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Abstract

Let g be a symmetrisable Kac—Moody algebra and V an integrable g—module in cat-
egory O. We show that the monodromy of the (normally ordered) rational Casimir
connection on V can be made equivariant with respect to the Weyl group W of g,
and therefore defines an action of the braid group By on V. We then prove that this
action is canonically equivalent to the quantum Weyl group action of By on a quan-
tum deformation of V, that is an integrable, category O module V over the quantum
group Upg such that V/hV is isomorphic to V. This extends a result of the second
author which is valid for g semisimple.
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1 Introduction
1.1

Let g be a complex, semisimple Lie algebra, (-, -) an invariant inner product on g,
b C g a Cartan subalgebra, and A C h* the corresponding root system. Set hree =
h\ Ugen ker(e), and let V be a finite-dimensional representation of g.

The Casimir connection of g is the flat connection on the holomorphically trivial
vector bundle V over b, with fibre V' given by

h da
Vi=d— = — Ko 1.1
S DI (1.1)

0[€A+

Here, h is a complex deformation parameter, Ay C A a chosen system of positive
roots,! and Ky, € Ug the truncated Casimir operator of the three—dimensional subal-
gebra sl5 C g corresponding to « given by Ko = XoX_y + X_gXg, Where X1q € giqg
are root vectors such that (x4, x_o) =1 [29, 32, 30, 18].

Although the Weyl group W of g does not act on V' in general, the action of its Tits
eitension W can be used to twist (V, Vi) into a W—equivariant, flat vector bundle
Vv, %}C) on breg [29, 32]. This gives rise to a one—parameter family of Ections Uh of
the braid group By = 71 (hreg/ W) on V which deforms the action of W.

1 Vic is independent of the choice of A4 since dloga = dlog(—a) and Ky =K _q.
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Monodromy of the Casimir connection

A theorem of the second author, originally conjectured by De Concini around 1995
and independently in [32], asserts that the monodromy of Vi is described by the
quantum group Upg, with deformation parameter given by A = 27 +/—1h [32-35].
Specifically, if V is a quantum deformation of V, that is a Upg-module which is
topologically free over C[[/]] and such that V/h) = V as U g—-modules, the action of
Byw on V[[h]] given by the formal Taylor series of wy, at h = 0 is equivalent to that on
V given by the quantum Weyl group operators of Upg.

1.2

The goal of the present paper is to extend the description of the monodromy of the
Casimir connection in terms of quantum Weyl groups to the case of an arbitrary sym-
metrisable Kac—-Moody algebra g. This extension requires several new ideas, which
are described below. They lead to a far stronger result, even for a finite—dimensional
g, namely a constructive proof of the existence of a canonical equivalence between
these representations.” We conjecture in fact that our equivalence can be specialised
to non-rational values of h, and plan to return to this problem in future work.

1.3

When the root system is infinite, the sum in (1.1) does not converge. This is easily
overcome, however, by replacing each Casimir by its normally ordered version

—ZZx(l) O(l') =Ky — myty
(i)

where my, = dim g, {xia i—; are dual bases of the root spaces g1y, and f, = v 1(oz)
with v : h — b* the identification induced by the inner product. Although still infinite,
the sum in
h da
V. =d — = — K
20{6A+ o

is now locally finite, provided the representation V lies in category O. Moreover, the
connection V.x. is flat [18] (we give an alternative proof of this, along the lines of its
finite—dimensional counterpart, in Sect. 3).

14

Although it restores convergence, normal ordering breaks the W—equivariance of Vi.
If g is finite—dimensional, equivariance can be restored by reverting to the original
connection (1.1), that is adding to V.x. the h—valued, closed 1-form

Vk -V =—2 Z _ta

aeA+

2By way of comparison, the results in [33-35] establish cohomologically that the set of such equivalences
is non—empty if g is semisimple.
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Beyond finite type, it is therefore desirable to resum the divergent 1—form?

~ da
b:5 Z Moo (1.2)

Such an explicit resummation is carried out in the Appendix when g is affine. Its
construction relies on the well-known resummation of the series 2,120(2 +n)~! via
the logarithmic derivative W of the Gamma function, through its expansion

1 1 1

W(z)=—+ - =

@ Z Z(Z—i—n n)
n>1

1.5

At present, it is not clear how to carry out such a resummation for an arbitrary sym-
metrisable Kac—Moody algebra. We therefore opt for an alternative route: rather than
altering V.xc., we modify its monodromy .. as follows.

The lack of equivariance of w.x. is measured by a 1-cocycle A = {A,,} on W. We
show in Sect. 4 that A,, is the monodromy of the abelian connection d — a,,, where

da
aWZW*V:IC:_V:IC:Z_h Z E’ta
acA nwlA_

By relying on van der Lek’s presentation of the fundamental groupoid of the complex-
ified Tits cone X C brey [36], we then prove that A is the coboundary of an explicit
abelian cochain 3. As a consequence, the monodromy of V.j. multiplied by B gives
rise to a canonical 1-parameter family of actions of the braid group By = 71 (X/ W)
on any integrable, category O module V.

We also prove that if b is a resummation of the divergent 1-form b (1.2), the
cochain B is the monodromy of the abelian connection d — hb, thus showing in par-
ticular that our two approaches coincide when g is finite—dimensional or affine.

1.6

Our main result can now be formulated as follows.

Theorem The (W—equivariant) monodromy of V.. on a category O integrable
g—module V is canonically equivalent to the quantum Weyl group action of the braid
group By on a quantum deformation of V.

3The 1-form b may be thought of as a differential analogue of the half-sum p of all positive roots, and

1ts resummation as parallel to Kac’s construction of an element p € b with the same formal propemes as
p. Note also that, since positive imaginary roots are invariant under W, it is equlvalent to resum b

3 Zd loga ty, where the sum is restricted to positive real roots. Correspondingly, both band D" satlsfy

UJ*EZ E_ ZaeA+mw*1A_ dlogaty forany w e W.
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Monodromy of the Casimir connection

Our strategy is patterned on that of [33-35], and hinges on the notion of braided
Coxeter category developed in [2]. Informally speaking, such a category is a braided
tensor category which carries commuting actions of Artin’s braid groups B,,, and of a
given generalised braid group By, on the tensor powers of its objects. For Upg, such
a structure arises on the category O}* of integrable, highest weight modules from the
R—matrix and quantum Weyl group operators.

For the category O™ of integrable, highest weight g—-modules, we prove in Sect. 13
that such a structure arises from the dynamical coupling of the KZ and Casimir con-
nections of g [18]. This is analogous to the fact that the monodromy of the KZ equa-
tions gives rise to a braided tensor category structure on category O [11], and the
fact that the canonical fundamental solutions of the Casimir equations constructed
by Cherednik and De Concini—Procesi [7, 9] give rise to a Coxeter structure on cat-
egory O [34]. One crucial difference, however, is that the joint Casimir-KZ system
has irregular singularities when the differences z; — z; of the evaluation points tend
to infinity. We address the corresponding Stokes phenomena by adapting the argu-
ment of [35], and construct canonical solutions of the joint KZ—Casimir system with
prescribed asymptotics when z; — z; — oo forany i # j.

1.7

Once the monodromy of the Casimir connection of g (resp. the quantum Weyl group
operators of Uxg) are understood as arising from a braided Coxeter structure on O™
(resp. O}), Theorem 1.6 is deduced by proving that O™ and O}' are equivalent as
braided Coxeter categories.

Such a statement presupposes in particular that O™ and Oih"‘ are equivalent as
abelian categories. When g is finite—dimensional, this follows from the fact that
Ug[lh]l and Upg are isomorphic as algebras. While this is no longer true for an ar-
bitrary g, an equivalence of abelian categories can be obtained via Etingof—Kazhdan
quantisation [15-17].

The EK equivalence relies on embedding category O (resp. Op) into the category
9% - of Drinfeld-Yetter modules over the negative Borel subalgebra b~ (resp.
the category 9%y, - of admissible Drinfeld—Yetter modules over Uyb™), which
follows from the fact that g is a quotient of the restricted Drinfeld double of b™.

Given an associator ®, Etingof-Kazhdan consider the braided tensor category
2% ;D, with underlying abelian category 2% -, and commutativity and associativ-

ity constraints given by ¢? and ®. They construct a tensor functor f,— : 2% g’, —
Vect, and prove that it lifts to an equivalence Aﬂ,— 9 g’_ — 9% y,6- 116, 1].

1.8

An equivalence of braided Coxeter categories further requires that the EK equivalence
be compatible with restriction to standard Levi subalgebras. To establish this, we
constructed in [1] a relative version of Etingof-Kazhdan quantisation, which takes
as input a pair of Lie bialgebras a C b. This yields in particular a tensor functor
fap: .@@g) — @@f which is isomorphic to restriction, is equal to fp when a =
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0, and to the identity when a = b. We also proved that f, p is compatible with the
Tannakian equivalences fq, fp, in that there is a natural isomorphism vq, p Which fits
in the commutative diagram

fo
9@2’ — 9% y,e

Va,b
fa,h res

784 ————— 9Y
fa

In [2], we used the data {?b, fa.b, Vap}, where a C b range over the Borel subalge-
bras of all standard Levi subalgebras of g, to transfer the braided Coxeter structure
on O} arising from the R—matrix and quantum Weyl group to one on O™,

1.9

To show that the transferred structure is equivalent to the one arising from the
Casimir-KZ system, we rely on a rigidity result according to which there is, up to
equivalence, a unique braided Coxeter structure on O™ with prescribed restriction
functors, commutativity constraints, and local monodromies.

When g is finite—dimensional, rigidity is proved in [33, 34] by relying on the well—
known computation of the Hochschild (coalgebra) cohomology of U g in terms of the
exterior algebra of g, as well as an appropriately defined Dynkin diagram cohomology
designed to deal with secondary obstructions.

For an arbitrary g, the cobar complex U g®*® needs to be replaced by its completion
Ug with respect to category O. This is so because Ug and Ug®? do not contain
the Casimir operator C of g and the invariant tensor 2 =A(C) - CQ®1 -1 C
respectively, and are therefore not appropriate receptacles for the coefficients of the
Casimir and KZ connections. Unfortunately, L{g‘ has an unwieldy and, to the best of
our knowledge, unknown Hochschild cohomology.

1.10

To remedy this, we replace Ug with a suitable cosimplicial subalgebra, which is
big enough to contain the data describing the braided Coxeter structures coming
from Upg and the Casimir—KZ connection, yet small enough to have a manageable
Hochschild cohomology. This algebra is a refinement of Enriquez’s universal algebra
[12] which we introduced in [3], and arises as follows.

We first embed category O into the larger category of Drinfeld—Yetter modules
over b, as explained in 1.7. This yields a smaller algebra of endomorphisms U/ _, to-
gether with a canonical map Uy — Ug. We then consider the subalgebra U® C U
consisting of all universal endomorphisms, i.e., those obtained by compositions of
iterated action and coaction maps. Finally, taking into account the root space de-
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Monodromy of the Casimir connection

composition of b™, we consider the refinement U* C Uj C Uy generated by the
homogeneous components of universal endomorphisms.

1.11

The Hoschschild cohomology of Uj can be computed via the calculus of Schur
functors developed by Enriquez in [12], and shown to be given by a universal version
of the exterior algebra of g [3]. In particular, U}, behaves like an (uncompleted)
enveloping algebra, with the added feature that it does not contain primitive elements.
This leads to a strong rigidity statement, namely the fact that two braided Coxeter
structures on O™ which are universal, that is such that their structure constants lie
in U}, are uniquely equivalent. It also entirely bypasses the use of Dynkin diagram
cohomology since the secondary obstructions are primitive, and therefore zero in U .

1.12

To conclude the proof of Theorem 1.6, there remains to show that the braided Coxeter
structures on O™ coming from the joint KZ-Coxeter system and the transfer from
Urg are universal. The first statement is proved in Sects. 12, 16 and 22. It follows
from the fact that an appropriate double holonomy algebra t} underlying the KZ and
Coxeter connections admits a map to Uy .

The second statement is proved in Sect. 20. It follows from the construction of the
transfer of braided Coxeter from O} to O™ described in 1.8. The latter implies that
the structure constants of the transferred structure lie in a subalgebra Uy C U} gen-
erated by the diagrammatic homogeneous components of universal endomorphisms.
By definition, these are the components corresponding to the subalgebras of b~ gen-
erated by {h;, f;}jes, where J is a subset of the simple roots.

The following summarises the relations between the cosimplicial algebras de-
scribed in Sections 1.9-1.12

ta

1.13

In [4], we obtain an analogue of Theorem 1.6 for the actions of the pure braid group
Pw C Bw on (not necessarily integrable) modules in O and O, Specifically, we
show that the quantum Weyl group operators of Upg give rise to a canonical action
of Pw on any Upg-module V € Op. By relying on the methods developed in the
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present paper, we then show that this action describes the monodromy of V.x. on the
g-module V € O corresponding to V under the Etingof—-Kazhdan equivalence. We
also extend these results to yield equivalent representations of parabolic pure braid
groups on parabolic category O for Upg and g.

1.14 Outline of the paper

The paper is divided in four parts.

In Part I, we prove that the monodromy of the normally ordered Casimir connec-
tion can be modified by an abelian cochain to make it W—equivariant. We also review
the definition of a Coxeter algebra following [34, 2]. By adapting the construction of
fundamental solutions of the holonomy equations due to Cherednik and De Concini—
Procesi [7, 9] to infinite hyperplane arrangements, we then show that this modified
monodromy arises from a Coxeter algebra structure on the holonomy algebra ta of
the root arrangement of g.

In Part II, we introduce the double holonomy algebra t, of g, a cosimplicial al-
gebra which contains both ta and the tower of holonomy algebras of type A,. We
review the definition of a braided Coxeter algebra [34, 2], and show that the dynami-
cal coupling of the Casimir and KZ equations gives rise to a braided Coxeter structure
on t},.

In Part III, we review the definition of a braided Coxeter category following [2].
We show that a braided Coxeter structure on the double holonomy algebra t} gives
rise to a braided Coxeter structure on the category O™ of integrable, highest weight
modules over g. By Part II, this implies that the coupled Casimir—KZ system yields a
braided Coxeter category ﬁg;i%t with underlying abelian category O™. We also point
out that the quantum Weyl group operators and R—matrix of Upg give rise to a braided
Coxeter category ﬁg‘h oRS with underlying abelian category O}".

The final Part IV contains the proof of our main result, namely the equivalence
of the braided Coxeter categories ﬁglmvl and ﬁg; aRs- Ve first show that the braided

Coxeter structure on ﬁg'mv‘ can be extended to the category of Drinfeld—Yetter mod-
ules over b~. The corresponding structure % Z’i_"‘v is universal, that is arises from

a PROP LBA 5 describing a Lie bialgebra [b™] with the root decomposition of b™.
Specifically, we prove that the double holonomy algebra t}, maps to the endomor-
phisms of the tensor product of Drinfeld—Yetter modules over [b™].

In a parallel vein, we show that the braided Coxeter structure ﬁi}‘ﬁ aRS can be
extended to the category of admissible Drinfeld—Yetter modules over U, b~ and then,
using the 2—categorical extension of EK quantisation obtained in [1, 2], transferred to
a braided Coxeter category 2% Z’i,"’tR’s on integrable Drinfeld—Yetter modules over
b~ . The latter is also universal in that it comes from a coarsening LBAp, of the PROP
LBA ,, which only records the standard subalgebras of b~ generated by simple root
vectors. Finally, we use the rigidity of universal braided Coxeter algebra structures
obtained in [3] to obtain the equivalence of % Z‘i“"v and 9% Z‘E"‘R’S.
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Monodromy of the Casimir connection

Part I. The Casimir connection
2 Kac-Moody algebras
2.1 Realisations of matrices

In Sects. 2.1-2.3, we mostly follow [21]. Let I be a finite set, k a field of characteristic
zero, and A = (a;;);,jer a matrix with entries in k. A realisation of A is a triple
(h, 1, IT1V), where

h is a finite—dimensional vector space over k*

IT = {«@; }; 1 is a linearly independent subset of h*
[TV = {h;}ie1 is a linearly independent subset of b
aj(hj) =aj; forany i, j €l

Given a realisation (h, IT, ITY) of A, we denote by
' =(hi)ieaCh and  H*=p/II"

the |I|-dimensional subspace and quotient of h determined by ITV and the annnihila-
tor of IT respectively. Note that §’, h* do not depend upon the choice of b.

2.2 Kac-Moody algebras

Let g be the Lie algebra generated by b, {e;, fi}ie1 with relations [k, h'] = 0, for any
h,h’ €b,and

(7, ej] = a;(h)e; [, fil = —ai(h) fi lei, fi1=23ijhi

The Kac-Moody algebra corresponding to A is the Lie algebra g = §/t, where t is the
sum of all two—sided ideals in g having trivial intersection with h C g. If A is a gen-
eralised Cartan matrix (i.e., a;; = 2, a;j € Zgo, | # j, and a;; = 0 implies aj; =0),
the ideal v is generated by the Serre relations ad(e;)! %/ (ej)=0= ad(fi)! 4 (f)
for any i # j. The following is straightforward.

Lemma
(1) The center of g is 3(g) = 1+, and dim3(g) N’ = [I| — rank(A).
(2) b'=hnNlg, gl and h* =1b/5(g).

We refer to b’ and h° as the derived and essential Cartan, respectively. Set Q1 =
D, c1Z=oxi S h*, so that g has the root space decomposition g =n_ @ h @ n+,
where

ne= P o+« and  ge={Xeg|lh XI=a)X, Vheb)
aeQ1\{0}

4Note that, unlike [21], we do not require f to be of (minimal) dimension 2|I| — rank(A).
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Denote by Ay = {a € Q4 | go # 0} the set of positive roots of g and set A =
A4 U (—AL). For any root o € A, the root multiplicity m, = dim g is finite. More-
over, if A is a generalised Cartan matrix, the Weyl group W of g preserves the root
multiplicities, i.e., forany @ € A and w € W, mg = myyq.

2.3 Symmetrisable Kac-Moody algebras

Let A be a symmetrisable generalised Cartan matrix and fix a decomposition B = DA,
where D = Diag(d;);¢1 is an invertible diagonal matrix with coprime entries d; € Z~
such that B is symmetric.

Let (-, -) be a symmetric, non—degenerate bilinear form on ) such that®

(hi,—)=d; ' @.1)

Then, (-,-) uniquely extends to an invariant symmetric bilinear form on g, and
(ei, fi) = di_l(S,- - The kernel of this form is t, so that (-, -) descends to a nondegener-
ate formon g. Set b =h P D, A, 9+a C Q. The bilinear form induces a canonical
isomorphism of graded vector spaces b™ ~ (b™)*, where (b™)* = h* @ @a€A+ 9",

We denote by v : h — h* the isomorphism induced by (-, -) and, for any 8 € Q,
we set 1g = v~1(B). Recall that, by [21, Thm. 2.2], for any x € g, and y € g_q, We
have [x, y] = (x, y) - t4.

2.4 Diagrammatic Kac-Moody algebras

Let A be a generalised Cartan matrix and D the Dynkin diagram of A, i.e., the
undirected graph having I as its vertex set and an edge between i % j unless
ajj =0 =aj;. For any subset of vertices B C DD, let Ag be the |B| x |B| matrix
(aij)i,jeB, g ={ej}iep € M and Iy, = {e, }iep S TTV.

Definition

(1) A realisation (b, IT, ITV) of A is diagrammatic if it is endowed with a collection
of subspaces {hz}pcp of b such that hp = b, and the following holds

e IT} C hp and (hp, gy, IT}) is a realisation of Ap for any B €D
e hp C hp whenever B C B
* hgus, =hp, ®bhp, and hp, C Iy whenever By L By.°

(2) If A is symmetrisable, a diagrammatic realisation (§, IT, ITV) is additionally re-
quired to be endowed with a non—degenerate symmetric bilinear form (-, -) such
that (2.1) holds, and its restriction to each bz is non—degenerate.’

5Such a form always exists, see e.g., [2, Prop. 11.4].

5Two subdiagrams By, By C D are orthogonal if they have no vertices in common, and no two vertices
i € By, j € By are joined by an edge in D (cf. 5.1).

7Following [2, Sects. 5 and 9], one could consider a more general definition, where a diagrammatic reali-
sation of A is a collection of realisations (hpg, I1p, Hg) of Ag (B € D) equipped with a system of linear
maps igp : hg — hp (B’ C B) satisfying natural compatibility conditions with respect to subdiagrams
and orthogonal diagrams. When A is symmetrisable, however, the maps i g g/ are required to be isometries,
and thus embeddings. We have therefore opted to identify hp with a subspace of h = hp in Definition 2.4.
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(3) A (symmetrisable) Kac—Moody algebra is diagrammatic if the underlying reali-
sation is.

Remark

(1) Any symmetrisable generalised Cartan matrix A has a diagrammatic realisation.
Namely, if A is of finite, affine or hyperbolic type, its minimal realisation is
clearly diagrammatic. This is not always true for Cartan matrices of indefinite
type. However, we proved in [2, Prop. 12.4] that a canonical (non-minimal) dia-
grammatic realisation with dim h = 2|I| always exists.

(2) Note that a diagrammatic symmetrisable Kac—Moody algebra g is naturally en-
dowed with diagrammatic Lie subalgebras gp = ({e;, fi}iep, hp) € g, B S D,
such that gg C gp if B C B and [g5,,98,] = 0 if B; L B,. In particular, Ug
has a natural structure of diagrammatic algebra in the sense of Definition 6.1.

3 The Casimir connection

We review the definition of the Casimir connection of a symmetrisable Kac—Moody
algebra, introduced by De Concini (cf. [30] where the Casimir connection is briefly
mentioned in the introduction), Millson-Toledano Laredo [32, 29], and Felder—
Markov—Tarasov—Varchenko [18], and provide an alternative proof of its flatness.

Henceforth, we fix a symmetrisable generalised Cartan matrix A, a diagrammatic
realisation (hgr g, [1g|yg p- Hg) pcp over R, the diagrammatic realisation over C
given by its complexification (hp, [1g|g,, Hlvg)BgD), with hp = C ®r br, 5, the cor-
responding Kac—Moody algebra g over C and the diagrammatic subalgebras gz < g,
B CD.

3.1 Fundamental group of root system arrangements

Let A be a symmetrisable generalised Cartan matrix, (hg, I, ITV) a realisation of A
over R, and (h = C ®g b, IT, ITY) its complexification. Let [T+ C h be the annihi-
lator of T1, set h® = h/I1+, and note that h° is independent of the realisation of A.
Let

={heby|Viel, a;(h) > 0}

be the fundamental Weyl chamber in by, and Yr = Uwew w(C) the Tits cone. Yg
is a convex cone, and the Weyl group W acts properly discontinuously on its interior
YR and complexification Y = Yg +th% € b°, where ¢ = /=1 [26, 37]. The regular
points of this action are given by

X=Y\ ] Ker()

O[EA+

The action of W on X is proper and free, and the space X/ W is a complex manifold.
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Recall that the braid group of W is the group By presented on the generators
A, ..., Z1), with relations given by

I L S =L S S

mjj mjj

for any i, j € I such that m;; < co, where m;; is the order of s;s; in W. The pure
braid group Pw C By is the kernel of the standard projection By — W.

The following result is due to van der Lek [36], and generalises Brieskorn’s The-
orem [6] to the case of an arbitrary Weyl group.

Theorem The fundamental groups of X/ W and X are isomorphic to By and Py
respectively.

The generators {.#;};<1 of By may be described as follows. Let p : X — X/ W be
the canonical projection, fix a point x¢ € C and use [xg] = p(xp) as a base point in
X/W. For any i €I, choose an open disk D; in xo + Ch;, centered in xo — @hi,
and such that D; does not intersect any root hyperplane other than Ker(a;). Let y; :
[0, 11 — xo+ Ch; be the path from xg to s; (xp) in X determined by ¥; |0,1/31u12/3,1] is
affine and lies in xo +RA; \ D;, the points y;(1/3), y;:(2/3) are in dD;, and vil1/3,2/3]
is a semicircular arc in 3 D;, positively oriented with respect to the natural orientation
of xo + Ch;. Then, .%; = p o y;.

3.2 The Casimir connection
For any positive root o € A, let {eg} i—1 be bases of g1, which are dual with
respect to (-, -), and

Mg
Ki=Y eed) 3.1)
i=1

the corresponding truncated and normally ordered Casimir operator. Let V be a
g-module in category O and V = X x V the holomorphically trivial vector bundle
over X with fibre V (cf. 15.1). Finally, let h € C be a complex parameter.

Definition The Casimir connection of g is the connection on V given by

d
Ve=d—h Y 7“-1@ (3.2)

aely

The Casimir connection for a semisimple Lie algebra was discovered by De
Concini around ’95 (unpublished, though the connection is referenced in [30])
and, independently, Millson—-Toledano Laredo [32, 29] and Felder—-Markov—Tarasov—
Varchenko [18]. In [18], the case of an arbitrary symmetrisable Kac—Moody algebra
is considered. We give an alternative proof of flatness in this more general case, along
the lines of [32, 29] in Sect. 3.4.

@ Springer



Monodromy of the Casimir connection

3.3 Local finiteness

The sum in (3.2) is locally finite even if A is infinite since, for any v € V, KJv =0
for all but finitely many o € A,. Differently said, let ht : Q — Z3 be the height
function on the positive root lattice given by ht(} ; .y kiot;) = Y _; .y ki. Then, ht~' (n)
is finite for any n € Z>¢. Let A1, ..., A, € h* be such that the set of weights of V is
contained in [ J?_, D(A;) where D(A;) = {p € h*|u < A;} and p < A iff A — p € Q4.
Forn € Z+, set

uebh*:
ht(x; —p)<n,
Vi: neD ()

where V[u] is the weight space of V of weight u. Then, V =1im V", each V" is

invariant under the operators IC;[L, and Ile' acts as zero on V" if ht(«) > n. Thus, if
V" =X x V" is the trivial vector bundle over X with fibre V", then V =1im V" and
—_

Vic =1lim Vi where
—

Vii=d—h Z —.Kf with  AY'={aeli|ht@)<n} (33)

aeA\

Note also that the pair (V", Vi) descends to a (trivial) vector bundle with connection

on the complement X" of the hyperplanes Ker(«), « € Af" , in the finite—dimensional
vector space

=Y/(ATH* (3.4)

Remark Let K, =Y e(') D4 ele (’) be the truncated Casimir operator corre-
sponding to o € A. Since IC =2K} + mata, the connection defined by {KC; }uea
can be thought of as a Cartan extension of Vi since

—Zd“/c_hZ—;c+ Z%‘”-mat&

oAy aeAy ozeA+

However, if |A| = oo, the second sum is not locally finite on category © modules, in
contrast with the case of Vi.

3.4 Flatness
Theorem The connection Vi is flat for any h € C.

Proof 1t suffices to prove that the connection V- defined by (3.3) is flat for any n.
Since V,’é is pulled back from the finite—dimensional vector space h” (3.4), Kohno’s
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lemma [23] implies that the flatness of V,”C is equivalent to proving that, for any two—
dimensional subspace U C h* spanned by a subset of Agn, the following holds on
V* foranya e U N Af"

Kfo Y. Ki|=0

<n
BeUNAY

Since ICE acts as 0 on V" if ht(8) > n, this amounts to proving that, on V"

Kf Y Kj|=0 (3.5)
BeUNA

Let gy = b ® P,cpyna Jo be the subalgebra spanned by b and the root subspaces
corresponding to the elements of U N A. Then gy is a generalized Kac—Moody al-
gebra and, modulo terms in U, the operator »_ BeUNA., IC;; is proportional to the

Casimir operator. Since any element in Ul commutes with K, the above commuta-
tor is therefore zero. 0

3.5 Equivariance

It is well known that the Weyl group W of g does not act on an integrable g—module
V € O in general, but that the triple exponentials

5i = exp(e;) exp(— fi) exp(e;)

give rise to an action of an extension W of W by the sign group Z/, which is a
quotient of By [31].

However, the connection Vi is not By —equivariant and therefore does not a priori
yield a monodromy representation of By on V. Indeed, for any « € A, w € By and
w € W such that w > w under the morphism By — W, we have

Ky if wa>0

Ko +twe if woa <0 (3.6

w/cgwlz{

where tg = v~ 1(B) € b (cf. 2.3), and we used the fact that if « € AL Nw™'A_, then
« is real, and m, = 1. The lack of equivariance of Vi will be addressed in Sect. 4.

3.6 The holonomy algebra {5

Let Fa be the free associative algebra with generators {t,}yea . For any m € Zo,
let J,, C Fa be the two—sided ideal generated by t,,, with & ¢ AT", and set Fp =
lim,, FA/J. Note that ) peA. tp is a well-defined element in F .
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Definition The holonomy algebra ta is the associative algebra given by the quotient
of Fa by the t7—relations

ty, > tg|=0 3.7

BeV,NA 4

where W, C A is any root subsystem of rank 2 containing .

Remark Let J,, be the two sided ideal generated by J,, and the elements

t,, Z tg

<
Bew,NAT"

where W, C A is as before. Set t(gl) = FA/J~m. Then, ta is isomorphic to lim,, t(Am).

3.7 The holonomy algebra’t\A,b

The holonomy algebra ta is N—graded by deg(t,) =1, @ € A4. Let/t\A,h =taA®Sh
be the completion of tA ®Sh with respect to the total grading.
The action of W on b’ extends to one on ta j patterned on (3.6), by setting

) tue if wa>0
wity) = {twa Flpe if wa <0
where w € W, o € Ay, and ty, = v wa) € b’ (cf. 2.3). Indeed, for u,v € W,
o € A4, one has

tuw if va>0, uv(e) >0

_ t—uva + tuva if va>0, uv(@) <0
MO Z Nt W) = fi) I var <0, wv(@) > 0
t_ e T+ u(tue) if va <0, uv(a) <0

and therefore uv(t,) = u(v(t,)).

Remark Note that any representation V of g and choice of h € C give rise to an action
p:ta p — Endy (V)

by p(t,)=h-K} and p(h) =h-hfora € Ay and h € b.

3.8 The universal Casimir connection

Definition The universal Casimir connection is the formal connection on X

da
Vi=d— Y — 't (3.8)

O[EA+
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The flatness of Vi is proved as in 3.4. Thus, any representation p 3/€A,h —
End (V) gives rise to a flat connection

da
Vep=d— Y plty) —

OlEA+

on the trivial vector bundle over X with fiber V.

Remark We shall consider only solutions of the holonomy equation

d
dv=3%" ?ata\ll (3.9)

QEA+

which are holomorphic functions in their domain of definition with values in tp C
?A,h. The analytic computations performed with functions with values in ta are jus-
tified by the fact that the latter is the inverse limit of the finite dimensional algebras
FA/Jkn, where Ji , is the ideal of the elements of degree > n in Fa/Ji. In par-
ticular, a function G with values in ta is determined by a sequence of compatible
functions in the finite dimensional algebras Fa /Ji .

4 Equivariant monodromy

In this section, we prove that the monodromy of the universal Casimir connection can
be made equivariant with respect to to the Weyl group by multiplying it by an explicit
abelian cochain on W, and that it then gives rise to a representation of the generalised
braid group By .

4.1 The orbifold fundamental groupoid of X

Let IT; (X; Wxg) be the fundamental groupoid of X based at the W—orbit of x¢. Then,
[T (X/ W; [x0]) is equivalent to the orbifold fundamental groupoid W x IT1{ (X; Wxq),
which is defined as follows.
o Its set of objects is Wxy.

e A morphism between x, y € Wxy is a pair (w, y), where w € W and y is a path in
X from x to w™!y.

e The composition of (w, y) : x — y and (w', y’) : y — z is given by
W', yNow,y)=@ww ' (yoy)ix—z
The projection functor
P:W x I (X; Wxg) —> T1; (X/ W; [x0]) 4.1

given by P(wxg) = [xo] and P(w, y) = [y] is fully faithful since, for any given
x,y € Wxo, aloop [y] € IT; (X/ W; [xo]) lifts uniquely to a path y : x — w™~ !y, for
a unique w € W. Any x € Wxg therefore determines a right inverse &, of P given
by & ([x0]) = x and &, ([y]) = (w, ), where y is the lift of [y] through x, and w is
such that y (1) = wlx.
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4.2 Obstruction to W-equivariance

In what follows, we shall repeatedly identify an algebra A such as TAJ)’/{AJ]’ and
their semi—direct product with W, with the category with one object and morphisms
given by A, and abusively denote the latter by the same symbol.

The universal Casimir connection V; gives rise to a functor

P 111 (X; Wxp) —>TAJ)/
which maps a path y to its parallel transport &?(y). The lack of equivariance of Vi
implies that of the functor & with respect to the action of W on t, by defined in 3.7.
Define the obstruction

ot W — Homgpa (IT1 (X; Wxo), ta ) by #(y) = 2(y)~" - w™ ' P(wy)

for w € W and y € 11 (X; Wxg). The following shows that <7, (y) takes values in
the abelian group exp(h’) C ta p.

Lemma Forany y € I11(X; Wxo) and w € W, <, (v) € exp(h’).

Proof w™'(Z(wy)) = w*P(y) is the parallel transport of the connection

da
w*Vi =Vi — Ay where Ay, = Z — 1y
o
aeANw-TA_

where the sum involves only real roots, since the set of positive imaginary roots is

W—invariant [21, Prop. 5.2]. Since V; and A,, commute, 7, (y) is the parallel trans-
port along y of the abelian connection

V;‘b*w =d— A, 4.2)
and therefore takes values in exp(h’) since f, = v~ () € b'. O
4.3 Restoring equivariance

Let M’ be the abelian group defined by
M = Homgrpd(nl (X; Wxo), exp(h))
and consider the action of W on M’ given by (w - f)(y) = w(f(w™y)).

Proposition The following holds

(1) o ={ytwew is a 1—cocycle for W with values in M/, that is satisfies

Ly = (W™ )ty (4.3)
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(2) Assume that o/ = d B for some B € M', where d By, = B(w~'B)~". Then,

there is a functor
Pg:WxIT|(X; Wxg) > W D(TA,;)/
which is uniquely defined by

Wy —> W and y = P(y) - By)

Proof (1) By Lemma 4.2, 7, takes values in exp(h’) and satisfies <7,(y' o y) =
Ay (y") ey (y) since it is the monodromy of the connection (4.2). Moreover, for any
v,we W, and y in IT; (X; Wxp)

Gy (V) =2 () w v P (vwy)
=2() 'w (Pwy) w (o (wy))
=ty ()W (e (wy))

as claimed.

(2) The restriction of &4 is a functor IT; (X; Wxg) —>’t\A,h/ for any % € M’ since
exp(h’) lies in the center of’t\A,hr. Moreover, it is W—equivariant if and only if d& =
o since, for any y € TT1;(X; Wxg) and w e W,

w N (P ywy) =w N (P(wy) - Bwy)) = Pa(y)(y(y)dBy()™) O
4.4 Natural transformations

Let 2, ' € M’ be such that B = &/ =d %', and
Py, 9/@ W x I (X; Wxg) > W KTA,!)/

be the corresponding functors. We shall consider natural isomorphisms &z = &4
which are given by a collection of elements ¢ = {cy }xewx,, With ¢y € exp(h’) C W x
ta, - The relation

Cy‘@%(wa V) = 1@0 /(wv J/)CX (44)

for any (w, y) : x — y implies in particular that c¢,,,, = w(cy,), and therefore that ¢
is uniquely determined by cy, € exp(h’).

Proposition An element ¢’ € exp(f_)’ ) determines an isomorphism & g = P g if and
only if B = B - dS"EE, where d"2€ € M/ is given by®

d "8G (y) = wy (B)w (€) !

forany y : wixg = waxg.

8Note that d(d51"¢%) = 1.
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Proof If € € exp(h’) determines an isomorphism c¢: &g = P4, then, for (id, y) :
x — y, the relation (4.4) gives #'(y) = %(y)cycx_l. Thus, for any y : wixg —
wrxg, one has B’ (y) = B(y)wr(€)w1(€)~", i.e., B = B - d"¢% . The converse
is clear. O

Remark The assignment (w,y) — <%,(y) can equivalently be thought of as a
2—cocycle on the groupoid W x TT;(X; Wxg) with values in exp(h), which is nor-
malised to vanish on W and I1;(X; Wxgp). Similarly, 4 and % can be thought of
as 1 and O—cocycles, respectively. Then, the result above is simply stating that the
equivalence classes of the representations Py for Z € M’ such that dZ = o are
controlled by the first cohomology group.

4.5 Presentation of IT{ (X; Wx()

Assume henceforth that the basepoint xg lies in :C. For each i € I, let y; be a fixed
elementary path in X from xg to s; (xg) above the wall o; = 0, i.e., is such that its real
part lies in the half—space {o; > 0}. For any i e I and w € W set

Yw,i = WYt WXxg —> WS;XQ

Note that IT; (X; Wxo) is generated by {yu.;}wew.ie1. For instance, the elementary
path from xq to s;xo below the wall ¢; = 0 is given by y&‘,—ll

We shall consider the following class of paths depending upon the choice of a
reduced expression of a given element v in W, which we refer to as minimal Tits
paths. Let s = (s, ..., s;,) be areduced expression of v, set v, =s;; - -+ 53, | <k <
¢, and denote by y;, the path

Yil Yoy.ip Yu,.i3 Yo,_yuig
X0 ———> U;Xp > UyX0 bV, xo — vyxo (4.5)

Then, a minimal Tits path is an element of the form y,, y = wy,, where w € W and
s is a reduced expression of some v € W. Note that two minimal Tits paths y,, ; and
Yw' s have the same endpoints if and only if w = w’ and s, s’ are reduced expressions
of the same element v. The following is due to van der Lek [36].

Theorem The homotopy relations in T1{(X; Wxq) are generated by the equivalence
relation identifying minimal Tits paths with the same endpoints.

Proof For the reader’s convenience, we provide a brief account of van der Lek’s
proof. The latter hinges on the combinatorial description of IT;(X; Wxp) in terms
of signed galleries in the root hyperplane arrangement (cf. [36, Thm. I-4.10]). A Tits
gallery is a sequence of chambers Cp, Cy, ..., C¢ such that, forany i =0, ...,£—1,(;
and C; are separated by a single hyperplane M;. Let 7—[?, H; be the halfspaces de-
termined by M;, with C; C ’H?’ and C;y1 C H; . Then, a signed gallery is a sequence
Cy'Cy? -+ C;  Cy, where Co, Cy, ..., Cy is a Tits gallery and the signs ¢; € {£} denote
a choice of the half—spaces ”;’-L,lL
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Chambers and signed galleries are interpreted, respectively, as the objects and the
morphisms of the category Gal(X; A). Note that Gal(X; A) is naturally endowed
with an action of W.? Then, IT; (X; Wxp) is isomorphic to the quotient of Gal(X; A)
by the following equivalence relations

e Cancel relations. For any two adjacent chambers Cp, Cj, the signed gallery
CSEC;FCO is equivalent to the gallery Co.

o Flip relations. Let C = CSIsz . 'Czé_ICg and D = DSI D? . ~DZ(_1D@ be two min-
imal signed galleries such that Cy = Dy and C; = D, are opposite chambers with
respect to a codimension 2 facet. Then, C and D are equivalent.

Note that, by [36, Rmk. I-5.3 and 5.4], the sequences of signs appearing in the flip re-
lations must satisfy €; =€, _, 41 and admit at most one change of sign. It follows that
is enough to consider only flip relations with €; = + for any i. Moreover, the min-
imal Tits galleries have a simple combinatorial description (cf. [36, Prop. 1I-2.16]).
Let Cyp be a chamber and wg € W the unique element such that Cy = woC. Then, for
any w € W, the minimal Tits gallery from Cp to wCp are in bijection with the re-
duced expressions of wy lwwo, i.e., if s = (si,,8,,...,Si,) is a reduced expression
of wy Yww, the sequence

Co,C1 = wowlwo_l(,’o, o, Co= wowgwo_lCo =wC(Cy

where w, = s;,5i, ...S;,, s a minimal Tits gallery. Clearly, every minimal Tits gallery
from Cp to WCy arises in this way and it is the image through wg of a minimal Tits
gallery starting in the fundamental chamber C.

Finally, the isomorphism between the two groupoids is induced by a W—equi-
variant full functor ¢ : Gal(X; A) — IT; (X; Wxo) mapping the fundamental chamber
to xo and the step one galleries C*s;C to the elementary paths )/l.i, where yl.+ =y

and y; = Vs, 11 (cf. [36, Rmk. II-3.10]). The result follows. O
4.6 Normalised cochains

Let M D M’ be the abelian group given by

M= Homgrpd(nl(X; Wxo), exp(h))

Lemma

(1) Let 28 € M be such that d % = 1. Then, A is uniquely determined by the values
B(yi) eexp(h),i el

(2) For any collection of complex numbers a = {a;}icy, there is a unique %By € M’
such that d %8, = 1 and PBa(y;) = exp(aity;).

9Indeed, note that, given a chamber C with a wall M, if H »;(C) denotes the half-space determined by M
and containing C, one has w(#H 7 (C)) = Hy,(ar) (w(C)) for any w € W. Therefore, W preserves the signs
of the signed galleries.
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Proof (1) follows from HB(y’ oy) = ZB(y’')%(y), and the fact that the relation d % =
1 reads B(wy) = w(B(y)).

(2) As above, the relation d %, = 1 implies that, for any w € W and i € I,
PBa(yw,i) = w(HBa(yi)). It is therefore sufficient to show that the assignment y,, ;
exp(a;tyq;) is constant on minimal Tits paths with the same endpoints.

Letw,ve W,s =(sj,,...,si,) areduced expression of v, and set Uy = Sip 0 Sig
k < £. Then,
14 4
e@a()/w,g) = 1_[ f@a(ykafl,ik) =w 1_[ exp(aiktkala,-k) =w 1_[ exp(aia,gta)
k=1 k=1 a>0
v la<0

where iy,s € I is the unique index k such that o = v, _ o, . To check that this is
independent of the reduced decomposition of v, it is sufficient to consider the case
when v is the longest element in a rank 2 Weyl group. If W is of Coxeter type A| x A1,
B, or Gy, this follows because a given positive root « is W—conjugate to a unique
simple root «;, namely the one of the same length of «. If W is of type A,, with
v = s515281 = 525152, the independence on the reduced decomposition amounts to the
identity

altou + azta] “+ap + aj totz = azt(h + aj tot1+012 + aztou
which clearly holds. The uniqueness of %, follows from (1). g
4.7 Triviality of the obstruction .o/

Theorem There is a unique % € M’ such that
A =dRB and By)=1
foranyiel.

Proof The uniqueness of 2 follows from Lemma 4.6. The relation d # = o/ together
with the normalisation of % are equivalent to the requirement that, for any w € W
and i € I, B(yy.i) = w(y (v;))~!. By 4.5, it is therefore sufficient to show that the
assignment yy, ; > u)(,;afw()/,-))’1 is constant on minimal Tits paths with the same
endpoints.

Let w,v e W, s = (sj,...,s;;) a reduced expression of v, set v, = s;, ---5j,
k < ¢, and retain the notation used in (4.5). Note that, since <7 satisfies the cocy-
cle identity (4.3), one has

4 4
[ [woro 1 (o, i)™ =T [w(os i)™ - wv_ (i)™
k=1 k=1

‘ -1
= w( () w (1"[ vy (Ao, (mk»)

k=1
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where the first equality follows from d.«7 = 1. Since 47, is the parallel transport of
the abelian connection (4.2), w(2#,(y;)) only depends on the endpoints of y;, and is
therefore independent of the reduced decomposition of v. For the second factor, we
can ignore w and consider

¢ ¢
[T i) = Toer | [ sie@o) - atxo) ™
k=1

k=1 ael;_1

where Iy = {a > 0|v,_,a < 0}. Since s;, fr—1 = Ix \ {e;,}, this is equal to

4

¢
1_[ l_[ a(x0) ™ - aj, (xg) "MK - 1_[ H a(xq) ~"w-1e

k=1aely k=lael,_;
¢
= [T ooy - ] e (xo)™"*e
acly k=1
It therefore remains to show that
¢
1 ,
A= H“ik (xg) 1%k = 1_[ Oliayi(xo)[“
k=1 aely

is independent of the reduced expression of v, where for each o € Iy, iy 5 € Lis the
unique index k such that o = v, _,a;, . As in the proof of part (2) of Lemma 4.6, this
reduces to the case when W is of type Ay, and v is the longest element of W. In that
case,s=(1,2,1),s = (2, 1,2), and'?

As = a1 (x0) 1z (x0) ™12 a1 (x0)"*2 = a2 (x0) "2 01 (x0) ™1+ 2003 (x9) "1 = Ay [
4.8 Monodromy representations of W x IT; (X; Wxy)

Let a = {a; };<1 be a collection of complex numbers, and By, B, € M’ the elements
determined by Lemma 4.6 and Theorem 4.7 respectively.

Since d Py =1 and d By = <7, it follows from Proposition 4.3 (2) that there is a
functor &, : W x I11 (X; Wxg) > W D(?A’h/ which is the identity on the morphisms
{wy}, and maps a path y € I1;(X; Wxp) to

Pay) =P (y) - By (v) - Ba(y)
Proposition For any collections a, &', regard P, Py as functors

W x TI1 (X; Wxo) — W X tap

10Theorem 4.7 and Lemma 4.6 reduce to the same verification because they are special cases of the more
general statement that, for any collection of complex numbers a = {q; }; <[, there is a (unique) %, € M’
such that d % = o/ and Ha(y;) = exp(a;to;)-
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via the embedding ?A,b/ C/t\A,b. Then, there is an isomorphism Py = Py deter-
mined by an element € € exp(h) (cf. 4.4).

Proof Since %,/ (y;) =1 for any i € I, Proposition 4.4 implies that it is enough to
find € € exp(h) such that By (y;) = Ba(y;) - 5i(€) - €~ for any i € L. If we assume
% = exp(c) for some c € b, this condition reduces to the set of equations «;(c) =
a; — a;, i €I, which always possess a solution since {«;} are linearly independent in
h*. O

4.9 Equivariance via resummation

We describe below an alternative way of restoring the equivariance of the universal
Casimir connection Vi by resumming the formal h'—valued 1-form on X given by

1 da

pol iy de

e
acAT

Definition A resummation of b is a closed, holomorphic 1-form » on X with values
in h D b’ such that
e Foranywe W,
da
w'h=b— Y —
acA i Nw A

so that V¢ — b is an integrable, W—equivariant connection.
e Foranyi €I, b has alogarithmic singularity on the hyperplane «;; = 0, with residue
to; /2.

The existence of a resummation is clear if g is finite—dimensional, and is proved
in the Appendix for g affine.'!

Proposition Let b be a resummation ofia\.

e The parallel transport of the connection Vi — b is W—equivariant, and given on
generators by

Py -p(vi) = Py, (vi) - expla; - ;)

for some complex numbers {a;}.
e The corresponding functor

Py.—p: W II1(X; Wxg) > W KTAJ)/

coincides with the functor P, given by Proposition 4.8, with a = {a; };c1-

H1n that case, a resummation only exists if it is taken with values in b rather than b’.
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Proof The W—equivariance of Py, _p, follows from that of Vi — b. Moreover, if % €
M is the parallel transport of the connection d — b then, for any y € I1;(X; Wxp),
Py, —p(y)isequal to Py, (v) - B(y). It follows that d B = o7, and therefore that #
is uniquely determined by the values %(y;) by Lemma 4.6. In particular, 4 coincides
with the cochain Z.,(y) - %p(y) of Proposition 4.8 provided that, for any i € I,
2(y;) is of the form exp(q; - t,,;) for some a; € C.

Let b; be the h—valued 1-form given by b; =b — %dlog a; - ty,; . Clearly, B(y;) =
Bi (i) - exp(umty, /2), where 2B; is the parallel transport of d — b;. Note that b; is
equivariant under s; and regular on Kero;. Let f be an exp(h)—valued fundamental
solution of df = b; f. It suffices to show that g(x) = f(s;x) - f(x)~! takes values in
exp(Cty,). g satisfies

dg(x) = (bi(six) — bi(x)) g(x) = (si —i)(bi(x))g(x)

where the second identity follows from the s;—equivariance of b;. Moreover, if x lies
on Ker;, then g(x) = 1, from which the conclusion follows. Il

Remark In the following, we shall need to further adjust the monodromy repre-
sentations 2, by elements in S%h. More precisely, one checks easily that, for
any W-invariant functions a, b, there is a unique solution of d% = 1 such that
B(yi) = explaity; + bi toi_), yielding a monodromy representation &, ,. Note that
Pap and Py y are equivalent if and only if b="1".

4.10 Monodromy representations of By

Denote by Z2,° the composition

P;l 77 ~
By =X/ W; [xo]) —% W x T11(X; Wxg) —23 W x Tag

where Py, is the restriction of the equivalence (4.1) to automorphisms of xo, and Z,
the functor given by Proposition 4.8.
The homomorphism £7,° is given by

Z(y) = (w, Za(¥))

where ¥ : [0, 1] — X is the unique lift of ¥ such that y(0) = xo, and w € W the
unique element such that y(1) = w_1)7 (0). Moreover, any representation p : W x
N by End (V) gives rise to an action of the braid group By on V.

4.11 Monodromy representations of By on category O™
The above mechanism is not appropriate to construct representations of By on in-
tegrable category O modules, since W does not act on them. To remedy this, we

introduce the following

Definition The extended holonomy algebra is the semidirect product By X TA’[),
where the braid group By acts on ta j through the morphism By — W.
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Monodromy of the Casimir connection

Then, we simply lift
P By > W x’t\A’h, to ﬁ;‘“ : By — Bw K?A,h’
and use instead a representation of By l></t\A b This yields the following.

Theorem Let a = {a;};c1 be a collection of complex numbers.

(1) The parallel transport of the universal Casimir connection Vi gives rise to a
homomorphism

@0 :Bw — Bw x’t\A)b/ given by b — (b, @a(g))
where b € T1; (X; Wxq) is the unique lift of b through x¢, and
Pab) = P(B) - By (b) - Ba(b)

is defined in 4.8.

(2) Let V be a category O integrable g—module, equipped with the action of Bw
given by triple exponentials (cf. Remark 3.4). The parallel transport of the
Casimir connection Vi gives rise to a a homomorphism ‘@;,Ov : Bw — GL(V)
given on generators by

PO =5 - P (i) - explaita;) (4.6)
4.12 Twisting

Let A be a resummation of the formal 1—form A (cf. 4.9). The representation @Cf’v
can be equivalently obtained from the following topological construction, twisting
the Bw—equivariant vector bundle V into a W-equivariant vector bundle V on X
(cf. 3.2). Since ﬁ/ is a quotient of the braid group By, the latter acts on the vector
bundle p*V on X. By definition, V is the quotient p*V /Py, where Py is the pure
braid group corresponding to W, and carries a residual action of W = By /Pw. As
in Proposition 4.9, it follows that @;,Ov coincides with the representation induced

through parallel transport by the twisted connection on V.

5 Diagrams and nested sets

In this section, we review the definition of (relative) nested sets on a diagram D
(cf. [9, 34]). We follow the exposition given in [2, Sect. 2].

5.1 Nested sets on diagrams
A diagram is an undirected graph D with no multiple edges or loops. A subdiagram
B C D is a full subgraph of D, that is, a graph consisting of a (possibly empty) subset

of vertices of D, together with all edges of D joining any two elements of it. We will
often identify B and its set of vertices, and denote by | B| the cardinality of the latter.
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Two subdiagrams Bj, By C D are orthogonal if they have no vertices in common,
and no two vertices i € By, j € By are joined by an edge in D. We denote by B LI
B5 the disjoint union of orthogonal subdiagrams. Two subdiagrams Bj, B, € ID are
compatible if either one contains the other or they are orthogonal.

A nested set on D is a collection H of pairwise compatible, connected subdiagrams
of D which contains the empty subdiagram and conn(ID), where conn(ID) denotes the
set of connected components of ID. It is easy to see that the cardinality of any maximal
nested set on D is equal to |D| 4 1.

Let Ns(ID) be the set of nested sets on D, and Mns(ID) that of maximal nested sets.
Every (maximal) nested set H on ID is uniquely determined by a collection {#;};_,
of (maximal) nested sets on the connected components D; of D. We therefore obtain
canonical identifications

r r
Ns(D) = ]_[ Ns(D;) and  Mns(D)= ]_[ Mns(D;).
i=1 i=1
5.2 Relative nested sets

If B’ € B C D are two subdiagrams of D, a nested set on B relative to B’ is a col-
lection of subdiagrams of B which contains conn(B) and conn(B’), and in which
every element is compatible with, but not properly contained in any of the connected
components of B’. We denote by Ns(B, B’) and Mns(B, B’) the collections of nested
sets and maximal nested sets on B relative to B’. In particular,

Ns(B, #) = Ns(B) and Mns(B, @) = Mns(B)

Relative nested sets are endowed with the following operations, which preserve
maximal nested sets.

(1) Vertical union. For any B” C B’ C B, there is an embedding
U:Ns(B, B') x Ns(B’, B") — Ns(B, B"),

given by the union of nested sets. Its image is the collection Nsg (B, B”) C
Ns(B, B") of relative nested sets which contain conn(B’).
(2) Orthogonal union. For any B| € By L B> 2 B}, there is a bijection

Ns(Bj, Bj) x Ns(Ba, By) — Ns(B; U By, B Ul B),
mapping (Hi1, Hz) = Hi U Hs.
5.3 Elementary sequences

Definition

(1) Let BP € C' CC C B, and F € Mns(B, B’) a maximal nested set such that
conn(C"), conn(C) C F. The truncation of F at (C,C’) is the element of
Mns(C, C’) defined by

F&={C"eF|C"CCandVC € conn(C"), C" ¢ C}
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We set FC = fg, and F = ]-'g.
(2) Let B'C B, and F, G € Mns(B, B’). The support and central support of the pair
(F, G) are the subdiagrams of B defined by

supp(F, G) = mgn{B/ CCCB|conn(C) S FNG, Fer=Gc}
3supp(F, G) = mcax{B/ CCCB|conn(C) S FNG, FC=¢6C)

(3) Two ordered pairs (F, G), (F',G') in Mns(B, B’) are equivalent if
F\NG=F\G and G\F=G\F
If this is the case, then
supp(F,G) =supp(F',G)  and  jsupp(F,G) = zsupp(F, G

(4) An ordered pair (F,G) in Mns(B, B’) is elementary if F and G differ only by
one element.

We shall make use of the following result [34, Prop. 3.26].!2
Proposition
(1) Forany B’ C B and F,G € Mns(B, B'), there is a sequence
F=Hi,.... H;=G
in Mns(B, B") and the following holds for any i

(Hi, Hi+1) is an elementary pair
FNGCH NHip

supp(H;, Hi+1) S supp(F, G)

For any component C of 3supp(F, G), either

C Lsupp(H;, Hiv1)  or  C Czsupp(Hi, Hit1)

) If (F,G), (F,G") are equivalent pairs in Mns(B, B'), then the corresponding
elementary sequences

F=Hi,...Hy=G and F =H .. . H,=G

can be chosen such thatl =m and, foranyi =1,...,1 — 1, (H;, Hit+1) is equiv-
alent to (H;, H;_ ).
6 Diagrammatic algebras

We review in this section the notions of diagrammatic and bidiagrammatic algebras,
which are essential to the definition of a Coxeter algebra in Sect. 7.

121 [34], this result is proved only for elements in Mns(D). However, it generalises immediately to the
case of relative nested sets.
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6.1 Diagrammatic algebras

Let D be a diagram. A diagrammatic structure of type D on an algebra A is a collec-
tion of subalgebras Ap C A indexed by subdiagrams of ID which is compatible with
nesting i.e., such that Agr € Ap if B’ C B, and [Ap,, Ap,] =0 if By L By [34]. We
formalise a slightly more general version as follows [2, Sect. 5].

Let P(D) the category whose objects are the subdiagrams of D, and morphisms
B’ — B the inclusions B’ C B. The union U of orthogonal diagrams is a (symmetric,
strict) partial tensor product on P(ID), with the empty diagram @ as unit object.

Recall that a lax monoidal structure on a functor F : C — D between two monoidal
categories is the datum of a morphism u : 1p — F(l¢) and a natural transformation
J:F()®p F(-) = F(-Qc -), which satisfies the cocycle identity and is compatible
with the unit objects through u. A monoidal structure is a lax monoidal structure with
u and J invertible.

Definition Let k be a commutative unital ring and (Alg(k), ®) the category of
k—algebras, with monoidal structure given by the tensor product and k as unit ob-
ject.

(1) A (lax) diagrammatic algebra is a (lax) monoidal functor P(D) — Alg(k).
(2) A morphism of (lax) diagrammatic algebras is a natural transformation of the
corresponding (lax) monoidal functors.

Note that for any lax monoidal functor F : P(D) — Alg(k) the morphism u : k —
F () is the unit of F(1).

6.2 Alternative description of diagrammatic algebras

The following gives a more concrete description of diagrammatic algebras [2, Prop.
5.14].

Proposition

(1) A lax diagrammatic algebra <f is the same as the datum of

e forany B C D, a k-algebra Ap
e for any B’ C B, a morphism of algebras igg : Apr — Ap
e forany By L By, a morphism of algebras jp,p, : Ap, ® Ap, = Ap,uB,

such that the following properties hold.

e Normalisation. For any B C D, igp =ida,
e Composition. For any B” C B’ C B, igp oipgr =igpr
e Naturality. For any B} € By L B> 2 B, the following diagram is commutative

jB]B
AB] ®A32 4 AB]I_I32

i i i
313{® BZBJ T BjuBy B{UB)
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e Associativity. For any pairwise orthogonal subdiagrams B, B>, B3, the fol-
lowing diagram is commutative:

. id ABIUBZ ® AB3 .
13132691*‘%7 JByuB, By
AB| ® ABZ ® AB3 AB]LIBzI.IB_z
idAmm /jBl'Bzu%
AB] ® ABQLIB:;

e Unit. For any B, jBQ)|AB®1 =idAB =jQ)B|1®AB.

(2) ois diagrammatic if and only if the morphisms j B, B, 4r€ invertible.
(3) A morphism of lax diagrammatic algebras ¢ : o/ — /' is the same as a collec-
tion of homomorphisms ¢p : Ay — A'p such that

gpoigg =i'ppopp
forany B’ C B, and
$B1UB, © Jp, B, = J B B, © 9B ® B,
forany By L B;.

Proof A functor <7 : P(D) — Alg(k) is the same as a collection of algebras A, =
</(B) and morphisms i, = /(B C B) which respect the composition of mor-
phisms in P(D). A lax monoidal structure on .27 is then a collection of morphisms
JB,B, which are natural with respect to the morphisms i, ,,, associative as in the
diagram above, and compatible with the unit u : k — A 0

6.3
Corollary Let <f be a lax diagrammatic algebra. For any By L B3,

JB,B, =MBOlipp Ripp,

where B = By U By, and mp denotes the product in Ap. In particular, the images of
Ap, and Ap, in Ag commute.

Proof For any (b1, b2) € Ap, x Ap,, one has

jBle(bl ® by) :jglgz(bl ® 1)j3132(1 ® by) = iBBl (bl)iggz(bz)

where the second equality follows by naturality and compatibility with the unit. [J

Remark 1t follows from Corollary 6.3 that the morphisms jp,, are redundant. In
fact, it is easy to see that the morphisms mp o ip B ®igp, satisfy the properties of
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naturality, associativity, and unit listed above. We shall nevertheless retain the col-
lection {jp,B,}B, 1B, as part of datum since their redundancy does not hold in the
bidiagrammatic case (cf. Corollary 6.5).

Example Let g be a diagrammatic Kac—-Moody algebra with Dynkin diagram D and
diagrammatic Lie subalgebras gp € g, B € D (cf. 2.4). Then, the universal envelop-
ing algebra A = Ug is a diagrammatic algebra with Ap = Ugp.

6.4 Bidiagrammatic algebras

We now refine a diagrammatic algebra by including, for any pair of subdiagrams
C C B, an algebra of invariants Ag which maps to Ap. In a number of relevant
examples, Ag is a subalgebra of the centraliser of i,-(Ac) in Ap (cf. Prop. 6.7),
though this does not hold in general (cf. Example 6.7).

Let P2(ID) be the category whose objects are pairs (C, B) of subdiagrams of D
such that C C B, and the morphisms (C’, B’) — (C, B) are given by inclusions of
the form C € C’' € B’ C B.

Two pairs (C1, By) and (C», By) are orthogonal if By L B;. The componentwise
union of orthogonal pairs is a (symmetric, strict) partial tensor product on P>(D),
with (4, @) as unit object.

Definition

(1) A (lax) bidiagrammatic algebra is a (lax) monoidal functor P, (D) — Alg(k).
(2) A morphism of (lax) bidiagrammatic algebras is a natural transformation of the
corresponding (lax) monoidal functors.

6.5 Alternative description of bidiagrammatic algebras

Proposition
(1) A lax bidiagrammatic algebra </ is the same as the datum of
e forany C C B C D, a k—-algebra Ag

e forany C C C' C B’ C B, a morphism of algebras igg: : Ag: — Ag

e forany C1 C By L By D Co, a morphism of algebras

-C1C2 . C1 Cz Cl|—|C2
‘]BIBZ : ABl ® A32 - ABILJBZ
such that the following properties hold.
e Normalisation. For any C C B C D, igg =id,c
B
e Composition. For any

CEC/ECUEBNEB/EB

. . rL oo . "
the following holds: lgg, ) lg,g/, = lgg,,
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e Naturality. For any
CiSCISBSBILB2B2C,2C
the following diagram is commutative

.C1Cy

C C / 172 cuc
1 2 1 2
B B BiuB,

iclcj iclcé iC1UC2C]UC§
BIB| ~ BB B{UB)B|UB)
U / ! !
ACI ®AC2 ACIuCZ
B| B el B{UB)
jo2
! p!
BB,

e Associativity. For any pairwise orthogonal pairs (C;, Bi), 1 <i <3,

.C1uCyC3 .C1Cy . _ .C1CLUC3 : .CrC3
JB,uBsB; © /BB, ®1dAg§ = JB,B,UB; OldA‘;; ®JB,B;

. C C (& CuCuC
as morphisms ABi ® ABs R AB? — ABiuBiuBi'
e Unit. Forany C C B, j$Y =id,c = ;7€ .
Y C S B, jpylager =1dag = Jypligag

(2) ois a bidiagrammatic algebra if and only if the morphisms j’s are invertible.
(3) A morphism of lax bidiagrammatic algebras ¢ : o/ — /' is a collection of ho-

momorphisms (pg : Ag — (A’)g such that

c _.cc .\CC’ c’
¢poigy =()pp ovp

forany C CC'C B’ C B, and

CiucCy .C1C2 _ .1\ C1C Ci Cr
(pBluBz 0]3132 - (-] )Ble O¢Bl ®(p32

forany C1 C By 1. B, 2 C».

The following is an analogue of Corollary 6.3. Note that, contrary to the diagram-
matic case, the datum of the morphisms j’s is essential.

Corollary Let o7 be a lax bidiagrammatic algebra. For any C1 C By L. By D C, set

CiCy _ .C1Cy CiCy _ .C1Cy
BB, = JBy By |A§i®‘ and 1 g, =Jp 5, |1®A§§
Then,
.C1Cy _  C1uCy C1Cr C1Cy
JB]BZ - mB]U32 OEBIBQ ®rBle

Ci1uC, . CuC,
where Mg g, denotes the product in Ap.LB,-
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6.6 Remarks

(1) There is a symmetric functor P(D) — P>(D) given by the assignment B +
(#, B). This induces a forgetful functor (—)° from the category of (lax) bidia-
grammatic algebras to that of (lax) diagrammatic algebras. Explicitly, this maps

¢ ;cc CiC 0
(A B”]BIIBZZ) <A B”JBlB ) where

0 __ 4® . -0 -0 _ 00
Ap=Ajg lBB’ =ipp and JB\B, = JByB,

(2) Conversely, there is a symmetric functor P> (D) — P(ID) given by the projection
(C, B) — B. This induces a trivial extension functor (—)"" from the category of
(lax) diagrammatic algebras to that of (lax) bidiagrammatic algebras. This maps

/ 7 riv riv riv cC
(AB’ZBB/’JBIBQ) ((At )G, G )BB ("™ 5 2) where

trivy C t - trivy C1C2 .
(A™)p=Ap (i “V)BB’ =ligp G W)B|B2 =JB B,

(3) Note that, for any diagrammatic algebra 7, (/") = /.
6.7 Invariant subalgebras
If &/ = (Ag.igp jBle) is a diagrammatic algebra, and C C B, we denote by

AAC lacAg|la,igc(Ac)1=0}

the centraliser of i ;- (Ac) in A . The following result shows that .27is endowed with
a canonical bidiagrammatic structure.

Proposition Set
C
(A")p =A% C Ap

b CC .
(i )BB/ZZBB/|AAC,

B/

()55 = Jn 5]
BBy = JB B! Ac, _ Ac
A311®A322

Then o/° = ((A )B, (lb)BB/ (j )2132) is a bidiagrammatic algebra.

Proof Tt is enough to check that the morphisms

L .CC’ c’ C C,C: CucC
(g (AN — (A5 and (M55 (ADF @ (AN — (ANg 15

are well-defined. The other properties are clear.
Note that iBB/(Ag,C/) C A/;C/, since igp oipc’ =ipgc, and Agc/ C Agc, since
icic(Ac) € Acr. Tt follows that (i°) 55, is well-defined. Next, if C; € B; L B, 2 C;
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and B = B1 U B;, C = C1U (3, the identity jBBl oiClBl ®icsz = iBCOjclcz implies
that

A A A- ®A
jm&G4Q®AQ)=Mﬁ @ =y

The morphisms (j b)g:gﬁ are therefore well-defined and invertible. O

Remark Note that the proof only relies on the surjectivity of the morphisms j BBy
but not on their injectivity.

Example Let g be a diagrammatic Kac—-Moody algebra (cf. 2.4 and Example 6.3).
Then, for any n > 0, Ug®" is bidiagrammatic with respect to the subalgebras
(Ugg")9c,C < BCD.

7 Coxeter algebras

In this section, we review the definition of a Coxeter structure on a bidiagrammatic
algebra following [34, 2].

7.1 Generalised braid groups

Definition A labeling m of the diagram I is the assignment of an integer m;; €
{2,3,...,00} toany pair i, j of distinct vertices of ID such that

mij=mj; and m;j =2 if i and j are orthogonal

The generalised braid group corresponding to (D, m) is the group B% generated by
th elements .%;, i € D, with relations

S L Sy =S S S (7.1)

mij mjj

Remark Let A be a symmetrisable Cartan matrix, D its Dynkin diagram, and m;; the
order of the element s;s; in the Weyl group W. We shall refer to Dyn = {ord(s;s;)}
as the standard labeling on the Dynkin diagram D. Then, Bﬂ%y” = By.
7.2 Coxeter algebras
Let o = (Ag, i gg,/ , jg,,g,/,,) be a (lax) bidiagrammatic algebra such that
AC C A% forany CCB (7.2
B =48 y = 2)

Definition

(1) A pre—Coxeter structure (Y rg, af_-,) on 7 consists of the following data.
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(a) Generalised associators. For any B’ C B and F, G € Mns(B, B’), an invert-
ible element Ygr € Ag satisfying the following property.

e Horizontal factorisation. For any F, G, H € Mns(B, B'),
Tyr ="Tug - Ygr
In particular, Yrr=1and Y rg = Té}
e Orthogonal factorisation. For any B} € By L B> 2 B, and pairs
(G1,G2), (Fi, F2) € Mns(By, B}) x Mns(B>, B))
= Mns(B; U By, Bj UB))

the following holds

! p!

BB
Y616 (F. Fo) = Jp 5, (Y617 ® Yg, 7,)

(b) Vertical joins. For any B” C B’ C B, F € Mns(B, B’), and F’ € Mns(B’,
B’’), an invertible element af, €A g satisfying the following properties.

e Normalisation. For any F € Mns(B, B’),

aj;,:l:ag_-

o Compatibility with Y (vertical Y—factorisation). For any F, G € Mns(B,
B’) and F',G’' € Mns(B’, B"),
YGug)FuF) - 3% —ag/ 5 (gr) il B (Ygr)

e Associativity. For any B” C B” C B’ C B, F € Mns(B,B’), F' €
Mns(B’, B”), and F" € Mns(B”, B"),

4 " " i 4
a:;”U.F B (a]:/) —a]://U]:/ lg g/ a]://)

e Orthogonal factorisation. For any
B/ CB CB LB,2B)2B)
(F1, F2) € Mns(By, B}) x Mns(B2, BS)
(F1, F3) € Mns(By, BY) x Mns(Bj, BY)
the following holds

(F1,F2) B”Bﬁl

AFLF) = BB (a]-'/ ®a]-")

(2) Let m be a labelling of D. A Coxeter structure (Y rg, aﬁ,, S;) of type (D, m) on
o/ consists of a pre-Coxeter structure (Y rg, ag:_-,) with the following additional

data.
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(a) Local monodromies. For any vertex i of D, an invertible element S; € A?
satisfying the following property.

e Braid relations. For any B € D, i # j € B and maximal nested sets [i],
K[j] on B with {i} € K[i], {j} € £[/], the following holds in A%

Ad (i) (87) - ST - Ad (i) (S7) -+ =S - Ad (i) () - S} -+ (7.3)

Klil; . i
where Yj; = Y[ 1K1 s’ = Ad(alc[z_],.)(Sl.), and KC[i]; and K[i]" are, re-
spectively, the lower and upper truncations of K[i] at {i}.

Remark Whenever clear from the context, we may omit the reference to the datum
(D, m) from the terminology.

7.3 Representations of generalised braid groups

Proposition Let <7 be a Coxeter algebra.

(1) There is a family of representations of generalised braid groups
AF By — (A%~

where B C D and F € Mns(B), which is uniquely determined by the conditions
F. o
(@) Ar(F) =Ad@)(S) iffi} e F.
(b) Ag =Ad(Ygr)oArr.
(2) For any B’ C B, F € Mns(B) with conn(B’) C F, and F' € Mns(B’), the dia-
gram

A
By — (Ap*

T T

By —5r (A)"
where the left vertical arrow is the canonical inclusion B%, - B% and
LPF= Ad(ai‘if/ Y s 7)
is commutative.

Proof (1) For any i € D, we choose K[i] € Mns(B) such that {i} € K[i]. We claim
that the assignment

AF(AD) = Ad(Y i) (ST)
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where Sl.a = Ad(aggf
Moreover, this is independent of the chosen maximal nested sets /C[i]’s. Finally,
we observe that the morphisms {A £} remns(p) satisfy the conditions (a), (b) and are
uniquely determined by them.

)(S;), provides a morphism of groups Ar : B% — (Ag)x.

e Ar is a morphism of groups. We shall prove that the braid relations hold, i.e.,
Ad (Yrkr) (57) - Ad (Trxrj) (57)) - Ad (Yrx) (7)) -+ =

= Ad (Triij) (S7)) - Ad (Tricqn) (7)) - Ad (Tricrj) (7)) -+

mjj

(7.4)

By horizontal factorisation Yo 7Y i) = 1 and Yo s Y i = YirjiK0-
Therefore, the equations (7.4) and (7.3) are equivalent and obtained from each
other through Ad(Yx;17)-

e Ax does not depend on the choice of K[i]’s. Indeed, let K'[i] € Mns(B) be such
that {i} € K'[i]. Thus, K'[i]' = K[i]’ and, by vertical factorisation,

Klil; K'li);
TRAIKH " Ay = 2oy TR,
Since Yoy ki, € Al it follows that Ad(Yrpiy, ki1, ) (Si) = Si, and therefore
Klil; Klil,
Ad(TrrciDAd(@, D (S =Ad(TFcD AT - a ;) (Si)
K'li);
=Ad(YrrpAd@g, o Tion ki) (50)
K'li);
=Ad(Y Fici)Ad () ()
where the first and second equalities follows, respectively, from horizontal and
vertical factorisations.
o The morphisms {AF} FeMns(p) satisfy the conditions (a), (b). Let F, G € Mns(B).
Then, Y = YgrYFi) and we get

Ad(Tgr) o A x(F) = Ad(Ygr - Yrip)(S;) = Ad(Ygii)(S)) = Ag(-H)

Moreover, if {i} € F, we can choose K[i] = F, so that Ar(%}) = S? =
F
Ad(@)(S)).
o The morphisms {AF}remnss) are uniquely determined by (a) and (b). Let

{AF}FeMns(p) be a collection of morphisms of groups satisfying (a), (b). Then,
if we choose G = K[i], we get

~ b ~ a
7 (7 2 AT i) 0 Ay (%) L Ad(Yrki) (S = A7 ()
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(2) Let B’ C B, F € Mns(B) with conn(B’) € F,and F' € Mns(B’). Forany i € B,
let £'[i] € Mns(B’) be such that {i} € K'[i] and set K[i] = K'[i]]U F, € Mns(B),
so that K[i]5" = K'[i] and K[i], = F,. Note that K[i]; = K'[i]; UF, and K[i] =
K'[i]. Thus,

K[l] ]:B’ ]:B’ IC [l]

Ay AR, T AR ey
and one has

Klil;

AF (S =Ad(YFKi - ay ')(S)

Kul, Ty
Al ()

= Ad(TFKn) - 2y

TR

f
— B’
= Ad(Yriiit - 3y B

F ’
_Ad(T(f JUFB)(F, ule;])'a}Cf;[i] ,C/ )(S)

l

=Ad(a ]__B/ Yrw lz)(S)

—Ad( ]:B’ T]:B’]:/ YrKri - aIC/[]i)(Sl)

= Ad(a T]:B/]:/)()L]:’ )

o

F / [ .
where the second equality follows by the invariance property a ,Cf*[i]i € A%} , the third

one by the associativity of a, the fourth one by construction, the fifth one by vertical
factorisation, and the sixth one by horizontal factorisation. O

7.4 Twisting and gauging of Coxeter structures

Definition

(1) A rwist u = {ur} in .o/is the datum, for any F € Mns(B, B’), of an invertible ele-
ment ur € A% such that, if B] € By L By 2 B}, (Fi, F2) € Mns(B; U By, Bj U
Bl)

2 £

.B'B.
UWr,F) = fBlle2 (ur, ®ur,)

(2) The twisting of a Coxeter structure C = (Y g, a;, ;) by a twist u = {uF} is
the Coxeter structure

= ((YFGus @Fus (S)u)
given by
(Yrghu =uz - Trg-ug
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(af_-/),, = u;_-luf . a; CUF - UF
(S =up) - S; - upiy
We denote by .o, the Coxeter algebra with twisted structure C,,.
(3) A gauge a = {ap} in <7 consists of an invertible element ap € Ag forany B C D,
satisfying
ap,uB, = jgfgj (ap, ®ap,)
(4) The gauging of a twist u = (ur) by a is the twist u, = ((ur),) given by
ur)a=i8Eap) ur-ilBap™
The following is standard.
Proposition Let C be a Coxeter structure on <, u a twist and a a gauge. Then,

C, = C,,. Moreover, the representations of the braid group )L(]:_- and XC”, arising,
respectively, from C and C,,, are equivalent.

7.5 Strict Coxeter structures

Let o/ be a Coxeter algebra. We say that

o o7is Y—strict if Yrg =1 for any F, G € Mns(B, B’)
o is a—strict if a; =1 for any F € Mns(B, B’) and 7' € Mns(B’, B”)

The following result shows that we can always restrict to either of these cases.

Proposition

(1) o is twist equivalent to a Y—strict Coxeter algebra.
(2) is canonically twist equivalent to an a—strict Coxeter algebra.

Thanks to the condition (7.2), the proof is identical to that of [2, Prop. 9.10] and
therefore omitted.

Remark Note, however, that the latter result cannot be used to obtain a Coxeter struc-
ture which is both Y—strict and a—strict (cf. [2, Sect. 9.]).

8 Canonical fundamental solutions

We generalise to an arbitrary root system the construction of the fundamental solu-
tions of the universal Casimir connection due to Cherednik [7, 8] and De Concini—
Procesi [9]. More precisely, it is enough to observe that, by restriction to the truncated
root system AS" (cf. 3.3 and Remark 3.6), the corresponding hyperplane arrange-
ment is finite. Thus, the theory developed in [9] (see also [34, Sect. 1]) applies and
can be extended by limit to the full root system. In the following, we describe the
construction of the fundamental solutions in this context, omitting all proofs, which
can be recovered verbatim from [9, 34].
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8.1 Diagrammatic structure on tp

For any subdiagram B C D, we denote by A g the corresponding root subsystem, and
by tp the holonomy algebra ta ,. For any B’ C B, the inclusion Ag' C Ap induces
amorphism igp' : tpr — tp, mapping t, € tp to the same symbol in tp.

Lemma The assignment

_ t, ifa € AB/’+
Pty) = { 0  otherwise

extends to a morphism of algebras pp'g :tg — tp such that pgp oipp =idy,, . In
particular, igp' is injective.

Proof 1t is enough to show that pp g preserves the tf—relations

t,, ) tg | =0

Bevw

where o € Ap  and W € Ap is a subsystem of rank 2, which contains «. Denote by
X the left-hand side, and consider the following cases.

o Ifa¢ AB’,+, then ppg(X)=0.

o If WN Ap ={+a}, then ppp(X) =[t,, t,]1=0.

e If W N Ap contains at least two linearly independent elements, then W C A/, and
the tr—relations in tg imply that pp/g(X) =0. U

Finally, note that, if By, B, C B with B; L B;, multiplication induces an isomor-
phism of algebras j; 5 :tp ®tp, — tp,up,, with inverse given by reordering. Thus,
we have the following!?

Proposition t = {tp} is a split diagrammatic algebra with respect to the structural
morphisms described above.

Remark For any B’ C B, let tgp be the centraliser of tg/ in tg. Then, by Proposi-
tion 6.7, £ = {tgp'} is a bidiagrammatic algebra.

IfA= @1\@0 Ay is an N—graded algebra, we denote by A= ]_[N>0 Ap the com-
pletion of A with respect to its grading. For any B C D, let t be the completion of
tp with respect to the grading deg(t,) =1, ¢ € Ap 4, and”c\g g’ the centraliser of tp
in ’t\g, B’ C B. The results above extend to completions, in the sense that t = {,f\g}

13Henceforth, for simplicity, we will denote a (bi)diagrammatic algebra by the collection of its subalgebras
only, omitting the structural morphisms 7 and ;.
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and © = {tgp} are naturally lax diagrammatic and bidiagrammatic algebras, respec-
tively. !

Henceforth, we will identify tp (resp./t\B) with the subalgebra in t (resp./t\) topo-
logically generated by the elements t,, « € Ap C A.

8.2 Commutation relations

We say that «, B € A, are strongly orthogonal, and we write o Lp S, if the root
system generated by « and B is {+«, ==8}. Note that this condition is indeed stronger
than « and B being orthogonal with respect to the inner product on h*. However, it is
equivalently stated in terms of orthogonality of subdiagrams, i.e., « Lp B if and only
if supp(«) L supp(B). Therefore, with a slight abuse of notation and terminology,
in the following we shall simply say that two roots are orthogonal and write o L .
Moreover, we write o L B if supp(«) L B.
For any B C D, set

= Y teety”  and  tz= Y t,etp

<
aeAT" acly

supp(a)C B supp(a)SB

Proposition The following holds.

(1) If By L B, then [tBl,th] =0.
(2) IfaeAp 4, then [t,,t5]=0.
(3) If B'C B, then [tg,,t5] =0.

Analogous results hold for the elements tg") in tg").

Proof (1) is clear and (3) follows from (2). Note that, if B; L. B>,then t BB, =t +

tp, . Therefore, it is enough to prove [t t;] =0 for B connected and @ € Ap, 1.
Let C, be the set of equivalence classes in Ap 4 \ {a} with respect to the equiva-
lence relation given by B ~ y if they span the same line in b% /(o). Then,

tp=t,+ Y Y 1ty

[BleCq BelB]

By construction, the span of « and {8 | 8 € [B]} is two—dimensional, therefore

[tertgl= Y |t D ts|=0

[81eCq BelB]

where the second equality follows from (3.7). The case t"™ is identical. g

14The isomorphism j BBy’ tp, ® tp, — tp,up, extends to an injective, but not surjective, morphism
-~ - ~ P . ~ e . . .
i By" tp, ®tp, — tp LB, Itis clear, however, that t (resp. t°) is diagrammatic (resp. bidiagrammatic)

with respect to the completed tensor product &.
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Remark Note that the results above hold in greater generality. Let S € A be a subset
of positive roots, (S) C h* the subspace spanned by S. Set Ag . = (S) N A4 and

>t

Bels 1

Then, if « € Ag 4, one has [t,, t]=0.
8.3 Blow-up coordinates on X

Let F € Mns(ID) be a maximal nested set on . For any @ € A, let pr, be the
minimal element B € F such that supp(a) C B. Then pr , establishes a one to one
correspondence between the simple roots {«, ..., «,} and the elements in F. For
any B € F, we denote by o r p the simple root corresponding to B under pr ,. For
any B € F, we denote by cr p the minimal element in F which contains properly B.
Forany B € F,set xpg =) ;. ;. Then {xp} pcr defines a set of coordinates on
he. Set Ur = C¥ with coordinates {ur p}per.Let p: Ur — Xbe the map defined
on the coordinates {xp} by xp = [[gccecruF,c. Then, p is birational with inverse

XB if B is maximal in F

U p= .
7B {xB/xCF_B otherwise

Forany o € Ay set Pry = - .
PF.a

Remark In the case of affine root systems, it is convenient to impose xp = Zi a;a; =
8.

8.4 Solutions of the Casimir connection

Following [7-9], we construct a collection of fundamental solutions of the universal
Casimir connection (3.8), indexed by maximal nested sets on D.

Let m > 0. For any F € Mns(D) and B € F, set R(an)B = ZaeAf’” t,. Hence,
PF.a=B
(m) (m) (m) dxB £ dur g
0= 2 =2 REe ad D RE,TE=) 6l
aeAS CeF BeF BeF
+ CCB
supp(e)SB
and finally
(m) (m) (m) (m)
tB _ chBR}'c R]—‘C R]—'C
up = =1 [Tuss =11+
BeF BeF CeF B2C CeF

Let Cc be the complexification of the fundamental Weyl chamber. For any F €
Mns(D), let Z/{;-" ) C U be the complement of the zeros of the polynomials Pr ,,

o e Afm, and D™ C Z/lg—") N Cc a simply connected set with pt r = Nperlur p =
0} € D, We have the following
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Theorem

(1) There is a unique holomorphic function Hg") . pm —>?Ar") such that

H.;_Z")(pt]:) = 1 and, for every determination of log(xp), B € F, the multival-
ued function

n)

( (m)
(m) _ yy(m) REp _ pp0m) tp
Vy'=Hg ||xB =Hg ll“f,B
BeF BeF

is a solution of the holonomy equation dG = A" G, where

A = Z t,dlog(a)

<m
acA}

(2) The sequence of solﬂtions {\IJ.(;P) Ym0 uniquely determines a multivalued function
W~ with values in ta, satisfying the holonomy equation dG = AG, where A =

Za€A+ t,dlog(a).
8.5 Asymptotics of the canonical solutions at infinity

We conclude this section with the study of the asymptotic behavior of fundamental
solution W r as o; — oo with {i} € F, which is a straightforward generalisation of
[35, Prop. 4.5, 4.6].

8.5.1

Fixi € I,let A C A be the root system generated by the simple roots {«;} j4, b C b
the corresponding essential Cartan subalgebra, and tx C ta the holonomy algebra.

The inclusion of root systems A C A gives rise to a projection 7 : h® — Ee deter-
mined by the requirement that a(7 (h)) = at(h) for any o € A. The kernel of 7 is the
line CA;” spanned by the ith fundamental coweight of h. We shall coordinatise the
fibres of 7 by restricting the simple root ¢; to them. This amounts to trivialising the
fibration 7 : h¢ — Be as h®* ~ C x Ee via («;, ). The inverse of this isomorphism
is given by (w, ) — wi; +1(jx), where 1 : b — b is the embedding with image
ker(a;) given by

l(?) = ; — (E))\l\/
Let
t=>t, and E= ) t,
0[6A+ O(EZ+

be the universal Casimir operators in ta and tx, respectively.
SetD=D\{i}. Fixx € Ee = h%, and consider the fiber of 77 : h¢ — He at (. Since
the restriction of & € A to 7~} (@) is equal to a(kiv)ai + a(1(w)), the restriction of
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the Casimir connection Vi to 7~ () is equal to

dOl,'
Vig=d— ) t
L o — Wa o
aeAL\A

where wy = —a (1 (1)) /a(r)). Set Ry = max{|wg HaeA\Z'

Proposition

(1) Foranyx € Ee, there is a unique holomorphic function
Hoo : {w € P |w| > Rz} — ta

such that Hyo goo) =1 and, for any determination of log(«;), the function Yoo =

t—t .
Heo(a;) -a;  satisfies

d .
A=Y al t, Too

@ — Wy
(XEA+\A

(2) The function Hxo (0, 1) is h_olomorphic on the simply—connected domain Dy, =
{(w, )| |lw| > Rz} C P! x b and, as a function on Duo, Yoo satisfies

da da
dYoo= Y —t Moo = Yoo Z —t
aeAy aely

8.5.2

Let F be a maximal nested set on D, set F = F\{D} and a; = arp, i.e., ; is the
only simple root whose support is not contained in the maximal elements of F. Let

Wr:C—ta and  Wz:C—tg

be the fundamental solutions of the Casimir connection for A and A = Ap\; corre-
sponding to F, F respectively, with blow-up coordinates {xz}cp (cf. 8.3). Regard
W= as being defined on C via the projection 7 : h° — Ee. The result below expresses
Wz in terms of W= and the solution Y.

Proposition Wr = Yo, - W+ x]D)()LiV)t_E.

Clearly, the same results holds for any ¥ r with F € Mns(B) and B C D.

9 A Coxeter structure from holonomy

We prove that the monodromy of the Casimir connection defines a Coxeter structure
on the holonomy algebra ta of the root arrangement in .
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9.1 De Concini-Procesi associators

Let F, G € Mns(ID) be two maximal nested sets and W, Wg be the corresponding
fundamental solutions given by Theorem 8.4. Define the De Concini—Procesi associ-
ator T;g to be the invertible element of tA defined by

Wg(x) =Vr(x) Trg

where x lies in the fundamental Weyl chamber. The following summarises the essen-
tial properties of these associators.

Theorem Let F, G, H € Mns(D). Then, the following properties hold.

(1) Transitivity: T ¥ = Y} Tyg-
’t‘asupp(f,g)
supp(F.G) *

(3) Forgetfulness: T}V-g = Tv,g, whenever (F,G), (F',G') are equivalent.

(2) Support: T;g €

Proof Transitivity follows directly from the definition of T]Y-g. The proof of the prop-
erties of support and forgetfulness is identical to those in [9, Thm. 3.6] and [34, Thm.
1.33, Prop. 1.38] and is therefore omitted. O

9.2 Pre-Coxeter structure

By Proposition 8.1, the holonomy algebra gives rise to a diagrammatic algebra t =
{tp} and a bidiagrammatic algebra t> = {tgp/}, where tzp' C tp is the centraliser of
tp’. Both structures are compatible with the grading, and we denote by/t\(resp./fb) the
’I\aX diagrimmatic (resp. lax bidiagrammatic) algebras corresponding to the algebras
tp (resp. tpp).

Choose M € Mns(DD, B), M’ € Mns(B’), and let

(=% - Mns(B, B)) — Mns(DD)

be the map defined by .7-"/\/‘,/1[, = MUFUM. For any relative maximal nested

sets F,G € Mns(B, B), we set T;Q = T;M gM > which we also refer to as a De
M p

Concini—Procesi associator, with a slight abuse of terminology. Note that, by the for-

getfulness property, T]V_-g is independent of the choice of M and M/, and it is there-

fore well-defined. Moreover, by the support property, T]v_-g is an invertible element
intgp. Finally, the following holds by construction.

(a) For any B” C B” C B'C B, M € Mns(B, B"), F,G € Mns(B’, B"), M" €
MnS(B//, B///),

v ANV
T Mmurumrymugumn = Trg

(b) Forany B C B L C,

v AV
TFuencuicy = Trg
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Theorem The collection of De Concini—Procesi associators T]v_-g, for any F,G €
Mns(B, B) with B C B C D, defines an a—strict pre—Coxeter structure ont.

Proof We shall show that the associators T]Y-g satisfy the requirements of Defini-
tion 7.2.

e Horizontal factorisation. This follows from transitivity.
e Vertical factorisation. For any B” C B’ C B,

F.G e Mns(B, B) and F',G e Mns(B’, B")
one has
v _ v \v _~V v
TgugnFur) = Yguanrugy " Yrugnrur = Yor Yo r

where the first identity follows from transitivity and the second one from (a) above.
Note that, since Tgv 7 €tpp and Tg, 7 € tpr, the order of factors does not matter.
e Orthogonal factorisation. For any B] € By L B, D B}, and pairs

(G1,G2), (F1, F2) € Mns(By, B]) x Mns(Bz, B5) = Mns(B; U By, B U B5)

one has (G, G2) = (G, B2) U (B, o) and (F1, F2) = (F1, B2) U (B], F2), hence

\Y% _ v v _ v v
Y G1.6)F .7 = YG.80F.8) " Y8607 = Yar Yo.m

where the first identity follows from vertical factorisation and the second one from
(b) above. Therefore, orthogonal factorisation holds. Note that, since [tp,, tg,] =0,
the order of factors does not matter. O

9.3 Coxeter structure on By X ?A,h

As for ta and ?A, the extended holonomy algebra gives rise to a bidiagrammatic
algebra, which we denote by By MTA,;] and is described by the collection of algebras

(Bw K?A,h)BB, = Bw, X (ta pp®Shp)
where B € B C D, b, =span{h; |i € B}, Wp = (s; | i € B) € W, and the action

of By, is given by Definition 4.11. Indeed, it is enough to observe that, if B" L. B”,
then tp/ is pointwise fixed by Wp~. Finally, we have the following

Theorem

(1) The De Concini—Procesi associators TJY_-g E’t\A and the elements
SY =.% - exp(niky,) € By, X (ta, i ®Sh;)

where ko; =t +1o; /2 define an a—strict Coxeter structure C on By K/{A,b with
respect to the standard labelling on D (i.e., m;; = ord(s;s;) in W).
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(2) The action of By arising from C coincides with the monodromy of the universal
Casimir connection from Sect. 4, given in terms of the fundamental solutions V r.

Proof Let X 2 X be the universal cover of X, fixaXxpe X which lifts xp € Xand a
fundamental solution G of p*V; valuedin ta y.Let ug(y) € ta y be its monodromy
along the path y. Then, by Corollary 4.11 (1), for any W—invariant function a, we

obtain a representation uﬁG 2 W x II1(X; Wxo) — Bw K/{A’h, given, for any y :
x0 — wlxg, by

Woa (W, v) = (P(W, ), hG.a(y)

where uG.a(y) = uG(y) B (v)Ba(y).

Let 7 € Mns(B) with {i} € F. Then, by choosing G = W and a such that a; =
mt, it follows from (4.6) that y,i,f’m(si, yi) = Sl.v. Moreover, if G € Mns(B) with
{j} € G, then

Wap 5 V) =g - 1y (57, 7)) - (TF0) ™ = Ad(TE)(S))

In particular, the elements §IV and the associators T]Y-g satisfy the braid relations
(7.3) and define a Coxeter structure on By MTAJ). The results follow. O

Remark Following Remark 4.8 (2), we further adjust the monodromy operators
by setting SY =S - exp(m:d; 12 /4). This yields another a—strict Coxeter struc-
ture C = (T]V_-g, Siv ) on By X ?A’h, encoding the monodromy representation

ft
LS TR TR

supported on ta, the generalised braid relations (7.3) still hold. ‘We shall show in
Sect. 16 that, given a representation V of g, the operator Sl.v (resp. SiV ) specialises on
V to the local monodromy operators ; - exp(rwth - C;/2) (resp. 5 - exp(meh - IC, /2))

) Indeed, it is enough to observe that, since the associators T]V_-g are

where C; denote the Casimir operator of U 5[% (resp. K, =C; — di_ltgi /2).

Part II. The KZ-Casimir connection
10 Cosimplicial diagrammatic algebras

We describe (bi)diagrammatic algebras endowed with a compatible cosimplicial
structure.

10.1 Cosimplicial algebras
In the following, we shall consider a number of algebras, which are not bialgebras,
but fit instead in the more general setting of cosimplicial algebras.

A cosimplicial algebra is a cosimplicial object in the category of algebras, i.e., the
datum

A A = Al =5 At A

@ Springer



Monodromy of the Casimir connection

of a collection of algebras {A"},>0 endowed with face morphisms dl.’”’1 AT >
A" i =0,1,...,n+ 1, and degeneration morphisms 8;’ AT > AL =
1, ..., n, such that

d’-H_ld-n :d{H-ldr_z X (i <)) dinsi;—l <]
S T and Mgt = id i=j,j+1
811_8{1+1 zgglgn_+l (i <)) J i
jCi i “j+1 ST din—lgy i>j+1
Remarks
(1) For any x € A", we write x1 __it1...np1 =d" ' (x) e A" withi=1,...,n
y seendi+ 1, n+ i

x € A" the element d"1™ o

Moreover, for any m > 0, we denote by x it

n+m—1 n+1
dnlo o d ().

(2) For any n > 1, we consider denote by d™ : A — A” the canonical morphism
recursively defined by dV) =id 41 and d" = d} 0 d"~ V.

.....

Henceforth, we shall further assume that A® is endowed with an action of the
symmetric group in each degree such that, forany x €e A7 and 1 <i <n—1,

(ii+1)-d;’+1(x) j<i
Gi+1i+2)-df ) j=i
Gi+2i+1)-d(x) j=i+]1
(i+1i+2)-d;’+1(x) i>i+1

d;.’“((i i+1)-x)=

and
(ii+l)~8’;(x) j<i
) =i
el (x) j=i+1
(i—li)-sjf(x) j>i+1

8;5((ii+1)~x):

Forx € A" and 0 € 6,,, we write X (1),....0(n) =0 - X.

.....

10.2 Examples

Let A be a bialgebra over a base ring k with coproduct A : A — A®? and counit
& : A — k. We provide two basic examples of cosimplicial algebras associated to A.

(1) The tower of algebras A" = A®" n>0,isa cosimplicial algebra with face mor-

phisms
1®x i=0
A" ) =1id¥'@A®id® () 1<i<n
x®1 i=n+1

and degeneration morphisms
el (x) =idF ' ®e ®id$" ' (x)

where x € A®". In particular, d? = A and ¢ =¢.
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(2) Let C € Rep(A) be a tensor subcategory, and f&n . c®n _, Vect the n—fold for-
getful functor given by f g"(Vl, V)=V ®---®V,. The tower of algebras

A" = End (fg”) gives rise to a cosimplicial algebra with face and degenera-

tion morphisms induced by the tensor product and the unit of C and defined as
follows.

e The face morphisms dl.”Jrl : End (f'g") — End (f&"“), i=0,....,n+1, are
given by

1
@orx: FX) — F0®1 —s FX)®1 —— f(X)

1
@y FX) — 185X —s 1F(X) —— f(X)

where 1 is the trivial module, X € C, ¢ € k, and,

1 d®¢x,,... X, i=0

n+ .

(d; OV X1, Xnt = | PX1, Xi®Xig, Xy 1 SISH
©xy,..x, ®id i=n+1

Where<p€End<fg"),Xj eC,j=1,....,n+1.
e The degeneration morphisms 8;’ : End (f&”) — End (fx’l_l), for i =1,
..., n,are

n _
(‘91' OX1, X1 = PXpo Xi 1,1 Xi e Xy

whereweEnd(f&”),XjEC,j=1,~~-,n—1-

Remark Note that there is a natural morphisms of cosimplicial algebras A®* — A°*,
so that the latter can be regarded as a topological completion of the former. However,
in Sects. 12.2 and 19.9, we shall consider certain cosimplicial algebras which do not
arise from topological bialgebras.

10.3 Cosimplicial diagrammatic algebras

A cosimplicial (lax) diagrammatic algebra is a cosimplicial object in the category
of (lax) diagrammatic algebras, i.e., the datum of a collection of (lax) diagrammatic
algebras {A"},>0 endowed with the face and degeneration maps, which are further
required to be morphisms of diagrammatic algebras.

Given a (lax) diagrammatic bialgebra o/ = (A Brligpigpn) it is clear that

®. ®n ®@n
,,Q{ nz(A nleB/s‘]B/r;g//)

@ Springer



Monodromy of the Casimir connection

is a (lax) diagrammatic algebra for any given n > 0.15 Moreover, the collection of
morphisms Apg : Ay — A%Z and ep : Ay — k, with B C D, define a cosimplicial
structure on {&/®"},,>(, and we denote by &/®* the resulting cosimplicial diagram-
matic algebra.

10.4 Cosimplicial bidiagrammatic algebras

Definition A cosimplicial (lax) bidiagrammatic algebra is a cosimplicial object in
the category of (lax) bidiagrammatic algebras such that, for any B, C C DD, the map

. . . ] [4)
mo (i) ®iz) o (AW ®id) : (AD)e ® (A" — (A"}

is a morphism of algebras, where m is the multiplication in (A"+1)%, i1 = (i’”‘l)%mc,
iy = (I"1)2C and d™ : (A1) — (A1) is defined as in Remark 10.1 (2).

The definition above generalises the following situation. Let A be a bialgebra with
a distinguished subbialgebra A’ C A. By definition, the subalgebra (A®")4" of (diag-
onal) A’—invariants in A®" satisfies

[A® ), (a®)¥ ] =0
Indeed, we have the following

Proposition Let o/ = (Ag,igzp, jp i) be a diagrammatic bialgebra.
(1) Foranyn >0, set
c
(A®n,b)B — (A%n)Ac C A%n

(i®n,b cc’ - Qn |

=1
Vs = Il yonic
.onC'C" _ .on
G prgr =Jpprl

A8 e @A e
where we regard (A%?)Ac’ ® (A®,’?)AC” as a subalgebra in (A g ® AB,,)®". Then
c . cc . c'c’
AL ((A®n’b)37 (l®n’b)33u (J®n’b)313")
is a bidiagrammatic algebra.
(2) The morphisms Ap: A — A%z and ep: Ag — k, with B C D, define a cosim-

plicial structure on {d®"’b}n>0, and we denote by <7 ®*" the resulting cosimpli-
cial bidiagrammatic algebra.

I5More precisely, jg”Bz ((Ag, ®A Bz)®n — A%fu B, - BY abuse of notation, we omit the identification

(Ap, ®Ap)®" = AR ® AP and we denote by jg"p the morphism AZ" ® AR — AG" p .
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Remarks

e Note that .&7®"" contains, but does not coincide with, the bidiagrammatic algebra
(27®")" defined using Proposition 6.7. The difference is the same as that between
the subalgebras (A®")A" and (A®")A7®" in A®" for any bialgebra A with a dis-
tinguished subbialgebra A’.

e Let A be a cocommutative bialgebra. The canonical action of the symmetric group
&, on A®" preserves the subalgebra (A®M)A | since for any o € G, it holds
o o A=D = A=D1 _Similarly, whenever .« is a bidiagrammatic cocommutative
bialgebra, the symmetric group &, acts on .&7®" by bidiagrammatic automor-
phisms.

Example Let g be a diagrammatic Kac—Moody algebra (cf. 2.4). Then, Ug is a lax
diagrammatic Hopf algebra and Uy = U g®*" is the cosimplicial bidiagrammatic al-
gebra with face/degeneration maps induced by the Hopf algebra structure on U g and
bidiagrammatic subalgebras (U g%")gc, CC BCD.

11 Braided Coxeter algebras

The notion of a braided Coxeter algebra arises from the combination of a quasitrian-
gular and a Coxeter structure on a cosimplicial bidiagrammatic algebra. In particular,
it is naturally endowed with commuting actions of the (type A) braid groups B, and
a fixed generalised braid group By .

11.1 Braided Coxeter algebras

Let (D, m) be a labelled diagram. Let «7* be a cosimplicial (lax) bidiagrammatic
algebra, satisfying the condition (7.2) in degree one.

Definition A braided Coxeter structure C = (®p, Rp, J]_-, Yrg, a;,, S.) on o/*
consists of the following data.

(a) Associators. For any B € D, an invertible element ®p € (A3)g satisfying the
following properties

e Pentagon relation.
(®)1,2,34(PB)12,3,4 = (Pp)2,3,4(Pp)1,23,4(Pp)1,23

e Degeneration. Fori =1,2,3, 6‘[3((1)3) = l(
e Orthogonal factorisation. If By L By,

A2)B-

2. BB
DpuB, = (13)3132((1)31 ® p,)

(b) R-matrices. For any B C D, an invertible element Rp € (Az)g satisfying the
following properties
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(©

(d)

(e

e Hexagon relations.
(Rp)123=(®5)3.12(Rp)13(®B)1 5, (Rp)23(Pp)123
(Rp)123 = (®5)3} | (RB)13(®5)2.13(Rp)12(P)] 3 5

o Degeneration. Fori =1, 2, 81.2(RB) = 1A§'
e Orthogonal factorisation. If By L By,

2. B1B
RB]I_IBZ = (]Z)BiBz(RBl ® RBZ)

Relative twists. For any B’ € B and maximal nested set F € Mns(B, B’), an
invertible element J - € (Az)g satisfying the following properties.

o Compatibility with associators. The relative twist equation holds,

Jra3-JF3 - Pp=®p-Jr123-Jr 12
16
(Ahz”
o Degeneration. Fori = 1,2, ¢ (Jr) = 1(A1)§/'
e Orthogonal factorisation. If B{ € By L By 2 B), (F1,F2) € Mns(B; U
By, B U B)),

e Normalisation. Forany B C D, Jp =1

.~ B B/
JF.Fy =g 5 UR ® Ir)

Generalised associators. For any B’ C B and F, G € Mns(B, B’), an invertible

element Ygr € (Al)g satisfying the properties from Definition 7.2 and the fol-
lowing

o Compatibility with J. For any F, G € Mns(B, B’),
Jg= gy - Jr- (Ygr - (Ygr)
Vertical joins. For any B” C B’ C B, F € Mns(B, B’), and 7' € Mns(B’, B”),

an invertible element aﬁ/ € (Al)g satisfying the same properties from Defini-
tion 7.2 and the following

o Compatibility with J (vertical J—factorisation).

. B//B/ . B//B// _ _
Trr= @ (g 5 Up) - (D5 5 (T) - @)7" - @F)5!

(f) Local monodromies. For any vertex i of D, an invertible element S; € (Al)?

satisfying the braid relations (7.3) and the following
e Coproduct identity. For any i € D,

IV S Ji =07 Rian - Jian - (S)1- (i) (11.1)

16Here B is identified with the unique element in Mns(B, B).
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Remarks
e The relations above readily imply the following.

(1) If B € B 1 B"and F € Mns(B, B),

.2 B'B"
J(]-,B’/) = (]2)3 B//(J]: (4 1(A2)g:;)
'1 B/B//
YFan@G.8n =0 )ps (YFg® 1 1 0)
(2) If B} € B| L B, 2 B, F1 € Mns(By, B}), and F, € Mns(Ba, B)),

(F1.B2) _ . _a(Bl,]'—z)
/ - - ’
(B}, F2) (A')Bisg (F1,B3)

e It is clear from the definition that a braided Coxeter algebra is a cosimplicial (lax)
bidiagrammatic algebra with a Coxeter algebra in degree one and some further
compatible data in degree two and three.

11.2 Representations of braid groups

Let B, be the braid group associated to S,,, with generators p, ..., py—1, and br,
the set of complete bracketing on the non—commutative monomial x;x; - - - x;,. The
following is a straightforward generalisation of Proposition 7.3.

Proposition Let <7* be a braided Coxeter algebra. Then, there is a family of repre-
sentations

rrp: By x By — Aut((A™)%5)

labelled by B € D, F € Mns(B), and b € br,, which is uniquely determined by the
conditions

(1) Arp(F) = Ad@R)(S)1. if i} € F.
(2) Agp =Ad(Ygr)1.norFp-

and

3) Arp(pi) =@ i+1)o(Rp)ii+1 ifb=2x1-(XiXi+1) - Xn.
@) Arpy =Ad(@p pp) 0 AF b

11.3 Twisting and gauging of braided Coxeter structures

The notions of twisting and gauging of braided Coxeter structure extends those intro-
duced in 7.4.

Definition

(1) Atwist T= (ur, Kp) in o7* consists of the following data.
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(a) For any F € Mns(B, B), an invertible element ur € (Al)g such that
el (ur)=1and,if B] € B; L B, 2 B), (F1, F2) € Mns(B, U By, B U B}),

1 B B.
UWF,F) = (J )BiBi(u]:l ® M]:z)

(b) For any B C D, an invertible element K5 € (A!)5 such that (K)21 = K.

el.z(KB)_l(Al)B,l_l 2, and, if By L By,

B
Koy =(p5 5 (Kp, ® Kg,)

(2) The twisting of a braided Coxeter structure C = (®p, Rp, J - Trg, af/, S.) by
atwist T= (ur, Kp) is the braided Coxeter structure

Cr=®p)1, (Re)T, J)T, (YFQ)T, (afr/)T, (Si)1)
given by
(®p)r=(Kp)3 - (Kp)ih3 5 (Kp)io3- (Kp)ia
(Rp)r=(Kp)3, - Rg - (Kp)

Upr=wry - ibF &)™ Jr-iBE (Kp) - wrp) -z

and
(Trg)r = ]u}l'T}'Q'ug = (Yrgu
@p)r = upyp dpurur = @0
(S,')T = u{l} S s Uiy = (S,')u

We denote by 7} the braided Coxeter algebra with twisted structure Cr.

(3) A gauge a ={ap} in o/* consists of an invertible element ag € (Al)g for any
B € D), satisfying 8} (ag) =1 and

.1\ B1B2
AaBiuB, = (.] )Ble(aBl ®a32)

(4) The gauging of a twist T = (ur, Kp) by a is the twist T, = (ur)q, (Kp)a)
given by

1.B'B’ 1.B'B _
(r)a =" plap) ur- (') plap)™
(Kp)a = (ap)}, - Kp - (ap)1 - (ap)2
The following is standard.

Proposition Let C be a braided Coxeter structure on <7°, T a twist, and a a gauge

Then, Cr = Crg,. Moreover, the representations of the braid groups pye Fb and 1S }- b
arising from C and Cr, respectively, are equivalent.
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12 The double holonomy algebra

We proved in 9.3 that the holonomy algebra ta of the Casimir connection V¢ is a
bidiagrammatic algebra, and that it can be endowed with a Coxeter structure encoding
the monodromy of Vc. In this section, we introduce the holonomy algebra t3, of the
joint KZ—Casimir system and describe its cosimplicial bidiagrammatic structure.

12.1 The holonomy algebra of the KZ connection
Letn > 2.

Definition The holonomy algebra t* is the associative algebra generated by the ele-
ments {t" | 1 <i # j < n} with the following relations.

o Symmetry. Forany i # j, t/ =t/".
e Locality. For any distinct #, j, k, [ [tY, tkl] =0.
e KZ relations. For any distinct i, j, k,

[tV t*k + k1 =0 (12.1)

Remark The algebra t* is the holonomy algebra ta, . of the root system of type

A, _1.Indeed, under the map th toz,-+~-+oz,~_1 ,i < j,therelations (12.1) correspond
precisely to the 7z—relations (3.7). For instance, in ta, one has

[tay ta, T taj1a, ] =0 and  [t,,.t,,]=0
The grading and the completion of " are therefore defined as in 8.1.

12.2 Cosimplicial structure on t*

Set t! = k. The tower of algebras t* = {t"},>1 is a cosimplicial algebra (cf. 10.1),
with the face morphisms d,’j =t k=0,1,...,n+1, given by

d}(l)(tij)zti+1,j+1 drrlz+1(tij):tij
and
d¥ () = 8 (8 TNy g8 (1 £ k=1,
while the degeneration homomorphisms a,li ">t k=1,...,n are given by
en(®')) = (1= 8 — &)t
We shall describe several refinements of t*, to which the cosimplicial structure nat-

urally extend. Their mutual relations are described in Proposition 12.9 and diagram
(12.16) below.
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12.3 Diagrammatic refinement t*” of t*

Let D be a diagram. We construct a cosimplicial diagrammatic algebra by gluing
together a copy of t* for any subdiagram B C ID. The algebra t*? allows to simulta-
neously describe the monodromy of the KZ equations corresponding to all diagram-
matic subalgebras of a symmetrisable Kac—Moody algebra.

Definition The algebra P is the associative algebra generated by the symbols
{tg |1 <i#j<n, BCD} with the following relations.

. ij L ji
o Symmetry. Forany i # j,and BC D, ty =ty.
e Locality. For any distinct i, j, k,[,and B, B’ C D

[th,th1=0 (12.2)
e KZ relations. For any distinct i, j, k,and B C B C D,
[t t + )] =0 (12.3)
e Orthogonality. For any i, j, k,l and By L B»,
th g =th +th  and [ty th1=0 (12.4)

Remark Note that, by (12.4), it is enough to assume (12.2) and (12.3) for connected
subdiagrams only.

12.4 Diagrammatic and cosimplicial structure

Proposition

(1) Forany B C D, there is an embedding Uy, : " — t"* given by th > tlé.

(2) There is a unique cosimplicial structure on """ such that {'y} is a morphism of
cosimplicial algebras 1p: t* — t*© for every B C D.

(3) For any B C D, there is an embedding i'y, p : 8" — 8 gjven by tlé,/ > t’é// for
any B” C B’ C B. Moreover, if By L By, multiplication induces an isomorphism
of algebras jp,p, : "% @ t"52 — t"B1B2 50 that

tn.]DJ — (tn,B’ iZ/B)

is a diagrammatic algebra.
(4) The tower t*° = (" | n > 1} is a cosimplicial diagrammatic algebra.

12.5 Rootrefinement t*2 of t*
Let g be a symmetrisable Kac—Moody algebra, b its Cartan subalgebra, and A C bh*
its root system. We define a cosimplicial refinement of t* controlled by A, which is

suitable to describe the monodromy of the dynamical KZ equations of g.
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Definition The algebra t"2 is the associative algebra generated by the symbols
{Qf . rd 11<i# j<n,ae A} with the following relations.

e Symmetry. Forany i # j and a € A,

ij _ i ij _ i
r =r’, and Q5 =

Locality. For any distinct i, j, k, [ and «, B € A,
. 1=0  piofh=0 [Qf.Qf1=0

KZ relations. Set!”

QV=Qf + > v (12.5)
ae
Then, for any distinct i, j, k, [Q/, Q% + Q/k] =0.
Orthogonality. For any i, j, k,l,and o L 8, [rg, rlg] =0.
: o ij okl _
Weight zero. Forany i, j, k, 1, [Q, Q§'1=0.

Note that locality implies that [QY, Q] =0 for any distinct i, j, k, [.

Proposition
(1) For every n > 2, there is an embedding ' — t** given by t'/ > Q.
(2) The tower of algebras t+* = {t"*},>0 is endowed with a unique cosimplicial
structure which extends that on t', and is given by'8
dyr) = O + e D+ 8y () + 7T k=1,
The algebra t"2 is acted upon by h®". For any i € h and 1 < k < n, we set
ad® (n) - rlJ = (8 — Sk e (h)rid

Note that h®" does not preserve the elements Q'/, and thus the image of ¢' in ¢4,

Remark Let D be the Dynkin diagram of A. For any B C ID, consider the subsystem
Ap C A consisting of all @ € A with supp(«) € B and define the subalgebra t'gA c
2 generated by the symbols'’

{Qg,rg|1<i<j<n,ozeAB}

171¢ |A| = 400, then the relation (12.5) is to be understood as in 3.6.

18By convention, rl} = 0.

19Note that t’gA does not coincide with the root refinement of " corresponding to A g, since the operators
ng = Qéj + X ey r(ixj are not required to satisfy the KZ relations [Qg, Q’é‘ + Qék] =0.
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The cosimplicial structure on " restricts to one on t’gA and, for any B’

n,A n,A
have ty Sty .

C B, we

Note, however, that this does not give rise to a diagrammatic structure on t**.

Indeed, if B; L B», t’ElA and t’ng do not commute in t’glAu B since the elements Qg
do not distinguish between o € By or « € By. In order to obtain a diagrammatic

structure, we need to further refine the elements QBJ in a way which is analogous to

the refinement of the elements t*/ into tlé in 12.3. We shall do so in the

following

section, integrating the diagrammatic and root refinements of t* with the holonomy

algebra ta.
12.6 The double holonomy algebra t9,
Retain the notation of 12.5.

Definition For n > 1, let t}, be the C-algebra generated by the elements”’

ij ij k)
{QO,B’ra }1@;&]‘@ and {Ka’Ka }15k5n
ac/A,BCD aeAy

with the following relations.
o Symmetry. Forany i # j, B C B,and a € Ag,
QZ)]:B’ = QéfB, and r = r]ja
e Locality. For any distinct i, j, k,[, B,B'CD,a,Be€ A,and y,5 € Ay
[/ rf1=0 [/, Qf 51=0 [ KE1=0
and

[ 5. . 51 =0 [ 5. KE1=0 [KE.K§1=0

e KZ relations. For any distinct i, j, k,and B C B C D,
ij oik Jjk
Q5. Q5 +Qp1=0

ij ij ij 4
where Qp =Q4 p 4+ gen, , (fa +120).

(12.6)

12.7)

(12.8)

(12.9)

e Orthogonality. For any i, j, k, I, By L B €D, @ € Ap,, B € Ap,, and any y €

ABI’+,5€A32’+,
r.ef1=0 [ K1=0  [K} K{1=0
and
Q5 11=0 Q. Ki1=0

i i ij
together with QO,B]IJBQ = QO,Bl + QO,BZ'

20The generators ng B rij and K[(x") are included only if n > 2.

(12.10)

(12.11)
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Weight zero. For any i, j, k, I, and B, B' € D, [Qf 5. Q& 1 =0.
o Casimir relations. For any 1 <k < n,rank 2 subsystem ¥ C A,anda e VN A,

KE. DT Kh|=0 and KW, > K [=0 (212
BeVNAL BeVNAL

Invariance relations. Forany 1 <i# j<n,BCD,ax e Ap 4,

[Q7,KM1=0 (12.13)

Coproduct relation. For any o € A,

n
K =Z(rg+r’_fa)+2r<mk (12.14)
k=1

i<j

Remark The coproduct relation (12.14) implies that the generators K&”) are redun-
dant. However, the relations (12.12) and (12.13) are easier to formulate in terms of
fo") rather than the remaining generators. Note also that tlA is the holonomy algebra
ta introduced in 3.6.

12.7 Actions of S, and bg"
The algebra t}, is acted upon by &, x h®". The action of o € &,, is defined by
U(QEJJ;B) _ Qg)(g)tf(j) U(I’ij) — rg(i)a(j) O-(fo) — Kg(i) U(Kgl)) — Kt(x”)
The action of h®" is defined as follows. For any & € b, we set
ad®(n) - QY =0=ad® (n) - K.
and
ad® (h) vl = S — Sipeyrd  ad® () KW =ad® ) - | S 1Y,
i<j

Note that this is consistent with the relation (12.13). Moreover, the action of H®”* on
t/, clearly factors through the essential Cartan (h)®".

12.8 Cosimplicial structure on t},

Set tOA = k. The tower of algebras t5, = {t,} is endowed with a natural cosimplicial
structure. The face morphisms

At -t k=0,1,...,n+1
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are defined on Qf)J;B, rij as in the case of t*2 (see 12.5) and on fo by

‘ Kitl ifk <i
ditH(KL) = (K@ ifk =i
K, ifk>i

. y it ‘ .
where (Kg)(z) = rg’“ +r K+ Kfj‘l.
More generally, set

m+k—1
K™= S Y K (12.15)
k<i<j<mtk—1 I=k

so that (K1) =K{™ and (Kk)® = Kk . Then, one has
' (KDY if ke < i
PR ™y = 3 (KD if k=i, ... om+i — 1
(KM ifk>m+i
Similarly, the degeneration morphisms 8]? =t ' k=1,...,n are defined as
in 12.5, together with the additional requirement that
(KE=hom if ke <

ep (KL ™) = (Kg)zm;“ ifk=i,...m+i—1
(K™ ifk>m+i

12.9 Cosimplicial bidiagrammatic structures

For any B € D, we denote th, by t%. The following result describes a bidiagram-
matic structure on t, and its relation with the diagrammatic and root refinements P,

t2 of t* defined in 12.3 and 12.5.
Proposition

(1) Forany n > 2, there is a morphism Uy : A — t given by
Qf)j — Qf)jD and rfj — rij

Up is h®"—equivariant, and gives rise to a morphism of cosimplicial algebras
TN S o

(2) Forany B' C B, there is an embedding i, , : Uy, — t};, which maps every gener-
ator in ty, to the same symbol in tyy. Then, t, = {t\} is a cosimplicial diagram-
matic algebra.

(3) For any n > 2, there is a morphism t"® — ty given by

ij ij
ty = Q. BCD
L . . . R oD .
give rise to a morphism of diagrammatic cosimplicial algebras ip: t*° — t),.
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(4) Forany B'C B CD, let t}; , be the subalgebra of tg—invariant elements in t}.
Then, t'A‘b = {tgp/} is a cosimplicial bidiagrammatic algebra, whose structure is
obtained from t by restriction.

Proof For (2) it is enough to observe that, if B” € B” C B, clearly iy, g, 0 iy pr =
i’ gr- Moreover, if B’, B” C B with B’ 1. B”, the multiplication induces an isomor-
phism of algebras jp, 3, : t’l’gl ® t’l’gz — trzlalu B, (1) and (3) are clear. (4) follows as in
Proposition 10.4. O

Remark Combined with Propositions 12.4 and 12.5 and the fact that t‘A =t,, the
result above yields the commutative diagram of holonomy algebras

to

{tB}zjy \

t-,]D to.A

k /A (12.16)

12.10 Grading completions.

We denote by t” the completion of t} with respect to the grading deg(Q) deg(r) =

deg(K) =1. Let Ky Bp be the subalgebra of tBr—mvarlant elements i in ¢ t” Note that, if

B/ C B L By 2 B}, we get injective morphisms t” Oty — t and ¥ tB B! ®t B,
2

), p» Where B=B1 LI By, B'= B U B}, and ® denotes the completion of the tensor
product with respect to the grading.

Corollary

(1) Foranyn > 1, t” C Bl B) is a diagrammatic algebra The face and degen-
eration morphlsms of the coszmpllczal structure on t' = {t } are morphisms of
dlagmmmatlc algebras. Thus, t is a cosimplicial dlagrammatlc algebra.

2) ?Ab = (¥ B/Lls a cosimplicial bldlagmmmatic algebra, whose structure is ob-
tained from t, by restriction.

13 A braided Coxeter structure from double holonomy

We prove that the monodromy data of the KZ and Casimir connections, described
in Sects. 9 and 12, are encoded by a braided Coxeter structure with relative twists
arising from the monodromy of the dynamical KZ equations. The proof is a simple
generalisation of [35] at the level of the double holonomy algebra, which in turn
applies to the case of infinite—dimensional Kac—-Moody algebras.
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13.1 Monodromy of the KZ connection

We observed in Remark 12.1 that £ = ta, and it is well-known that in this case the
canonical solutions of the holonomy equation (3.9) are obtained by solving the KZ3

equation
d tp | b3
—u=(L124_2B |y
du ( u + 1—u
at u =0 and u = 1. Therefore, let , G be the only two elements of Mns(A3) with
{a1} C F and {an} C G
and set @V = Yzg er.

Definition An invertible element ® € € is called a Lie associator if @ is the expo-
nential of a formal Lie series in t'? and t** and the following relations are satisfied.?!

e Pentagon relation
D1234P123,4=P2349P1,234P123
e Hexagon relations

t12:3/2 thgp-1 t3)2
et =®d3 1 2e /CD1,3’26 /CI>112,3

1,23 _ 13 12 _
et = <I>2,]3,1et /2¢2»1,3et /2®1,12,3
e Duality
D301 = <1>1_é’3
o 2—jet
1
D=1+ ﬂ[tlz,tB] mod () >3

The following result is well-known and due to Drinfeld [11].
Theorem The element ® €€ is a Lie associator.
Remark For any B, set
CDX = i%(CDV) and RZ = ilzg(exp(mtu))

The datum of QJZ e/‘E’B and RZ e/‘?B satisfies the properties of associators and
R-—matrices listed in Definition 11.1. Note, in particular, that since @V is a Lie as-
sociator, then the invariance and orthogonal factorisation property of CIJX follow, re-
spectively, from (12.3) and (12.4).

21'We use the notation from 11.1.
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13.2 A braided Coxeter structure on?Ae“

In analogy with 3.7 and 9.3, we extend the double holonomy algebra t'Ab with
the parabolic braid groups By, . This yields a cosimplicial bidiagrammatic algebra

o~

t'A’e’“ = {?‘A‘ex‘} where

TR = By = (G @(SHp)")

B'C BCD,by=span{h; |i € B}, Wpg=(s; | i € B) C W, and the action of By,
extends that on By X ta p. The goal of this section is to prove the following

Theorem Let (CDV, Rg, T]v_- , Sl.v) be the monodromy data of the KZ and Casimir
connections defined in 12.3 and 9.3, respectively. Then, the dynamical KZ equations
give rise to a collection of relative twists J]Y e%,B, F € Mns(B, B’) such that the
datum of

defines an a—strict braided Coxeter structure on the cosimplicial bidiagrammatic al-

“Te.ext

gebra tA with respect to the standard labeling on D (i.e., m;; = ord(s;s;) in W).

The proof closely follows [35, Sect. 3-7], and is outlined in this section. In
13.3-13.5, we introduce the notion of a differential twist with values in ’PA. In
13.6-13.7, we show that a differential twist with the centraliser property induces
a braided Coxeter structure on T’A‘ex‘ compatible with the monodromy data of the KZ
and Casimir connections. Finally, in 13.8-13.9, we show that such a differential twist
can be obtained as a regularised holonomy of the dynamical KZ equations.

13.3 Differential twist

Let Cr = {h € by | (h) > 0, Vi € I} be the fundamental chamber, and set C = Cr +
ibg. Let ty be the double holonomy algebra, and define 7 € t, by

~_ 1 12 12
r= 5 Z (ra — ria)
OlEA+

Definition A differential twist is a holomorphic map F : C —>/t7A such that

(1) ed(F)=1=g3(F).
(2) (®F)F =1inty, where

(O F=F3-F1o3-®- F1_2}3 : Fl_zl

(3) F=1+f mod (t})>2, where f € (t},)1 satisfies Alt f =T.
(4) F satisfies

dF =Y i—a<(K;,+K§)~F—F~K§f))

CIEA+
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13.4 Compatibility with De Concini-Procesi associators

For any maximal nested set F € Mns(D), let W : C —>”EA be the fundamental so-
lution of Vi corresponding to F (cf. 8.4), and Tgv =Yg U Wi the corresponding
associator. Let F : C _)?ZA be a differential twist, and set

Fr=pi' - (Wp;' F- (¥p) (13.1)

The following is straightforward.

Lemma

(1) e3(Fr) =1=¢3(FF)

) (Pp)Fy =1

(3) Fr=1+ fr mod (t,)>2, where fr € (ty)1 satisfies Alty fr =T.
(4) Fr is constant on C

(5) The following holds for any F,G € Mns(D)

Fr=(Y¥o)i-(Yigh Fg- (Y¥o)p
13.5 Relative differential twists

We recall the settings of Sect. 8.5. Fix i € I, let A C A be the root subsystem gen-

erated by the simple roots {o} 4, he C bh® and t”K C t)y the corresponding essential

Cartan and double holonomy subalgebras, respectively. Let 77 : h¢ — Ee be the pro-
jection determined by the requirement that « (77 (h)) = (k) for any o € A.

Let F be a differential twist and Y, the solution of the Casimir equations given by
Proposition 8.5.1 with respect to the simple root ¢;, where we are using the standard
determination of log. Define Fo, : C —>’sz by

Foo=(Yo)]' (Yoo)s ' - F - (Too)12

Then, the following holds

(1) &5(Foo) = 1 = £5(Fo0)

2) (PP)F, =197

(3) Foo =1+ foo mod (t})>2, Where foo € (t3)1 satisfies Alty foo =7
(4) F satisfies

do
dFs= Y 7((K; FK2) - Foo — Fao - Kff)>
Ol€z+

Let C be the complexified chamber of g, and F= Fx: c —>”EZK a differential twist

for A. Since the projection 7 : h® — Ee maps C to C, we may regard F as a function
on C, and define Fp, , \ :C —>73A by

——1
Flyay=F - Foo (13.2)
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Proposition Ser D =D\ {i}. The following holds

ey 8%(F(/D§Cli)) =1= 8%(F(/D§C(i))

v —_ oV
@) (@pry, =5

3) F(/D;a,-) =14 f mod (t))>2, where f € (ty)1 satisfies Alty f =7p — 7.
4) F(/D;a,«) satisfies

do
! _ 2) /
APy = D 5 K& Fipia]
OlEZ+
In particular, if F, (/]D- o) 18 invariant under tx, then it is constant on C.

13.6 Centraliser property

Let {Fp:Cp ﬁ%}gg@ be a factorisable collection of differential twists, i.e., such
that Fg =[] ; F'p; if B has connected components {B;}.

Definition The collection { Fp} has the centraliser property if, for any i € B C D, the
relative twist F, (’ B.o;) defined by (13.2) is invariant under ¢ (;) and therefore constant.

Assume the centraliser property holds, let i € B C D, and set

®2
F(B:a;) = (xB()\iv)_(KB_KB\‘”)) Flpay - di (XB(MV)K”_KB\‘”) (13.3)
where {xp}pcp are the blow-up coordinates defined in 8.3. The (constant) twist

F(B.q;) 18 invariant under tg\(;}, and has the properties (1)—(3) given in Proposi-
tion 13.5. Moreover,

Fpap=1+f mod (t})>>

where f € (t}); satisfies Alty f =7p —7p\q,. The following is a direct consequence
of Proposition 8.5.2.

Lemma Let F be a maximal nested set on D, and Fx the twist defined in (13.1).
Then, the following holds

—_—
Fr=[] FBiarmp
BeF

where the product is taken with F(p.q 5 ) to the right of F(c;ar ¢) if BD c.2?

24 F,p denotes the only simple root whose support is not contained in any maximal element of F B
(cf. 8.3).
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13.7 Braided Coxeter structure

The relative twists arising from a suitable collection of differential twists give rise
to a braided Coxeter structure encoding the monodromy data of the KZ and Casimir
connections. Specifically, we have the following

Proposition LetF = {Fp :Cp —>’%} be a factorisable collection of differential twists
satisfying the centraliser property.

(1) The elements {F(p.q;)} defined in (13.3) give rise to an a—strict braided pre—

’t\-,ext

V pV 7F ~V . . .
Coxeter structure (O g, Ry, J]_-, T]_-g) on ty with relative twists

_
F _ —1
IF=T1 Fglars
BeF

where B' C B and F € Mns(B, B').
(2) Assume that, for any i € 1, the elementary differential twist F; satisfies
AdG)(F;) = Fia1. Then, Cg = (P}, Ry, J%, Y35, SY) is an a=strict braided

Lext

Coxeter structure on?'A .

Proof (1) is a direct consequence of 13.3, Proposition 13.5, and Lemma 13.6. (2)
amounts to prove the coproduct identity (11.1). Namely, recall that S,.V =75;exp(meC;)
with C; =t #; +d; '#?/2. Since

(S¥12 = exp(ui) - (51572

and C; 1C; 2 is central in /ff, the coproduct identity for Cy reduces to the condition
Ad(E,-)(JiF) =J 'F21 , which then follows from the assumption on F;. O

L

13.8 The dynamical KZ equation

The dynamical KZ equation is the connection on the trivial bundle over C* with fiber

”?A given by

Q
d— (— + ad(l)(,u)) dz
Z

It has a regular singularity at z = 0, and an irregular singularity at z = co. We shall
exploit these singularities to produce a collection of differential twists satisfying the
assumptions of Theorem 13.7.

@ Springer



A. Appel, V. Toledano Laredo

13.8.1 Canonical fundamental solutionatz =0

Proposition ([35])

(1) For any u € b, there is a unique holomorphic function Hy : C —>/’3A such that
Hy(0, ) = 1 and, for any determination of log(z), the End @A)—valuedfunction

(€8}
Yo(z, ) = €29 W . Hy(z, ) - 22

is a fundamental solution of the dynamical KZ equations.
(2) Hy and Yo are holomorphic functions of i € b, and Y satisfies

da
dyYo= Y _ ?[Kéz),To]—and(”(d,u)To

acd
13.8.2 Canonical fundamental solutions at z = 0o
Let Hy = {z € C| Im(z) = 0}.

Theorem ([35])

(1) Forany p € C, there is a unique holomorphic function Hy : Hy _)?ZA such that
H(2) tends to 1 as

z— 00 with |arg(z)| € (@, T —95)

8 > 0, and, for any determination of log(z), the End @A)—valued function

(N
Yi(z) = He(z) €9 W . %

is a fundamental solution of the dynamical KZ equations.
(2) Hy and Y+ are smooth functions of u € C, and Y4 satisfies
d
dpe= 3 =5 (KPTe = T (KY +KD) + zad V@) Te
o

aed

13.9 Differential twist from the dynamical KZ equation

Fix henceforth the standard determination of log z with a cut along the negative real
axis, and let Yo, T+ be the corresponding fundamental solutions of the dynamical
KZ equations given in 13.8.1 and 13.8.2 respectively.

Let Fr:C — End(fZA) be the smooth function defined by

Fr="+() " Toz)

where z € C \ R<p. Fy is a regularised holonomy of the dynamical KZ equations
from z =0 to z = F=t00. The form of Yy, T+ (z) shows that

Fi = 7~ -exp(—zad(l)(u)) (H;l) - Hy(z) %
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so that Fy acts by left multiplication. We henceforth identify Fi and Fi(1), and
consider the former as taking values in?A.

Theorem ([35]) Fi is a differential twist with values in/‘c\A 25 which satisfies the cen-
traliser property and the assumption of Proposition 13.7(2).

Part II1. Braided Coxeter categories
14 Braided Coxeter categories

In this section, we briefly review the definition of a braided Coxeter category intro-
duced in [2]. Roughly, this is a monoidal category carrying commuting actions of a
generalised braid group BI% and Artin’s braid groups 53, on the tensor powers of its
objects. Under the Tannakian formalism, a braided Coxeter category is the categorical
counterpart of a braided Coxeter algebra.

14.1 Braided Coxeter categories

Let D be a diagram with a labelling m. A braided Coxeter category of type (D, m) is
atuple €= (Cp, Fr, Ygr, aé,, S;) consisting of the following data.

e Diagrammatic categories. For any subdiagram B C D, a braided monoidal cate-
gory Cp.

e Restriction functors. For any pair of subdiagrams B’ C B and relative maximal
nested set F € Mns(B, B’), a tensor functor Fr : Cg — Cp' (FF is not assumed to
be braided).

e Generalised associators. For any pair of subdiagrams B’ C B and relative maximal
nested sets F, G € Mns(B, B’), an isomorphism of tensor functors Ygr:Fr=
Fg.

e Vertical joins. For any chain of inclusions B” € B’ € B, F € Mns(B, B’), and
F’ € Mns(B’, B”), an isomorphism of tensor functors af, :FrioFr= Fryr.

e Local monodromies. For any vertex i of D with corresponding restriction functor
Fiiy : C; — Cy, a distinguished automorphism S; € Aut(FY;}) (S; is not assumed to
be a monoidal automorphism).

These data are assumed to satisfy the following properties.

o Normalisation. If F = {B} is the unique element in Mns(B, B), then Fr =id¢ -
with the trivial tensor structure.

e Transitivity. For any B’ C B and F, G, H € Mns(B, B), Yy r = Ty o Ygr as
isomorphisms Fr = Fy. In particular, Yz 7 =idp, and Ygr = T]__-lg

e Associativity. For any B” C B” C B’ € B, F € Mns(B, B"), 7 € Mns(B’, B"),
and F” € Mns(B”, B""),

a;UU}- . a; = a:;//U]:/ . ai//

as isomorphisms Fr» o Fr o Fr = Frnyrur.
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e Vertical factorisation. For any B” C B’ C B, F,G € Mns(B, B’) and F',G €
Mns(B', B"),

s g (Yo7
Ygug)FuF 0ar =ako| o
Tg/]_‘/

as isomorphisms Fr o Fr = Fgr o Fg.
e Generalised braid relations. For any B CD,i+# je B and maximal nested sets
Klil, K[j] on B such that {i} € K[i], {j} € K[j], the following holds in Aut(Fjc[;)

Ad (Yij) (53) - 87 - Ad (i) (S3) -+ =2 - Ad (Yij) (52 - §7 -+

Klil,

where Y;; = Yiijcp;) and S? = Ad(a i) (S € Aut(Ficpip)-2

e Coproduct tdentzty. For any i € D, the following holds in Aut (F{,-} ® F{i})

J7 o Fiy(ci) o A(S)) 0 Ji=cpo S, ® S, (14.1)

1

where J; is the tensor structure on Fy;) and ¢;, ¢y are the opposite braidings in C;
and Cy, respectively.”* Specifically, the following diagram is commutative for any
V,We(;

S1V®SIW
Fipy(V)® Fijy(W) ——— Fip(V) ® Fiy(W) % Fiy(W) ® Fiiy(V)

JiV,W J J JiW,V

Fiy(VeW) ———— Fp(V@W) ——————— Fi(WeV)

Sivew Fiiy(ci)

Remark The identity (14.1) relates the failure of (F;, J;) to be a braided monoidal
functor and that of S; to be a monoidal isomorphism. That is, if (14.1) holds, S; is
monoidal if and only if J; is braided. Conversely, if S; is monoidal and J; is braided,
then (14.1) automatically holds.

14.2 Morphisms

Let €, ¢’ be two braided Coxeter categories of type (D, m). A l-morphism H : € —
¢ consists of the following data.

e Horizontal functors. For any B C D, a braided tensor functor Hg : Cp — C};.

23]C[i]i and K[i]' denote the truncations of K[i] at (D, {i}) and ({i}, ¥), respectively, see Definition 5.3(1).

24 Given a braided monoidal category with braiding S, we set ﬂ;p y =By IX
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e Diagonal isomorphisms. For any B° C B C D and F € Mns(B, B’), an isomor-
phism of tensor functors

CB—>

A 7 1

Cp —— Cy
Hy

such that YgroVF=vgo (Tg}-)’ as isomorphisms F’}- oHp = Hp o Fg.
These data are assumed to satisfy the following properties.

o Normalisation. If F = {B} is the unique element in Mns(B, B), so that F'r =id¢,
and Fr = idey . then yr = idpy.

o Vertical factorisation. For any B” C B’ C B, F € Mns(B, B’) and F' € Mns(B’,
B"), the following equality holds

F F vz

/

yruro@p) =apo| o
VF

as isomorphisms Fr, o F’r o Hp = Hpr o Fr o FF.
o Generalised braid group invariance. The generalised braid group operator are pre-
served, i.e., forany i € D, S; o yp; = yp; o S] as isomorphisms F o H; = Hy o F;.

Finally, let H', H? be two 1-morphisms € — ¢”. A 2—morphism v : H' = H?
is the datum, for any B C D, of a natural transformation of braided tensor functors
VB ! H}g = thg such that, for any B’ C B and F € Mns(B, B'), yrovg =vp o yF
as morphisms F o Hj = Hﬁ, oFr.

14.3 Coxeter algebras and Coxeter categories

The notion of braided Coxeter category is tailored to describe the category of repre-
sentations of a braided Coxeter algebra. In particular, let .o/ be a diagrammatic bial-
gebra and .7®*" the corresponding cosimplicial bidiagrammatic algebra (cf. Propo-
sition 10.4). We have the following

Proposition

(1) Let C = (®p, Rp, J]_-, YTrg, a;,, S;) be a braided Coxeter structure on o/ @%b
(c¢f. Definition 11.1). Then, C gives rise to a braided Coxeter category Repc (%)
given by the following data

o forany B C D, the braided monoidal category Rep(A ) with associativity and
commutativity constraints given, respectively, by the action of p € A%’3’B and
Rp € AS*E

e for any B' C B and F € Mns(B, B’), the tensor restriction functor Resr :

Rep(Ay) — Rep(Ay)), with tensor structure given by the action of Jr €

®2,B’
AB
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e for any B' C B and F,G € Mns(B, B’), the natural isomorphism of tensor
functors Resg = Res r given by the action of Y rg € Ag,

e for any chain of inclusions B” € B’ € B, F € Mns(B,B’), and F' €
Mns(B’, B”), an isomorphism of tensor functors Resy oResyr = Respyr
given by the action of af_-/ € Ag/,

o for any vertex i of D, the invertible operator in Aut(F(;)) given by the action
Of Si € A;.

(2) Let T = (ur, Kp) be a twist in < (cf. Definition 11.3). There is a canoni-
cal 1-isomorphism of braided Coxeter categories Hr : Repc (/) — Repc, (%)
given by the tensor equivalences Hr p = (idp, Kp) : Repc (Ap) — Repc, (Ap),
with tensor structure given by the action of Kp € A?Z’B, and the tensor iso-
morphisms yr, r : Hr p o Resc,r = Resc, FoHr p, given by the action of
urc Ag/.

(3) Let a ={ap} be a gauge in <. There is a canonical 2—isomorphism v, : Hy =
Hr, with natural braided tensor isomorphism v, g : Hr,p = Hr, p given by the

action of ap € Ag.
14.4 Braid group representations
The following is a categorical analogue of Propositions 11.2 and 11.3.

Proposition Let ¢ = (Cg, Fr, Yrg, a;,, S;) be a braided Coxeter category. Then,
there is a family of representations

)\}%ﬂ-’b : B% x B, — /—\ut(Fjg”)

labelled by B C D, F € Mns(B), and b € br,, which is uniquely determined by the
conditions
4 F; s 7 ‘
o X%, () =Ad@E(S) 1 if li} € F and 1, = Ad(Ygr)1.n 0 1% ,.
° )‘?b(pi) =0 i+ 1) o (Rpiiv1 if b =x1---(Xixjy1)---x, and )‘}%‘,b’ =
Ad(CI)B,b/h) o )‘}?b'

Let H: % — €' be a 1-isomorphism of braided Coxeter categories. Then, the rep-
. % ¢’ . . .
resentations Ag p and Ax . are equivalent through the natural isomorphism yr :

F_;_— oHp = Fr.

15 Braided Coxeter structures on Kac-Moody algebras

In this section, we describe the standard symmetric Coxeter category associated to a
diagrammatic symmetrisable Kac-Moody algebra, and its deformations.
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15.1 Category O, representations

Let g be a diagrammatic symmetrisable Kac—-Moody algebra (cf. 2.4). If V is an
h—module and A € h*, we denote the corresponding weight space of V by

VIAl={veV]|hv=A(h)v, h eb}

and set P(V) = {A € h*| V[A] # 0}. Recall that a g—module V is

(C1) aweight module if V = @Aeh* VAl
(C2) integrable if it is a weight module, and the elements {e;, f;i}icy act locally nilpo-
tently.

This implies that A(h;) € Z for any A € P(V) and i € I, and that V is com-
pletely reducible as a (possibly infinite) direct sum of simple finite—dimensional
modules over 5[3” = (e;, hy, fi) Cag.

(C3) in category O 4 if the action of b™ is locally finite, i.e., any v € V is contained
in a finite—dimensional b —submodule of V. This is equivalent to V being the
direct sum of its generalised weight spaces, together with

(C3’) forany v eV, (Un")gv =0 for all but finitely many g € Q.

(C4) in category Oy if it is a weight module with finite—dimensional weight spaces,
such that

P(V)SDAX)U---UDMy) 15.1)

for some A, ..., A, € b*, where D(A) ={nu eb* | u <A}and u < A iff A —
/’LGQ-F:@ieINai'

The categories Oy C Ouo, ¢ are symmetric tensor categories. Let Og' C Oy and
ox. g € Ooo,g be the full tensor subcategories of integrable representations. We have
the following inclusions

U U
int int
O C Ox,

Remarks

(1) Category O does not fit naturally within the framework of Coxeter categories,
since condition (C4) is not stable under restriction to a diagrammatic Lie sub-
algebra gp. It is therefore convenient to consider instead the categories O™

) . 00,gp°
B C D, with restriction functors Resp/p : O% a5 (9:(‘) o B’ C B.
, .0

(2) As pointed out in [2, Sect. 13.9], the lack of diagrammatic restriction functors at
the level of categories O can also be overcome by replacing the Lie subalgebras
gp with the Levi subalgebras [ = gp + h. These, however, do not induce a
diagrammatic structure on U g since [g and [z~ do not commute if B’ | B”, and
require a further modification of the framework.
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15.2 The symmetric Coxeter category 0"

Let W be the Weyl group of g with set of simple reflections {s;};icy C W. Set m =
(m;;), where m;; is the order of s;s; in W. Let

int,1 __ in:
Ug"' = End(OCX‘%g — Vect)

be the algebra of endomorphism of the forgetful functor. Then, it is well-known that
Ug CUy"', i.e., the objects in OF , separate points in Ug, and 5; € (Uy"")* where
5; = exp(e;) - exp(—f;) - exp(e;). Since the triple exponential operators satisfy the
generalised braid relations (7.1), we obtain a homomorphism By — Z/{S“"‘ given by
% 5 (cf. Remarks 3.4 and 7.1). The following is straightforward.

Proposition There is a canonical (a, Y)—strict symmetric Coxeter category ﬁ;“ of
type (D, m) given by the following data.

e Forany B C D, the symmetric monoidal category O a5
e For any B’ C B, the restriction functor Resp/p : Og&gs - O ap with the trivial
tensor structure.

. 0 ~ ;
e Foranyi €D, the operator S;” =7s; € Ug"")™.

Proof 1t is enough to observe that the operator S;” is group-like and therefore satis-

fies the coproduct identity (14.1), which for the symmetric category Ogg, o reduces

precisely to the condition A(Sf) = Siﬁ ® Sl.ﬁ. g
15.3 Deformation category O, representations

We shall be interested in deformations of the symmetric Coxeter category ﬁ;“. To this
end, consider the deformation parameter & and set h = h/2m¢ (cf. 3.2). Let Vecty, be
the category of topologically free C[[2]l-modules. A g—module V € Vecty, is called

(D1) a weight module if V = @Aeh* V11,2 where P is the direct sum in Vectp,
i.e., the completion of the algebraic direct sum in the ~A—adic topology.

(D2) integrable if it is a weight module and, forany i e Iand v € V, lim, . €]'v =
0 =1im,_, o f"v, where the limit is taken in the h—adic topology.

This implies that V' is complete reducible as a (possibly infinite) direct sum

of indecomposable finite—rank modules over 5[‘;" =(e;, hi, fi).

(D3) in category Ogo!g if the action of b™ on V/h"V is locally finite for any n > 0.
This is equivalent to V being the /i—adic direct sum of its generalised weight
spaces, and

D3’) f V, 1l Un* =0.
(D3") forany v e ht(ﬁl)lgoo( n)gv

(D4) in category (’)g if it is a weight representation with finite—rank weight spaces,
and such that P (V) satisfies (15.1).

25Note that the eigenvalues of the action of  on ) are required to lie in h* C h*[[A]l.
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It is easy to see that V is a weight (resp. integrable, in category Ofo)g) module in
Vecty, if and only if V/h"V is a weight (resp. integrable, in category Oxo, g) module
in Vect for any n > 0.

We denote by Ob™ O} and ol c ok o the full tensor subcategories of
integrable representations. We shall describe the deformations of %" arising from
braided Coxeter structures on the cosimplicial lax bidiagrammatic algebra %gh'i"“‘ of

int

endomorphisms of the forgetful functor from O&,g to Vecty.
15.4 The cosimplicial algebra L{g’i“"'

Let
. (h,int hiintn __ Xn
f: Oy — Vectp, and Ug™" =End (f )

be the forgetful functor and endomorphisms of its nth tensor power. By [4, Thm. 3.1]
the category (920‘“‘9 separates points in Ugl[[]]l. Thus, we get a natural embedding
Ug®'[h]l C Ug™". The tower of algebras {Ug ™"}, >0 is a cosimplicial algebra with
the face and degeneration morphisms described in 10.1. Moreover, there is a canoni-
cal embedding of cosimplicial algebras U g®*[i]] C Uy™*.

15.5 Bidiagrammatic structure on ug""‘»'
For BB C BCDandn >0, let

. h,int h,int hintn Xn
fyp: Ok, —> O and UM =End (F53)
be the restriction functor and the algebra of endomorphisms of its nth tensor power. In

: h,int, h,int,n ® / h,int,
particular, we have fyp = fg and Z/lg’B‘Q;' = Z/ISB “". Note that (Ugp") 9% [[1]] C ug,éé“
int,n

The collection of algebras {L{g‘ Bp | B’ C B} gives rise to a lax bidiagrammatic alge-
bra (cf. 6.4 and [2, Sect. 8.6]) with the following structural morphisms.

e Forany C C B, C' C B/, with C C C’ C B’ C B, the identity

fccrofcrpofpp=fcp

.int,n

induces a canonical morphism of algebra§ L{g B = Z/[;;igg.
e For any C; € By L By D (2, the identities gg,,8, = 95, ® g8, and gc,uc, =

. . h,int,n h,int,n h.int,n

gc, @ 9c¢, imply that thf _natural morphism L:Q_aBICI ® ug,BzCZ — Z/{Q,BIUB2 factors
: 1, 1nt,n . v,1nt,n

through the image of U5 5, (c,uc,) M Ug BB,

We denote by %g”*““" the resulting lax bidiagrammatic cosimplicial algebra.
15.6 Braided Coxeter structures on 7,
The following is an analogue of Proposition 14.3.
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Proposition

6]

2

3)

Let C = (®p, R, J£, T rg, a;, Si) be a braided Coxeter structure on % ;"""
(cf. Definition 11.1). Then, C gives rise to a Coxeter category ﬁ(r’fi"' given by the
following data

e For any B C D, the braided monoidal category Ogo'“; 5 With associativity and

L . . . h,int,3 fi,int,2
commutativity constraints given, respectively, by ®p € U 0.BB and Rp el 9.BB

h,int

e Forany B' C B and F € Mns(B, B'), the restriction functor Resr : O53'q, —
OZO‘"Q o With tensor structure given by J € Z/lg:ig;%

e Forany B' C B and F,G € Mns(B, B'), the isomorphism of tensor functors
Resg = Resr given by Y rg € Ug:'};‘;}g

e For any chain of inclusions B” C B’ C B, F € Mns(B, B'), and F' €
Mns(B’, B"), the isomorphism of tensor functors Resy oResr = Resryr

. F h,int,1
given by az, € L{g"l‘;,,B

int, 1

e For any vertex i of D, the invertible operator S; € (Z/[g’{i} )
Let T = (ur, Kp) be a twist in %gh*i‘“" (c¢f. Definition 11.3). Then, T gives rise to
a l-isomorphism of braided Coxeter categories Hr : ﬁg‘i“‘ — ﬁé’;" given by the
tensor equivalences

: . hi hi
HT,B = (ldB, KB) . ﬁé:‘g — ﬁé:’lB/

with tensor structure given by the action of Kp € Z/Ig‘il‘;";, and the tensor iso-
morphisms yr. F : Hr pr o Resc, 7 = Resc,, FoHr, g, given by the action of

,int, 1

I/l]: S ug BB'*
Let a = {ap} be a gauge in <7. Then, a gives rise to a 2—isomorphism v, : Hyr =

Hr, with natural braided tensor isomorphism v, g : Hr,p = Hr, p given by the

. h,int, 1
action of ap € Z/Ig,BB.

h,in
16 Double holonomy and the category ﬁ’g’vt

In this section. we prove that the braided Coxeter structure Cy on the extended double

“Te.ext

holonomy algebra tA™ arising from the monodromy data of the KZ and Casimir

connections (Theorem 13.2) gives rise to a braided Coxeter structure on %gh'*""', and

therefore to a braided Coxeter category ﬁg’%‘.

16.1 From the extended double holonomy algebra t3™ to %,"""*

Proposition There is a canonical morphism of cosimplicial lax diagrammatic alge-

o~

bras &, : t'A‘e“ — %gﬁ'i“‘*'.

The construction of & is carried out in 16.1.1-16.1.4. Set h = i/2m.
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16.1.1 The holonomy algebra ta and Uy™"

Let A be the root system of the diagrammatic Kac—-Moody algebra g and ta the cor-
responding holonomy algebra with diagrammatic subalgebras ta g, B S D (cf. 3.6
and 8.1). Recall that U g naturally embeds in L{g'i“‘*l. We have the following

Lemma

(1) There is a morphism of algebras &p : ta — Ug™" defined by
§alty) =h-K7

where K} = Zl | e(’) @ s the normally—ordered, truncated Casimir operator
(3 1). ép is compatlble w1th the grading, and therefore extends to a morphism
tA — uf int, 1

(2) For any B C D, the restriction of Ep to t C ta coincides with the morphism

Eng t — Z/{ﬁ "1 In particular, Ep is a morphlsm of lax diagrammatic alge-
bras.
Proof (1) follows from the commutation relations proved in 3.4. (2) is clear. O

16.1.2 The holonomy algebra t" and 145 ™"

Letr e L{g'i‘“’z be the classical r—matrix of g, i.e., in the notation of 3.2.
dim gy dim b
¥ T T

aceAy i=1

where {x;}, {x/} are dual bases of b with respect to the inner product (-, -). Note that,
if |[Ay|=o00,r¢Ug® . Foranyn>2and 1 <i# j <n, set

Qij — rij + rji c uh,iul,n
g

Let t" be the holonomy algebra introduced in 12.1. The following result is well-
known (see e.g., [13]).

Lemma There is a morphism of algebras &" : " — Uy™" defined by
E”(tij) =h- Ql]

&" is compatible with the cosimplicial structure and the grading on t' given by
degt =1, and therefore extends to a morphism of cosimplicial algebras &* : t* —

h,int,e
U,

Remark An element ¢ € Z/lg’i“"” is g—invariant if [¢, A (x)] =0 for any x € g. In
particular, since the elements QU are g—invariant, it follows that im(§") C (Z/Ig*i"‘"”)g.
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16.1.3 The root refinement t;;A and %Ef"‘“"‘

We now discuss the relation between the algebra t"2, which can be thought of as a
root refinement of t" (cf. 12.5), and the algebra Z/{g’imf”. For any o € A, we set

dim gy
Toy = Z (e—a)a ® (eq)’ € 9o ® g

a=1
where {(e_y)a}, {(ey)?} are dual bases of g_, gq, and

dim b
Q=) x®x'chah

a=1

where {x,}, {x%} are dual bases of h). The following is clear.
Lemma There is a morphism of algebras "% : 4" — U™ defined by

ey =h-Q &ty =h-rJ

&nB is compatible with the cosimplicial structure and the natural grading on t"*,

and therefore extends to a morphism of cosimplicial algebras £*° i L %gﬁ-i“"',
16.1.4 The extended double holonomy algebra t and %,"""*

Recall that, with respect to the root refinement t*2, the algebra th is endowed with
additional generators {Kg,"), K{;}ae A, (cf. 12.6). These should be thought of as the

) 1<k<n
elements of US*‘“‘"’ given by, respectively

h-AWKF) and  h- <1®(’“1) QK ® 1®(""‘))

where K} is Casimir operator (3.1). Specifically, for any B C D, set

dimf‘)g
Qp= Y Xpa®xjebhs®bp

a=1

where {xp .}, {x%} are dual bases of bp. Then, the following holds

Lemma

(1) There is a morphism of lax diagrammatic algebras & : ¥y — L{g*i""" defined by
EAQ ) =h- 2 EaG) =h-r]
EAKE) =h- AW (KD SA(Ky) =h- (15D g k) @ 19070)
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(2) &p is compatible with the cosimplicial structure, the action of S, X ho" and
the grading on t given by deg€) = degr =degK = 1. It therefore extends to a
morphism of coszmpltctal lax diagrammatic algebras &, t’ — % Fiint.e

(3) The following holds

EACKD ™) =h. (18D @ A (K] @ 190~ HED)

where (KE)™ is defined in (12.15).

Proof (1) The relations satisfied by Q'/, 1 <i < j < n, follow from the commutativ-
ity of the diagram

7
n h,int,n
ty —— U

U 1\
g’l

where the vertical arrow (5 is the natural morphism from t* in t},. The relations
(12.12) are satisfied by the elements K € Z/lg’i“"” (cf. Theorem 3.4). The invariance

relations [Q/, K{"] = 0 (12.13) follow from the g—invariance of ¥/ = ri/ + rii in
uﬁ,.int‘n.
g ,
The coproduct identity (12.14) holds in Z/{g"‘“'” since

My
AU = A" (Zeﬁieéf)) YT+ + K

i=1 i<j

where K =S (1851 @ K ® 1977F) is a weight zero element.

(2)—(3) are clear. O
Through the action of the braid group Bw, on any object in (’)go‘"g, we readily
lift the collection of the morphisms &/, Ap A - U ‘I‘;“’, B CDandn >0, to the

extended double holonomy algebras (cf 4 11, 9 3and 13.2)
( nexl) — BWB (t’b ® (SbB)(X)n)

“Te.ext

and we obtain a morphism of cosimplicial lax diagrammatic algebras &y, : tR" —
02/& int,e
fha

o h,ini
16.2 The braided Coxeter category &' g,Vt

Theorem
(1) Let Cy = (&Y, RV JV T;g, SV) be the a-strict braided Coxeter structure on
t * given by Theorem 13.2. Then, then datum of
v, v, v, V.g oV,
Cvg=(x% Ry I Y18, 579
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where
=EA(P)). RyP=8A(RY). JFP=81(JD. YiS=£A(T)g).

and Sl.v‘g = EJV(SI.V), is an a—strict braided Coxeter structure on %gﬁ*i“‘*‘.
(2) There is a braided Coxeter category ﬁg‘,i%‘ with the following data.

e Forany B C D, the category 020‘“;4 »» B © D, with braided monoidal structure

given by @Z’g and Rg’g
e Forany B’ C B and F € Mns(B, B’), the standard restriction functor Resr :

h,int h,int . . V.,g
00,95 > Oco.g, With tensor structure given by J

e Forany B' C B and F,G € Mns(B, B’), the natural isomorphism of tensor
functors Resg = Res x given by the De Concini—Procesi associator T]V_-’gg.

. v
e For any i € D, the monodromy operator S, 9

Proof We shall verify that Cy ¢ satisfy the properties (a)—(e) of Definition 11.1 with
respect to the cosimplicial lax bidiagrammatic structure on @/ hinte By construction,
Cy, gl is the image of a braided pre—Coxeter structure CY; in t through the morphism
Ep t'A %g’“"". Although &7 is a morphism of 0031mp1101a1 lax diagrammatic
algebras, it does not preserve the invariant subalgebras, as the condition of being
invariant in g"“‘*” is generally stronger than being invariant in t/, . For instance, while

the element K , o1 is obviously central in tlA ., the normally ordered Casimir operator
Kd = ENK,, 1) is not s[) —invariant. Therefore, proving that C¥;’ is a braided pre—

Coxeter structure in % iuints reduces to showing that the defining elements of Cy 4
satisfy the necessary 1nvar1ance properties in % Fint.e
Note that, for any B € D,

o9 =0V (h-Qp12,h-Qp23)  and  Ry® =exp(h/2- Qp)

are clearly gp—invariant since Qp € Z/lg’il“;’é It remains to prove that the relative twist

J *? and the De Concini—Procesi associator T]_-g, corresponding to the maximal
nested sets F,G € Mns(B, B’), are gg—invariant. To this end, it is enough to ob-
serve that the coefficients of the equations defining Jr Y% and T V’g specialise to

gp/—invariant elements in u" 1;;1 and U™ 'l';‘z, which follows as in [34 Thm. 1.33]
and [35, App. B.4]. Finally, by Proposmon 15.6, (2) follows from (1). O

Remark Note that the operators <I>Z’g, RZ’Q, J ;’g, and T]V_-g’ are well-defined on

category Oy g—modules and therefore give rise to a braided pre—Coxeter category
o
g,V

17 Quantum Kac-Moody algebras and the category ﬁg; oR,S

In this section, we describe the standard braided Coxeter category O] i"‘ oRS associ-
ated to a quantised Kac—Moody algebra U} g, which encodes the actlon of the univer-
sal R—matrix and Lusztig’s quantum Weyl group operators [27] on integrable highest
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weight Upg—modules. We then recall the main result of [2, Thm. 13.9], which pro-
vides a description of ﬁ‘[}; oRS in terms of integrable highest weight g—modules.

17.1 The Drinfeld-Jimbo quantum group [10, 20]

Let g be a symmetrisable Kac—Moody algebra. Set ¢ = exp(h/2) and ¢; = qdi, iel
The Drinfeld-Jimbo quantum group of g is the algebra Uy g over C[[i]] topologically
generated by b and the elements {E;, F;};c1, subject to the relations [, h'] =0,

hi —h;
q; —4;

[h, Ei]l=0o; (W E; [h, Fi]l=—a; (W) F; [E;, Fj]=4;j —
qgi — 4;

for any h, k' € b, i, j €1, and the g—Serre relations

1—a;j

1—a;; —a—
m=0 ¢

n_ ,—n
% and, for any k < n,

qi —9q;

for X =FE,F,i+# j€l, where [n]; =

T G
[n)i!=[n); - [n —1]; [1]; and |:k:|l_[k]ll[n_k]l

We consider on Upg the Hopf algebra structure with coproduct
Ah)=h@1+1Qh A(Ei)in®qih"+l®E,' A(Fi)zFi®1+qi_hi®17[

counit e(h) = e¢(E;) = e(F;) =0, and antipode S(h) = —h, S(E;) = —Eiql._hi, and
S(F,-):—ql.h"Fi forany hehandi €.

Define weight, integrable, category O, and O modules for Upg in Vecty analo-
gously to Sect. 15.3, and denote by

int int
00,Upg C Ooo,Uhg and Ung C OUhg

the subcategories of integrable modules.?®
17.2 The universal R—-matrix

The Hopf algebra Upg is quasitriangular (cf. [10, 27]). Namely, let Upn™ (resp.
Upn~) be the subalgebra generated by E;,i € I (resp. F;,i € I), and set Upb* =
Upn*tUB[[K]. By [10], there is a unique non—degenerate Hopf pairing (-,-)p :
thi & th+ — C((h)) such that (1, I)D =1,

9—9

1
<h7h/>D:ﬁ<hﬂh/> (EvEJ)D: 1

261 particular a representation V of Upg is in category On if the action of Upb™ on V/A"V is locally
finite for any n > 0. Note that the analogue of the condition (D3’) from 15.3 holds.
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and zero otherwise. Let {x,}, {x%} C h be dual bases. Note that the pairing respects
the weight decomposition in Ub*. For any u € Q4, let {XjE }p C UpnT[£u] be
dual bases with respect to (-,-)p and set ®, =) X~ ® X Then, Urg is a
quasitriangular Hopf algebra with R—matrix

pXup

R=¢% .0 c Uy ®UsbT

where Q=3 x, ® x* and ® = 3 =0 @ps that is, R satisfies the intertwining
property A" (x) =R - A(x) -R™!, as well as the cabling identities

A®1R)=Ri3-Ry3 and 1® AR)=Ry3-Ryp2

from which the Yang—Baxter equation Rj7 - Ry3 - Ro3 = Ro3 - Ry3 - Ry follows. The
action of the R—matrix on a tensor product of representations in Oeo, g 18 Well-
defined and induces a braiding.

17.3 Quantum Weyl group operators

Let (9‘"‘ Ung be the category of integrable Upg—modules in category Oxo, i.e., the
action of the elements E;, Fj, i €L, is locally nilpotent mod %" for any n > 0. Let
Ve (’)g‘é Upg- FOTany i € I, the operator S; is defined on V as follows?’ [27, 22, 25]:
for any v, € V[ul,

~ o b X
Si(m) = Z (—l)bqib acEi(a) Fi( )Ei(c) ‘v,
a,b,06220
a—b+c=—u(h;i)

where X = X%/[a);!, X = E, F. Clearly we have S;(V[u])  V[s;()]. By [27,
Sect. 39.4], the operators §,- ,i € I, induce an action of the generalised braid group By
onV e Og‘c‘) Ung’ which recovers the action by triple exponentials described in 15.2 at
h = 0. By construction, S is an element of the completion of Ujg with respect to the
category Og‘é Ung’ Le., S € Aut(O:)“C‘,yUhg — Vectp). By [27, Sect. 37.1], the action
of the operators S; induces an algebra automorphism of Upg, which we denote by the
same symbol, such that, for any u € Upgand v e V € Oi:ct),Uhg’ one has gi (u-m)=
§i (u) ~§i (m). Moreover, for any h € b, §,~ (h) =s;(h).

The operator §i allows to recover the universal R—matrix as a multiplicative
coboundary. Indeed, by [22, Sect. 5.3] (see also [5, Sect. 4.10] which follows our

conventions), the operator S; satisfies the coproduct identity

ASH=GSi®8S) -

2The operators §i are well-defined on any integrable Upg—module. Note that in the notation of [27,
Sect. 5.2] §; coincides with the operator ;" |
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where R; € Upb;” @th;r is the universal R—matrix of the subalgebra Urg; corre-
hi®hi/2 6. Note that

1

hi®h; /2 —h2/4 —h?/4 n2/4
/""" =g @, ’A(q,»

sponding to the simple root o; and R; = ¢

1 1

B4 5 5 k4 ; .
Set S; = q; -S;, =S, - g;'" - Note that the operators S;i, i €1, also satisfy the

generalised braid relations (7.1). Moreover, we have

1

_ ~ o~ —h2/4 —h2/4 h2/4 ~
@@&)VASJ#&®&)V4’/®%1/A<w/)A@»

=S ®S)~" g A
=q"®M? S @8)™ AGH

hi®hi /2
=q/"®"?. 0; =R

Therefore, from the identity A(S;) = R; 2 - A" (S)) - R/ 211, we get the coproduct
identity

AS)=(Si®S) R =R} - (S ®S)) (17.1)
We shall refer to both S; and S; as the quantum Weyl group operators of Upg.

Remark By [27, Sect. 5.2], the squares of the operators Si and S; are particu-
larly simple and related to the quantum Casimir element of the quantum algebra
U hslg" = (E;, F;, hj) C Upg. Recall that, since Og‘; Upsh, is semisimple, an element
in Aut(O2 Upsly — Vecty) is uniquely determined by its action on the indecom-
posable finite—rank representations. Let Cp ; be the quantum Casimir operator, act-
ing on the irreducible representation of rank d + 1 as d; - d - (d + 2)/2, and set
Khi=Cni—d;- h%/2. Then, we have

§12 =exp(wth;) -q’cf“' and S% =exp(mth;) ~qcﬁv"
Note that exp(s¢h;) is central, i.e., it commutes with the action of Uy g; and therefore
S0 is Siz.
17.4 The braided Coxeter category ﬁi‘,‘; a.R,S
Integrable highest weight representations of quantum Kac—Moody algebras give rise
to a braided Coxeter category. Namely, let g be a diagrammatic Kac—-Moody algebra
with labelled Dynkin diagram (D, m) and Cartan subalgebras hp €, B € D. The
quantum group Upg is a bidiagrammatic Hopf algebra, with subalgebras

Ungp = (b, Ei, Fi |i € B)
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B C D, and the corresponding diagrammatic invariants. These induce restriction

functors Resg, B Og}‘)’Uﬁ o Og}‘)’Uﬁ oy with B’ C B, and yield the following ana-

logue of Proposition 15.2.

Proposition There is a canonical (a, Y)-strict braided Coxeter category ﬁ;}; a.R.S
of type (D, m) given by the following data.

int
00,Urgn
by the action of the universal R—matrix Rp € thE(X)th;

e Forany B’ C B, the restriction functor Resg,B : (9;"(‘) Unos — g’(‘) Unag'"

e Foranyi €D, the quantum Weyl group operator S; € AUt(O::é,Uﬁg,' — Vecty).

e For any B C D, the braided monoidal category O with braiding induced

Proof 1t is enough to observe that the quantum Weyl group operators S; satisfy the
coproduct identity (14.1), which for the braided monoidal category Og‘é’ Unai reduces
precisely to the equation (17.1). g

Remark Note that the action of the R—matrix on category O, modules, together with
the corresponding restriction functors, gives rise to a braided pre—Coxeter category

ﬁUﬁE,R'

Part IV. The monodromy theorem

This final part is devoted to the proof of the main result of the paper. The material
is organized as follows. In Sect. 18, we introduce the notions of a split diagram-
matic Lie bialgebra b, its Drinfeld—Yetter modules DY, and the symmetric pre—
Coxeter category 7% . In Sect. 19, we introduce the PROP of universal Drinfeld-
Yetter modules over a split diagrammatic Lie bialgebra and the universal algebra
Up) which controls the deformation of 2%, as a braided pre—Coxeter category. In
Sect. 20, we describe similar results for split diagrammatic quantum enveloping al-
gebras and their admissible Drinfeld—Yetter modules. We review the construction of
an explicit equivalence of braided pre—Coxeter categories 2%} — 2% g‘?b), given
in [2, Thm. 10.10], where b is a split diagrammatic Lie bialgebra, 2% Z‘D denotes
a deformation of 2% depending upon the choice of a Lie associator ®, Q(b)
is the Etingof-Kazhdan quantisation of b [15], and 2% 55“(1[1) denotes the braided
pre—Coxeter category arising from admissible Drinfeld—Yetter Q(b)-modules. In
Sect. 21, we fix a diagrammatic Kac—Moody algebra g with root system A. We in-
troduce the PROP of universal Drinfeld—Yetter modules over a split diagrammatic
Lie bialgebra graded over A, modelled over b™. Its universal algebra U% controls
the deformation of 2%, . In Sect. 22, we prove that the monodromy data of the
KZ and Casimir connections are encoded by a universal structure on U%, . We rely
on the rigidity of U% , proved in [3, Thm. 15.15], to obtain an equivalence of braided
pre—Coxeter categories 2% Z’f — 9% ﬁ:b_, which finally yields the equivalence
ﬁ’g:“‘v‘ — ﬁ;?[hg,R,S'
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18 From category O to Drinfeld-Yetter modules

We review the notion of diagrammatic Lie bialgebra introduced in [2], and the fact
that their Drinfeld—Yetter modules give rise to a braided pre—Coxeter category. In
the case of a diagrammatic Kac—Moody algebra, this recovers category 6’;“ as a full
subcategory of Drinfeld—Yetter modules over its negative Borel subalgebra.

18.1 Lie bialgebras

A Lie bialgebra is a triple (b, [, ]p, dp) where (b, [, ]p) is a Lie algebra, (b, §p) a Lie
coalgebra, and the cobracket §p : b — b ® b satisfies the cocycle condition

8p([X, Y]p) = ad(X) 8p(Y) — ad(Y) 85(X)
18.2 Drinfeld double [10]

The Drinfeld double of a Lie bialgebra (b, [, ], dp) is the Lie algebra g, defined
as follows. As a vector space, gp = b @ b*. The duality pairing b* ® b — k extends
uniquely to a symmetric, non—degenerate bilinear form (-, -) on gp, with respect to
which both b and b* are isotropic subspaces. The Lie bracket on g, is defined as the
unique bracket which coincides with [, ], on b, with 8% on b*, and is compatible
with (-, -), i.e., satisfies ([x, y], z) = (x, [y, z]) for all x, y, z € gp. The mixed bracket
of x € b and ¢ € b* is then given by

[x, ] =ad"(x)(¢) + ¢ ®idp 0 (x)

where ad* is the coadjoint action of b on b*. Note that (gp, b, b*) is a Manin triple
[10, 15], and any such triple arises this way.

Similarly, if b is a Lie bialgebra which is N—graded with finite—dimensional com-
ponents, and such that the bracket and cobracket are homogeneous of degrees 0 and
d € 7 respectively,?® the restricted double of b is defined as gy = b @ b*[d], where
b*[d], = (b_,+q)*, and is a restricted Manin triple.

The restricted double g5 (and, in particular, the double of a finite—dimensional
Lie bialgebra) is additionally endowed with a Lie bialgebra structure, with cobracket

Sy (N =[X®@1+1®X,r]

where r is the canonical element in b®b*, with ® the completion of the tensor prod-
uct with respect to the grading, and SQ%es =8p — Sp*.

18.3 Drinfeld-Yetter modules [10, 16]

A Drinfeld-Yetter module over a Lie bialgebra b is a triple (V, 7wy, n"'}), where
(V,my) is a left b-module, (V, ;) aright b—comodule, and the maps 7y : b® V —
Vand ), : V — b® V satisfy the following compatibility in End(b ® V)

ﬂ; oy —idp ®my o (12) oidp ®TL">‘; =[-, ] ®idy oidy ®JT:; —idp ®my 08p ®idy

281n the sequel, we shall abusively refer to such a b as an N—graded Lie bialgebra.
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The category DYy of such modules is a symmetric tensor category. For any
V, W € DYy, the action and coaction on the tensor product V ® W are defined, re-
spectively, by

wyew =7y Qidy +idy @mw o (12) @ idw
Thew =Ty @idw +(12) ® idw oidy @y,
The associativity constraints are trivial, and the braiding is defined by Byw = (12).

18.4 Representations of the Drinfeld double

The category DY, is canonically isomorphic to the category &g, of equicontinuous
gp—modules [15], i.e., those endowed with a locally finite b*—action. This condition
yields a functor E : &5, — DY, which assigns to any V € &, the Drinfeld—Yetter
b-module (V, 7w, 7*), where 7 is the restriction of the action of gy to b, and the
coaction 7 * is given by

) =) bhi®bvebaV

1

where {b;}, {b'} are dual bases of b and b*. The inverse functor is obtained by letting
¢ €b* Cgpacton Ve DYy by ¢ ®idy o™,

If b is N—graded with finite—dimensional homogeneous components, the formulae
defining E similarly give rise to an isomorphism E™ between the category Egrbes
of equicontinuous modules over the restricted double of b and DY,. Moreover, the
categories £y, and Egres are isomorphic, since any locally finite action of b* extends
uniquely to one of b*, and the following diagram is commutative

gg b ggrbes

DY,

18.5 Symmetrisable Kac-Moody algebras

Let g be a symmetrisable Kac—Moody algebra with opposite Borel subalgebras b* c
g (cf. 2.2). The identifications (bF)* ~ b* give rise to a Lie bialgebra structure on b*
and g, which is compatible with the grading. Specifically, consider the Lie algebra
9@ = g @ b;, with h; = h, and endow it with the inner product

()P = ()@=, xs,

Let 7o : ¢ — b be the projection arising from the root space decomposition, and
b(iz) c g the subalgebra

b = (X, h) € b* @ b, | m0(X) = +h}
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Note that the projection g — g onto the first component restricts to an isomorphism
bg) — b* with inverse b* 5 X — (X, +79(X)) € b(ﬁ). The following is easily seen
to hold (cf. [10, 17]).

Proposition

1 (@@, b(f), bf)) is a restricted Manin triple. In particular, bg) and g® are Lie
bialgebras, with cobracket (Sb(z) =[] ) and (Sg(z) = Sb(z) — Sb(z).
F by - +
(2) The central subalgebra 0@ b; C 9 is a coideal, so that the projection g — g
induces a Lie bialgebra structure on g and b=.

(3) The Lie bialgebra structure on g is given by
Slg =0  8(e) =dih; ne; 8(fi)=dihi A fi
(4) The projection g® — g maps the canonical elements r o) € biz)@b(z) and
proj g g map. g +
Qg(z) =rqo + ré(lz) € g(z)<§)g(2) corresponding to the inner product (-, ~)(2) to

r9=2xi®xi+%Zta®t“
i a

and the canonical element Qg € aQg corresponding to (-, -), where {x;}, {x'} are
homogeneous dual bases of w_, n., and {t,}, {t*} are dual bases of h.*

18.6 From category O to Drinfeld-Yetter modules

By Proposition 18.5 and 18.4, the category of Drinfeld—Yetter modules over b~ is
equivalent to the category &£ g@ of g®®—modules which carry a locally finite action of

bf) C g(z). This implies the following, cf. [2, Prop. 12.8].

Proposition

(1) Category Ow g is isomorphic to the full tensor subcategory of Eg(z) consisting of
those modules carrying a trivial action of bj.

(2) Under the equivalence Eg(z) >~ DYp-, Oco,q is isomorphic to the full tensor sub-
category of DY - consisting of those modules V such that the action py and the
coaction py, of h on V coincide under (-, -)p, i.e.,

pv = (-, )y ®idy oidy ®p} (18.1)
18.7 Split pairs and restriction functors

Drinfeld—Yetter modules cannot be pulled back under morphisms of Lie bialgebras
since modules are contravariant and comodules are covariant with respect to such

29The % factor in rg arises because if 7,1’ € b and t4 = (¢,1) and ¢ = (¢/, —t') are the corresponding

elements of bf), then (14, )@ =2(r, ).
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morphisms. This can be rectified, however, by considering a different notion of mor-
phism of Lie bialgebras.

A split pair of Lie bialgebras (b, a) [1] is the datum of two Lie bialgebras a, b,
together with Lie bialgebra morphisms i : a — b and p : b — a such that p oi =id,.
For any split pair of Lie bialgebras (b, a), there is a monoidal restriction functor
Resq p : DYy — DY defined by

Resq p(V, 7wy, my) = (V,ry 0oi @idy, p @ idy omryy)

Moreover, if a <> b <> ¢ is a chain of split embeddings, then Resq p oResp . =
Resq . Note that, under the identification of DYy, DY, with the categories of
equicontinuous modules over the doubles gy and g, respectively, Res, p coincides
with the pullback functor corresponding to the morphism i @ p’ : gq — go.

18.8 Diagrammatic Lie bialgebras [2]

By analogy with Sect. 6.1, a diagrammatic Lie (bi)algebra is a monoidal functor from
P (D) to the category of Lie bialgebras. Specifically, a diagrammatic Lie (bi)algebra
b is the datum of

e adiagram D
e forany B C D, a Lie (bi)algebra bp
e for any B’ C B, a Lie (bi)algebra morphism igp: : bgpr — bp

such that
e forany BC D, igp =idp,
o forany B" C B'C B, igp oigpr =igpr
e forany By L B>,
[(BiuBy)B) T i(BiUBy)B, - 0B ® bB, = bpuB,
is an isomorphism of Lie (bi)algebras.

The above properties imply in particular that by = 0, and that Ub is a diagrammatic
algebra, with (Ub)p = Ubp (cf. 6.2).

A morphism ¢ : b — ¢ of diagrammatic Lie (bi)algebras with the same underlying
diagram D is a collection of Lie (bi)algebra morphisms ¢p : bp — cp labelled by the
subdiagrams B € D such that, for any B’ C B, ¢p o igB, = il‘;B, oppg.

18.9 Split diagrammatic Lie bialgebras [2]

A diagrammatic Lie (bi)algebra b is split if there are Lie (bi)algebra morphisms
pp'p :bp — by forany B’ C B, such that pgigoigp =1idp,,, and

e forany B C D, ppp =idp,
e forany B” C B’ C B, pprp o pp'p = pPp'B
e forany By L B,

DBy (BjuBy) ® PB,(BuUBy) : bB,LB, — bB, ® bp,

is an isomorphism of Lie (bi)algebras, and is the inverse of i(p,18,)B; +(B,UB,)B, -
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A morphism ¢ : b — ¢ of split diagrammatic Lie (bi)algebras with the same un-
derlying diagram is one of the underlying diagrammatic Lie (bi)algebras such that,
forany B’ C B, pj, p 0 9B = ¢p opg,B.

The following is clear.

Proposition Let b be a split diagrammatic Lie bialgebra. Then, there is an (a, Y)—
strict symmetric pre—Coxeter category 9% defined by the following data

e For any B C I, the symmetric monoidal category DY,
e Forany B' C B, the restriction functor Resy, T

Remark A split diagrammatic Lie bialgebra b = {bp}pcp gives rise to a diagram-
matic Manin triple gp = {gp,}BcD, Which will be referred to as the double of b,
and any such triple arises this way (cf. [2, Sect. 5]). Similarly, if b is an N—graded
split diagrammatic Lie bialgebra with finite—dimensional homogeneous components
(i.e., for any B € D, bp is N—graded, with finite—dimensional homogeneous compo-
nents and, for any B’ C B, the morphisms igp and pp g are homogeneous of degree
0), one can similarly define a diagrammatic Lie bialgebra g*, with (gy°)p = [P
endowed with a canonical morphism of diagrammatic Lie bialgebras b — gi*.

18.10 Diagrammatic Kac-Moody algebras and split structures

Let g be a diagrammatic Kac—-Moody algebra with Dynkin diagram D and Cartan
subalgebras hp, B C D (cf. 2.4). Then g is a diagrammatic Lie bialgebra where, for
any BCD, gp={e, fi,hpli€B).

The diagrammatic structure on g determines a split diagrammatic one on b
as follows. For any B C DD, let bt = b+ N gp be the subalgebras generated by
{bp,ei | i € B} and {hp, fi | i € B} respectively. If B’ C B, let iy pp : b?, — b%&
be the standard embedding, and regard py p'p = i;’ pp &S amap b% — b?, via the
identifications (b?)" = b% given by the inner product. Then, ker(pi p/p) is a Lie
subalgebra in b;, and therefore {py p/p} give the required splitting of the Lie bial-
gebra b*.

Note that the restriction of iy pp to hp is the embedding hp — bhp, while
D+.B'B L hp — bp is the projection corresponding to the decomposition hp =
bB’ @ hB"

18.11 The symmetric Coxeter category 2% i[';‘_
We describe the Drinfeld—Yetter analogue of the symmetric Coxeter category ﬁ;“
from 15.2. Let DYi[;“, be the category of integrable Drinfeld—Yetter b~ —modules, i.e.,

h—diagonalisable, endowed with a locally nilpotent action of the elements { f;};ep ©
b~, and satisfying (18.1), so as to give rise to integrable g—modules under the cor-
respondence described in Proposition 18.6. Thus, the generalised braid group By
acts on the objects in DYZ“, via the triple exponential operators s;, i € I. Moreover,
O‘o“é’g identifies with a full braided tensor subcategory of DYE“,. The following is
straightforward.
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int

Proposition There is a canonical (a, Y)-strict symmetric Coxeter category D% "
of type (D, m) given by the following data.

e Forany B C D, the symmetric monoidal category DYZ“_.
e Forany B’ C B, the restriction functor Resgp : DY‘[‘;‘_ — DY‘E‘I“_ .
B B’

. 9%  ~
e foranyi € D, the operator S; = =75;.

int

Moreover, ﬁ"g"‘ naturally identifies with a subcategory in Y%, .

18.12 Deformations of 77"
We shall be interested in deformations of the symmetric Coxeter category 2% ié“_.
It is clear that the results of 15.3 extend from category Oy, g—modules to Drinfeld—
Yetter b~ —modules. Indeed, let DYZ’i“‘ denote the category of deformation integrable
Drinfeld—Yetter b~ —modules. Since OZO'"E identifies with a full braided tensor sub-
category of DYZ’i‘“, the algebra Z/{gf“"" of the endomorphisms of the forgetful functor
(DYZ’i‘“)gn — Vecty, is endowed with a canonical morphism Z/lg‘f““” = Ug™".

Note that the restriction functors preserve the subcategories (’)20‘"5 z» B €D, there-
fore we obtain a cosimplicial lax bidiagrammatic algebra %bh_’i“"‘. By restriction to
category 05 modules, we obtain a canonical morphism ¢y : %br”;i"“ — U™ This

yields the following analogue of Proposition 15.6.

Proposition

(1) Every braided Coxeter structure C on %bﬁ_’i"t" gives rise to a canonical braided

Coxeter category D% Féi"‘ on deformation integrable Drinfeld—Yetter modules.
(2) By restriction to integrable category O, modules, C defines a braided Coxeter
structure on OZ/gh'*i““. The corresponding category ﬁ’g""l, defined as in Proposi-

. . . . h,ini
tion 15.6, identifies with a subcategory of DY (: "

19 Universal pre-Coxeter structures on diagrammatic Lie bialgebras

We review the definition of the diagrammatic PROPs LBAp,, DY}, and the universal
algebra Uy, introduced in [3]. The latter is a universal analogue of the cosimplicial
bidiagrammatic algebra Ug™® given by the enveloping algebra of the double of a split
diagrammatic Lie bialgebra.

19.1 PROPs[24, 28, 14, 2]
A PROP is a k-linear, strict, symmetric monoidal category P whose objects are the
non—negative integers, and such that [n] ® [m] = [n + m]. In particular, [0] is the unit

object and [n] = [1]®" carries an action of the symmetric group &,,. A morphism of
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PROPs is a symmetric monoidal functor G : P — Q which is the identity on objects,
and is endowed with the trivial tensor structure

id:G(Imlp) ® G([nlp) = [mlq ® [nlq =[m +nlqg =G(m +nlp)

Fix henceforth a complete bracketing b, on n letters for any n > 2, and set
b = {bn}n>2. A module over P in a symmetric monoidal category N is a symmetric
monoidal functor (G, J) : P — AN such that*°

G(In) = G(1DE"

and the following diagram is commutative

J[m],[n]
G(Im]) ® G([n)) G(Im +nl)
GG @ GUDE! g

where ® is the associativity constraint in AV.
A morphism of modules over P is a natural transformation of functors. The cate-
gory of P-modules in NV is denoted by Fu nf’ (P, N).

Example Let LA be the PROP generated by a morphism w : [2] — [1], subject to the
relations

pold+(12)=0 and o (u®idy) o (idz+(123)+(312)) =0

as morphisms [2] — [1] and [3] — [1] respectively. Let LA(k) be the category of
Lie algebras over a field k. Note that there is a canonical isomorphism of categories
Fu nff(LA, Vecty) — LA(k), which assigns to a functor G the Lie algebra G([1]) with
bracket G(u) : G(1) @ G([1]) = G([2]) — G([1]). We denote by LBA the analogous
PROP corresponding to Lie bialgebras.

19.2 The Karoubi envelope

Recall that the Karoubi envelope of a category C is the category Kar(C) whose objects
are pairs (X, ), where X € C and 7w : X — X is an idempotent. The morphisms in
Kar(C) are defined as

Kar(O)((X, ), (Y, p)) ={f €C(X.Y) | po f=f=fon}

with id(x,7) = 7. In particular, Kar(C)((X, id), (¥, id)) = C(X, ¥), so that the functor
C — Kar(C) which maps X — (X, id) and f +— f is fully faithful.

301n a monoidal category (C, ®), Vb% " denotes the n—fold tensor product of V € C bracketed according to
by, . For example V((X’3 =(VeV)®V.

ee)e
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Every idempotent in Kar(C) splits canonically. Namely, if g € Kar(C)((X, 7),
(X, 7)) satisfies g2 = ¢, the maps

i=q:(X,q)— (X, 7m) and p=q:(X,7)—> (X,q)

satisfy i o p=gq and p oi =id(x 4)-

If P is a PROP, we denote by P the closure under infinite direct sums of the
Karoubi completion of P. By a slight abuse of terminology, in the following we still
refer to P as a PROP. If V' is a symmetric monoidal category, a module over P in A/
is a symmetric monoidal functor P — N such that the composition P — P — A is
a module over P. We denote the category of such modules by Fu nff) (P, N).Ttis clear
that, if NV is Karoubi complete and closed under infinite direct sums, the pull-back
functor

Fun® (P, N) — Fun® (P, )
is an equivalence of categories.

19.3 Colored PROPs

A colored PROP P is a k-linear, strict, symmetric monoidal category whose objects
are finite sequences over a set A, i.e.,

omm)zle"

n=0

with tensor product given by the concatenation of sequences, and tensor unit given by
the empty sequence. Modules over a colored PROP P and its closure P are defined
as in 19.1 and 19.2, respectively.

19.4 Diagrammatic PROPs

Let D be a non—empty diagram. We denote by LBA the PROP generated by a Lie
bialgebra object ([1], i, §) with a Lie bialgebra idempotent 6p : [1] — [1] for any
B C D subject to the relations

e Op =id[;
e forany B'C B, 0p 00 =0p =0p o0y
e forany By L By, 0p,uB, = 0B, +05,.

The above relations imply in particular that 6y = 0, and that 8 0 6y =0 =0pr 0 Op/
for any B’ | B” since if p, g are idempotents, p + ¢ is an idempotent if and only if

pg=0=gqp.
Remark Note that a module over LBAp in A (or equivalently a module over its

Karoubi completion LBAp) is the same as a split diagrammatic Lie bialgebra in N,
as defined in 18.9.
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19.5 Universal Drinfeld-Yetter modules

Given a diagram ID and n > 0, the category DY7; is the colored PROP generated by
n + 1 objects, [1] and {V, }}_,, and morphisms

e Og:[11—[1],BCD

w2l — (11, 6:[1] — [2]
o i [1]1®V, — Viand 7 1 Vi — [1] @V,
such that

o ([1],{6B}BcD; 1, 8) is an LBAp—module in DY,
o every (V,, my, JT:) is a Drinfeld—Yetter module over [1]

In particular, DY}, = LBAp.

Remark If N is a k-linear symmetric monoidal category, DYj,—modules in N
are isomorphic to the category whose objects are tuples (b; Vi,..., V,) consist-
ing of a split diagrammatic Lie bialgebra b in NV, and n Drinfeld-Yetter modules
Vi, ..., Vy € N over b. For any such tuple, we shall refer to the corresponding func-
tor Go:vy,....v,) : DY — N as its realisation functor.

19.6 Universal algebras
For BCDandn >0, set
Ug =Endpy: (V; ®---®V,,)

Let b be a split diagrammatic Lie bialgebra and gy its Drinfeld double. The al-
gebra U’ is a universal analogue of U g%n Specifically, let Z/{" be the algebra of

endomorphisms of the forgetful functor (DY, )&” — Vect, and % the correspond-
ing cosimplicial lax bidiagrammatic algebra. Then the following holds [2, Prop. 8.5
and 8.9].

Proposition

(1) Forany B' C B, there is a canonical morphism of algebras iy 5, : U, — U The
algebras {U'g}pcp and morphisms {i%y p,}p'cpcp give rise to a diagrammatic
algebra Uy, for any n > 0.

(2) For any B' C B, there is a canonical invariant subalgebra U, 5, C U'y, yielding
a bidiagrammatic structure on U.

(3) For any B C D, there is a canonical cosimplicial structure on the tower of al-
gebras {U'y},>0, which is compatible with the morphisms V' g, and the invariant
subalgebras, yielding a cosimplicial bidiagrammatic structure Uy).

(4) Let b be a split diagrammatic Lie bialgebra. The realisation functors induce a
canonical morphism of cosimplicial lax bidiagrammatic algebras pg : Up —
U -

We describe the diagrammatic subalgebras and morphisms i’ 5, in 19.7, the sub-
algebras of invariants in 19.8, the cosimplicial structure in 19.9, and the morphisms

pp :Up — Z/{gB in 19.10.
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19.7 Diagrammatic subalgebras

For any B’ C B, there is a canonical realisation functor DY, — DY’, which sends
the object [1]p/ in DY’ to the Lie bialgebra 6p/([11p) = ([1]5,6p/) in DY’, and
each (Vp/ 1, B/ ks g ) 1O

Resg,, (115).011s Vg k> T84 T ) = Vp 4 ek 0 Op ®id, Op @ idomy ;)

where 6p is regarded both as the split injection ([1]p,0p/) — [1]p and projection
[11pg — ([11B,6p’) (cf. 19.2). The functor induces a homomorphism igp : U'é, —
U, and itis clear that igp = idyr, and ipp o ip'pr =ipp for any B" C B’ C B.

Remark We show in [3] that the homomorphism igp  : U, — U’ is injective. We
shall therefore regard U’é/ as a subalgebra of U% and, for x € U’é,, write x € U
instead of igp/ (x) € U%. Moreover, {U%}pcp is a diagrammatic algebra, since mul-
tiplication induces an isomorphism U%luBz = U’}gl ® U’;Sz [3, Prop. 10.6 (4)].

19.8 Invariants

For any pair of subdiagrams B’ C B, denote by U, € U’ the subalgebra of el-
ements which commute with the diagonal action and coaction of [bp/] = ([1], 6p’)
onV, ®- --®YV,. Note that, by [2, Lemma 8.4], U’Ilg g commutes with the diagonal
actionof Uy, onV; ® --- ® V,,, which is given by

Ugox—x12.., ,,:A'lz_l o---oA%oA}(x)eU';;/
19.9 Cosimplicial structure
Forevery BCD,n>1andi =0,...,n+ 1, there are faithful functors
D! : DY — DY’
mapping [1] to [1], and given by
Dy (Vi) = Viq and Dy (V) =V,

for 1 <k <n,and, for1 <i <n,

D?(yk)z ¥i®¥i+l k=i
Vigr i+ 1<k<n

Vy 1<k<i—1

and &\ : DY, — DY’
pLY s V)

Mi—
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where 1 is the tensor unit in DY, regarded as trivial Drinfeld—Yetter module. These
induce algebra homomorphisms

n.mn n+1
Al Uy — Uy

which are universal analogues of the insertion/coproduct maps on U gf’;’. They en-
dow the tower {U’;},,>0 with the structure of a cosimplicial algebra, with Hochschild

differential d" = Z:l:ol (=DIAT U — U'Erl. This structure is compatible with the
maps {ipp'} p'cpcp and invariants.

19.10 Realisation functors and endomorphisms

Let B € D. For any n—tuple { Vi, my, n,:‘ Z: | of Drinfeld—Yetter modules over b, let
Gbp:v....v,) : DYy —> Vect

be the corresponding realisation functor. We have the following [2, Prop. 8.7].

Proposition

(1) There is an algebra homomorphism
P, Up = Uy,

which assigns to any T € U, and any Vi, ..., V, € DYy, the endomorphism
Gop:vi,...vi)(T) €EEndg (Vi ® -+ - ® Vyp).

(2) The collection of homomorphisms {,o’gB }Bcp is a morphism of cosimplicial bidi-
agrammatic algebras pg : Uy — %3 .

19.11 Gradings and completions

Let B € D. The PROP DY’ has a natural N-bigrading given by deg(o) = (0,0) =
deg(0p) forany o0 € Sy and B’ C B,

deg(n) =(1,0) = deg(an) and deg(6) =(0,1) = deg(n\*/_k)

for any 1 < k < n. The algebra U’g inherits this bigrading and is concentrated in
bidegrees (N, N), since a degree (p,q) morphism with source V| ® --- @ V,, is
easily seen tomap to [1]®9~P ®V, ®---®V, . For any a, b € N, the corresponding
N-grading determined by mapping (1, 0), (0, 1) to a, b respectively yields the same
graded completion U’}g of U’, so long as a + b > 0. For definiteness, we set a =0
andb=1.

Note that the morphisms i ,, and the cosimplicial structure are compatible with
grading, thus yielding a cosimplicial lax bidiagrammatic algebra ﬁ]b given by the
collection of the invariant subalgebras 0’}9 » S U\’}g, B’ C B, defined as in 19.8.
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19.12 Universal pre—Coxeter structures

Let b be a split diagrammatic Lie bialgebra and gy, its Drinfeld double. By Proposition
19.6, Uy, can be thought of as a universal analogue of the cosimplicial bidiagrammatic
algebra U g?'. In a similar vein, its completion Up) is a universal analogue of the

h,n

trivial deformation Ug*[[2]]. Namely, let Z/le be the algebra of endomorphisms of

the forgetful functor (DYZB)&” — Vectp and %bh’ the corresponding cosimplicial
lax bidiagrammatic algebra. We have the following [2, Sect. 9.7 and Prop. 9.8].

Proposition

(1) There is a canonical morphism of cosimplicial lax bidiagrammatic algebras f)\g :
ﬁI.D — %bh".

(2) A braided pre—Coxeter structure € = (®p, Rp, Jr, Yrg, a;_-:,) on Up is uni-
versal, i.e., for any split diagrammatic Lie bialgebra b, it induces one on %bh’
through ,75; We denote the resulting braided pre—Coxeter category by 7% .

For the reader’s convenience, we recall the construction of ,?5[: from [2, Sect. 9.7].
Let ¢ be a Lie bialgebra and DY” the category of Drinfeld-Yetter c—modules in
Vecty,. Scaling the coaction on V € DY! by 7 yields an isomorphism between
DY” and the category DY‘;‘}{“ of Drinfeld—Yetter modules over the Lie bialgebra
= (c[[21l, [+, -1, hS), whose coaction is divisible by h. We denote by U/ the algebra
of endomorphisms of the n—fold tensor power of the forgetful functor f. : DY? —
Vecty,. Note that U" identifies canonically with the analogous completion defined
for DY,

In the case of the split diagrammatic Lie bialgebra b, the realisation functors

g(bg;vl’_“%) : DY’ — Vecty,
adm
b
L{Z"” which naturally extends to ﬁ% Finally, note that, if B’ C B, the subalgebra of

[b Br].—invariants in U’é e U\’}; is mapped by %3 to elements in Z/{Z'B” commuting with
the diagonal (co)action of bp'.

corresponding to Vi, ..., V, € DY = DYZB induce a homomorphism pp : Up —

19.13 Distinguished elements in Up
There are two distinguished families of elements in Uf,, namely
ICiB =Ty, o O ® id®¥ OTL’Q_ and I‘g =Ty, o O ® id®¥ Oﬂij
where 1 <i # j <n and B C . Note that, for a split diagrammatic Lie bialge-

bra b, under the equivalence between Drinfeld—Yetter b—-modules and equicontinuous
gp—modules described in 18.4, one has

Polic) =hY_(b®-GHDand Do) =hy (6 0HY
k k
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where {by}, {b*} are dual bases of bg and b%. Therefore, the algebra Uy, contains the
universal analogues of the r—matrices and the normally ordered Casimir elements of
the Drinfeld doubles gp,, B € D.

Set R =1} + rj. Asin Lemma 16.1.2, we obtain a morphism of algebras £ :
T 6’1’3 given by the assignment &}, ) = SZ’I;. Therefore, any universal associator
O e is naturally realised in ﬁ% as &p = Eg(cb). Note also that, if @ is a Lie
associator, then for any B; L B, one has ®p 3, = ®p, ’-\CD B,. In the following,
we shall be interested in braided pre—Coxeter structure on Up, whose diagrammatic
associators @ are uniformly determined by a fixed Lie associator’! & efand Rp =

exp(2;/2).

20 Quantisation of diagrammatic Lie bialgebras

In this section, we review the notion of admissible Drinfeld—Yetter module over a
quantised universal enveloping algebra (QUE) introduced in [1]. The category of such
modules over a split diagrammatic QUE ‘B gives rise to a braided pre—Coxeter cate-
gory 9% ‘;g". When ‘B is the Etingof-Kazhdan quantisation of a split diagrammatic
Lie bialgebra b, we outline the construction of a Tannakian equivalence between
2 ‘%‘" and a braided pre—Coxeter category of deformation Drinfeld—Yetter modules
over b arising from the universal diagrammatic algebra Uy obtained in [1, 2].

20.1 Drinfeld-Yetter modules over a Hopf algebra [16, 38]

A Drinfeld-Yetter module over a Hopf algebra B is a triple (V, my, n{}), where
VY, my) is a left B-module, (V,n]"}) a right B-comodule, and the maps my :
BV —>Vandny,:V— BV satisfy the following compatibility condition:

momy =m® @m0 (13)24) 0 S7' ®id® 0A® @ 1

where m® : B9 - B and A® : B — B®3 are the iterated multiplication and
comultiplication respectively, and S : B — ‘B is the antipode.

The category DY of such modules is a braided monoidal category. For any
V, W € DY, the action and coaction on the tensor product V ® W are defined by

Tyew =Ty @ Ty 0 (23) o A @ idygyy
Tygw =m’' ®@idygw 0(23) o1y, ® 13y,

The associativity constraints are trivial, and the braiding is Syyy = (12) o Ry,
where the R—matrix Ryyy € End(V ® W) is defined by

Ryyy =my ®@idyy o(12) oidy ®JT;V
The linear map Ry is invertible, with inverse

Ry, =y ®idyy oS ® idygyy o(12) o idy @),

3 [2, Sect. 10.1], we consider a larger class of factorisable associators.
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20.2 The finite quantum double [10]

Let 8 be a finite—dimensional Hopf algebra, and B° the dual Hopf algebra 8* with
opposite coproduct. The quantum double of ‘B is the unique quasitriangular Hopf
algebra (D*B, R) such that 1) DB =B ® B° as vector spaces 2) 5 and *B° are Hopf
subalgebras of D*B and 3) R is the canonical element in ‘B ® 8° C DB ® D*5. The
category Rep D*B is readily seen to be canonically isomorphic, as a braided monoidal
category, to DY 3 (see e.g., [1, Appendix A]).

20.3 Quantum double for QUEs

The construction of the quantum double can be adapted to quantised universal en-
veloping algebras (QUE). Recall that a QUE is a topological Hopf algebra B over
CI[All which reduces modulo % to an enveloping algebra Ub for some Lie bialgebra
b, and is such that, for any x € b,

= 21
§(x) = M mod %
h
where X € B is any lift of x. A QUE is of finite type if the underlying Lie bialgebra
b is finite—dimensional. In this case, the dual * is a quantised formal series Hopf
algebra (QFSH), i.e., a topological Hopf algebra over C[[71]] which reduces modulo /
to Sb =[], $"b. Conversely, the dual of a QFSH of finite type is a QUE (cf. [10, 19]
or [1, Sect. 2.19)).
If 9B is a QUE, set

B = {b cB ‘ (id—t 0 £)®" 0 A® (b) € BB for any n > o}

where A™ : 9B — B®" s the iterated coproduct. Then, B8’ is a Hopf subalgebra of
8, and a QFSH. In particular, if B is of finite type, BY = (B')* is a QUE. As in
20.2, (B, BY) is a matched pair of Hopf algebras [1, A.5]. The double cross product
DB = BB is a quasitriangular QUE, whose R—matrix is the canonical element
R € B’ ® BY, and underlying Lie bialgebra the Drinfeld double g, = b & b*.

This construction extends to the case of finitely N—graded QUEs, i.e., N—graded
Hopf algebras B = P, B, such that By is a QUE of finite type, and each B,
is a finitely generated %/o—module. Note that such a QUE is a quantisation of an
N-graded Lie bialgebra with finite—dimensional components and cobracket of degree
d =0 (cf. 18.2). Moreover, B’ = @n>0(%’ N $B,) is also graded, and its restricted
dual B* = P, (B' N B,)* is a finitely N-graded QUE quantising the restricted
dual Lie bialgebra b*. The double cross product (DB)™ = B =< B* is called the
restricted quantum double of ‘B. (D®8)™ is a quasitriangular, finitely Z—graded QUE
whose R—matrix is the canonical element in the graded completion of 8’ ® B*, and
underlying Lie bialgebra is the restricted Drinfeld double gi;* = b & b*.

Example Let g be a symmetrisable Kac—-Moody algebra. It is well-known (cf. [10]
or [2, 13.1]) that the quantum group Upg is isomorphic to a quotient of the re-
stricted quantum double of Upb™. This isomorphism yields the universal R—matrix
R € Upb~®Upxb™ described in 17.2, and reduces modulo £ to the classical isomor-
phism described in Proposition 18.5.
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20.4 Admissible Drinfeld-Yetter modules over a QUE [1]

If B is a QUE, the categories of Drinfeld—Yetter 8—modules and modules over
(DB)™ are not equivalent, even when ‘B is of finite type. This motivates the fol-
lowing definition, due to P. Etingof.

A Drinfeld—Yetter module (V, my, 71{;) over ‘B is admissible if the coaction 71?} :
VY — B ® V factors through B’ ® V, where ® is the h-adic tensor product, and 8’
is endowed with topology induced by the h-adic topology on 3, so that B’ ® V C
B ® V.32 We denote the category of such modules by DY{". If B is a quantisation
of b, the category DY{" reduces modulo & to DYp. Moreover, we observe in [2,
Sect. 6.4] that, if B is a finitely N—graded QUE, there is a canonical isomorphism
between DY‘%m and the category of (D*B)™*—modules with a locally finite action of
B*.

Example Let g be a symmetrisable Kac-Moody algebra. In analogy with Proposi-

adm

tion 18.6, one can identify O, v, ¢ With a full tensor subcategory of DY Upb- whose
objects satisfy the condition (18.1). Similarly, Og‘;’Uh g identifies with a subcategory
of integrable admissible Drinfeld—Yetter Uy b~ —modules (cf. [2, Sect. 13.3]).

20.5 Diagrammatic Hopf algebras [2]

By analogy with Sect. 6.1, a diagrammatic Hopf algebra is a monoidal functor from
P (D) to the category of Hopf bialgebras. Specifically, adiagrammatic Hopf algebra
is the datum of

e adiagram D
e for any B € D, a Hopf algebra Bp
e forany B’ C B, a morphism of Hopf algebras igp : Bp — Bp

such that
e forany BC D, ipp =idg,
o forany B" C B’ C B, igp oippr =igpr
e for any By Ul B,
MB,LUB, ©I(BUBy)B; ® I(BLUBY)B, - B, @B, = Bpus,

is an isomorphism of Hopf algebras, where mp,p, is the multiplication of
%BluBr

Diagrammatic QUEs are defined similarly.
20.6 Split diagrammatic Hopf algebras [2]

Recall that a split pair of Hopf algebras is the datum of two Hopf algebras 2, 8B to-
gether with Hopf algebra morphisms 2( 4 8 5 9 such that poi =idg [1, Sect. 4.6].

32Note that the induced topology on B’ coincide with its QFSH topology.
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A split diagrammatic Hopf algebra is a diagrammatic Hopf algebra 8 = {B}pcp,

together with Hopf algebra morphisms ppp : Bp — Bp for any B’ C B, such that

PB'BOIBR =ids3B, and

e forany B, ppp =idp,

e forany B” C B’ C B, pprp o pp'B = PB"B

e forany By L B>, pp,(B,uB,) @ PBy(BUBy) © ABuB, : Be,uB, — Bp, @Bp, isa
morphism of Hopf algebras, and the inverse of m g,uB, © i(B,uB,)B; ® i(B;UB>)B -

Split diagrammatic QUEs are defined similarly.

Remark Note that, if ‘B is a split diagrammatic Hopf algebra, where ‘B p are finitely
N-graded QUE, there is a diagrammatic QUE (D*B)™ with (DB)%’ = (DB p)™,
endowed with a canonical embedding of diagrammatic Hopf algebras B — (D*B)".

Example Let g be a diagrammatic Kac—-Moody algebra. The algebra Upb~ is a
finitely N—graded split diagrammatic QUE and therefore Upg, as a quotient of
(DURbL™)™, is a finitely Z—graded diagrammatic QUE.

20.7 Drinfeld-Yetter modules over split diagrammatic Hopf algebras

If A = B is a split pair of Hopf algebras, there is a monoidal restriction functor
Resg 9 : DY — DYg given by

Resg s (V, 7y, 13) = (V, mp 0 i @ idy, p ® idy o7ry))
If A, B are QUES, Resg( o restricts to a functor DY%’" — DY;‘;"‘.

Proposition Let B be a split diagrammatic Hopf algebra. Then, there is an
(a, Y)—strict braided pre—Coxeter category D% o defined by the following data

e Forany B C D, the braided monoidal category DY 5 ;.
e Forany B’ C B, the restriction functor Resy, 8, :DYm, > DY .

In the case of a split diagrammatic QUE, we have a braided pre—Coxeter subcate-
gory 295" given by admissible Drinfeld—Yetter modules.
20.8 Quantisation of diagrammatic Lie bialgebras

In [15, 16], Etingof and Kazhdan construct a quantisation functor Q from the cat-
egory of Lie bialgebras to the category of QUEs. We observe in [2, Prop. 6.8] that
Q respects direct sums, i.e., for any Lie bialgebras a, b, there is an isomorphism of
Hopf algebras J; p : Q(a) ® Q(b) = Q(a @ b). It follows that the quantisation of a
(split) diagrammatic Lie bialgebra is a (split) diagrammatic QUE. Thus, for any split
diagrammatic Lie bialgebra b, we have the braided pre—Coxeter category 2% g‘(‘b),
which reduces modulo 7 to the category 2%, defined in 18.9.

Example Let g be a symmetrisable Kac—-Moody algebra. By [17], there are isomor-
phisms Q(b*) ~ Upb* and Q(g) ~ Upng. In [2, Prop. 13.6], we observe that, in the
case of a diagrammatic Kac—Moody algebra, the isomorphisms preserve the (split)
diagrammatic structure.
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20.9 Universal structures arising from quantisation

Let b be a Lie bialgebra and ® a Lie associator. In [15], Etingof and Kazhdan de-
fine an equivalence of braided monoidal categories Hy, : DY — DYB“EE), where

DY<I> denotes the Drinfeld category, i.e., deformation Drmfeld Yetter b—modules
w1th associativity and commutativity constraints given by &, = ,ob(CD) and Rp =
exp(h/2 - Qp).

In [2], this result is extended to a split diagrammatic Lie bialgebra b with under-
lying diagram D. Specifically, the following holds.

Theorem [2, Thm. 10.2 and 10.10]

(1) Let & be a Lie associator. There is a canonical Y—strict braided pre—Coxeter
structure €™ on Uy, which is trivial in degree zero, and is such that &p = & g (D)
for any B C D (cf. Remark 19.12—(2)).

(2) Set 9% Z“D’T'S“ Q" There is a canonical equivalence of braided pre—

Coxeter categortes

b, QT str *

. h,®,T-str adm
Hy: 2902 — 998

whose diagrammatic equivalences are given by the Etingof—Kazhdan functors

. h,dp adm
Hy, :DYp P — DYiSn B CD.

Remark The main ingredients of the pre—Coxeter structure €3*" and equivalence Hp
are the following.

(1) For any B’ C B, the tensor structure J g p On the restriction functor Resp/p :

@,
DYZ:)B DYh B and the vertical join aB,,B : Resprp oResg p = Resprp,
are constructed in [1, Thm. 1.5], and determine the Y—strict braided pre—Coxeter
structure €.

(2) The horizontal equivalences DYZ’:B — DY*}S'(‘b of braided tensor categories
are the Etingof—Kazhdan Tannakian equlvalences H by

(3) The diagonal isomorphism of tensor functors ypp : Hp o Respp =
Resg,B oHpg, B’ C B, are constructed in [1, Thm. 1.7].

Note that, by Proposition 7.5, we obtain an a-strict braided Coxeter structure
€% and the corresponding category DY m®.250 which is canonically equivalent to
@@/h ® Y and therefore to 2 Sy Via Hh.

20.10 Universality

The category 2% Z’(D‘T'S“ is universal in that its essential data are described by the
diagrammatic PROPs DY}, n > 0. The category & g?b) and the equivalence Hp, :
D% 'E"D'T'S“ — 9 ‘5‘?6) are also universal as we briefly explain below. For further
details, we refer the reader to [1, Sect. 6.17] and [2, Sect. 10.7].

Let DY“CIm Ug be the PROP describing an admissible Drinfeld—Yetter module over a

adm

QUE. The category DYE‘Cl O(b) is isomorphic to that of realisation functors from DYQU E
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to Vecty. It follows that the essential data defining the braided pre—Coxeter category
DU mb) is entirely encoded by the diagrammatic PROPs DY'é“‘l‘j‘E p describing n
admissible Drinfeld—Yetter modules over a split diagrammatic QUE. Therefore, the
braided pre—Coxeter structure on 9?!/ u O(b) is clearly universal, induced by the stan-
dard braided pre—Coxeter structure of the quantum universal diagrammatic algebra
Uﬁ’ naturally associated to DY, “d“é p (asin 19.6).

The universality of the equivalence Hy, : 2% Z’q"”" — DU S?b) is more sub-
tle. Roughly, this means that every datum listed in Remark 20.9 admits a suitable
universal counterpart. For instance, the Etingof—-Kazhdan functor Hp with its tensor

adm

structure arises as the pullback of a morphism of topological PROPs H : DYQue —~

MLB A» Where the latter is a graded completion of the PROP DY, g, describing
a Drinfeld—Yetter module over a Lie bialgebra (cf. 19.5) and H depends upon the
choice of a universal associator ® and a universal twist J .

The restriction functors are similarly obtained through morphisms of PROPs in-
volving a universal split pair. Namely, let DY, 5 A.sp (resp. MZSTJE,sp) denote the
PROPs describing a Drinfeld—Yetter module over a split pair of Lie bialgebras
[a] — [b] (resp. over a split pair of QUEs [A] — [B]) Given a split pair of Lie
bialgebras a— b, we realise the restriction functor DYh — DY” as a morphism
of PROPs DYLBA — DYLBA sp mapping the generating objects of LBA to [a], de-
pendmg upon the upon the choice of a Lie associator @ and a universal relative twist
J® Finally, we prove that the natural isomorphism y is also universal, i.e., it is

[a].[b]"
induced by a natural isomorphism

DYQUe —— DY ga

L

adm
—_—>
DYQUE sp MLBA,sp

Remark Let DYadm be the PROP describing an admissible Drinfeld—Yetter mod-
ule over a co—P01sson universal enveloping algebra, so that the category DY” o~
DYi/‘E[[h]] is equivalent to that of realisation functors from DY"“Jlm o to Vecty,. Restnct-
ing the above constructions to DYE‘Glm Epe We obtained in [1, Sect 6.17] an alternative
proof of the invertibility of the Etmgof —Kazhdan functor Hy.

21 Universal Coxeter structures on Kac-Moody algebras

We enhance the results of Sect. 19 by introducing the PROP LBA 5 as a refinement
of LBAp modelled over the set of non—negative roots of a Kac-Moody algebra. The
corresponding universal algebra U$, interpolates between ﬁﬁ"ig and 0. Specifically,
we will prove in Sect. 22 that it is endowed with morphisms Up) — Uy < t}, and
therefore contains the data defining both categories.
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21.1 A-graded diagrammatic Lie bialgebras

Let g be a symmetrisable Kac—Moody algebra with Cartan subalgebra b C g, Dynkin
diagram DD, and root system A C h*. For any B C D, we denote by Ap C A the
corresponding root subsystem. Recall that, for any « € A and B € D, we write 1. B
if supp(e) L B.

Let LBA A be the PROP generated by a Lie bialgebra object [1], i.e., a module
over LBA with bracket u : [2] — [1] and cobracket 6 : [1] — [2], and two sets of
projectors

o Weight projectors: a complete set of orthogonal idempotents>3
Oy : [11 — [1] ae AL u{0}
e Diagrammatic projectors: a family of idempotents
o, : [1]1 — [1] BCD

such that the following relations hold.
e Normalisation: 6y p = 6p.
e A-—grading: forany o € A,
Oy ot = Z wobp®0,

Bty=a

§oly= Y 03®6,08
Bt+y=a

where the sums run over all ordered pairs (8, y) € A4 such that 8+ y = «. More-
over,pou=0=puoby®0OBand § oy =0=0y00y03.
e Nestedness: forany B'C B C D,

0o, © 00,8 = 6o, g = 00,5 0 Oy, p’

and, for any B; L By,

00, B,uB, = 00,8, + 00,8,

In particular, 6y, g = 0 and 69,5, © 0p,5, =0 =069, B, 0 by, g, for any By L B;.
e Support: forany « € Ay and B C D,
0 ifo L B

nobyp®0y= .
[,uo@o@@a ifoeAp +

0 ifo L B

00,8 ® 0y 06 =
’ {60®0a05 ifaeAp

3BIf|A| = o0, the completeness relation g+ Y, c A . 0y = id[1] is imposed by considering an appropriate
completion of the PROP LBA (cf. [3, Sect. 9.1]).
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21.2 Remarks

(1) In [3, Sect. 12.7], we introduced a refinement of the PROP LBA associated to
a diagrammatic partial semigroup S [3, Sect. 9]. LBA A is a special case of this
construction and arises when S = A_..

(2) A module over LBA (in a Karoubi complete category) is a Lie bialgebra
(¢, [-, -1, &) carrying some extra structure. The weight projectors induce a decom-
position ¢ = co ® P, A, Ca- This is compatible with the Lie algebra structure in
that, forany 8,y € Ay, [cg, ¢, ] € g4y, Whenever +y € Ay, and [¢g,¢,] =0
otherwise. Moreover, [cg, cg] € ¢g and [co, co] = 0. The compatibility with the
Lie coalgebra structure is similar.

The diagrammatic projectors lead instead to a split diagrammatic structure
on ¢. Indeed, note that, for any B C D, the morphism

O =005+ Y Ou:[11—1[1] 21.1)

aeABV+
is a Lie bialgebra idempotent i.e., 9% =03,
fpou=uobp®0p and S§o0p=0pQ®HOpod

In particular, c is a split diagrammatic Lie bialgebra with ¢g = 60p(c), B C D.
(3) If g is a diagrammatic Kac—-Moody algebra, the Borel subalgebras b* are mod-
ules over LBA 5. Namely, for any B C D, the idempotent 8y, g corresponds to the
splitting h = bp @ f)é;, while the idempotents 6y, « € A4 LI {0}, arise from the
root space decomposition b* = h @ D, A, 9+« In particular, for any B € D,

we have bﬁ =0p(b%).
21.3 Universal Drinfeld-Yetter modules

Proceeding as in 19.5 and 19.6, we introduce the PROPs of universal Drinfeld—Yetter
modules DY’y and the universal algebras U'; associated with LBAA .

The category DY’ , n > 0, is the colored PROP generated by n + 1 objects, [1]
and {V,};_,, and morphisms

o Oy :[1]=[1l,ae Ay u{0},and 6y 5 : [1] = [1], BC D
o w:[2]—=1[1],6:[1]1—[2]
o M [1]1®Vy — Vi, mf V= [1]®V,

such that

o ([1],64,00,8, it,8) is an LBA A—module in DY’
o every (V,, my, rr,f) is a Drinfeld—Yetter module over [1]

In particular, DY, = LBAA.
Similarly to 19.11, we consider on DY’y the N—grading given by deg(o) = 0 for
any o € Sy, deg(u) =0 =deg(my,) and deg() =1 = deg(rrik) forany 1 < k <n,
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and finally deg(8,) = 0 = deg(6o,p), for any « € Ay and B C D. This yields the
universal algebra

UA =Endpyy (V, @V, ®--®YV,)
and its completion U’y .
21.4 The universal algebra U}

The algebra U’y has a canonical diagrammatic structure, arising from the projectors
{68} pcp (21.1). Namely, for any B C D, we set MHA,B = M”AB and U”A’B = U"AB
For any B C B/, there is a canonical realisation functor

which sends the object [1]p in DY DY\  to the Lie bialgebra object 6p[1]p =
([1]p7,6p) in DYA - This induces a morphism of algebras iA pp Urp— U”A B
The following is an analogue of Proposition 19.6 (cf. [3, Prop. 12. 4])

Proposition

(1) For any n > 0, the algebras {UnA,B}BSD and morphisms {inA,BB’}B/ngD) give
rise to a diagrammatic algebra U'p .

(2) The invariant subalgebras {U"A’BB, C U"A’B | B’ € B} yield a bidiagrammatic
structure on Uy .

(3) For any B C DD, there is a canonical cosimplicial structure on the tower of alge-
bras {U'y pln>0, which is defined as in 19.9, is compatible with the morphisms
iy p and preserves the invariant subalgebras, yielding a cosimplicial bidiagram-
matic structure U}, .

Remark The morphisms i’y , . and the cosimplicial structure are compatible with
grading, thus yielding a cosimplicial lax bidiagrammatic algebra ﬁ'A D Uy, given by

cU% .. B CB.

the collection of the invariant subalgebras [0 A.B

A,BB =

21.5 From Up to U‘A

As pointed out in 21.2 (2), the generating object in LBA A is a split diagrammatic Lie
bialgebra, with diagrammatic structure given by the projectors {0p}pcp (21.1). This
yields canonical realisation functors

LBA, - LBA,  and  DYj—DYs (2>0)

and morphisms of algebras (/4 : Up — Uy, n > 0. One readily checks that these
preserve the diagrammatic subalgebras, the invariant subalgebras, the cosimplicial
structure, and the grading, thus giving rise to the morphisms of cosimplicial (lax)
bidiagrammatic algebras Uy — U} and U' — U'
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21.6 Universal pre-Coxeter structures for Kac-Moody algebras

Let g be a diagrammatic Kac—-Moody algebra with root system A and Borel subal-
gebras b* C g and %g”*‘““‘ the cosimplicial lax bidiagrammatic algebra arising from
deformation category O« integrable g—modules defined in 15.3.

By 21.2 (3), the Lie bialgebras b* are modules over LBAA . Therefore, for any
n—tuple { Vi, mg, JT,:‘ }Z:l of Drinfeld—Yetter b¥—modules, there is a canonical realisa-
tion functor

Go*.v.....v) - DYy —> Vect

sending [1] — b*, and Vi~ Vi
Let DY'Z’ft be the category of deformation integrable Drinfeld—Yetter b*—modules
as defined in 18.11. Let U+ be the algebra of endomorphisms of the forgetful functor

(DYZ’;“)®” — Vecty, and ch‘“b” - gim’" the subalgebra of h—invariant (or weight—

zero) elements. Proceeding as in 19.12, we obtain a canonical morphism of algebras

h,int,n

p’gi : U”A — U,:" induced by the realisation functors Gp+ v, ... v,)- We observed in
[3, Remark 15.12] that the morphism py .. factors through the weight—zero subalgebra

uﬁ,,int.n
bth _
Let bhi""“' be the cosimplicial lax bidiagrammatic algebra corresponding to U Zi‘"’"
(cf. 18.12). We have the following analogue of Proposition 19.12.

Proposition Let g be a diagrammatic Kac—Moody algebra with root system A and
Borel subalgebras bt C g.

(1) The realisation functors induce a canonical morphism of cosimplicial lax bidia-

h,int,e

grammatic algebras pg.. : Uy — %%

(2) Every braided pre—Coxeter structure & = (®p, Rp, J]_-, Yrg, a;-:,) on ﬁ.A vields
the following.
(a) A weight—zero braided pre—Coxeter structure €y on %hhif"‘" through the

bhiinl,.

(b) A braided pre—Coxeter category 2% J‘é on deformation integrable Drinfeld—
Yetter b*—modules, defined by Cy= through Proposition 18.12 (1).

(¢) A braided pre—Coxeter category Oy on deformation integrable category O

g—modules, defined by €,- through Proposition 18.12 (2).

morphism pp. : G.A —

We say that a braided pre—Coxeter structure on %br;fm" is universal if it is lifted

from one on ﬁ‘A as in (2)—(a) above.

Remark Note that elements in U} act on any Drinfeld—Yetter b*—modules (in partic-
ular, category O g—modules) without any requirement of integrability. Therefore,
the categories from (b) and (c) above can be similarly defined without the requirement
of integrability.
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21.7 Universal Coxeter structures for Kac-Moody algebras [3, Def. 15.12]

A braided Coxeter structure C = (g, Rp, J]_-, YTrg, ai-,, S;) of type (D,m) on
%bﬁ_’i"“' (or equivalently on %/;*"*) is universal if

(1) C is supported on iy , Le., the underlying braided pre—Coxeter structure CP™ =

(®p, Rp, J i Trg, a;) arises from a braided pre-Cox structure on ﬁ‘A via
Proposition 21.6
(2) the local monodromies S; have the form

Si=5i-S;

1

where 5; = exp(e;) - exp(— fi) - exp(e;), and S; € Us[)'[A]] is h-invariant with
S; =1 mod h.

Remark Note that, by 18.11,5; and S ; act on integrable Drinfeld—Yetter b,” —modules.

22 Proof of the monodromy theorem
22.1
The following is the main result of this paper.

Theorem Let g be a diagrammatic Kac—Moody algebra with negative Borel subalge-
bra b~.

(1) The monodromy data of the joint KZ-Casimir connection gives rise to a braided
Coxeter category 9% Z",'"V on deformation integrable Drinfeld—Yetter modules

over b~ , which extends the braided Coxeter category ﬁg;ig given by Theo-
rem 16.2.
(2) The R—matrix and quantum Weyl group operators of Upg give rise to a braided
Coxeter category 9% ;‘;'f"’[;"_l rs On integrable admissible Drinfeld—Yetter mod-
ules over Urb™, which extends the braided Coxeter category ﬁz‘}; o RS given by
Proposition 17.4.
(3) There is a canonical equivalence of braided Coxeter categories
Hy-: @@Z‘f‘fv — 9@?;‘;","1{!5
which preserves category Oso modules, and restricts to an equivalence of braided
Coxeter categories Hy : ﬁg"%‘ — on
(4) The equivalence Hy- is obtained as follows.
(a) The structure 2% Z’T tv is universal, that is arises from a canonical braided

pre—Coxeter structure Cy on the universal root diagrammatic algebra Uy
introduced in 21.4, via the realisation morphism associated to b~ .
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(b) The structure .@Zy adm, ‘"t “Rs IS universal, that is arises from the standard

braided pre—Coxeter stmcture CR g on the quantum universal diagrammatic

algebra ﬁh’° introduced in 20.10.

(c) There is a canomcal braided pre—Coxeter structure Cr g on the universal
diagrammatic algebra UD introduced in 19.6, together with a canonical uni-
versal equivalence

h,int adm, int
_ ’ —>
DY s > PV g

(d) The braided pre—Coxeter structures Cy and Cr.s are related by a unique
twist, which yields an equivalence

/2 h.,int h.,int
Hy 99" — 293"

(e) The equivalence Hy,- is given by the composition

H,-

h,int adm,int
9@h_,v @@Uhh ,R,S

h,int adm, int
9@[’ ,Cv gg/l/hb C

1" ’
Hb* /Hh
h,int
DY Crs

where the vertical equalities follow, respectively, from (a) and (b).
In particular, we obtain the following.

Theorem Let V be an integrable category O g—module, and V € Og‘g, Upg @ quan-
tum deformation of V. Then, the W—equivariant monodromy of the Casimir connec-
tion on V[[h] is equivalent to the quantum Weyl group action of the braid group By
on.

22.2

Remark As explained in 22.9, Hy- (resp. Hy) hold more generally as equivalences
of pre—Coxeter structures for arbitrary Drinfeld—Yetter b~ —modules (resp. category
Oso g—modules) without any requirement on integrability.

The proof of Theorem 22.1 is carried out in rest of this section. In Sects. 22.3-22.6,
we prove that the double holonomy algebra t' maps to the universal algebra U'
Then, (1) and (4a) are proved in Sect. 22.7; (2) and (4b) are proved in Sect. 22.8; (4c)
and (4d) are proved in Sects. 22.9, and 22.10, respectively. Thus, (4e) and the first
statement in (3) follow. Finally, the second statement in (3) is proved in 22.11.
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22.3 From t}, to U‘A

In Sect. 16.1, we constructed a morphism of cosimplicial lax diagrammatic algebras
N :?.A — U™ and used it to define a braided Coxeter structure on %" encod-
ing the monodromy data of the joint KZ-Casimir connection. We prove in Proposi-
tion 22.6 that £, factors through the universal algebra U} introduced in 21.3, i.e.,

there is a canonical morphism n} : t;, — U} which fits in a commutative diagram

Te SA h,int,e
T 2 A

W

e h,int,e

where pj _ is the realisation morphism from 21.6, and ¢y is given by restriction from

Drinfeld—Yetter b~—modules to category O, g—modules, as described in 18.12.
22.4 Arcdiagramsin DY?%

The elements in U may conveniently be represented in terms of string and arc di-
agrams, which we read as morphisms from left to right. In DY, , we represent id[y)
with a line and each idyi with a bold line. The bracket w : [2] — [1] and the cobracket
8 : [1] — [2] are represented, respectively, by the diagrams

and

SetV=V,®:---®V,.Theactionwy, : [[]®V — V and coaction 7ry; :V — [1]®@V
on the ith component of V are represented, respectively, by the diagrams

1 1

Finally, the idempotent 0, : [1] — [1], where the label * is either @ € Ay or (0, B)
with B C D, is represented by the diagram

—()—
22.5 Relationsin U’A

As in 19.13, there are two distinguished families of elements in U’y , namely

lci =7y, 06, ®idgy onQ_ and rl = my, 06y ® idgy Oﬂl
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where 1 <i # j <n,andxiseither o € Ay or (0, B) with B C ID. These correspond,
respectively, to the diagrams

v L)

i and

Similarly to 19.13, it follows from the definition of p*® in 21.6 and Proposition 18.5
(4) that

(pgop”(/cfx):h-lcg’i wgop"(r3)=h'réj
. h . ) ) iy h . .
Wgor"khg) =53 07 @Y ggopag =23 @ )Y
k k

where {1}, {¢¥} are dual bases of h.

Lemma The following holds.
(1) Forany BCDand a € A, [lcf)’B, lcix] =0.
(2) Forany BCDand o € Ap 4, [Icfx ZﬁGAB.Jr K;S] =0.

Proof (1) follows from the identities

O\ O - [ - o 5

(2) Let L”A: Up — U”A be the morphism defined in 21.4. Then, for any B € D, one
has

LnA(K%)ZICB’B-F Z lciﬂ
pelp

where IClé IS U’}g is defined in 19.13. In [3, Prop. 9.8], we proved that Zi ICiB is central
in Us. The same proof applies to (A (lc’é) in U’y 5. Then, the result follows from

(D). O
Clearly, the identity (2) above can be regarded as a rz—relation (3.5) with respect

to a diagrammatic root subsystem. Proceeding along the same lines, one shows the
standard 7z—relations hold in U, .

Proposition For any rank 2 subsystem WV C A4 and a € W, [lcfx, Zﬁe\l—' lc;}] =0.
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22.6 The morphism 5% :?‘A — ﬁ’A
Foranyn >2and 1 <i # j <n, define SZ” U” by 2. —rj +rjl.

Proposition The assignments
n oA 1 ij n i L n
Na(e) = 5 Tq Nl WA(Q B =5
1 1
MAGY) = 5 a(KE) =5~ A",

uniquely extends to a morphisms of algebras n'p : ty — U\ compatible with the
cosimplicial structure, the diagrammatic structure, and the natural N—gradings.
The correvpondlng morphism of cosimplicial lax diagrammatic algebras n} :

t' — U' give rise to the commutative diagram

_fA,

’i\o %ﬁ int,e
nhl M (22.1)
ﬁo %ﬁ int,e

ﬂb_

where §) and py_ are the realisation morphism from 16.1 and 19.10, respectively,

and @g is given by the restriction from integrable Drinfeld—Yetter b~ —modules to
integrable category O g—modules, described in 18.12.

Remark 1t is clear that, at this stage, it is not necessary to work with integrable mod-
ules. Namely, let %gh" and @/bh;' be, respectively, the completions with respect to de-

formation category O~ g—modules and Drinfeld—Yetter b~—modules (cf. 15.3 and
18.12). Note that there are canonical maps @/gh" — %gh*i“"' and @/bh_” — %g‘_‘i"t”,
given by restriction to integrable modules. One readily checks that the maps &,
pp-» ¢g factor through %bﬁ_” and %J*‘, yielding a commutative diagram as in (22.1).

Proof The commutativity of (22.1) is verified by direct inspection. Note that the scal-
ing factor in the definition of 14 is chosen so to guarantee the commutativity of (22.1)
and it is determined by the relation & = 27w ¢h. It remains to check that the linear map
1’ preserves the relations from Definition 12.6.

The symmetry and locality relations (12.6) and (12.7), (12.8), clearly holds in U’} ,
as they involve string diagrams insisting on distinct thick lines. The orthogonality
relations (12.10) follow from the A—grading relations in LBA o (cf. 21.1). Indeed, it
is enough to observe that, if @ L 8, one has

(o) (@)~
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Therefore, actions and coactions labelled by o and 8 commute, i.e.,

! ! _ @AE

and

<\ = e

It follows that any two arc diagrams labelled, respectively, by « and 8 clearly com-
mute. The orthogonality relations (12.11) are proved similarly, by relying on the nest-
edness and support relations in LBA A .

The proof of the KZ relations (12.9) is standard. Let DY" the PROP describing n
Drinfeld—Yetter modules over a Lie bialgebra. One first observes that the operator

is invariant, i.e., it commutes with the action and the coactionon V; ® V,

i
T

Therefore, the operator 2!% on V, ® V, ® V5 commutes with '3 + @23, since the
latter is the operator

= . L=

For any B C D, we consider the canonical morphism of PROPs DY" — DY", , map-
ping the Lie bialgebra object [1] in DY”" to the Lie bialgebra ([1], 65) in DY, . This
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shows that £ ; commutes with the action and coaction of [bp/] for any B’ € B, and
the diagrammatic KZ relations (12.9) follow.

The weight zero relations follow from the fact that the Lie bialgebras ([1], 6, 5)
are abelian.

By Lemma 22.5 (3), the operators lcfx and A® (k) satisfy the Casimir relations
(12.12). Finally, it is clear that

AW (e, =Y QY —i—ZK
i<j
so that (12.14) and (12.13) hold in U’y .

The algebra maps n'; : t — U'; clearly preserve the cosimplicial structure, the
diagrammatic subalgebras, and the natural grading. The result follows. g

22.7 Proof of Theorem 22.1 (1) and (3a)
We shall prove the following

Theorem Let Cy = (CDV, Rv JV T;g, S.V) be the a—strict braided Coxeter struc-
ture on the extended double holonomy algebra/’c\'A’eXt defined in Theorem 13.2.

(a) The datum of
CP“?’I (q)Vn RVTI JVU T )

where

V.n v, v, V.n

D, 1 _UA(J]:) T]:g —WA(T]:g)

=np(@p), Ry"=npARy), Jr

is a braided pre—Coxeter structure on G'A
(b) Through the realisation morphisms ﬁ‘A — %bh_‘im" — U™ (cf. Sect. 22.6),

CY" induces on % """ the braided Coxeter structure arising from the joint KZ~

Casimir connection defined in Theorem 16.2.

Proof Part (b) follows from the commutativity of the diagram (22.1). For part (a),
we proceed as in the proof of Theorem 16.2. We shall verify that CY™" satisfy the
properties (a)—(e) fliom Definition 11.1 with respect to the cosimplicial bidiagram-
matic structure on U?, . By construction, C{,”" is the image of a braided pre-Coxeter

structure CY,° in/’a\’A through the morphism 1% T’A — ﬁ'A defined in 22.6. Although
n'A is a morphism of cosimplicial diagrammatic algebras, it does not preserve the
invariant subalgebras, as the condition of being invariant in U”A is generally stronger
than being invariant in t} . Therefore, proving that C3™" is a braided pre-Coxeter
structure in U'A reduces to showing that the elements @}, R}, Jr Y1 and T]_-g
satisfy the necessary invariance properties.

By definition, RZ’" = exp(Sl}f/Z) € UQA, B and, by Theorem 13.1, the associator

<I>X e Uq p s the exponential of a Lie series in SZ};2 and 52%3. As observed in 22.6,
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the operator SZ;;’H is [1]p—invariant in U"A’B, therefore so are RZ’" € U2A,BB and

QJZ’" € G3A pp- Lhe invariance of the relative twists and the De Concini-Procesi
associators is obtained as in [34, Thm. 1.33] and [35, App. B.4]. Namely, it is enough
to observe that the relative Casimir operators, which provide the coefficients of the
differential equations defining J ]Y- and T;g in?‘A, specialise in UlA to elements with
the necessary invariant properties.

For any B’ € B C DD, set Kpp = ZﬂEAB,+\AB/_+ Kg- We shall prove that Kgp
commutes with the action and the coaction of the universal Lie subbialgebra [1]p =
([1], 8p/). Note that the elements kg are weight zero, i.e., for any 8 € A, we have

8.0, -

Leta € Ap/ 4 and B € Ap 4+ \ Ap 4. Note that « — 8 is never a positive root and

CRCNERCYEC N =N

). 2 -2

where the second and third summands appear if and only if 8 —« € Ap 4. Summing
over all positive roots § € Ag + \ Ap 4, the first and third summands cancel out.
Namely, if 8 —a € Ap 4+, then the third summand in the equation (22.3) for 8 cancels
out with the first summand in the equation (22.3) for § —«. On the other hand, assume
that 8 + « € Ap_+. Then, the first summand in the equation (22.3) for 8 cancels out
with the third summand in the equation (22.3) for 8 + «. Finally, if 8 + « ¢ Ap 4,

1) - 0\

Therefore, by (22.2), the operator & 55, commutes with the action of [1]p:. The in-
variance of k 5, under the coaction of [1]p is proved similarly. d

(22.3)

Therefore, Cy induces an a—strict universal braided Coxeter structure on OZ/hﬁ_‘i“"’,
which we denote by C3* and, by Proposition 18.12, yields a braided Coxeter cate-

gory DU Z’i“fv.
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22.8 Proof of Theorem 22.1 (2) and (4b)

In Proposition 17.4, we described the (a, Y)-strict braided Coxeter category
7 i}th ORS arising from the action of the R—matrix and the quantum Weyl group opera-
tors of the quantum group Upg on category O, integrable Upg—modules. In analogy
with the classical case (cf. 18.6 and 18.11), this extends to admissible Drinfeld—Yetter
Upb~—modules. Namely, the quantum group Uprg is isomorphic, as diagrammatic
QUEs, to the quotient of the restricted quantum double of Upb™. Therefore, any
admissible Drinfeld—Yetter module (V, py, py) satisfying

py = (-, )y ®idy oidy ®p3, (22.4)

is naturally a module over Upg. In particular, this allows to recover category Ooo, v, g

adm

as a braided tensor subcategory of DYU;h*' We say that a deformation Drinfeld—

Yetter b~ —module is integrable if it satisfies (22.4) and (D2) from 15.3. Similarly

for Upb™. Let DY;;":';“_‘ be the category of integrable admissible Drinfeld—Yetter

Upb~—modules. Then, the generalised braid group By acts on the objects in DY

adm, int
Upb—
via the quantum Weyl group operators S;, i € I. By elying on the split diagrammatic
structure of Upb™, we obtain the following extension of Proposition 17.4.

adm,int

Proposition There is a (a, Y)—strict braided Coxeter category @Z’/th, rs o tpe
(D, m) given by the following data.

e Forany B C D, the braided monoidal category DY;jm'bi"j.
hbp

'C stricti h . adm, int adm, int )

e Forany B C B, the restriction functor Resg, g DYUﬁbE — DYth;,

e Forany i €D, the quantum Weyl group operator S; € /A\ut(DYésm’E:",t — Vectp).

R

int . : . adm, int
Moreover, ﬁ’th,’R,S naturally identifies with a subcategory of QWUW,’R’S.

Finally, it follows as in 20.10 that the braided pre—Coxeter structure 2% ﬁ:b* R
is universal and induced by the standard braided pre—Coxeter structure on ﬁ%".

22.9 Proof of Theorem 22.1 (4c)

Let ®V be the KZ associator. Since ®V is a Lie associator by Theorem 13.1, Theo-
rem 20.9 yields a universal braided pre-Coxeter structure Qfé'%" on Uy, and therefore
an equivalence of braided pre—Coxeter categories
pre h adm
H": @@b—,cgg“ —> @@Q(b,)
By [17] and [2, Prop. 13.6], the split diagrammatic QUEs Q(b™) and Upb~
are isomorphic, thus yielding an equivalence of braided pre—Coxeter categories
DY Stoy = 2 - x-
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Lemma The composite equivalence

pre

h b adm ~ adm
PV ety — PG =9V w

preserves integrability.

Proof Recall that, for g = sl, integrability is equivalent to complete reducibility as
a possibly infinite direct sum of (indecomposable) finite—rank modules. Since the
equivalence commutes with direct sums and preserves the rank, the result is clear in
this case.

For any i €I, set b, = (fi, h;) C 5[‘;". By [1, Thm. 1.7], there is a commutative
diagram of functors

b—

DY"® 7, pyun
b~ Q(b7)

| |

h, D; adm
DY~ —Hb_> DYQb;

i

where the horizontal arrows are the Etingof-Kazhdan equivalences and the vertical
arrows are restrictions. Then, the result follows, since restrictions preserve integra-
bility and the isomorphism Q(b™) >~ U b~ is split diagrammatic. Il

©

This allows to enhance H‘E’:_ to an equivalence of braided Coxeter categories

/ . h,int adm, int
Hy : ngf’cl{,sm — ggth*,R,s
where CR’§ is a universal braided Coxeter structure which extends Q:;'é", ie.,
Y-str,pre g Y-str
Crs’ ="

22.10 Proof of Theorem 22.1 (4d)

By the discussion above, we now have an a—strict universall\ braided Coxeter structure
C3, arising from the monodromy data and supported on U%, , and a Y—strict braided
Coxeter structure Cﬂfg, arising from the quantum group Upg and supported on IAJI'D)
Note that, by construction, C3** and Cﬁ’é‘ already share the same associators and
R-matrices. The proof of Theorem 22.1 (3b) amounts to showing that C3™" and Cﬁ'fg
are twist equivalent. More precisely, we prove the following

Theorem The universal structures C3;" and Cﬁ:sé' are twist equivalent (cf. 11.3) with
respect to a twist of the form T=T' - T", where
(1) T’ is uniquely determined by a tuple of grouplike elements in Eb,-, ieD.

(2) T" is a unique universal twist supported on U, .
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This is achieved in two steps, which rely heavily on the fact that both structures are
universal and supported on U%, . Indeed, we proved in [3] that braided pre-Coxeter

structures on ﬁ'A are rigid. Specifically, we have the following

TheoremA[S, Thm. 13.4] Let €, k = 1, 2, be two a—strict braided pre—Coxeter struc-
tures on U'A. Then, there exists a twist T such that € = (&1)1. Moreover, T is unique
up to a unique gauge.

Note that, by Proposition 7.5, CE‘Sg is canonically twist equivalent to an a—strict

a-str, pre

universal braided Coxeter structure Ci'§. Let C3"™ and Cy'g™ be the braided
pre-Coxeter structures underlying C3™" and Cy'g, respectively. The result above

determines a universal twist 7", unique up to a unique universal gauge, such that
CT—str,pre _ (Ca—str,pre) .
RS —\%v T )

However, at the level of braided Coxeter structures, we need a further correc-
tion, since the local monodromy operators are determined by the underlying universal
structure ip U7, only up to a unique Cartan-valued gauge. More precisely, we have
the following

Proposition [3, Cor. 15.13] Up to a unique gauge transformation determined by a
tuple of grouplike elements in Sh;[[1l, i € D, a braided pre—Coxeter structure on Uy

can be lifted to at most one universal braided Coxeter structure on @/bh_’i““'.

Therefore, this yields a canonical twist 7’ such that Cif{'sg = (CY)r with T =
T'-T". The twist T induces an equivalence of braided Coxeter categories Hy _ :

DU Z’i"‘v — QU Z’i"t and therefore

T Crs"
! VA h,int 7 adm, int
Hy- =H, oH : .@@b,,v — Qgth,’R’s
22.11 Proof of Theorem 22.1 (3)

There remains to show that the equivalence Hy- preserves category O, modules,
and therefore restricts to an equivalence of braided Coxeter categories Hj : ﬁg’mv‘ —

int
ﬁUhg,R,S‘

Lemma The functor

H, -
h,® b adm ~ adm
DY® — DY&r, ~DY§", (22.5)

restricts to an equivalence of categories (’)g’o g Oco,Ung-

Proof In analogy with Proposition 18.6, category Ogo’g identifies with the subcat-
egory of deformation Drinfeld—Yetter modules over b~ satisfying condition (18.1).
An analogous characterization holds for Ou 4. Since the equivalence (22.5) is the
identity on Drinfeld—Yetter h—modules, condition (18.1) is automatically preserved,
and the result follows. g

This concludes the proof of Theorem 22.1.

@ Springer



A. Appel, V. Toledano Laredo

Appendix: The W-equivariant Casimir connection of an affine
Kac-Moody algebra

In this appendix, we construct two explicit W—equivariant corrections of the Casimir
connection

da
V=d—A=d-h)_ —KS
OtEA+

where A is the set of positive roots of an affine Lie algebra and K} is the normally
ordered Casimir operator (cf. 3.2). These extensions provide an affine analogue of the
W—equivariant Casimir connections V=d — Ax and V =d — A¢ with

h do h do
A}C = E Z FICO[ and AC = E FCO[
aeAy aelAy
where A is the set of positive roots of a finite—dimensional simple Lie algebra and

Ky (resp. Cy) is the truncated (resp. full) Casimir element of sl5. More precisely, we
prove the following.

Theorem Let g be an affine Lie algebra with Cartan subalgebra Y. Then, there are
two explict closed 1-forms Ay and A2y valued, respectively, in b and S*b, such that
the following holds.

(1) The connection V =d — Ay, with A = A + Ay, is flat and W—equivariant.
Moreover, for any i €I, Resq,—0 A = % olC,., where lCl- is the truncated Casimir
element ofslgi .

(2) The connection V =d — Ac, with Ac = A+ Ay + Aszb, is flat and W—equi-
variant. Moreover, for anyi € I, Resy,—0 Ac = % -Cj, where C; is the full Casimir
element of 515"

The construction of the forms Ay and Ay is given in A.1 and A.3, respectively.
The proof of (1) and (2) is given in A.2 and A.4, respectively.

A.1 Theform Ay

For any § € C*, set

+ _ 1 _L — Yy (—
vs (x)_2<:|:x+n8 n(S)_qJ‘S( *)

n>0
One verifies easily that \lfgt satisfies the following properties:
(i) \Ilgt (x) is holomorphic on C \ Zp8

1
(i) W (x +8) = (x) — Py

@ Springer



Monodromy of the Casimir connection

(m)w;@+w)=wgu)—%

Set W =W and W =W+ + W~

Let g be an affine Kac—-Moody of rank £ 4 1 associated to the minimal realisation,
with Cartan subalgebra h C g and root system A. Let § be the corresponding finite
dimensional Lie algebra with Cartan subalgebra h C g and root system A, so that

h=hoCcdCd

where h cg,c= Zf:o al.v h; is the canonical central element and d satisfies o; (d) =
8i,0. Let (-, -) be the normalized non—degenerate bilinear form on h, and v : h —
h* the isomorphism induced by (-, -) (cf. 2.2). Let § = Zf:o a;a; be the minimal
imaginary root. We set

B ds

BeRy

4 (5) =3[ Gv(5)n=50rv(5))J+5)

and p" € b is a fixed solution of

where

ai(p)=1 i=0,1,...,¢ (A.1)
A.2 Proof of (1)

We shall prove that the form A + Ay defines a flat and W—equivariant connection
with residues Resy,—0 A + Ap =h - (ﬁei + %h,) = % - K;. To this end, we explain
below that the formula for A naturally arises by imposing the equivariance condition
with respect to the extended Weyl group in the case of affine rank one, i.e., g = slp,

and then by extending it to the higher rank case. In A.2.1-A.2.6, we prove the case
of affine rank one. The proof for the general case is carried out in A.2.7-A.2.10.

A.2.1 The case of affine rank one

P

Set g = sl and assume that Ay, has the form

o (2o (9o )
o (2 (2o (v

where 6 = a1 and h = h;. In particular, Ay is closed.
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Let W the extended Weyl group, i.e., W' = W x Aut(D), where Aut(D) de-
notes the group of diagram automorphisms of the Dynkin diagram of g. Then, the
form A + Ay is W'—equivariant if and only if

h
SikAh = Ah —h- 5619 and )/*Ah = Ab (A.2)

where s is the simple reflection on 6 and y is induced by the symmetry of the Dynkin
diagram of s(;. In particular, we have

51(0) = —0 s18)=8 si1(A)=A
Y@ =—60+8 y@® =8 yA)=5-5+A

A2.2

Set z =6/4. The condition (A.2) is equivalent to the system of equations

1
S(—2) = S(2) —3 (A.3)
—T(-2) =T(@) (A4
S(1—2) =58() (A.5)
T@+T(1—-2)=-S1-2) (A.6)

and

58(=2) + (sTB®) oy = —§s<z> + B@)

)
§T<—z> +(TBO) (o) = —§T<z> + B

Z Z
—350-o9+ Y B@®)n = —35@+ B
Z Z
3 [SA—2)+TA =214+ @*B®)) () = _ET(Z) + B(8) ()
where the subscripts X;), X () denote the components along 4 and ¢, respectively.

A23

If S(2), T (z) are functions satisfying (A.3), (A.4), (A.5), (A.6), then B(3) is bound
to satisfy

h
sy B(8) = B(8) — 3 and y*B(8) = B(8)
The general solution is easily computed to be

B(S) = é (g +2d + f(8)c>
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where f(8) is any function in §. In particular, the condition (A.1) is satisfied. Note
however that B(8) is not supported in §’ (cf. Theorem 4.8).

A24
Let S(z) be a given function satisfying (A.3) and (A.5). We aim to find two polyno-

mials p(z) and g(z) such that T'(z) = p(2)S(z) +q(z) satisfies (A.4), (A.6). In terms
of p and g, the latter conditions are equivalent to the system

1
p@)+p(=2)= 0 q(@)+q(=z) = Ep(—z)

p@)+p(l—2)= -1 q(z)+q(1-2)=0

A solution is given by p(z) = —z and ¢(2) = 1 _ 7. Therefore, given S(z), the func-
tion T (z) has the form

1
T@)=—-z(8@+ 1+ 3 + E(2)
where E(z) is any function satisfying E(—z) = —E(z) and E(z) = —E(1 — z).
A.2.5

Finally, we need to solve the equations (A.3) and (A.5), which are equivalent to the
system S(—z) = S(z) — % and S(z+1)=S(z) — % A particular solution is given by
the function

1/1
S) =5 (— + ‘I/(z))
2\z
Therefore, the general solution is given by the formula
1/1
S) =5 (— + W(z)) +e(2)
2\z
where e(z) is any function satisfying e(—z) = e(z) and e(z + 1) = e(2).
A.2.6

Setting e = E = f =0, we get, for g = ET[E,

RO OO TORCSE

and the resulting connection V =d — (A + Ap) is flat and W—equivariant. A simple
computation shows that

h h
ResezoA—i—Ab:z-lC@-dG and R659:5A+Ah=§-lC5_9-d(8—9)
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A.2.7 The general case

Let now g be an affine Kac—Moody algebra and set

Ay=h-| > Aﬂ<§>+3i—5

BeRy

4(5)=3(G e (5)) =5 (v (5)) )< (5)

with 15 = v~1(B) and B € . We shall prove that there exists B € b such that Ax =
A + Ay satisfies (1). Note that the form Ag(8/6) satisfies

where

A_g (_Tﬂ) =Ag (?) — %dﬁ + tgﬂd(s (A7)
— )
A_pgys ( '38+ ) =Ag <§> (A.8)

as proved in the case g = 5/[\2

A28
For every i = 1,..., £, the simple reflection s; permutes the elements in I°?+ \ {oi},
and
B B —0;
* —
2D Aﬂ<§ =% an(5) 44 (5
BeR+ BeRy
B#a;
B h; h;
= Ag| = | — —do; + —dé
Z B (8 o; o+ )
BeR+

where the second equality follows from (A.7). Therefore, the form A + Ay is

°

W—equivariant if and only if s;(B) = B — h; and «; (B) = 1.
A.29

Let 8 € R... It follows from (A.8) that
—O—-B)+5$ 0—
o (L) ()
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Therefore
—6 426
$|Zl5)]= 2 wl(§) e (557)
BeR, BeR\(6)
By (A.7) and (A.8),
—0+26 60—96
A_g425 (T) =Ag-s (T)

- ho ho
=45 0 =) = Laag+ 2as
1) o 1)

o\ h h
=Ag(2) - Ddag + 2ds
1) o7 1)

Therefore, s(’)“(A + Ap) = A+ Ay if and only if s5o(B) = B — hg and ap(B) = 1.
A.2.10

Finally, we conclude that, for any B € b satisfying o;(B) =1,i =0, 1,..., ¢, there
is a flat and W—equivariant connection Ax. = A + Ay, where

Ap=h-| > A;;(?)—i—Bi—a

BeRy

Moreover, its residues Resy,—o A, = %ICidoe,- are given by the truncated Casimir ele-
ments. This completes the proof of (1).

A.3 Theform Agy

We shall extend the W-equivariant connection V = d — Ax with a closed,
W—equivariant form Ag>(, with values in § 2p, so that

1
Resai:() AC = ECida,-

where Ac = A + Ay + Ag2y. This provides an affine analogue of the Casimir con-
nection of a finite—dimensional simple Lie algebra with coefficients C,. To this end,

we set
2
Agy=h Z %cot <n§> (tg - ?c) d (?)
BeR

As before, we first consider the case g = EE . We have

0 0\ [0
Aszh Zh%COt (T[g) (h-gC) d(g)

A.4 Proof of (2)
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Then, Agy is closed with residues
RGSQ =0 As2h =

RCSQ=5A52;]— (= h+C)2 d(—0)

Moreover, A $2h is W—equivariant since we have

—6 -6 \* (-6
STASZh:h%COtGTT) (-h—TC> d<T>:AS2b
and

—0428 —0425 \> [—6+25
s()kAszhzh%cot<nT+><—h+26— ; c) d( ; ):Aszh

Let now g be an affine Kac—Moody algebra and

2
Agy=h Z %cot (n?) (t,g — gc) d (?)

BeR+

Clearly, Agy is closed with the required residues. Moreover, for any element of the
Weyl group w € W, we have

™ B BN (B\ 8 11 @ \2 ra
T rea(5)(n5e) 4 (5) =3 3 -5 (=5 4(5)

Remark The expression of the form Agy for g = 5/[\2 has been computed as in
A.2.1-A.2.6. We set

Agepy =h(Ag (0, 8)d6 + As(6, 8)dd)

3411 the case of g=5/[\2,one has
0 0 1 1 1 0
—ld{<)=8]| = -——)ldl < )=
”C°t<na> (a) |:9+Z<9+n8 —9+n8):| <a>
n>0
(1 1 d 0 +SZ 1 1 d 0 +né
2\0  510) 3 2 0+ns 510 +nsd) 8
n>0
8 1 1 —0 +nd
Z - = =
+22<sl(—6’+n6) —9+n8> ( 8 )
n>
o
=3 d(—=
Z (a vl(oz)> (8)

Are

Similarly for higher rank g and w € W.
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with Ag(0,8) = S0, 8)h> + T (0, 8)hc + U (0, 8)c? and similarly for As. By impos-
ing the W—equivariance (for a fixed value § € C*) we obtain a sistem of difference
equation in @ for the functions S, T, U which is easily solved with functions of the
form p(z) cot(z), where p is a polynomial. More specifically, S, U are odd functions
in 6 and T is an even function in 6 such that

SO +8)=S()
T©O+8)=T(0)—250)
U@+8)=U®)+S0O)—T(©®)

The system above encodes the invariance with respect to the translation 6 +— 6 — 4.
Finally, the condition d A = 0 gives a formula for As. Namely, we obtain to a general
solution of the form

7 0 o\ (6
Agp=h Ecot (ng) (h — §C> d (5) + B(8)ds

where B(§) is any W—equivariant function (which is therefore chosen to be equal to
ZEer0).
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