
26 December 2024

University of Parma Research Repository

Numerical modelling of wrinkled hyperelastic membranes with topologically complex internal boundary
conditions / Alberini, R.; Spagnoli, A.; Terzano, M.. - In: INTERNATIONAL JOURNAL OF MECHANICAL
SCIENCES. - ISSN 0020-7403. - 212:(2021), p. 106816.106816. [10.1016/j.ijmecsci.2021.106816]

Original

Numerical modelling of wrinkled hyperelastic membranes with topologically complex internal boundary
conditions

Publisher:

Published
DOI:10.1016/j.ijmecsci.2021.106816

Terms of use:

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2909854 since: 2022-01-11T12:20:27Z

This is the peer reviewd version of the followng article:

note finali coverpage



Numerical modeling of wrinkled hyperelastic membranes

with topologically complex internal boundary conditions

R. Alberinia, A. Spagnolia,∗, M. Terzanob

aDepartment of Engineering and Architecture, University of Parma, Parco Area delle
Scienze 181/A, 43124 Parma, Italy

bInstitute of Biomechanics, Graz University of Technology, Stremayrgasse 16/II, 8010
Graz, Austria

Abstract

Several soft biological tissues and artificial materials are characterised by a

mechanical behaviour described by two-dimensional structural systems sus-

taining in-plane forces. Within the framework of finite strain elasticity, in

this paper the formulation and finite element implementation of a hyperelas-

tic incompressible membrane is presented. Focus is placed on the behaviour

of membranes presenting holes and internal cuts. A new efficient algorithm is

presented to describe topologically complex internal boundaries along which

dislocation-like distributions are prescribed, so as to allow a one-to-one pro-

gressive joining of boundary material points. The classical Ogden’s model is

modified into a relaxed version in order to accommodate the no-compression

response of thin membranes due to wrinkling. Three applicative examples

are presented to illustrate the potential of the method proposed.
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hyperelasticity; Z-plasty

1. Introduction1

Soft membranes can be encountered at different scales, both in natural2

systems and in several engineering applications. In biology, membranes fulfil3

crucial physiological needs. From cellular walls at the micro scale, to skin4

in living beings at the macro scale, biological membranes act as protection5

against external hazards [1]. Thanks to osmosis, membranes also regulate6

chemical exchanges between external and internal environment, maintaining7

optimal conditions, e.g. ph, moisture and temperature, within the enclosed8

domain [2]. Synthetic membranes are largely employed in medicine, for hy-9

giene devices, bio-mimicking tissues [3], tapes and tubes [4]. In recent years,10

various kinds of membrane structures have been developed for applications11

in new technologies to meet specific requirements, including, for instance,12

batteries [5] and supercapacitors [6] for stretchable electronics.13

By a mechanical point of view, soft membranes are lightweight structures14

exposed to large deformations and relevant in-plane strains [7]. An area of15

great interest concerns the behaviour of membranes presenting holes or cuts.16

As these are usually the result of damage, they should be healed in order to17

restore the continuity of the surface and the functionalities of the membrane18

[8]. This can be done by applying patches of the same size of the loss using19

external material, or by joining the boundaries of the discontinuity through20

proper displacements in order to make them coincident in the final configu-21

ration. With the latter method, since no new material is supplied, the way22

chosen for the closure procedure influences the rearrangement of the stress23
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and strain fields in the neighbourhood of the hole. Traditionally, in plastic24

surgery the suturing of scars has explored the different ways in which the25

joining process can be performed, in order to achieve the best aesthetic re-26

sult [9]. However, this concept can also be exploited in a reversed way, such27

that desired distortions can be induced within the membrane by appropri-28

ately creating holes and related closures. In the field of metamaterials, for29

instance, holes closure is used in kirigami tessellation. By creating a suitable30

pattern of incisions on a flat sheet, the closure of holes produces a coordi-31

nated movement of interconnected tiles, which deploys the sheet in a different32

and reversible shape [10–12].33

In mechanical terms, the process of inducing distortions through the ap-34

plication of internal boundary conditions in a soft membrane generates a35

state of self-balanced stress within the domain, with higher stresses concen-36

trated in the neighborhood of the inner boundaries. The problem involves37

both large strains and displacements, making numerical methods the most38

appealing tool of analysis. A first attempt to study the mechanical behaviour39

of biological membranes embedding closing holes was carried out by Larrabee40

and Galt [13], who used the Finite Element (FE) method to simulate the su-41

turing of skin flaps. More recently, other authors have improved the analysis42

by employing non-linear material models and adopting different approaches43

to achieve closure. Lott-Crumpler and Chaudhry [14] and Flynn [15] achieved44

closure of symmetric holes by approaching nodes lying on two separate edges45

and making them coincide in the midway position. An alternative solution46

was proposed by Rajabi et al. [16], who simulated the closure of unsymmetric47

holes by coupling pairs of nodes on opposite edges with trusses, which were48
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then shrunk through fictitious variations of temperature.49

The main shortcoming of the available methods is the limited applicability50

to complex shapes of the internal boundary, in which the final configuration51

of the edges is a problem unknown, and no prescribed displacements can52

be applied on them. In order to achieve a perfect coincidence between two53

joining nodes, a suitable approach is to add kinematic equations in order to54

constrain nodes to move toward each other until the gap is null, e.g. via55

so-called multi-point constraints (MPCs) in FE models [17]. The approach56

is similar to that of Rajabi et al. [16], but without the drawbacks of trusses,57

which cannot reach vanishing lengths. Arbitrarily shaped cavities may in-58

clude several critical points, making meshing and definition of the constraints59

difficult to be performed manually. Moreover, this task is further complicated60

by the fact that discretisation along the hole boundaries must be consistent,61

that is, nodes must be in equal number and uniformly distributed between62

two pairing edges. In order to conciliate the requirements for a consistent63

discretisation of domain boundaries with automatic meshing, the generation64

of FE models using a custom pre-processing code is deemed to be convenient.65

As membranes are thin solids, compressive internal forces may lead to66

instabilities, resulting in out-of-plane displacements [18]. This phenomenon,67

known as wrinkling, is well known in biological tissues [19, 20] as well as in68

engineered materials [21–24]. In general, the study of wrinkling requires ge-69

ometrically non-linear analyses: in order to determine the exact out-of-plane70

deflection of compressed membranes, the flexural buckling and post-buckling71

behaviour should be analysed [25–28]. However, if no specific information72

about wrinkle wavelength and amplitude is needed, a properly modified plane73
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stress constitutive model can be adopted, in which the non-linearity induced74

by finite out-of-plane displacements is treated as a material non-linearity75

[29–33]. This represents a computationally efficient approach suitable to de-76

termine the in-plane tension field of the membrane, and precisely identify the77

distribution of wrinkled regions.78

In this paper, a numerical model of soft membranes with topologically79

complex internal boundaries is presented. The algorithm is developed within80

the Matlab® environment and it is linked with the open source code DistMesh81

developed by Persson and Strang [34], which is capable of efficiently meshing82

any two-dimensional domain. The proposed algorithm allows general shapes83

of boundaries to be generated and complex dislocations distributions to be84

applied along them. Furthermore, a wrinkling constitutive model is proposed85

and implemented in a FE formulation in order to take into account the no-86

compression behaviour of the soft membrane. In particular, the formation87

of wrinkles is included through a relaxed strain-energy density, based on the88

hyperelastic Ogden’s function. Although the constitutive law is isotropic,89

more general anisotropic formulations, which have been proposed for soft90

biological membranes [35, 36], can also be included.91

The outline of the paper is as follows. Sect. 2 presents the fundamen-92

tals of the finite strain theory of soft membranes in which the hyperelastic93

constitutive model is developed. Wrinkling is accounted for by a proper mod-94

ification of the hyperelastic potential. The linearised form of the constitutive95

equations is also presented for the FE implementation. Sect. 3 describes96

the definition of general boundary conditions along topologically complex in-97

ternal boundaries of the membrane, where general dislocation distributions98
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can be applied. Sect. 4 is devoted to the numerical implementation of the99

model. In particular, algorithms for automatic generation of FE models100

are presented, allowing the description of the topology of internal bound-101

aries, accurate refined meshing and the application of general dislocation102

distributions along the boundaries. Sect. 5 presents three applicative cases103

concerning different soft membranes geometries. Comparisons with existing104

numerical and experimental data is included. Finally, Sect. 6 summarises105

the potential and limits of the proposed approach and presents concluding106

remarks.107

2. Wrinkling hyperelastic membranes108

2.1. Kinematics109

Given a material body B occupying the region Ω at time t0 = 0, any mate-110

rial point P ∈ B can be mapped from the reference position X to the current111

x according to the unique biunivocal function x = χ (X, t). The resulting112

deformation is described by the second-order tensor F = ∂χ (X, t)/∂X =113

∂X/∂x, known as the deformation gradient. Membranes can be considered114

two-dimensional structural elements enforcing a condition of plane stress.115

In a co-rotational orthonormal system, defined by the in-plane basis vectors116

e1, e2 and the normal vector e3, the deformation gradient is therefore written117

as118

F =


F11 F12 0

F21 F22 0

0 0 (F11F22 − F12F21)
−1

 (1)
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where the assumption of incompressibility J = detF = 1 was introduced.119

For later use in the formulation of the constitutive model of the wrinkled120

membrane, the deformation gradient is decomposed according to F = RU =121

vR, where R is an orthogonal rotation tensor, while U and v represent the122

symmetric stretch tensors, defined for the reference and the current config-123

uration, respectively. Through spectral decomposition these tensors can be124

written as125

U =
3∑

a=1

λaN̂a ⊗ N̂a, v =
3∑

a=1

λan̂a ⊗ n̂a (2)

in which the eigenvalues λa, a = 1, 3 represent the principal stretches, while126

the eigenvectors N̂a and n̂a represent the principal referential and spatial127

directions, respectively, and are related by n̂a = RN̂a. Finally, we define128

the spatial velocity gradient as l = ∂v(x, t)/∂x = d + w, where d and w129

represent the symmetric rate of strain tensor and the antisymmetric spin130

tensor, respectively [37].131

2.2. Constitutive model132

In this work the membrane tissue is assumed to be homogeneous, hyper-133

elastic and isotropic. A strain energy density function Ψ, provided by the134

well-known Ogden model [38], is introduced, which with the assumption of135

incompressibility (J = λ1λ2λ3 = 1) is given by136

Ψ =
N∑
i=1

µi

αi

(λαi
1 + λαi

2 + λαi
3 − 3)−p (J − 1) = ΨO(λ1, λ2, λ3)−p (J − 1) (3)
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where µi and αi are material properties, whereas p is an unknown hydrostatic137

pressure introduced as a Lagrange multiplier to enforce the incompressibility138

constraint. Usually, a single set of parameters (N = 1) gives a good approx-139

imation to the J -shaped stress-strain curves commonly encountered in soft140

tissues [39].141

The second Piola-Kirchhoff (PKII) stress tensor is written in terms of the142

principal stresses as143

S =
3∑

a=1

SaN̂a ⊗ N̂a (4)

where the principal stress in the material configuration is Sa = λa
−1∂Ψ/∂λa.144

Through a standard push-forward operation to the current configuration, the145

Cauchy stress tensor reads146

σ =
3∑

a=1

σan̂a ⊗ n̂a, σa = J−1λa
∂Ψ

∂λa

(5)

In order to compute the Lagrange multiplier p, the out-of-plane principal147

stress σ3 must be set to zero in Eq. (5), that is,148

σ3 = λ3
∂ΨO

∂λ3

− p = 0 (6)

from which we find149

p = λ3
∂ΨO

∂λ3

=
N∑
i=1

µi (λ1λ2)
−αi (7)

Combining Eqs. (5)-(7), the principal Cauchy stresses become150
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σa =
∑
i

µi

(
λαi
a − (λ1λ2)

−αi
)
, a = 1, 2 (8)

2.3. Wrinkling151

The wrinkling behaviour when membranes are subjective to compressive152

states can be conveniently defined in terms of the principal stretches. Taking153

λ1 as the reference stretch, there are three possible strain configurations for154

the membrane, depending on λ2. A modified strain-energy function ΨW can155

be defined, depending on the configuration. This procedure, which somehow156

treats the out-of-plane deflection as a constitutive material non-linearity, is157

known as quasi-convexification of Ψ [40].158

When λ1 ≥ 1 and λ2 ≥ λ
−1/2
1 , the lateral deformation λ2 is greater159

than that due to Poisson contraction, obtained imposing σ2 = 0 in Eq.160

(8). In this case, no wrinkling occurs as lateral stretches greater than λ
−1/2
1161

provide positive stresses. This is the so-called taut condition (Fig. 1a), and162

the relative strain-energy function ΨW = Ψ is given by Eq. (3), with the163

incompressibility condition J = 1 (Fig. 1a).164

If λ1 ≥ 1 and λ2 < λ
−1/2
1 , the membrane is actually compressed in the165

lateral direction, resulting in a wrinkling condition (Fig. 1b). Wrinkles166

parallel to λ1 direction develop, carrying no loads along their orthogonal167

direction. Keeping fixed λ1, further reductions of λ2 do not increase the168

strain-energy, which remains equal to the minimum reached in the uniaxial169

stress state. Following the works of Evans [32] and Massabò and Gambarotta170

[41], ΨW depends only on λ1, and can be obtained substituting λ2 = λ
−1/2
1171

into Eq. (3). Thus, we find172
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ΨW =
N∑
i=1

µi

αi

(
λαi
1 + 2λ

−αi
2

1 − 3
)

(9)

Finally, if λ2 < λ1 < 1 the membrane is slack (Fig. 1c) and does not173

carry any load. No energy is stored within the material under loading, and174

hence the associated strain-energy function is set to zero.175

(a) (b) (c)

Figure 1. Reference Ω and deformed ω configuration of a unit membrane element.
(a) Taut, (b) wrinkled and (c) slack configurations.

The function ΨW , summarised in Tab. 1 for both cases of λ1 > λ2 and176

λ2 > λ1, is called the relaxed strain-energy density function. Such a function177

is employed below to compute the stress and stiffness tensors in the linearised178

approximation of the governing equations.179

2.4. Stress and elasticity tensors180

Numerical solution methods for nonlinear problems are based on an in-181

cremental procedure, in which the principle of virtual work is consistently182
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Condition Criteria Relaxed strain-energy density

Taut
(Fig. 1a)

λ1 ≥ 1 and λ2 ≥ λ
−1/2
1

or

λ2 ≥ 1 and λ1 ≥ λ
−1/2
2

ΨW =
∑N

i=1
µi

αi

(
λαi
1 + λαi

2 + (λ1λ2)
−αi − 3

)

Wrinkled
(Fig. 1b)

λ1 ≥ 1 and λ2 < λ
−1/2
1

λ2 ≥ 1 and λ1 < λ
−1/2
2

ΨW =
∑N

i=1
µi

αi

(
λαi
1 + 2λ

−αi
2

1 − 3
)

ΨW =
∑N

i=1
µi

αi

(
λαi
2 + 2λ

−αi
2

2 − 3
)

Slack
(Fig. 1c)

λ1 < 1 and λ2 < 1 ΨW = 0

Table 1. Relaxed strain-energy density function.

linearised with respect to displacements. This procedure also requires the lin-183

earisation of the constitutive relationship through the definition of a tangent184

stiffness matrix, in terms of the fourth-order elasticity tensor. In the spirit185

of an updated-Lagrangian method, where every increment is computed using186

the last equilibrium state as reference configuration, the elasticity tensor can187

be expressed in the spatial description through spectral decomposition as [37]188

Cτ
◦
=

3∑
a,b=1

λ2
aλb

∂Sa

∂λb

(n̂a ⊗ n̂a ⊗ n̂b ⊗ n̂b)+

3∑
a,b=1;a̸=b

λ2
aλ

2
b

Sb − Sa

λ2
b − λ2

a

(n̂a ⊗ n̂b ⊗ n̂a ⊗ n̂b + n̂a ⊗ n̂b ⊗ n̂b ⊗ n̂a)

(10)
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where Sa,b are the principal PKII stresses of Eq. (4). The superscript τ ◦ in189

the left term of Eq. (10) indicates that the elasticity tensor is in this way190

expressed in terms of the Oldroyd rate of the Kirchhoff stress tensor τ = Jσ.191

Indeed, the linearised constitutive relationship must satisfy the principle192

of frame indifference. Different objective stress rates are available in the193

literature, most of them being based on the Lie time derivative and its linear194

combinations [42]. In particular, we here adopt the Jaumann rate of the195

Kirchhoff stress τ▽ = τ̇ −wτ +τw = Cτ
▽
: d, which is the co-rotational rate196

required by the commercial FE software ABAQUS employed in the analyses.197

Exploiting the relationship between Oldroyd and Jaumann rates, given by198

τ▽ = τ ◦ + dτ + τd, the correct elasticity tensor Cτ
▽
is computed as follows199

Cτ
▽
= Cτ

◦
+ τ ⊙ I+ I⊙ τ (11)

in which the operator ⊙ denotes the symmetric dyadic product of second-200

order tensors, defined as {• ⊙ ◦}ijkl = 1/2 ({•}ik{◦}jl + {•}il{◦}jk) [43].201

From Eq. (10), it can be noticed that using the relaxed Ogden function202

ΨW (Tab. 1), Cτ
◦
would result in zero stiffness in compression for wrinkled203

and slack regions, giving rise to ill-conditioning problems. This issue can204

numerically be circumvented by adding a small stiffness in compression by205

means of a fictitious tensor, computed from the standard strain-energy func-206

tion of Eq. (3). Accordingly, the stiffness Cτ
◦
is additively decomposed as207

Cτ
◦
= Cτ

◦
W + C̃τ

◦
, where Cτ

◦
W and C̃τ

◦
are the pure wrinkling and the fictitious208

stiffness tensors derived from Eq. (10). Specifically, the latter is obtained209

by considering the same constitutive Ogden model with a reduced stiffness,210

which ought to be small enough to have negligible influence on the tension211
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field [32]. For the sake of simplicity, the stiffness of this sort of non-wrinkling212

fictitious layer is considered to depend on the first order coefficients of the213

original Ogden model, taking µ̃ as a small fraction of µ1, and α̃ equal to α1.214

This is equivalent to a uniform scaling of the original stress-stretch curve215

computed using the Ogden model. Test analyses are provided in Sect. 5 for216

a single plane stress element under uniaxial and biaxial strain conditions.217

In the general case of an initial stress field σ0 acting across the domain218

Ω, stresses can no longer be computed using Eq. (5), but must be updated219

at each increment from the tensor Cτ
▽
in the spatial description. Following220

Hughes and Winget [44], at each increment stresses σn+1 are obtained by221

rotating σn from the reference configuration at increment n to the current,222

and then adding the co-rotational stress increment, which is obtained from223

the Jaumann rate of the Cauchy stress, namely224

σn+1 = QnσnQ
T
n + Cσ

▽

n : δϵn (12)

where Qn is an incremental rotation tensor, Cσ
▽

n is the elasticity tensor in225

terms of the Jaumann rate of the Cauchy stress, and δϵn is the incremental226

strain computed with the midpoint deformation rule from the rate of strain227

tensor d [45]. Knowing that σ▽ = J−1τ▽−(d : I)σ [45], the elasticity tensor228

appearing in Eq. (12) is obtained as229

Cσ
▽

n = J−1Cτ
▽

n − σn ⊗ I (13)

where Cτ
▽

n is defined by Eq. (11) in combination with Eq. (10). Note that,230

in case of an initial pre-stress field σ0, at increment n = 0, σn is equal to σ0231
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and Qn to the identity tensor in Eq. (12).232

3. Internal boundaries with prescribed dislocations233

In order to represent discontinuities in the elastic membranes, we intro-234

duce internal boundary conditions in addition to the usual ones in terms of235

prescribed tractions and displacements on the external boundaries. The type236

of internal boundary conditions here considered can be accommodated within237

the theory of dislocations (interested readers might refer to some fundamen-238

tal papers on this theory, as for instance [46, 47] and the memorial paper on239

Eshelby’s work [48]), which have to be intended as imposed relative displace-240

ments between points located on two different boundaries of a discontinuity.241

In other words, we consider cuts and holes — the latter implying a subtrac-242

tion of material — embedded in the membrane, having general topologies,243

and prescribe relative displacements such that the boundaries formed by the244

cuts and holes are brought together and joined. The membrane will be in a245

state of self-balanced stress as a result of these internal boundary conditions.246

Let suppose we place a distribution of dislocations along a number of247

internal boundaries ∂ΩI,n in the membrane, each partitioned in pairs of sub-248

sets ∂ΩI,n+
i and ∂ΩI,n−

i which are joined together in the final configuration.249

Since, in general, the final topology of the subsets ∂ωI,n+
i and ∂ωI,n−

i is un-250

known, the prescribed displacements have to be expressed by introducing a251

constraint function Φi. Notice that subscripts and superscripts denote the252

n-th internal boundary and the i -th couple of paired subsets. Given the map-253

ping function Γ : ∂ΩI,n+
i → ∂ΩI,n−

i , which biunivocally relates every point254

X+
i (ξ) ∈ ∂ΩI,n+

i with its counterpart X−
i (ξ) ∈ ∂ΩI,n−

i , the constraint consists255
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in imposing the coincidence between the mapped points x+
i (ξ) ∈ ∂ωI,n+

i and256

x−
i (ξ) ∈ ∂ωI,n−

i after the motion χ (Fig. 2), where ξ ∈ [0, 1] biunivocally257

identifies the points X+
i , X

−
i (and x+

i ,x
−
i ) in the subsets ∂ΩI,n+

i , ∂ΩI,n−
i (and258

∂ωI,n+
i , ∂ωI,n−

i ). Knowing that x = χ(X, t) = X + u(X, t), the constraint259

function is defined by260

Φi(ξ) = x+
i − x−

i = X+
i + u(X+

i )− Γ(X+
i )− u(Γ(X+

i )) = 0 (14)

Figure 2. Schematics of joining dislocations applied to an internal boundary.

In order to achieve a full closure of a hole or cut, an even number 2N261

subsets must be considered, on which N functions Φi(ξ) are defined. Note262

that each i-th couple of subsets and the function Γ must be topologically263

consistent, i.e. they must not lead to knotted or intertwined surfaces. Then264

15



the discontinuity is closed by joining together the subsets encountered moving265

along the boundary from point A ∈ ∂ΩI,n to point B ∈ ∂ΩI,n, so that a266

continuous line AB results. Note that subsets are ordered counter-clockwise267

starting from A, so that ∂ΩI,n+
i = ∂ΩI,n

j and ∂ΩI,n−
i = ∂ΩI,n

2N−j+1, with268

j = 1, ..., N (Fig. 3).269

Figure 3. Complete closure of a single hole following a unique line from A to
B. The internal boundary in the reference configuration has been divided into 2N
subsets, numbered with counterclockwise order from the point A. The closure is
achieved matching together the subsets at the right and left of the point A, such
that each couple can be defined by the pairing rule (∂ΩI,n

2N−j+1, ∂Ω
I,n
j ).

The mapping bijective function Γ has to be defined in order to apply a270

joining dislocation distribution along the internal boundary which precisely271

describe the physical problem under consideration. Generally speaking, the272

function Γ can conveniently be choseen to be linear so that ∥dXI,n−
i ∥ =273
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c ∥dXI,n+
i ∥ for every ξ, where c is the ratio between the total lengths of274

∂ΩI,n−
i and ∂ΩI,n+

i . Except for trivial cases, such as the stitching of two275

overlapping edges, this kind of function Γ always generates a self-balanced276

stress state along the joining boundaries, which depends on their shape in277

the reference configuration.278

4. Numerical implementation279

The implementation of the model in a FE formulation, suitable to deal280

with the highly non-linear nature of the problem, is here described in detail.281

The membrane can be exposed to general displacements and tractions along282

the external boundary, to an initial pre-stress field σ0, and to complex dis-283

location distributions along the internal boundaries, as described in Sect. 3.284

Specifically, closed internal boundaries describing both cuts and holes in the285

membrane can be implemented. For the sake of simplicity, a single internal286

boundary ∂ΩI will be considered, e.g. see Fig. 3.287

In order to prescribe dislocation distributions along the internal bound-288

ary, the constraint represented by the function Φi(ξ) of Eq. (14) can be ad-289

dressed in the finite element framework by imposing kinematic Multi-Point290

Constraints (MPCs) between pairs of nodes in an incremental form. Ac-291

cordingly, the function Φi(ξ) is applied to each couple of nodes, belonging to292

∂ΩI−
i and ∂ΩI+

i , respectively.293

The FE geometry can be obtained by an automatic meshing of the plane294

domain of the membrane, by means of dedicated algorithms that specify the295

element density near the regions of interest. However, although it is possible296

to obtain well meshed domains, the internal boundary ∂ΩI may result in297
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an uncontrolled distribution of nodes, raising issues in the MPC application298

when different number of nodes in the coupled boundaries ∂ΩI−
i and ∂ΩI+

i are299

encountered. Thus, the node spacing along the internal boundary becomes300

crucial when dislocation distributions are to be applied in a discretised man-301

ner. Therefore, a fully automatic procedure, which at the same time can302

generate the required dislocation distributions and ensure optimal meshing,303

is needed.304

4.1. Topology of internal boundaries305

We here describe the algorithm developed to automatically compute generic306

dislocation distributions along the internal boundaries. Let us assume that a307

certain domain can be represented by a signed distance function d(X), which308

is the combination of closed geometrical entities obtained by multiple para-309

metric curves. The external boundary ∂ΩE usually consists of an elementary310

shape, like a circle or a rectangle. The internal boundary ∂ΩI should be311

able to describe any complex closed topology. We define a set VI
B of counter-312

clockwise vertices XB,j ∈ ∂ΩI and approximate the curve through a linear313

piecewise function. Accordingly, the segment XI
j (ξ) ∈ ∂ΩI

j is expressed by314

the linear Bézier curve315

XI
j (ξ) = (1− ξ)XB,j + ξXB,j+1 (15)

with ξ ∈ [0, 1]. Note that the dislocation constraint Φi in Eq. (14) is316

defined between two sets ∂ΩI−
i and ∂ΩI+

i , therefore VI
B must contain 2N +1317

vertices, representing 2N subsets ∂ΩI
j .318

In the case that ∂ΩI represents a cut in the membrane, the different319
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subsets are coincident and lie on the cut interface. This does not represent320

an issue from a geometrical point of view, but it can create difficulties in the321

auto-meshing, as elements might be generated across the cut. To circumvent322

this problem, the original boundary ∂ΩI is offset externally by a quantity323

s/2, such that two facing subsets of a cut become spaced by s. We call the324

new boundary ∂ΩI . The value of the spacing depends on the average element325

size. So, the vertices XS,j ∈ VI
S, representing the new offset boundary (Fig.326

4a), are given by327

XS,j = XB,j + s−j + s+j (16)

with328

s−j = s
XB,j −XB,j−1

∥XB,j −XB,j−1∥
× e3 , s+j = s

XB,j+1 −XB,j

∥XB,j+1 −XB,j∥
× e3 (17)

where s = s/(2(1 + cos∆θ)). Segments between two offset vertices are still329

defined by the linear curve in Eq.(15), using the new vertices XS in place of330

XB.331

When XB,j represents a cut tip the preceding and following segments are332

parallel, characterized by ∆θ = π. This would make XS,j to be placed at333

an infinite distance, as s degenerates to infinity for ∆θ → π. In order to334

preserve the tip position, allowing us at the same time to create the offset of335

the internal boundary, the preceding and following segments can no longer336

be straight, and must be transformed into two curves which are parallel far337

from the tip, and converging in XS,j = XB,j near the tip. These curves can338
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be parametrically represented using quadratic Bézier curves (Fig. 4b) for the339

subsets preceding and following the tip XS,j, respectively, namely340

XI
j−1(ξ) = (1− ξ)2XS,j−1 + 2(1− ξ)ξX−

S,j + ξ2XS,j

XI
j (ξ) = (1− ξ)2XS,j + 2(1− ξ)ξX+

S,j + ξ2XS,j+1

(18)

Note that the overbar symbol here indicates that the material point be-341

longs to the offset internal boundary ∂ΩI . The two auxiliary vertices X−
S,j342

and X+
S,j are computed as343

X−
S,j = XB,j + s′j + s−j

X+
S,j = XB,j + s′j + s+j

(19)

where344

s′j =
3s

2

(XB,j+1 −XB,j)

∥XB,j+1 −XB,j∥
(20)

and s−j , s
+
j are calculated by means of Eq. (17), with s/2 in place of s.345

The curves start and finish in the main vertices XS,j−1, XS,j, XS,j+1,346

but do not pass through the auxiliary vertices. Moreover, the two ends of347

the curves are tangent to the external polygons (fine dashed lines in Fig.348

4b), making the opening angle at the tip equal to the angle formed by the349

vertices X−
S,j, XS,j, X

+
S,j. Thus, the position of the auxiliary vertices can be350

adjusted in order to generate a desired tip opening angle. The modulus of351

s′j, controlling the opening angle at tip, is taken as equal to 3s/2 to achieve352

an acute angle.353
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(a) (b)

Figure 4. Offset scheme of the internal boundary vertices XB,j . (a) Standard
vertex XB,j , (b) vertex XB,j corresponding to a cut tip.

Among all the possible types of joining dislocations applied to the in-354

ternal boundary ∂ΩI , the simplest is the unique ”glued” line starting from355

point A and finishing at point B (see Fig. 3). Accordingly, each pairing356

(∂ΩI−
i , ∂ΩI+

i ), starting from the first element of VI
S (point A), is automati-357

cally defined by combining the first subset with the last and so forth, with the358

rule (∂ΩI
2N−j+1, ∂Ω

I
j ), j = 1, ..., N . This means that the closure is uniquely359

defined by point A. In other words, any ordered permutation of the vertices360

in VI
S describes the same inner boundary, but each of them generates a dif-361

ferent closure, having different vertices of ∂ΩI as first element. Thus, since362

VI
S is derived from VI

B, the latter must be ordered by a proper permutation363

of vertices, so that the first vertex coincides with the point A of the desired364

closure.365
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4.2. Meshing366

Element size across the domain is controlled by a function h(X) which367

provides the average element size for every point X ∈ Ω. Geometrical discon-368

tinuities represent critical points XP that need to be meshed with a suitable369

refinement. In the algorithm, each vertex of ∂ΩI contained in the set VI
S is370

treated as a critical point. Accordingly, the global refinement function h(X)371

is given by h(X) = min
i

[hP,i(X)], with hP,i being defined as372

hP,i(X) = hmax −
hmax − hmin(

∥X−XP,i∥2

c2k
+ 1

)a (21)

where a is an exponent controlling mesh grading and ck is a parameter which373

defines the mesh refinement extension. Note that the function hP,i(X) is374

such that hP,i(X) = hmin for ∥X−XP,i∥ → 0, and hP,i(X) = hmax for375

∥X−XP,i∥ → ∞, being hmin and hmax the minimum and the maximum376

element sizes, respectively.377

4.3. Nodal dislocations378

The distribution of element nodes along the internal offset boundary ∂ΩI
379

has to fulfil the refinement function h(X) and the linear mapping function380

Γ : ∂ΩI+
i → ∂ΩI−

i . In order to satisfy both conditions at the same time,381

nodes are created on the subset requiring the largest number of nodes, and382

then copied onto the opposite side using the function Γ.383

The mean element size along a subset ∂ΩI
i can be computed using the384

mean value theorem hm,i =
∫ 1

0
h(XI

i (ξ))
∥∥∂XI

i /∂ξ
∥∥ dξ. Accordingly, the num-385

ber of elements along the boundary is given by the ratio between the length386
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of the subset ∂ΩI
i and the mean element size hm,i, namely387

Ne,i =
1

hm,i

∫ 1

0

∥∥∥∥∂XI
i

∂ξ

∥∥∥∥ dξ . (22)

Nodes are then placed starting from the most critical subset, i.e. that388

requiring the highest number of elements. The first node, Ni,1 = XI
i (ξ1 =389

0) ∈ ∂ΩI
i , coincides with the vertex XS,i. From the second node onwards,390

each nodeNi,n is placed along ∂ΩI
i increasing progressively ξn by an arbitrary391

increment ∆ξ, until the length ∥Ni,n −Ni,n−1∥ attains the length given by392

h(XI
i (

ξn+ξn−1

2
)), so that each element size perfectly matches the dimension393

defined by the function h(X). After this procedure, the nodes generated394

are replicated on the pairing subset. So, if nodes have been created first395

on ∂ΩI+
i their counterparts are replicated on ∂ΩI−

i using N−
i,n = Γ(N+

i,n).396

The obtained nodal distribution is now suitable for applying the dislocation397

constraint, Eq. (14), in a discretised way to each couple of nodes (N−
i,n,N

+
i,n),398

n = 1, 2, ..., Ne,i, for each couple of subsets (∂ΩI−
i , ∂ΩI+

i ), i = 1, ..., N .399

5. Applicative examples400

The constitutive model of the hyperelastic wrinkling membrane (Sect.401

2.2) has been implemented in the commercial FE code ABAQUS, through a402

user-defined material subroutine UMAT.403

A preliminary verification was performed by comparing the wrinkling404

model to the standard Ogden model implemented in ABAQUS, under uni-405

axial tension and uniaxial and equibiaxial compression. As expected, the406

stress-strain response in uniaxial tension is not influenced by wrinkling (Fig.407

5a), while the uniaxial and biaxial compression cases highlight a significant408

23



reduction of the compressive stresses due to wrinkling, by one and two orders409

of magnitude, respectively (Fig. 5b-c).410
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Figure 5. Normalized stress-stretch responses on a single plane stress element
analysed with the standard Ogden function Ψ (solid blue line) and that based
on the relaxed function ΨW , summarized in Tab. 1 (solid red lines). Material
parameters: µ1 = 200Pa, α1 = 9. (a) Uniaxial tension, (b) uniaxial compression,
and (c) equibiaxial compression. The slightly stiffer response in (a), as well as the
non-zero response under compression in (b) and (c), is due to the introduction of
the additional fictitious stiffnessbased on the Ogden function Ψ, with properties
µ̃ = µ1/100 and α̃ = α1, to prevent ill-conditioning during slackness and wrinkling.25



In order to explore the capabilities of the implemented wrinkling model411

in predicting the non-linear response of hyperelastic membranes, three rele-412

vant illustrative examples are presented below. The first one is related to a413

rectangular polyethylene membrane under bending, which was introduced by414

Barsotti et al. [49] and later employed by Massabò and Gambarotta [41] to415

test their wrinkling model. The second example refers to a rectangular sili-416

cone membrane containing an elliptical hole under tension, which was tested417

experimentally by Spagnoli et al. [50]. Finally, in order to verify the capa-418

bilities of the proposed algorithm in generating complex internal boundaries,419

the case of a Z-shaped cut under joining dislocations is presented. This latter420

case represents an archetypal topology in reconstructive surgery procedures421

on the human skin, e.g. see Hove et al. [9].422

5.1. Rectangular beam under bending423

The geometry consists of a rectangular elastomeric beam with span l =424

75 mm, height h = 25 mm and thickness t = 1 mm, laterally constrained425

along the shorter edge, with imposed displacements u2 = −6 mm applied426

to the central fifth of the lower edge [49]. The model has been discretised427

with a uniform mesh of 1700 3-nodes plane stress isoparametric elements428

(CPS3), with an average size havg = 1.5 mm. The mechanical behaviour429

of the material was described by Massabò and Gambarotta [41] using an430

exponential isotropic Fung model. The equivalent Ogden constants, fitted431

under uniaxial tension, are µ1 = 749.18 Pa and α1 = 17.14. For the fictitious432

elasticity tensor C̃τ
◦
, µ̃ = µ1/100 and α̃ = α1 are used.433

Fig. 6 shows the resulting stretch domains, obtained by comparing the434

wrinkling model with the standard Ogden one. Taut regions, characterised435
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by two positive principal stress components, are highlighted in red, while436

wrinkled regions, with only one positive principal stress, have been coloured437

in green. Slack regions where both the principal stresses are negative are blue438

marked. Note that, using the standard Ogden function, regions are simply439

identified through the value of the principal stretches, see Tab. 1. The main440

differences between the two models can be found in the central portion of441

the membrane. With the standard Ogden model (Fig. 6a), a wide central442

taut region exists, which is separated from the top slack domain by a small443

strip of wrinkled membrane. Along the lateral edges, the membrane is taut444

at top and slack at bottom with a triangular shape. In the case with the445

wrinkling model (Fig. 6b), the top slack domain extends downward to the446

taut region, which is here narrower. Furthermore, taut zones near the lateral447

edges disappear. The domains in Fig. 6b compare qualitatively good with448

those observed in experiments, see Fig. 6c.449
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(a)

(b)

(c)

Figure 6. Coloured maps of the taut (red), wrinkled (green) and slack (blue)
domains, plotted onto the deformed configuration, in a rectangular membrane
analysed with Ogden function (a) and the wrinkling model (b). (c) Experimental
test on a clamped rectangular polyethylene membrane conducted by Barsotti et al.
[49].

In Fig. 7, the total vertical reaction force along the constrained lower450
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edge is shown against the imposed displacement, showing a relaxation in the451

situation where the wrinkling model is used.452

Figure 7. Normalized force-displacement curves of the rectangular beam under
bending. The global force F has been divided by the loaded area l/5 · t and
normalized with respect to µ1.

5.2. Notched sheet under tension453

The geometry consists of a rectangular silicone polymer sheet with width454

l = 117 mm, height h = 234 mm and thickness t = 2 mm, containing a455

centred elliptical notch, with semi-axes r1 = 20 mm and r2 = 5 mm aligned456

with e1 and e2, respectively. The material constants are µ1 = 0.461 MPa457

and α1 = 2 [50]. Constants for the fictitious elasticity tensor C̃τ
◦
are taken458

as in the previous example with µ̃ = µ1/100 and α̃ = α1. The membrane459

is clamped on top and bottom edges and is stretched by applying a vertical460

displacement u2 = 60 mm, corresponding to a remotely applied stretch of461

λ0 ≃ 1.25. The model has been discretised with 3-nodes plane stress isopara-462

29



metric elements (CPS3), with a minimum size hmin = 0.6 mm near the notch,463

and a maximum size hmax = 5 mm at the constrained edges.464

A comparison of the analyses, conducted using the standard Ogden model465

and the wrinkling model, is shown in Fig. 8. Both models show a characteris-466

tic X-shaped wrinkling region, which seems to extend larger for the membrane467

analysed with the wrinkling model (Fig. 8b). Slack regions are small and lo-468

calized near the top and bottom edges of the ellipse. Interestingly, a relevant469

difference in the shape of the deformed elliptical notch can be appreciated.470

Initially wider in the horizontal direction, the inner ellipse transforms into471

a circle upon deformation in the first case (Fig. 8a), and in a vertically ex-472

tended ellipse in the second (Fig. 8b). This behaviour highlights the effective473

reduction of the stiffness in compression with the wrinkling model, allowing474

higher compressive stretches in the transversal direction to develop. From a475

qualitative point of view, the wrinkling model shows an improved prediction476

of the actual wrinkling area, which in Fig. 8c is represented by the blue477

butterfly-like region. In fact, since the vertical E22 strain is mostly positive478

across the domain (Fig. 8d), the sign of the E11 component is discriminating479

in identifying wrinkling areas.480
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(a) (b) (c) (d)

Figure 8. Coloured maps of the taut (red), wrinkled (green) and slack (blue)
domains, plotted onto the deformed configuration, in a notched rectangular mem-
brane analysed with Ogden function (a) and the wrinkling model (b). Dotted
boxes in (a) and (b) highlight the same area shown in the experimental full-field
map of the components E11 and E22 of the Green-Lagrange strain tensor [50] (c)-
(d).

Similarly to the previous example, the total vertical reaction force on the481

clamped top edge illustrated in Fig. 9 confirms a slight relaxation obtained482

with the wrinkling model.483
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Figure 9. Normalized force-displacement curves of the notched sheet under ten-
sion. The global force F has been divided by the section area l · t and normalized
with respect to µ1.

5.3. Z-shaped cut under joining dislocations484

A Z-shaped cut under joining dislocations is here analysed. The selected485

problem is relevant in the field of reconstructive surgery of human skin, where486

cutting, tissue rearrangement and suturing of skin are performed in order to487

achieve a desired configuration within the skin membrane. The operation488

consists in three incisions of equal length, forming a Z-shaped cut, in which489

the lateral limbs are slanting 60◦ with respect to the central one [9]. Then,490

skin is undermined from the subcutaneous tissues and the two resulting trian-491

gular flaps are transposed each other and sutured in place. Such a procedure492

can be simulated by imposing joining dislocation distributions (describing493

flaps transposition) along an internal boundary (corresponding to the sur-494

gical cut). This last example is the benchmark to test the combination of495
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the wrinkling model with the proposed algorithm for describing topologically496

complex internal boundaries, as presented in Sect. 3.497

A circular skin membrane of R = 100 mm, containing incisions of l =498

50 mm, is considered. The domain has been discretised using three-node499

plane stress isoparametric elements (CPS3), with element size ranging be-500

tween hmax = l/5, hmin = l/150 and refinement parameters a = 8, ck = l.501

The cut offset, needed for numerical reasons, is assumed to be equal to502

s = hmax/20 (Fig. 10a). The skin parameters are µ1 = 110 Pa and α1 = 26,503

taken from the in-vivo measurements of Mahmud et al. [51]. The circular ex-504

ternal boundary is kept fixed, while the flap transposition is achieved though505

MPCs prescribed along the two incision sides, according to the dislocation506

distribution of Eq. (14).507
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(b) (c)

(a)

Figure 10. Schematics of the circular membrane with Z-shaped cut before and
after the application of joining dislocations. (a) Geometrical description of the
problem, with the offset on the cut already applied. Coupled subsets (∂ΩI+

1 ≡ ∂ΩI
1

and ∂ΩI−
1 ≡ ∂ΩI

6, ∂Ω
I+
2 ≡ ∂ΩI

2 and ∂ΩI−
2 ≡ ∂ΩI

5, ∂Ω
I+
3 ≡ ∂ΩI

3 and ∂ΩI−
3 ≡ ∂ΩI

4)
have been highlighted with same colors. (b) Discretised FE model in the reference
configuration, and (c) FE model after the analysis with the wrinkling model.
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The membrane has been analysed using both the standard Ogden function508

and the wrinkling model. Contours of the stretch domains, reported in Fig.509

11, show a noticeable difference between the two models , being the latter510

closer to the actual no-compression mechanical behaviour of undermined skin511

membranes during reconstructive surgery procedures. Slack domains close512

to the ends of the internal boundaries are much smaller and localised in513

the case analysed with the wrinkling model. Furthermore, the triangular514

flaps are predominantly taut, in contrast to the wrinkling predicted by the515

standard model. However, a narrow region of wrinkles remains throughout516

the length of the central limb, which extends with two further drop-shaped517

regions along the same direction.518

35



(a)

(b)

Figure 11. Coloured maps of the taut (red), wrinkled (green) and slack (blue)
domains, plotted onto the deformed configuration, of a Z-shaped cut analysed with
Ogden function (a) and the wrinkling model (b).

The distribution of radial stresses along a circular path with r = 1.5l and519

a radial path for θ = 90◦ (refer to Fig. 10c), is reported in Fig. 12 for the two520
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analysed models. The distribution in Fig. 12a is symmetric and highlights521

an effective reduction of compressive stresses around θ = 90◦ and θ = 270◦.522

Indeed, those regions are actually in the slack and wrinkled domain, and the523

red curve remains at a constant stress value of σrr ≃ 0. Looking at the radial524

distribution at θ = 90◦ (Fig. 12b), the membrane analysed with the standard525

Ogden function shows negative stresses along the whole path, displaying a526

peak at r = 35 mm representing the point B. The wrinkling model, instead,527

presents an almost constant distribution around σrr = 0, with just a small528

zone, near r = 10 mm, having positive stresses.529

Figure 12. Normalized radial stress σrr distribution along (a) a circular path
with radius R = 1.5l, and (b) a radial path with angle θ = 90◦ of the Z-shaped
cut with the standard Ogden function and the wrinkling model.
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6. Discussion and conclusions530

The analysis of soft tissue membranes using numerical methods is a fun-531

damental step in order to understand the mechanical behaviour of these532

thin structures under particular loading conditions, such as closure of holes533

and cuts. This is achieved by applying joining dislocations on the inner534

boundaries, that is, enforcing two distinct edges to move towards each other,535

with reciprocal forces, until the overlap is reached, while maintaining a self-536

balanced stress field during the whole process. In this work, a FE framework537

is adopted, in which the closure is simulated with Multi-Point Constraints538

(MPCs) applied to the nodes of the inner boundaries. To meet the require-539

ments of a refined discretisation near geometrical discontinuities, and the ne-540

cessities of MPCs to have evenly discretised coupling edges, a pre-processing541

algorithm for automatic FE models generation has been formulated and im-542

plemented in Matlab® environment. The code developed offers five main543

advantages with respect to existing solutions: (i) the automatic mesh gener-544

ating code offers wide control on discretisation management; (ii) the geome-545

tries are discretised with a high-quality mesh; (iii) the domain geometry can546

be generated parametrically, minimising user-requiring inputs; (iv) nodes on547

the holes and cuts boundary are consistently distributed for MPCs; finally,548

(v) the time required to generate models is greatly reduced.549

With respect to the mechanical behaviour of the soft tissues, this has been550

considered using the well-known isotropic Ogden’s strain-energy function.551

In order to consider the instability of membranes subjected to compressive552

forces, also known as wrinkling, the function has been modified, treating the553

out-of-plane displacements of the actual wrinkles as material non-linearities.554

38



Although this approach cannot provide a detailed description of the actual555

waves and wrinkles, it represents a highly efficient way to obtain a good556

approximation of the overall tension field within the membrane, avoiding the557

problems of stability and convergence of buckling and post-buckling analyses.558

The examples presented have been carefully selected in order to illustrate559

the potential of the proposed algorithm, both in accurately simulating mem-560

branes undergoing wrinkling and in precisely describing the application of561

general dislocation distributions along topologically complex internal bound-562

aries. All the examples showed a redistribution of the stress and strain fields563

when analysed with the wrinkling function, observing a relevant improve-564

ment in the qualitative prediction of the taut-wrinkling-slack regions in the565

example of the membrane tested by Barsotti et al. [49]. In the case of a566

Z-shaped cut, the slack region is significantly reduced, highlighting the capa-567

bility of the wrinkling model to redistribute compression stresses into tensions568

in other membrane regions to achieve equilibrium. The closure of the cut,569

which induced the transposition of the triangular flaps, has been achieved570

automatically during the FE computation, without convergence problems.571

The proposed code is robust, and can generate cuts and holes of whichever572

shape with high efficiency. However, further improvements are planned in573

order to include the analysis of multiple holes, as well as layered and curved574

membranes. This can be done without changing the basic theory of closing575

holes herein presented, as it has been formulated for membranes placed in576

R3 presenting n holes. As a result, the range of possible applications will be577

further expanded, for instance to simulate kirigami tessellations [12], dorsal578

closure of drosophila embryos [52], or the V-Y advancement flap in facial579
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reconstructive surgery [53], to mention only a few relevant examples.580
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Appendix A. Structure of the algorithm584

As described in Sect. 4, the proposed algorithm combines auto-meshing585

and generation of complex dislocation distributions in Matlab® environment,586

employing the open source auto-meshing tool DistMesh. The general struc-587

ture of the code, composed of seven main functions, is shown in Tab. 1. The588

main functions are described in detail below.589
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Table 1: Structure of the code
geometry shapes : Eshape, Ishape

geometry parameters: {Ep1, Ep2, ...}, {Ip1, Ip2, ...}, t, s

mesh parameters : hmin, hmax ,a ,ck

material properties : µi, αi

pre-stress tensor : σ0

1: VE
B , VI

B ← call

GeomBoundaries(Eshape,Ishape,{Ep1, Ep2, ...},{Ip1, Ip2, ...});

2: VI
S ← call InternalOffset(VI

B,s);

3: d(X) = SignedDistance(X,VE
B ,VI

S);

4: h(X) = ElementSize(X,VI
S,hmin, hmax ,a ,ck);

5: VI−
N , VI+

N ← call InternalBoundaryNodes(h(X),VI
S,VI

B);

6: VN , C ← call DistMesh(d(X),h(X),
{
VI−
N ,VI+

N ,VE
B

}
);

7: call PrintInputABQ(VN ,C,t,µi, αi,VI−
N ,VI+

N ,σ0);

590

Initially, all the information about geometry, element size, material prop-591

erties and pre-stress field, is read. Note that this is the only code section592

requiring user input. Depending on the shape chosen for the outer boundary593

through the text variable Eshape (or Ishape for the inner boundary), the first594

main function GeomBoundaries (Tab. 2) computes the set of external595

boundary vertices VE
B (internal boundary vertices VI

B), addressing the task596

to the proper function ExtShape-n (IntShape-n) and taking the set of597

geometrical parameters {Ep1, Ep2, ...} ({Ip1, Ip2, ...}) as input.598
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Table 2: Definition of external and internal boundaries

1: Function

GeomBoundaries(Eshape,Ishape,{Ep1, Ep2, ...},{Ip1, Ip2, ...})

2: switch Eshape do compute the set VE
B

3: case (external shape 1) do

4: VE
B ← call ExtShape-1({Ep1, Ep2, ...})

5: case (external shape 2) do

6: VE
B ← call ExtShape-2({Ep1, Ep2, ...})

7: · · ·

8: switch Ishape do compute the set VI
B

9: case (internal shape 1) do

10: VI
B ← call IntShape-1({Ip1, Ip2, ...})

11: case (internal shape 2) do

12: VI
B ← call IntShape-2({Ip1, Ip2, ...})

13: · · ·

14: return VE
B ,VI

B

599

The second main function, InternalOffset (Tab. 3), performs the600

offset of the internal boundaries as described in Sect. 4.1, generating the set601

VI
S from VI

B.602
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Table 3: Offset of internal boundary vertices

1: Function InternalOffset(VI
B,s)

2: foreach
(
XB,j ∈ VI

B

)
do

3: Compute the angle ∆θ at the vertex XB,j between the

segments XB,j −XB,j−1 and XB,j+1 −XB,j;

4: if (∆θ = π) then

5: Compute s−j , s
+
j , s

′
j using Eqs. (17) and (20) with s̄ = s/2;

6: Set XS,j ≡ XB,j;

7: Compute X−
S,j, X

+
S,j using Eqs. (19);

8: Enqueue the set
{
X−

S,j,XS,j,X
+
S,j

}
into VI

S;

9: else

10: Compute s−j , s
+
j using Eq. (17) with

s̄ = s/(2(1 + cos∆θ));

11: Compute XS,j using Eq. (16);

12: Enqueue XS,j into VI
S;

13: return VI
S

603

The third main function, SignedDistance, computes the signed dis-604

tance function d(X), giving as output negative numbers for points X inside605

the domain, and positive elsewhere. It is a fundamental argument for the606

DistMesh auto-meshing tool as it identifies the region to mesh, and it is607

defined by subtraction of the two surfaces enclosed within the external and608

internal boundaries. More details about this function can be found in [34].609

The fourth main function, ElementSize (Tab. 4), provides h(X), the ele-610

ment size parameter required in order to refine the mesh around geometrical611
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discontinuities. According to Sect. 4.2, the function refines the mesh around612

each vertex XS,j ∈ VI
S.613

Table 4: Mesh refinement

1: Function ElementSize(X,VI
S,hmin, hmax ,a ,ck)

2: foreach
(
XS,j ∈ VI

S

)
do

3: Compute element dimension hS,j in X according to the

refinement function for the vertex XS,j using Eq. (21);

4: Compute element dimension in X as the minimum hS,j value:

h = min
j

[hS,j];

5: return h

614

Internal boundary nodes are generated following the procedure described615

in Sect. 4.3 through the main function InternalBoundaryNodes, and616

stored into the sets VI−
N , VI+

N , pertaining to the left and right boundary sides,617

respectively.618
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Table 5: Generation of internal boundary nodes

1: Function InternalBoundaryNodes(h(X),VI
S,VI

B)

2: N ← (size(VI
B)− 1)/2 number of coupled internal boundary

subsets (∂ΩI−
i , ∂ΩI+

i );

3: Set as first elements of VI−
N and VI+

N the first vertex of VI
S, i.e. A;

4: Nk−,n−1,Nk+,n−1 ← A;
5: for j ← 1 to N do

6: Use the subset matching rule (∂ΩI
k− , ∂Ω

I

k+), where k
+ = j and

k− = 2N − j + 1;

7: XI
k−(ξ) =BézierCurve(ξ,k−,VI

S);

8: XI
k+(ξ) =BézierCurve(ξ,k+,VI

S);
9: Compute the numbers of elements Ne,k− , Ne,k+ required to

discretize ∂ΩI
k− and ∂ΩI

k+ , respectively, using Eq. (22);
10: ξn−1, ξn ← 0;
11: if (Ne,k+ ≥ Ne,k−) then

generate nodes on ∂ΩI
k+ and replicate them on ∂ΩI

k− :
12: while (ξn ≤ 1) do
13: while (ξn ≤ 1) do
14: ξn ← ξn +∆ξ;

15: Nk+,n ← XI
k+(ξn);

16: if
(
∥Nk+,n −Nk+,n−1∥ ≥ h(XI

k+(
ξn+ξn−1

2
))
)
then

Exit loop;

17: Nk−,n = Γ(Nk+,n);

18: Enqueue Nk+,n and Nk−,n into VI+
N and VI−

N ,
respectively;

19: ξn−1 ← ξn;
20: Nk+,n−1 ← Nk+,n and Nk−,n−1 ← Nk−,n;

21: else if (Ne,k+ < Ne,k−) then

generate nodes on ∂ΩI
k− and replicate them on ∂ΩI

k+ :
22: Do the same operations from line 12 to 20, but on the

k−-th subset;

23: return VI+
N ,VI−

N

619

Parametric functions XI
k−(ξ), X

I
k+(ξ), in lines 8 and 7 of Tab. 5, are620
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defined by BézierCurve, shown in Tab. 6.621

Table 6: Bézier curve definition

1: Function BézierCurve(ξ,k,VI
S)

2: if
(
X−

S,k+1 is between XS,k and XS,k+1

)
then

use quadratic Bézier curve from Eq. (18)a:

3: X = XI
k(ξ) = (1− ξ)2XS,k + 2(1− ξ)ξX−

S,k+1 + ξ2XS,k+1;

4: else if
(
X+

S,k is between XS,k and XS,k+1

)
then

use quadratic Bézier curve from Eq. (18)b:

5: X = XI
k(ξ) = (1− ξ)2XS,k + 2(1− ξ)ξX+

S,k + ξ2XS,k+1;

6: else use linear Bézier curve from Eq. (15):

7: X = XI
k(ξ) = (1− ξ)XS,k + ξXS,k+1;

8: return X

622

After computing the required variables, automeshing begins. Nodes in623

VI−
N , VI+

N , VE
B are fixed, i.e. they do not change their position over DistMesh624

iterations to find the optimal discretization. Once convergence is reached,625

the set VN containing all nodes, and the connectivity matrix C, are given626

as output. Then, all the information can be printed in an input file for any627

FE solver. In this work, the input file is written for ABAQUS commercial628

software using the PrintInputABQ function.629
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