

and the shear center Cs are in the origin, by assumption. See Fig. A.18.
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Figure A.18: Section of the beam. Simplified case (diagonal E).

Appendix A.3. Advanced section for linear elasticity

A more general constitutive model is the one depicted in Fig. A.19, where the

Iy, Iz are computed respect to an auxiliary reference Ca, center of axial forces,

that has displacement ya, za and rotation α respect to the reference center line

of the beam [42] .

Also, in case of non-symmetric sections, it may happen that the shear center

Cs does not coincide with Ca; if so, one can provide displacements ys, zs and

rotation β of the reference of the shear center Cs respect to the reference center

line of the beam.

Usually, for symmetric sections, it tends to ys = ya, zs = za, α = β. For

simple problems like rectangular or circular sections centered on the reference

line of the beam, one has ys = ya = 0, zs = za = 0, α = β = 0.

The linear model becomes:

 n

m

 =



a11 0 0 0 a12 a13

0 s11 s12 s13 0 0

0 s21 s22 s23 0 0

0 s31 s32 s33 0 0

a21 0 0 0 a22 a23

a31 0 0 0 a32 a33



 ε

κ

 (A.7)
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Figure A.19: Section of the beam. Advanced case.

Here the components aij = A and sij = S are obtained by rotations R and

translations T of the diagonal constitutive matrices ACa
and SCs

:

A = TCaRCaACaR
T
Ca
T TCa

(A.8)

S = RT
Cs
T−1Cs

SCs
T−TCs

RCs
(A.9)

where

ACa =


EA 0 0

0 EIy 0

0 0 EIz

 SCs =


GAky 0 0

0 GAkz 0

0 0 GJ

 (A.10)

The above model requires the following parameters: Young modulus E, shear

modulus G, area A, Timoshenko shear correction factors ky, kz, torsion constant

J , and second moments of area Iy, Iz, as the diagonal simplified model, plus the

position and rotation of Ca as ya, za and α, plus the position and rotation of Cs

as ys, zs and β.
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