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A B S T R A C T

This paper discusses a new approach to motion planning of dual-arm gantry kinematic that solves the self-
collision problem while ensuring G2-continuity and low curvatures. Starting from collision-free start and target
points, the proposed method defines the geometric path of the end-effectors with classical five-segment planar
trajectories, described by fifth-degree B-splines. The rototranslation of the loaded parts is evaluated in frames
to define sampled overlapping curves, used to compute splines that act as deviation curves being added on the
previously defined geometric paths in order to prevent collisions. Here, a quadratic programming minimization
is employed to reduce the curvature of these spline and preserve the kinematics properties of the initial path.
The kinematic constraints of the axes are ensured by iso-parametric trajectory planning, which results in an
optimized motion profile to reduce the task execution time. Finally, the proposed approach is applied to a
sorting system for laser machine (LST) having a dual-arm 7-d.o.f. gantry kinematic. The results of a case study
of a typical sorting operation are presented and discussed to illustrate and clarify the method. The approach
presented in this work can be applied to other robotic systems with similar kinematic structures, providing a
useful tool for motion planning in pick-and-place applications.
1. Introduction

Motion planning is one of the most important problem in industrial
robotic applications. It generally refers to the full process that deter-
mines the tasks sequence that a robot must perform in order to move
from its current state to a desired target state. This process generally
involves finding a collision-free path, which should ensure a good
compromise between the arc length of the tool path and the smoothing
properties to result in efficient movements. In addition to possible
obstacles in the environment, which is generally defined as static or dy-
namic depending on whether these obstacles are all fixed or not, there
are increasingly frequent industrial cases where several manipulators
(or several end-effectors of the same robot) move simultaneously in the
working area. In this case, the motion cannot be planned considering
the end-effectors individually, but must simultaneously consider all
end-effectors involved in the motion in order to avoid self-collision
and optimize the overall system. This work focuses on the motion
planning of a Cartesian dual-arm robotic system, where two gripping
tools collaborate in the same environment. In this regard, one of the
first examples of collision-free motion planning of a dual-arm robot is
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provided by Lee et al. [1], who propose an approach based on a virtual
road map (VRM) and apply it to the case of two SCARA robots sharing
a common workspace. Subsequently, Fei et al. [2] suggest a method
based on configuration space (C-Space), where the concepts reachable
manifold and contact manifold are successfully applied to the collision-
free motion planning of dual-arm SCARATES robot. More generally, the
problem of collision-free motion planning finds different solutions in
the robotics field, and can be broadly classified into sampling-based,
optimization-based and trajectory planning methods.

Sampling-based methods, such as the rapidly-exploring random tree
(RRT) algorithm [3] and its variants, are popular for motion planning
in high-dimensional configuration spaces, where each dimension cor-
responds to a degree of freedom (d.o.f.) of the robot. The basic idea is
to randomly sample the configuration space and construct a tree-like
structure that connects the samples. The algorithm starts with a single
sample in the joint space, corresponding to the initial state that defines
the root of the tree. A new sample is repeatedly added by selecting a
random state in the configuration space. Thereafter, the closest existing
sample is selected and, if possible, a new branch of the tree is created.
The algorithm continues to add samples until a path connecting the
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start and target positions is found. Kurosu et al. [4] use the RRT
algorithm to enable a dual-arm robot to perform pick-and-place tasks
without collisions between the arms. More recently, Shi et al. [5]
address the same problem by proposing a variant of this algorithm,
called GA_RTT, that combines the probabilistic bias method and A*
algorithm with RRT, where A* algorithm is a search algorithm obtained
by adding a heuristic function to Dijkstra’s algorithm [6]. Although
sampling-based methods find many applications in the motion planning
field, they may require an increasingly large number of samples as the
number of dimensions of the configuration space increases, in order to
accurately represent the configuration space [7]. This phenomenon is
known in the literature as curse of dimensionality (COD), first described
by Richard Bellman in the context of approximation theory [8], and
leads (in the worst case) to an increase in the execution time of these
algorithms.

An alternative solution to sampling-based methods to tackle the
problem of collision-free motion planning is offered by optimization-
based methods. These methods aim to find a collision-free path that
minimizes a cost function, such as the time, curvature or energy re-
quired to follow the trajectory. A recent example is provided by Völz
and Graichen [9], who offer a solution for the collision-free motion
planning of a dual-arm robot that must move an object with both
arms, whereby the two arms and the loaded object form a closed
kinematic chain. One of the main advantages of these methods is
to find high-quality solutions in a relatively short time. However,
they can be sensitive to initial conditions and can be difficult to
implement in real applications. Many optimization-based methods are
indeed designed to work with convex optimization problems, which
have a single global minimum. In real applications, such as in motion
planning, it is often difficult to formalize the problem to obtain a
convex cost function that can be defined in linear or quadratic standard
form. On the other hand, iterative methods for non-linear constrained
optimization, such as sequential quadratic programming (SQP), usually
involve running times that are not compatible with run-time robotic
applications [10].

Trajectory planning methods using splines have also been proposed
for smooth motion planning in robotics. These methods classically
use splines to represent the geometric path by optimizing the shape
using computer-aided design (CAD) techniques to find a collision-free
path. For example, Chen and Li [11] propose an approach to generate
collision-free path of two industrial robots working in a shared work-
space by applying the B-spline knot refinement [12,13] and the local
modification scheme. The method uses the local properties of B-splines,
modifying the trajectory only around the areas where a collision exists,
while the remaining curve segments of the trajectory remain in their
original position without modification. Another interesting application
of B-spline theory for motion planning of a dual-arm robot is provided
from Choi et al. [14]. In this work, a technique for post-processing
of a previously calculated geometric path (e.g. using a sampling-based
approach) is proposed, to ensure the quality of the trajectory in terms
of smoothing and preventing collisions.

This paper deals with the collision-free motion planning of dual-
arm 7-d.o.f. Cartesian robot, in which the two arms are rigidly linked
along the 𝑋-axis of the machine. Although the problem of constrained
kinematic motion planning of a Cartesian robot is widely studied in the
literature [15,16], not many works investigate dual-arm Cartesian kine-
matics, and classically these refer to dual-gantry systems, where each
end-effector has 𝑋𝑖, 𝑌𝑖 and 𝑍𝑖-axis with 𝑖 = 1, 2, resulting independent
of each other. For example, Lin and Chen [17] use a dual-arm Cartesian
robot to automate the packaging process in a bottling factory. In this
case study, the self-collision of the two arms is prevented at run-time
by strategically installed photoelectric sensors. More recently, the same
kinematics is used by Barnett et al. [18] in the agricultural field to study
the mechanization of kiwi harvesting. The problem of self-collision
between the arms (theoretically scalable to more than two) is solved
2

through a special configuration design that provides a partitioning of a
the work zones assigned to each end-effector and a sorting of the fruits
in accordance with the 𝑋-axis of the robot.

In industry, and more specifically in pick-and-place applications, the
self-collision problem of Cartesian dual-arm kinematics is classically
handled with simple strategies that limit the robot’s movements to
classical rectangular trajectories. The contribution of this work is to
provide a general approach for smooth and collision-free motion plan-
ning valid for this type of robot, which can be categorized as a hybrid
technique based on optimization and spline modelling. If no collisions
are detected in the task, the two arms follow classical five-segment
pick-and-place trajectories [19,20], where quintic Bézier curves blend
the adjacent straight lines ensuring G2-continuity of the geometric
path. When a collision is detected, the previously calculated path is
appropriately modified by acting on the control points of the spline.
During this operation, an optimization-based method that ensures min-
imum curvature preserves the quality of the initial geometric path. The
physical limits of velocity and torque on the axes are respected using
an iso-parametric trajectory planning approach (IPTP) and developing
an appropriate algorithm to generate the motion profile that uses a
previously developed open-source software [21].

The remainder of this paper is organized as follows. Section 2
describes the kinematics and the machine used to test the method.
Section 3 illustrates the mathematical theory of the path planning
approach, starting with the 4-d.o.f. single-arm kinematics and then
extending the solution to the dual-arm system. Section 4 details the
motion profile algorithm that follows the geometric path within the
kinematic constraints. An application case of the proposed method is
presented and discussed in Section 5. Finally, a summary concludes this
work in Section 6.

The mathematical notations and abbreviations used in the remain-
der of the paper, not specified in the text, are summarized below.

Notation
= equal in the equations and equality operator in the algorithmic
sections.
∶= equal by definition.
← assignment in algorithmic sections.
∧ logical and.
∨ logical or.
𝝉, (𝜏𝑖)𝑛−1𝑖=0 , {𝜏0,… , 𝜏𝑛−1} various ways of describing the same 𝑛-vector.
#𝝉 number of elements of the 𝝉 vector.
|𝑥| absolute value of 𝑥.
‖𝑷 ‖ magnitude of vector 𝑷 .
(𝑥 ∣ 𝑓 (𝑥1), 𝑓 (𝑥2)), (𝑥 ∣ {𝑥1, 𝑦1}, {𝑥2, 𝑦2}) linear interpolation of the
function 𝑓 (𝑥) = 𝑦 between points {𝑥1, 𝑓 (𝑥1)} and {𝑥2, 𝑓 (𝑥2)}.
⊙ element-wise product.
(𝑓◦𝑔)(𝑥) functions composition, defined by 𝑓 (𝑔(𝑥)).
sgn(𝑥) sign function, defined by 𝑥∕|𝑥|.
𝑥 mod 𝑦 returns the remainder of the integer division 𝑥∕𝑦.
proj(𝑓 (𝑥), 𝑣) projection of the function 𝑓 (𝑥) on the 𝑣-axis.
Acronyms
p-form ∶= Polynomial form.
pp-form ∶= Piecewise polynomial form.
B-form ∶= B-spline form.
BB-form ∶= Bernstein–Bézier form.
LST ∶= Sorting system for laser machine.
IPTP ∶= Iso-parametric trajectory planning.
𝑉 𝐶 ∶= Velocity constraint.
𝐴𝐶 ∶= Acceleration constraint.

2. Description of robot kinematic and the test machine

Fig. 1 shows a schematic representation of the sorting system for
laser machine (LST) with dual-arm Cartesian kinematics. The robot
kinematics solution involves two Cartesian arms rigidly linked on
the same gantry along the 𝑋-axis of the machine. Each end-effector
mounted on the two arms has a three more d.o.f. defined by 𝑌𝑖, 𝑍𝑖,
nd 𝑊 -axis, with 𝑖 = 1, 2.
𝑖
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Fig. 1. Sorting system for laser machine (LST) with dual-arm Cartesian kinematics.
Multiple arm systems in nested part sorting tasks offer several
advantages. The first is greater efficiency due to the great variability
in the size and weight of the parts, which also depends on the material
and thickness of the sheet metal. Small and light parts can be loaded
by a single end-effector and sorted in parallel, while heavier and
larger parts can be transported by several end-effectors simultaneously
with multiple loading. In the case of multiple loadings, moreover, the
inflection of the part is classically reduced compared to the loading
of the same part that would occur with a single gripping tool, which
improves gripping stability. From this point of view, a Cartesian system
can offer advantages in terms of work distribution between the arms,
when compared, for example, with the use of two articulated robots
(as already proven in [18]), resulting in shorter sorting times. In the
test machine used in this study, the end-effector consists of a multi-tool
head able to adapt the picking to each situation by changing the tool
on the fly and allowing a choice between several types of tools (or a
combination of them), which differ in technology or size. For further
details on this technology, please refer to [22].

Before proceeding to the other sections, please note that this work
has the following limitations:

• Dynamic constraints introduced by gripping tools, as well as the de-
flection of loaded parts, will not be dealt with in this work. The high
complexity of the problem due to the high variability of boundary
conditions, such as tool type and size, the number of end-effectors
involved in gripping, and the thickness of the sheet, needs studies
tailored to the specific application case and will be the subject of
future work.

• This work is limited to solve the problem of collision-free motion
planning, given start and target points. These positions should be
determined to ensure the feasibility of point-to-point movement from
the end-effectors, and to minimize the overall displacements required
to sort all the nest. This process classically requires several iterations,
which involve the execution of the point-to-point motion planning
algorithm. It follows that the computational efficiency of motion
planning is a priority to ensure adequate computational performance
for the determination of the load–unload order of the nest parts, and
the calculation of start and target positions. However, this topic is to
3

be considered beyond the scope of this work, and no further details
will be provided.

• This research had, as a fundamental premise, that of define a motion
planning approach of the machine by intervening exclusively on the
software program, without introducing any modification either to the
mechanical components or to the control hardware.

3. Path planning approach

3.1. Splines in B-form

Since the trajectory planning method draws on splines in their
B-form, basic concepts about these functions are introduced here.

A spline of degree 𝑑 is a piecewise polynomial vector function
𝒓(𝜏) ∶ R → R𝑘 in the parametric variable 𝜏, defined, in its B-form, by
the linear combination:

𝒓(𝜏) =
∑𝑚

𝑖=0 𝐵𝑖,𝑑,𝒖(𝜏)𝒃𝑖 , 𝑢𝑠 ≤ 𝜏 ≤ 𝑢𝑒 (1)

with 𝒃𝑗 = (𝑏𝑗,𝑖)𝑘𝑖=0 called control points. The basis function 𝐵𝑖,𝑑,𝒖(𝜏) are
defined by Cox–de Boor recursion formula [23]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐵𝑖,0,𝒖 (𝜏) =

{

1, if 𝑢𝑖 ≤ 𝜏 < 𝑢𝑖+1
0, otherwise

𝐵𝑖,𝑑,𝒖 (𝜏) =
𝜏 − 𝑢𝑖

𝑢𝑖+𝑑 − 𝑢𝑖
𝐵𝑖,𝑑−1,𝒖 +

𝑢𝑖+𝑑+1 − 𝜏
𝑢𝑖+𝑑+1 − 𝑢𝑖+1

𝐵𝑖+1,𝑑−1,𝒖

(2)

based on a non-decreasing knot sequence 𝒖 = (𝑢𝑗 )𝑚+𝑑+1𝑗=0 .
In the proposed method the considered knot vectors are always

non-periodic and non-uniform:

𝒖 = {𝑢𝑠,… , 𝑢𝑠
𝑑+1

, 𝑢𝑑+1,… , 𝑢𝑚, 𝑢𝑒,… , 𝑢𝑒
𝑑+1

} (3)

It is useful to remind the expression of the derivative and the
antiderivative of a spline given in B-form with respect to the parametric
variable 𝜏 since they are frequently used in the remainder of the paper.
The 𝑟th derivative of 𝒓(𝜏) is computed by [23]:

𝐷(𝑟)𝒓(𝜏) =
∑𝑚−𝑟 𝐵 (𝜏)𝒃(𝑟) (4)
𝑖=0 𝑖,𝑑−𝑟,𝒖(𝑟) 𝑖
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Fig. 2. A quintic spline and its envelope according to [25]. The knots are
(0,0,0,0,0,0,1,3,7,7,7,7,7,7) and the control points are (0,1,2,0,0,1,1,0). This example
is taken from [25].

with knots:

𝒖(𝑟) = {𝑢𝑠,… , 𝑢𝑠
𝑑−𝑟+1

, 𝑢𝑑+1,… , 𝑢𝑚, 𝑢𝑒,… , 𝑢𝑒
𝑑−𝑟+1

} (5)

where the control points are defined from:

𝒃(𝑟)𝑖 = 𝑑 − 𝑟 + 1
𝑢𝑖+𝑑+𝑟 − 𝑢𝑖+𝑟

(

𝒃(𝑟−1)𝑖+1 − 𝒃(𝑟−1)𝑖

)

, with 𝑟 > 0 (6)

The antiderivative of 𝒓(𝜏) is instead computed by [23]:

𝐷(−1)𝒓(𝜏) =
∑𝑚+1

𝑖=0 𝐵𝑖,𝑑+1,𝒖(−1) (𝜏)𝒃
(−1)
𝑖 (7)

with knots:

𝒖(−1) = {𝑢𝑠,… , 𝑢𝑠
𝑑+2

, 𝑢𝑑+1,… , 𝑢𝑚, 𝑢𝑒,… , 𝑢𝑒
𝑑+2

} (8)

and control points:

𝒃(−1)𝑖 =
∑𝑖

𝑗=0 𝒃𝑗
𝑢𝑗+𝑑+1−𝑢𝑗

𝑑+1 , for 𝑖 = 0,… , 𝑚 + 1 (9)

Then, (7) is iterated 𝑟 times to obtain the 𝑟th antiderivative.

3.2. Channel problem definition

In this section, the problem of finding a smooth 1-D spline path
between two polylines, 𝒄(𝜏) and 𝒄̄(𝜏), forming a channel is explained.
For simplicity of notation, only within this section, the control points 𝒃𝑗
in (1) are reduced to their scalar notation 𝑏𝑗 . The method illustrated is
based on that proposed by Lutterkort and Peters [24,25], which defines
a thin envelope of the spline constrained within the channel. Then, the
spline is uniquely determined by minimizing a cost function.

3.2.1. Tight linear envelopes for splines
The control polygon 𝓵(𝜏) ∶ R → R of the 1-D spline 𝒓(𝜏) is the

polyline interpolating the points (𝑢∗𝑗 , 𝑏𝑗 )
𝑚
𝑗=0, with 𝑢∗𝑗 the 𝑗th Greville

abscissa, i.e. 𝓵(𝑢∗𝑗 ) = 𝑏𝑗 . The weighted second differences 𝛥2𝑏𝑗 of the
control points are defined as:

𝛥2𝑏𝑗 =
𝑏𝑗+1 − 𝑏𝑗
𝑢∗𝑗+1 − 𝑢∗𝑗

−
𝑏𝑗 − 𝑏𝑗−1
𝑢∗𝑗 − 𝑢∗𝑗−1

(10)

Let 𝑢∗𝑘 ∈ [𝑢𝑙 , 𝑢𝑙+1], the contribution of the 𝑖th basis function to the
distance between the spline and the control point 𝑏 is captured by the
4

𝑗

function [25]:

𝛾𝑘𝑖(𝑢∗𝑘) =

{

∑𝑖
𝑗=𝑙−𝑑 (𝑢

∗
𝑖 − 𝑢∗𝑗 )𝐵𝑗,𝑑,𝒖(𝑢∗𝑘), 𝑖 ≤ 𝑘

∑𝑙
𝑗=𝑖(𝑢

∗
𝑗 − 𝑢∗𝑖 )𝐵𝑗,𝑑,𝒖(𝑢∗𝑘), 𝑖 ≥ 𝑘 + 1

(11)

With these definitions, the upper and lower envelope 𝒆(𝜏) ≤ 𝒓(𝜏) ≤ 𝒆(𝜏)
can be defined with the polylines 𝒆(𝜏) and 𝒆(𝜏), respectively interpo-
lating the points (𝑢∗𝑗 , 𝑒𝑗 )

𝑚
𝑗=0 and (𝑢∗𝑗 , 𝑒𝑗 )

𝑚
𝑗=0, with 𝒆𝑗 and 𝒆𝑗 defined as

follow:

𝑒𝑘 = 𝑏𝑘 +
∑𝑙

𝑖=𝑙−𝑑 𝛥
−
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘) (12)

𝑒𝑘 = 𝑏𝑘 +
∑𝑙

𝑖=𝑙−𝑑 𝛥
+
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘) (13)

with

𝛥−
𝑖 = min(0, 𝛥2𝑏𝑗 ) (14)

𝛥+
𝑖 = max(0, 𝛥2𝑏𝑗 ) (15)

An example of a thin envelope calculated with (12) and (13) is shown
in Fig. 2.

3.2.2. Smooth paths in a polygonal channel
With the linear envelope described in Section 3.2.1, the channel

problem can be defined as a quadratic programming (QP) optimization
subject to linear constraints. The curvature is minimized considering
the cost function:

minimize → 𝑓 (𝒃) =
∑𝑚−1

𝑖=1 (𝛥2𝑏𝑖)2 with: 𝒃 = (𝑏𝑖)𝑚−1𝑖=1 (16)

which can be seen in standard form

𝒇 (𝒃) = 𝒃𝑇 𝑃𝒃 with: 𝑃 ∈ R(𝑚−1)×(𝑚−1) (17)

The cost function matrix 𝑃 is symmetrical and penta-diagonal in form
(for proof see Appendix A):

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶1 −𝐷1 𝐸1 0
−𝐵2 𝐶2 −𝐷2 𝐸2
𝐴3 −𝐵3 𝐶3 −𝐷3 𝐸3

⋱ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ ⋱

𝐴𝑚−3 −𝐵𝑚−3 𝐶𝑚−3 −𝐷𝑚−3 𝐸𝑚−3
𝐴𝑚−2 −𝐵𝑚−2 𝐶𝑚−2 −𝐷𝑚−2

0 𝐴𝑚−1 −𝐵𝑚−1 𝐶𝑚−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

with 𝑖th coefficients, 𝑖 = 2,… , 𝑚 − 2, defined by equations:

𝐴𝑖 =
𝛥𝑢∗𝑖−1𝛥𝑢

∗
𝑖

𝐾2
𝑖−1

> 0 (19)

𝐵𝑖 =
𝛥𝑢∗𝑖−1(𝛥𝑢

∗
𝑖−1+𝛥𝑢

∗
𝑖 )

𝐾2
𝑖−1

+
(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)𝛥𝑢

∗
𝑖+1

𝐾2
𝑖

> 0 (20)

𝐶𝑖 =
𝛥𝑢∗2𝑖−1
𝐾2
𝑖−1

+
(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)

2

𝐾2
𝑖

+
𝛥𝑢∗2𝑖+2
𝐾2
𝑖+1

> 0 (21)

𝐷𝑖 =
𝛥𝑢∗𝑖 (𝛥𝑢

∗
𝑖 +𝛥𝑢

∗
𝑖+1)

𝐾2
𝑖

+
(𝛥𝑢∗𝑖+1+𝛥𝑢

∗
𝑖+2)𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

> 0 (22)

𝐸𝑖 =
𝛥𝑢∗𝑖+1𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

> 0 (23)

where:

𝛥𝑢∗𝑖 = 𝑢∗𝑖 − 𝑢∗𝑖−1 > 0 (24)

𝐾𝑖 = 𝛥𝑢∗𝑖+1 ⋅ 𝛥𝑢
∗
𝑖 > 0 (25)

For 𝑖 = 1, 𝑚 − 1 instead the coefficients are:

𝐶1 =
(𝛥𝑢∗1+𝛥𝑢

∗
2 )

2

𝐾2
1

+
𝛥𝑢∗23
𝐾2
2

> 0 (26)

𝐷1 =
𝛥𝑢∗1 (𝛥𝑢

∗
1+𝛥𝑢

∗
2 )

𝐾2
1

+
(𝛥𝑢∗2+𝛥𝑢

∗
3 )𝛥𝑢

∗
3

𝐾2
2

> 0 (27)

𝐸1 =
𝛥𝑢∗2𝛥𝑢

∗
3

2 > 0 (28)

𝐾2
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𝐵

𝒄


a

𝑤

T
t
a

𝛥

𝛥

a

𝛥

𝛥

W
I
f
e

𝐷

𝐷

w

𝐵

𝒓
r

q

F

𝐴𝑚−1 =
𝛥𝑢∗𝑚−2𝛥𝑢

∗
𝑚−1

𝐾2
𝑚−2

> 0 (29)

𝑚−1 =
𝛥𝑢∗𝑚−2(𝛥𝑢

∗
𝑚−2+𝛥𝑢

∗
𝑚−1)

𝐾2
𝑚−2

+
(𝛥𝑢∗𝑚−1+𝛥𝑢

∗
𝑚)𝛥𝑢

∗
𝑚

𝐾2
𝑚−1

> 0 (30)

𝐶𝑚−1 =
𝛥𝑢∗2𝑚−2
𝐾2
𝑚−2

+
(𝛥𝑢∗𝑚−1+𝛥𝑢

∗
𝑚)

2

𝐾2
𝑚−1

> 0 (31)

Furthermore, since 𝑃 is derived from the cost function (16) expressed
as a sum of squares, it is easy to verify that it is positive semi-definite.

The optimization problem of the objective function (16) is con-
strained by the inequality relations that ensure 𝒄(𝜏) ≤ 𝒆(𝜏) ≤ 𝒓(𝜏) ≤
𝒆(𝜏) ≤ 𝒄(𝜏):

(𝑢∗𝑘) ≤ 𝒆(𝑢∗𝑘) = 𝑏𝑘 +
∑𝑙

𝑖=𝑙−𝑑 𝛥
−
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘) 𝑘 = 1,… , 𝑚 − 1 (32)

𝒄(𝑢∗𝑘) ≥ 𝒆(𝑢∗𝑘) = 𝑏𝑘 +
∑𝑙

𝑖=𝑙−𝑑 𝛥
+
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘) 𝑘 = 1,… , 𝑚 − 1 (33)

𝒄(𝑥𝑗 ) ≤ 
(

𝑥𝑗 ∣ 𝒆(𝑢∗𝑘), 𝒆𝑘+1(𝑢
∗
𝑘+1)

)

=

𝑤1𝑏𝑘 +𝑤2𝑏𝑘+1 +𝑤1
∑𝑙𝑘

𝑖=𝑙𝑘−𝑑
𝛥−
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘)+

𝑤2
∑𝑙𝑘+1

𝑖=𝑙𝑘+1−𝑑
𝛥−
𝑖 𝛾𝑘+1,𝑖(𝑢

∗
𝑘+1) ∀𝑗 ∈ − (34)

𝒄(𝑥𝑗 ) ≥ 
(

𝑥𝑗 ∣ 𝒆(𝑢∗𝑘), 𝒆𝑘+1(𝑢
∗
𝑘+1)

)

=

𝑤1𝑏𝑘 +𝑤2𝑏𝑘+1 +𝑤1
∑𝑙𝑘

𝑖=𝑙𝑘−𝑑
𝛥+
𝑖 𝛾𝑘𝑖(𝑢

∗
𝑘)+

𝑤2
∑𝑙𝑘+1

𝑖=𝑙𝑘+1−𝑑
𝛥+
𝑖 𝛾𝑘+1,𝑖(𝑢

∗
𝑘+1) ∀𝑗 ∈ + (35)

with − the set of indices 𝑗 corresponding to a concave corners of 𝒄(𝑥𝑗 ),
+ the set of indices 𝑗 corresponding to a convex corners of 𝒄(𝑥𝑗 ), 𝑤1
nd 𝑤2 defined as follows:

1 =
𝑢∗𝑘+1−𝑥𝑗
𝑢∗𝑘+1−𝑢

∗
𝑘
, 𝑤2 =

𝑥𝑗−𝑢∗𝑘
𝑢∗𝑘+1−𝑢

∗
𝑘

(36)

o eliminate the non-linearity resulting from relations (14) and (15),
he 2𝑚 − 2 slack variables 𝛥−

𝑖 , 𝛥+
𝑖 with 𝑖 = 1,… , 𝑚 − 1 are included, in

ddition to the inequality constraints:
−
𝑖 − 𝛥2𝑏𝑖 ≤ 0 𝑖 = 1,… , 𝑚 − 1 (37)
+
𝑖 − 𝛥2𝑏𝑖 ≥ 0 𝑖 = 1,… , 𝑚 − 1 (38)

nd boundaries:
−
𝑖 ≤ 0 𝑖 = 1,… , 𝑚 − 1 (39)
+
𝑖 ≥ 0 𝑖 = 1,… , 𝑚 − 1 (40)

ith this approach, expressions (32) and (33) define linear constraints.
n order to ensure the G𝑗 -continuity of the geometric path, the extreme
irst and second derivatives must be set. For this purpose, the following
quality constraints are imposed [26]:
(𝑘)
0 =

∑𝑘
𝑖=1 𝐵

(𝑘)
𝑖,𝑑,𝒖(𝑢𝑖)𝑏𝑖 𝑘 = 1,… , 𝑗 (41)

(𝑘)
𝑚 =

∑𝑘
𝑖=1 𝐵

(𝑘)
𝑚−𝑖,𝑑,𝒖(𝑢𝑚−𝑖)𝑏𝑚−𝑖 𝑘 = 1,… , 𝑗 (42)

here:

(𝑘)
𝑖,𝑑,𝒖(𝜏) = 𝑑

(

𝐵(𝑘−1)
𝑖,𝑑−1,𝒕(𝜏)

𝑢𝑖+𝑑−𝑢𝑖
−

𝐵(𝑘−1)
𝑖+1,𝑑−1,𝒕(𝜏)

𝑢𝑖+𝑑+1−𝑢𝑖+1

)

(43)

Note that (41) and (42) impose conditions on the channel composed
of the 𝒄(𝜏) and 𝒄(𝜏) polylines, which must allow the control points of
(𝜏) to be positioned correctly. An example clarifying this statement is
eported in Section 3.3.4.

Finally, the optimization problem can be described in standard
uadratic form as follows:

minimize 𝒙𝑇 𝑃𝒙 (44)

subject to 𝒍 ≤ 𝐴𝒙 ≤ 𝒖 (45)

where

𝒙 = [𝑏 ,… , 𝑏 , 𝛥−,… , 𝛥− , 𝛥+,… , 𝛥+ ]𝑇 (46)
5

1 𝑚−1 1 𝑚−1 1 𝑚−1 a
𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑚 − 1

2𝑚 − 2

𝑚 − 1 2𝑚 − 2

(47)

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐼 𝛤 0

𝐼 0 𝛤

𝑊 − 𝑆− 0

𝑊 + 0 𝑆+

−𝐷 𝐼 0

−𝐷 0 𝐼

0 𝐼 0

0 0 𝐼

𝐵 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑚 − 1 ⊳ Eq. (32)

𝑚 − 1 ⊳ Eq. (33)

#− ⊳ Eq. (34)

#+ ⊳ Eq. (35)

𝑚 − 1 ⊳ Eq. (37)

𝑚 − 1 ⊳ Eq. (38)

𝑚 − 1 ⊳ Eq. (39)

𝑚 − 1 ⊳ Eq. (40)

2𝑗 ⊳ Eqs. (41), (42)

𝑚 − 1 𝑚 − 1 𝑚 − 1

(48)

𝒍 = [𝑐(𝑢∗1),… , 𝑐(𝑢∗𝑚−1),−∞,… ,−∞
𝑚−1

, 𝑐(𝑥𝑗 ) ∀𝑗 ∈ −,

−∞,… ,−∞
#+

,−∞,… ,−∞
𝑚−1

, 0,… , 0
𝑚−1

,

−∞,… ,−∞
𝑚−1

, 0,… , 0
𝑚−1

, 𝐷(1)
0 ,… , 𝐷(𝑗)

0
𝑗

, 𝐷(𝑗)
𝑚 ,… , 𝐷(1)

𝑚
𝑗

]𝑇 (49)

𝒖 = [∞,… ,∞
𝑚−1

, 𝑐(𝑢∗1),… , 𝑐(𝑢∗𝑚−1),∞,… ,∞
#−

, 𝑐(𝑥𝑗 ) ∀𝑗 ∈ +,

0,… , 0
𝑚−1

,∞,… ,∞
𝑚−1

, 0,… , 0
𝑚−1

,

∞,… ,∞
𝑚−1

, 𝐷(1)
0 ,… , 𝐷(𝑗)

0
𝑗

, 𝐷(𝑗)
𝑚 ,… , 𝐷(1)

𝑚
𝑗

]𝑇 (50)

with 𝐼 the identity matrix, 𝛤 a sparse matrix with entries [𝛤 ]𝑖𝑗 = 𝛾𝑖𝑗 (𝑢∗𝑖 ),

with 𝑖 = 1,… , 𝑚 − 1, 𝑗 = 𝑙 − 𝑑,… , 𝑙, 𝑙 the knot span of 𝑢∗𝑖 , 𝐵 is defined

by the constraints (41) and (42):

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵(1)
1 (𝑢1) 0
⋮ ⋱

𝐵(𝑘)
1 (𝑢1) … 𝐵(𝑘)

𝑘 (𝑢𝑘)
𝐵(𝑘)
𝑚−𝑘(𝑢𝑚−𝑘) … 𝐵(𝑘)

𝑚−1(𝑢𝑚−1)
⋱ ⋮

0 𝐵(1)
𝑚−1(𝑢𝑚−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

and 𝐷 the following symmetric tridiagonal matrix:

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− (𝛥𝑢∗1+𝛥𝑢
∗
2 )

𝐾1

𝛥𝑢∗1
𝐾1

0
𝛥𝑢∗3
𝐾2

− (𝛥𝑢∗2+𝛥𝑢
∗
3 )

𝐾2

𝛥𝑢∗2
𝐾2

⋱

𝛥𝑢∗𝑚−1
𝐾𝑚−2

− (𝛥𝑢∗𝑚−2+𝛥𝑢
∗
𝑚−1)

𝐾𝑚−2

𝛥𝑢∗𝑚−2
𝐾𝑚−2

0 𝛥𝑢∗𝑚
𝐾𝑚−1

− (𝛥𝑢∗𝑚−1+𝛥𝑢
∗
𝑚)

𝐾𝑚−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(52)

inally, 𝑊 and 𝑆 are sparse matrices dependent on the specific channel,

nd related to Eqs. (34) and (35).
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Fig. 3. Channel problem solutions for four input polygons computed with OSQP solver [27]. (a) to (d) solutions with initial knot sequence computed with (53). (e) to (h) solutions
with initial knot sequence computed with Lutterkort algorithm [24]. (i) to (l) Comparison of the second derivative of the QP minimization problem spline solution with the two
initial knot sequences.
Table 1
Benchmark data from 3. Performance evaluated on Intel® Core™ i7-10750H CPU, 2.60 GHz.

Channel numb. 𝑑 Numb. of iterations Numb. of variablesa Numb. of constraintsa CPU timea

1 (Fig. 3(a)) 5 1 36 80 2.59 × 10−4 s
2 (Fig. 3(b)) 5 21 108 230 8.84 × 10−3 s
3 (Fig. 3(c)) 8 6 60 130 1.36 × 10−3 s
4 (Fig. 3(d)) 3 1 33 76 1.77 × 10−4 s

a Relative to the last iteration.
Note that since 𝑃 is positive semi-definite, 𝑃 is positive semi-
efinite, and it follows that the optimization problem is convex.

.2.3. Initial knots sequence and iterative refinement
The problem defined by Eqs. (44) and (45) is determined once

he knots of the unknown spline is defined. Note that the problem
efined by the specific channel and spline degree 𝑑, may have no
olution for the adopted sequence of knots. However, the solution to the
roblem can be ensured by iteratively knots inserting into the spline.
his routine ensures that a solution is found, as the knots refinement

eads the envelope to converge with the spline. Lutterkort and Peters
24] propose an initial knot sequence such that the corresponding
equence of Greville abscissae includes the breakpoints 𝑥𝑗 of the input
olylines 𝒄(𝜏) and 𝒄(𝜏). One of the advantages of adopting the initial
nots sequence suggested by Lutterkort is to introduce additional knots
and Greville abscissae) when the input sequence 𝑥𝑗 contains large

gaps compared to the surrounding intervals, which usually requires
few (if any) additional knot insertions to obtain a solution to the QP
6

minimization problem. Moreover, Eqs. (34) and (35) are thus included
into (32) and (33) and the constraint matrix 𝐴 is easier to define. On
the other hand, the knots generated by this algorithm define Greville
abscissae dependent on the channel breakpoints, which often results in
a high gradient in the spacing of the Greville abscissae. This gradient
leads to spikes in the second derivative of the resulting spline, which,
in this application case, lead to spikes in the torque set-points. To over-
come this limitation and have Greville abscissae spaced more evenly,
the authors adopt an initial knots sequence 𝒖 = (𝑢𝑖)𝑚+𝑑+1𝑖=0 obtained by
averaging formula from an equispaced mesh in the parametric domain,
in accordance with the following:

𝑢0 = ⋯ = 𝑢𝑑 = 0 , 𝑢𝑚+1 = ⋯ = 𝑢𝑚+𝑑+1 = 𝑢𝑚,

𝑡𝑗+𝑑 = 1
max(𝑑, 1)

𝑗+𝑑−1
∑

𝑖=𝑗

[ 𝑖
𝑚
𝑢𝑚

]

, 𝑗 = 1… , 𝑚 − 𝑑.
(53)

Then, the number of knots 𝑚 + 𝑑 + 1 is iteratively increased until the
method converges. Note that, because of constraints (34) and (35), the
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minimum number of knots used to start the iteration must satisfy the
following formulations:

𝑢∗1 ≤ min ({𝑥𝑗}) ∧ 𝑢∗𝑚−1 ≥ max ({𝑥𝑗}) ∀𝑗 ∈ (− ∪ +) (54)

Figs. 3(a) to 3(d) show the solutions to the channel problem for four
input polyline pairs, starting with an initial number of knots such that
the number of Greville abscissae is equal to the number of breakpoints
𝑥𝑗 . In all four cases the end derivatives are clamped with the equality
constraints:

𝐷(1)
0 = 𝐷(2)

0 = 0

𝐷(1)
𝑚 = 𝐷(2)

𝑚 = 0
(55)

Solutions are computed by an operator splitting solver for convex
quadratic programs (OSQP, [27]), and differ in the channel shape and
the degree 𝑑 of the unknown spline. OSQP solver requires as input
the 𝑃 and 𝐴 matrices in compressed sparse column (CSC) format.
A description of the storage CSC format can be found in [28]. In
particular, for the matrix 𝑃 , only its upper triangular part is required. A
numerical benchmark for the channel problem, in compliance with the
OSQP solver interface, presented in [29], and corresponding to the first
channel shown in Fig. 3(a), is provided in the supplementary material
attached to the paper.

Table 1 shows, for each input channel, the spline degree 𝑑, the
number of knot refinements required to obtain a solution, and some
parameters of the last iteration, including calculation time. Figs. 3(e)
to 3(h) show the solution of the same channel problems solved with a
knot sequence calculated using the method suggested by Lutterkort and
Peters [24]. In this case, the sequence of initial knots already ensures
the convergence of the method for all four channels analysed, at the
expense of a higher number of knots used. With particular reference
to the second channel (Figs. 3(b) and 3(f)), the method proposed
by the authors requires a total of 21 iterations, entailing a higher
computational cost than the method detailed in [24]. Generally, this
scenario arises for narrow channels, where, starting with a limited
number of knots, several insertions are required to solve the channel
problem. In the application case object of this work, however, the
channels are mostly similar to channel 1 (Figs. 3(a) and 3(e)), and
few or no iterations are usually required to ensure that the problem
is solved. Finally, Figs. 3(i) to 3(l) show the comparison of the second
derivatives of the resulting spline for the two knots definition methods.
In all four of the channels analysed, the use of (53) to define the
input knots of the QP minimization problem eliminates the spikes of
the second derivative of the spline 𝒓(𝜏), classically resulting in a lower
maximum value of 𝐷(2)𝒓(𝜏) than the comparison method used.

3.3. Collision-free path planning strategy

This section explains the path planning strategy adopted. First, the
geometric smoothed path planning problem of a single end-effector is
addressed. The methodology is then extended to the second arm of
the robot while maintaining the rigid connection constraint along the
𝑋-axis. Finally, the approach to prevent self-collisions of the robot is
detailed.

3.3.1. 4-D.o.f. Cartesian robot path planning
In this section the path planning of a single end-effector not con-

strained on any axis with other heads is presented. This case does not
correspond to the studied application but outlines part of the motion
plan method that will be extended later for multiple constrained heads.

Consider the classic rectangular pick-end-place path shape, con-
sisting of two vertical segments (rise and fall) and one horizontal
segment. Corner smoothing algorithms are generally used to obtain
a G𝑗 -continuity path, where 𝑗 depends on the transition segment,
and defining a five-segment geometric path. With reference to Fig. 4,
we refer only to arm 1 of the dual-arm robot represented in Fig. 1.
The 𝑋 𝑌 𝑍 -frame shown in the figure defines the coordinate
7

𝐻1 𝐻1 𝐻1
Fig. 4. 2-D path shape on the motion plane 𝑍𝐻1 − 𝜉.

system fixed to the head installed on arm 1 of the robot. The resulting
geometric path defines a 2-D path on the plane of motion 𝑍𝐻1 − 𝜉,
passing through the 𝑍𝐻1-axis and inclined by 𝛼 with respect to the
𝑍𝑋-plane. In this respect, many examples can be found in the field
of numerical control machines, where the geometric path is generally
described in the form of G01 polylines. Some recent work on this
subject can be found in [30–32]. For our application, of particular
interest is the study conducted by Sencer and Shamoto [33], where a
corner smoothing algorithm using quintic Bézier curves is proposed to
ensure both G2-continuity of the tool-path and minimized curvature.
This parametrization is reported in Fig. 5(a). Let 𝑷 = (𝑷 𝑖)5𝑖=0, with
𝑷 𝑖 = {𝑃𝑥,𝑖, 𝑃𝑦,𝑖, 𝑃𝑧,𝑖}, the control points of the transition segment, and
define the following 3-D Euclidean distances:

‖𝑷 𝑗 − 𝑷 𝑗−1‖ = 𝑐 , with: 𝑗 = 1, 2, 4, 5 (56)

‖𝑷 𝑡𝑟𝑎𝑛𝑠 − 𝑷 2‖ = ‖𝑷 3 − 𝑷 𝑡𝑟𝑎𝑛𝑠‖ = 𝑑 (57)

with 𝑷 𝑡𝑟𝑎𝑛𝑠 the corner of the corresponding rectangular pick-and-place
trajectory. Sencer and Shamoto [33] provide an optimized formulation
of the ratio 𝑛 = 𝑐∕𝑑 as a function of the transition angle 𝜃 (in this case
always equal to 𝜋∕2) to obtain the minimum transition curvature:

𝑛(𝜋∕2) = (𝜋∕2)0.9927∕2.0769 ≃ 0.7538 (58)

Condition (58) maximizes the total cornering velocity while respecting
the acceleration limits of the actuators. Once the ratio 𝑛 is set, the
transition segments depend only on the transition length 𝐿𝑇 = 2⋅𝑐+𝑑. In
this application, with reference to Figs. 1 and 5(b), the transition length
𝐿𝑇 assumes a maximum value defined by the difference between the
travel height 𝑧𝑡𝑟 and the loading zone height 𝑧𝑝:

𝐿𝑇 ,𝑚𝑎𝑥 = 𝑧𝑡𝑟 − 𝑧𝑝 (59)

Given the start and target positions of the end-effector:

𝒑𝑠 = {𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑤𝑠} (60)

𝒑𝑡 = {𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑤𝑡} (61)

we can define:

𝛥𝑋 = 𝑥𝑡 − 𝑥𝑠 (62)

𝛥𝑌 = 𝑦𝑡 − 𝑦𝑠 (63)

𝛥𝑍𝑠 = 𝑧𝑡𝑟 − 𝑧𝑠 (64)

𝛥𝑍𝑡 = 𝑧𝑡 − 𝑧𝑡𝑟 (65)

𝛥𝑊 = 𝑤𝑡 −𝑤𝑠 (66)

The transition length 𝐿𝑇 is calculated as:

𝐿𝑇 = min
(

𝐿𝑇 ,𝑚𝑎𝑥,
√

𝛥𝑋2+𝛥𝑌 2
)

(67)
2
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Fig. 5. Five-segment 2-D geometric path. (a) Geometric path parametrization. (b)
Reference heights. 𝑢𝑠𝑓 ,1 and 𝑢𝑠𝑓 ,2, if they exist, are the values of the parameter 𝜏
corresponding to the intersections of the geometric path with the safety height 𝑧𝑠𝑓 .

The proposed approach involves two-step motion planning; first a 3-
D path is planned considering only 𝑋, 𝑌 , and 𝑍 axes to obtain specific
smoothness characteristics, and only in a second step is added the 𝑊
dimension. The 3-D path followed by the end-effector can be described
by a spline 𝒓(𝜏) ∶ R → R3, defined by (1), with 𝒃𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑧𝑖}. The
construction of 𝒓(𝜏) can be performed by joining the five segments
(𝒓𝑖)4𝑖=0 defined by 3-D Bézier curves in their B-form (thus without
internal knots). In order to preserve the G2-continuity and obtain a
single spline of degree 5, the Bézier curves must be joined together
having the same geometric velocity and acceleration at the welding
points. For example, for the first transition segment must be:

𝐷𝒓1(𝑢1,𝑒) = 𝐷𝒓2(𝑢2,𝑠) (68)

𝐷(2)𝒓1(𝑢1,𝑒) = 𝐷(2)𝒓2(𝑢2,𝑠) (69)

𝐷𝒓2(𝑢2,𝑒) = 𝐷𝒓3(𝑢3,𝑠) (70)

𝐷(2)𝒓2(𝑢2,𝑒) = 𝐷(2)𝒓3(𝑢3,𝑠) (71)

with 𝒓𝑖 the 𝑖th segment having knots:

𝒖𝑖 = {𝑢𝑖,𝑠,… , 𝑢𝑖,𝑠
𝑝+1

, 𝑢𝑖,𝑒,… , 𝑢𝑖,𝑒
𝑝+1

} (72)

y setting 𝑢2,𝑠 = 0 and 𝑢2,𝑒 = 1, [33]:

𝒓2(0) = 5(𝑷 1 − 𝑷 0) (73)

𝒓2(1) = 5(𝑷 5 − 𝑷 4) (74)
(2)𝒓2(0) = 20(𝑷 2 − 2𝑷 1 + 𝑷 0) (75)
(2)𝒓2(1) = 20(𝑷 5 − 2𝑷 4 + 𝑷 3) (76)
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Fig. 6. 𝑊 (𝜏) motion profile. In the collision-free section the motion is described from
polynomial 3-4-5 formulation, according to (85).

Passing to scalar notation:

‖𝐷𝒓2(0)‖ = ‖𝐷𝒓2(1)‖ = 5𝑐 (77)

‖𝐷(2)𝒓2(0)‖ = ‖𝐷(2)𝒓2(1)‖ = 0 (78)

ssuming a second transition segment symmetrical to the first, (77) and
78) can also be used for segment 4. The G2-continuity of the spline
btained by joining the five segments can thus be ensured by setting:

1,𝑠 = 0, 𝑢1,𝑒 = 𝐿1∕(5𝑐) (79)

𝑢3,𝑠 = 0, 𝑢3,𝑒 = 𝐿3∕(5𝑐) (80)

𝑢5,𝑠 = 0, 𝑢5,𝑒 = 𝐿5∕(5𝑐) (81)

The spline resulting from joining segments 𝒓𝑖, can be easily solved by
following the operations:

1. Elevate the degree of segments 1,3, and 5 to reach the same degree
as the transition segments [13,34].

2. Concatenate the Bézier curves by repeating for the number of seg-
ments the joining operation explained below. Let 𝒓𝑙 and 𝒓𝑟 be the
segment to the left of the welding point of the curves (i.e. the
result of the previous concatenations) and the segment to its right,
respectively. For example, at the first step, 𝒓𝑙 is 𝒓1, while at the
second step it concurs with the result of the concatenation between
𝒓1 and 𝒓2, and so on. The spline obtained from the concatenation of
𝒓𝑙 and 𝒓𝑟 of the same degree 𝑑 is defined by the knots:

𝒖 = { 𝑢𝑙,𝑠,… , 𝑢𝑙,𝑠
𝑑+1

, 𝑢𝑙,𝑑+1,… , 𝑢1,𝑚𝑙
, 𝑢𝑙,𝑒,… , 𝑢𝑙,𝑒

𝑑+1

,… ,

(𝑢𝑟,𝑑+1 + 𝛥𝑢),… , (𝑢𝑟, 𝑚2
+ 𝛥𝑢),

(𝑢𝑟,𝑒 + 𝛥𝑢),… , (𝑢𝑟,𝑒 + 𝛥𝑢)
𝑑+1

}
(82)

with 𝛥𝑢 = 𝑢𝑙,𝑒 − 𝑢𝑟,𝑠, and control points:

𝒃 = {𝒃𝑙,0,… , 𝒃𝑙,𝑚𝑙
, 𝒃𝑟,0,… , 𝒃𝑟,𝑚𝑟

} (83)

3. Remove as many knots as possible while preserving the geometric
path shape within a tolerance. To this end, we suggest an optimized
routine proposed by Tiller [35] that minimize the number of dis-
placements of coefficients and knots in the case of multiple knot
removal.

The procedure just described can be used for a generic path, even with a
number of segments other than five. As will become clearer in the next
sections, in this application the five-segment geometric path of Fig. 5 is
the most general case, but some movements reach intermediate points
of the pick-and-place task using fewer than five segments.
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When the 3-D path is defined, it is necessary to add the 𝑊 in-
formation to manage the angular orientation of the end-effector. In
general, the loaded part can only rotate in a collision-free section of the
trajectory, defined by a safety height 𝑧𝑠𝑓 . With reference to Fig. 5(b),
𝑢𝑠𝑓 ,1 and 𝑢𝑠𝑓 ,2 are the values of the parametric variable 𝜏 bounding
the portion of 𝒓(𝜏) corresponding to a 𝑍 value greater than the safety
height. In other words, the interval [𝑢𝑠𝑓 ,1, 𝑢𝑠𝑓 ,2] is defined such that:

proj(𝒓(𝜏)|[𝑢𝑠𝑓 ,1 ,𝑢𝑠𝑓 ,2], 𝑍) ≥ 𝑧𝑠𝑓 (84)

This interval can easily be estimated by numerical techniques, if it is
assumed that during the rise section the 𝑍-component of 𝒓(𝜏) is strictly
ncreasing, and that during the fall section it is strictly decreasing. Note
hat, for the condition 𝒓̄(𝑢𝑠) ≥ 𝑧𝑠𝑓 ∧ 𝒓̄(𝑢𝑒) ≥ 𝑧𝑠𝑓 results [𝑢𝑠𝑓 ,1, 𝑢𝑠𝑓 ,2] ≡
[0, 𝑢𝑒]. As reported in Fig. 6, it follows that 𝑊 (𝜏) is at most divided
into three sections, of which only one contributes to the movement. In
order to preserve the G2-continuity of the geometric path, a good choice
is to describe 𝑊 (𝜏) in the collision-free section using a 5th-degree
polynomial:

𝑊 (𝜏)|[𝑢𝑠𝑓 ,1 ,𝑢𝑠𝑓 ,2] = 𝛥𝑊
[

10
( 𝜏
𝛥𝑢

)3
− 15

( 𝜏
𝛥𝑢

)4
+ 6

( 𝜏
𝛥𝑢

)5
]

(85)

with 𝛥𝑢 = 𝑢𝑠𝑓 ,2 − 𝑢𝑠𝑓 ,1. Expression (85) defines a polynomial in its
p-form:

𝒑(𝑥) =
∑𝑑

𝑖=0 𝑥
𝑖𝑎𝑖 = 𝑎0 + 𝑥𝑎1 + 𝑥2𝑎2 +⋯ + 𝑥𝑑𝑎𝑑 (86)

that can always be seen in its B-form, with knots:

𝒖 = {𝑢𝑠𝑓 ,1,… , 𝑢𝑠𝑓 ,1
𝑑+1

, 𝑢𝑠𝑓 ,2,… , 𝑢𝑠𝑓 ,2
𝑑+1

} (87)

and control points 𝒃 defined by solving the system:

𝒃 = 𝒂 (88)

where the lower triangular matrix 𝑀 is defined by the entries:

[𝑀]𝑖,𝑗 =
(𝑑
𝑖

)(𝑖
𝑗

)

(−1)𝑖−𝑗 , with
{

𝑖 = 0,… , 𝑑
𝑗 = 0,… , 𝑖

(89)

The motion profile of the end-effector orientation, defined by the 1-D
spline 𝑊 (𝜏) with scalar control points 𝑤𝑖, is then obtained concate-
nating the sections of which it is composed with similar methodology
as explained above. Finally, 𝑊 (𝜏) can be added as a component of
𝒓(𝜏) by performing knot refinement algorithms to make the curves
compatible, and defining a new knot vector 𝒖̄ as the union of the knots
of the two curves [36]. The resulting spline 𝒓̄(𝜏), with control points
𝒃̄𝑖 = {𝑥̄𝑖, 𝑦̄𝑖, 𝑧̄𝑖, 𝑤̄𝑖}, defines the desired geometric path.

To finalize the path definition, it remains to define the parametriza-
tion of the function describing the geometric path. A common solution
is to adopt the arc length parametrization, then parametrize 𝒓̄(𝜏) on the
curvilinear (or profile) abscissa of the end-effector’s 3-D path. However,
this solution is not particularly convenient in this application because it
limits the movements along the 𝑊 -axis to tasks in which the machine
lso performs a movement along at least one of the 𝑋, 𝑌 or 𝑍 axes.
n fact, by adopting this parametrization, requiring motion only along
he 𝑊 -axis leads to the condition 𝑢̄𝑠 = 𝑢̄𝑒 = 0, forcing the adoption
f a customized motion planning strategy for this specific case. To
revent this, the authors propose a parametrization of 𝒓̄(𝜏) based on
he definition of the 4-D curvilinear abscissa 𝑠 ∈ [0, 𝑠𝑚𝑎𝑥] defined in

differential form as follow:

𝑑𝑠 = ‖𝑲𝑟 ⊙𝐷𝒓̄(𝜏)‖𝑑𝜏 (90)

ith 𝑲𝑟 = (𝐾𝑟,𝑖)3𝑖=0 = {𝐾𝑟,𝑥, 𝐾𝑟,𝑦, 𝐾𝑟,𝑧, 𝐾𝑟,𝑤} a transmission ratios’ vector,
nd where, depending if the axis is linear or rotational, the unit of
easure of its components are rad∕m or rad∕rad. In this case, 𝐾𝑟,𝑥, 𝐾𝑟,𝑦,

nd 𝐾𝑟,𝑧 are expressed in rad∕m, while 𝐾𝑟,𝑤 is expressed in rad∕rad. The
odified chord length 𝑠𝑚𝑎𝑥 can be estimate by the equation:

𝑚𝑎𝑥 =
𝑚−1
∑

√

𝐾𝑟,𝑥𝛥𝑥2𝑖 +𝐾𝑟,𝑦𝛥𝑦2𝑖 +𝐾𝑟,𝑧𝛥𝑧2𝑖 +𝐾𝑟,𝑤𝛥𝑤2
𝑖 (91)
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𝑖=0
with

𝛥𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (92)

𝛥𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖 (93)

𝛥𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖 (94)

𝛥𝑤𝑖 = 𝑤𝑖+1 −𝑤𝑖 (95)

The accuracy of the 𝑠𝑚𝑎𝑥 estimated with (91) can be ensured by
adopting an appropriate knot refinement strategy, as this operation
leads the control polygon to converge with its spline. In this work,
knots are inserted iteratively with bisection method until the calculated
value does not deviate from that computed in the previous step less
than a tolerance adopted. Once estimated 𝑠𝑚𝑎𝑥 from (91), 𝒓̄(𝜏) can be
parametrized on the curvilinear coordinate 𝑠 by multiplying all knots
𝑢̄𝑖 by 𝑠𝑚𝑎𝑥∕𝑢̄𝑒.

3.3.2. 7-D.o.f. dual-arm Cartesian robot path planning
The path planning procedure illustrated in the previous section

can be used for a Cartesian robot with only one arm. In applications
where two arms are rigidly linked along an axis, this solution cannot
be used because it is not possible to plan the geometric path of each
end-effector independently. In this section, in order to describe the
constraint physically defined by the gantry linkage, the authors propose
an extension of the previously presented solution for the case of a dual-
arm Cartesian robot, in which the two arms are rigidly linked along the
𝑋-axis.

Given the start and target points of the two end-effectors:

𝒑𝑠,1 = {𝑥𝑠, 𝑦𝑠,1, 𝑧𝑠,1, 𝑤𝑠,1} (96)

𝒑𝑠,2 = {𝑥𝑠, 𝑦𝑠,2, 𝑧𝑠,2, 𝑤𝑠,2} (97)

𝑡,1 = {𝑥𝑡, 𝑦𝑡,1, 𝑧𝑡,1, 𝑤𝑡,1} (98)

𝑡,2 = {𝑥𝑡, 𝑦𝑡,2, 𝑧𝑡,2, 𝑤𝑡,2} (99)

ay be defined:

𝑋 = 𝑥𝑡 − 𝑥𝑠 (100)

𝑌1 = 𝑦𝑡,1 − 𝑦𝑠,1 (101)

𝑌2 = 𝑦𝑡,2 − 𝑦𝑠,2 (102)

𝑍𝑠,1 = 𝑧𝑡𝑟 − 𝑧𝑠,1 (103)

𝑍𝑡,1 = 𝑧𝑡,1 − 𝑧𝑡𝑟 (104)

𝑍𝑠,2 = 𝑧𝑡𝑟 − 𝑧𝑠,2 (105)

𝑍𝑡,2 = 𝑧𝑡,2 − 𝑧𝑡𝑟 (106)

𝑊1 = 𝑤𝑡,1 −𝑤𝑠,1 (107)

𝑊2 = 𝑤𝑡,2 −𝑤𝑠,2 (108)

The main idea for extending the procedure of Section 3.3.1 is to
efine a master path, described from the 5th-degree spline 𝒓𝜙(𝜏) ∶ R →
3 with 𝒃𝑖,𝜙 = {𝑥𝑖,𝜙, 𝑦𝑖,𝜙, 𝑧𝑖,𝜙} and 𝑖 = 0,… , 𝑚. Let 𝒖 = (𝑢𝑖)𝑚+6𝑖=0 be the
nots of 𝒓𝜙(𝜏). Assume:

0,𝜙 = 𝑦0,𝜙 = 𝑧0,𝜙 = 0 (109)

hich corresponds to define the spline relatively to the first control
oint. 𝒓𝜙(𝜏) can be calculated as described in Section 3.3.1 using
he geometric lengths 𝐿𝑖, with 𝑖 ∈ {1, 3, 5}, obtained by solving the
ollowing system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿1 + 𝐿𝑇 = max(𝛥𝑍𝑠,1, 𝛥𝑍𝑠,2) (a)

𝐿3 + 2 ⋅ 𝐿𝑇 = max
(

√

𝛥𝑋2 + 𝛥𝑌 2
1 ,

√

𝛥𝑋2 + 𝛥𝑌 2
2

)

(b)

𝐿𝑇 + 𝐿5 = max(|𝛥𝑍𝑡,1|, |𝛥𝑍𝑡,2|) (c)

(110)

with 𝐿 defined by (67).
𝑇
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Fig. 7. Geometric path representation of the dual-arm Cartesian robot with 5th-degree spline. The circular markers correspond to the intersections of the path with the safety
eight calculated in accordance with (114). The star markers are examples of points calculated respectively on the master path 𝒓𝜙(𝜏) and on 𝒓(𝜏) for three values of the parametric

variable 𝜏.
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The geometric path of the two end-effectors can be described start-
ing from 𝒓𝜙(𝜏) with a 5-D spline 𝒓(𝜏) having the same knots 𝒖 and
ontrol points 𝒃𝑖 = {𝑥𝑖, 𝑦𝑖,1, 𝑧𝑖,1, 𝑦𝑖,2, 𝑧𝑖,2}. Assuming that 𝒖 is properly

calculated to describe the G2-continuity at the transition segments (as
hown in Fig. 7), with the correct knots multiplicity for a spline of
egree 𝑑 the 𝑖th control point are uniquely determined through path

scaling techniques from the relations:

𝑥𝑖 = 𝑥𝑖,𝜙 + 𝑥𝑠 (111)

𝑦𝑖,𝑗 = 𝑦𝑖,𝜙
𝛥𝑌𝑗
𝑦𝑚,𝜙

+ 𝑦𝑠,𝑗 (112)

𝑧𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑖,𝜙
𝛥𝑍𝑠,𝑗

(𝐿1+𝐿𝑇 )
+ 𝑧𝑠,𝑗 , if 𝑖 < 𝑙 (a)

𝑧𝑡𝑟 +
(

𝑧𝑖,𝜙 − (𝐿1 + 𝐿𝑇 )
) 𝛥𝑍𝑡,𝑗
(𝐿𝑇 +𝐿5)

, if 𝑖 > 𝑟 (b)

𝑧𝑡𝑟, otherwise (c)

(113)

with 𝑙 = 2𝑑 − 1, 𝑟 = 4𝑑 − 6, 𝑑 = 5 and 𝑗 = 1, 2. With reference to
Fig. 7, to describe the angular orientation of the end-effectors, it is
useful to define the splines 𝒓𝐻1 and 𝒓𝐻2, parametrized on the same
parametric variable 𝜏, with knots 𝒖 and 𝑖th control point defined by
𝒃𝑖,1 = {𝑥𝑖, 𝑦𝑖,1, 𝑧𝑖,1} and 𝒃𝑖,2 = {𝑥𝑖, 𝑦𝑖,2, 𝑧𝑖,2}, respectively. Note that these
splines describe the 3-D geometric paths of the two heads, which share
the 𝑋-axis. Let the interval [𝑢𝑠𝑓 ,1, 𝑢𝑠𝑓 ,2] be such that:
{

proj(𝒓𝐻1(𝜏)|[𝑢𝑠𝑓 ,1 ,𝑢𝑠𝑓 ,2], 𝑍) ≥ 𝑧𝑠𝑓
proj(𝒓𝐻2(𝜏)|[𝑢𝑠𝑓 ,1 ,𝑢𝑠𝑓 ,2], 𝑍) ≥ 𝑧𝑠𝑓

(114)

The geometric path components 𝑊1(𝜏) and 𝑊2(𝜏) of the two end-
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effectors, with 𝑖th control point 𝑤𝑖,1 and 𝑤𝑖,2, can be calculated with
the same routine detailed in the previous section applied to the splines
𝒓𝐻1(𝜏) and 𝒓𝐻2(𝜏). It is easy to prove that the 𝑊 -components are the
scaling of each other. In other words, it is sufficient to solve the system
(88) for only one of them, and obtain the other by multiplying the
computed control points by a scaling factor. In this work, it is assumed
to calculate the 𝑊 -component with the largest amplitude:

𝛥𝑊𝑚𝑎𝑥 = max(|𝛥𝑊1|, |𝛥𝑊2|) (115)

and the scaling ratio to be used to calculate the control points of the
second spline is defined by:

𝑊𝑟 = min(|𝛥𝑊1|, |𝛥𝑊2|)∕𝛥𝑊𝑚𝑎𝑥 (116)

or example, if 𝛥𝑊1 > 𝛥𝑊2, 𝑊1(𝜏) is computed by the routine of
ection 3.3.1, while 𝑊2(𝜏) is defined by the same degree and knots of
1(𝜏), and the 𝑖th control point

𝑖,2 = sgn(𝛥𝑊2)𝑤𝑖,1𝑊𝑟 (117)

he geometric path components 𝑊1(𝜏) and 𝑊2(𝜏) can then be added
o the geometric path using the same method detailed in the previous
ection, defining the 7-D spline 𝒓̄(𝜏) with knots 𝒖̄ and control points:
̄ 𝑖 = {𝑥̄𝑖, 𝑦̄𝑖,1, 𝑧̄𝑖,1, 𝑤̄𝑖,1, 𝑦̄𝑖,2, 𝑧̄𝑖,2, 𝑤̄𝑖,2}.

It remains to define the parametrization to be adopted for 𝒓̄(𝜏).
o this end, the authors propose a parametric variable 𝑠 ∈ [0, 𝑠𝑚𝑎𝑥]
ased on the master path 𝒓𝜙(𝜏) and the 𝑊 -component with the largest
mplitude. Assuming the same transmission ratios for the 𝑌 , 𝑍, and 𝑊
f the two arms:

𝑠2𝑖,𝜙 = 𝐾𝑟,𝑥𝛥𝑥
2
𝑖,𝜙 +𝐾𝑟,𝑦𝛥𝑦

2
𝑖,𝜙 +𝐾𝑟,𝑧𝛥𝑧

2
𝑖,𝜙 +𝐾𝑟,𝑤 max(𝛥𝑤2

𝑖,1, 𝛥𝑤
2
𝑖,2) (118)

𝑚𝑎𝑥 =
𝑚−1
∑

√

𝛥𝑠2𝑖,𝜙 (119)

𝑖=0
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Fig. 8. Sub-cases of the five-segment path of Fig. 5 used to define the master path 𝒓𝜙(𝜏). For each block; at the top the conditions defining the sub-case, in the middle the
segments 𝒓𝑖(𝜏) used to define the path, at the bottom the indices 𝑙 and 𝑟, to be used in Eq. (113)a and Eq. (113)b respectively. If one of the indices 𝑙 or 𝑟 is set to None, the
relative equation is not used in that subcase.
with

𝛥𝑥𝑖,𝜙 = 𝑥𝑖+1,𝜙 − 𝑥𝑖,𝜙 (120)

𝛥𝑦𝑖,𝜙 = 𝑦𝑖+1,𝜙 − 𝑦𝑖,𝜙 (121)

𝛥𝑧𝑖,𝜙 = 𝑧𝑖+1,𝜙 − 𝑧𝑖,𝜙 (122)

𝛥𝑤𝑖,𝑗 = 𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗 with: 𝑗 = 1, 2 (123)

As in the previous case, the accuracy of the 𝑠𝑚𝑎𝑥 estimation can be
ensured by adopting an appropriate knot refinement strategy. 𝒓̄(𝜏) can
then be parametrized on the parametric variable 𝑠 by multiplying all
knots 𝑢̄𝑖 by 𝑠𝑚𝑎𝑥∕𝑢̄𝑒.

This section terminates with some clarifications regarding the five-
segment trajectory reported in Fig. 5(a), used here for the master path
definition. With reference to the specific application, the geometric
path analysed is only the most general case, and not all master paths
require all five segments 𝒓𝑖(𝜏). In these cases, the missing sections
must be considered to adapt the formulations used to scale the path,
in particular the knot indices 𝑙 and 𝑟, referring to (113)a and (113)b
respectively. For example, if the 𝑍-component of the start positions 𝑧𝑠,1
and 𝑧𝑠,2 are equal to the travel height 𝑧𝑡𝑟, then 𝛥𝑍𝑠,1 = 𝛥𝑍𝑠,2 = 0, the
optimal choice in terms of path planning is to adopt a three-segment
trajectory, consisting of the concatenation of 𝒓1, 𝒓2 and 𝒓3. Similarly, if
the 𝑍-components of the target positions are equal to the travel height,
the geometric path is obtained from the concatenation of 𝒓3, 𝒓4 and 𝒓5.
For the sake of clarity, Fig. 8 summarizes all possible cases with their
conditions and the necessary knot indices modifications.

As will highlighted in the following sections, for the proposed
motion planning strategy, the maximum curvature of the geometric
path has a great impact on machine performances. In this regard, if
the transition length 𝐿𝑇 calculated with (67) reaches extremely small
values, the use of the five-segment trajectory for the master path
description could produce slow movements. In this work, the problem
is solved using a threshold value 𝐿𝑇 ,𝑚𝑖𝑛. If 𝐿𝑇 is less than this value,
the geometric path is calculated by dividing the movements along the
𝑍-axis resulting in a concatenation of 2 or 3 linear sub-paths. An
example of this case is included in the concatenation of movements
that constitute the case study in Section 6.
11
3.3.3. 2-D collision detection solution
Before detailing the solution adopted by the collision avoidance al-

gorithm, it is necessary to report some notions on the collision detection
of dynamic elements in the working area. Fig. 9 shows a generic 𝑖th
motion frame, projected onto the 𝑋𝑌 plane of the machine, where
each end-effector is modelled with a regular octagon with edges of
length 𝑙𝑒, and the loaded parts are modelled with a bounding rectangle
circumscribing the external profile. The relative position of each end-
effector to its loaded part (i.e. the rectangles) is uniquely defined by the
particular head-part configuration in the loading task. For each point-
to-point movement of the robot, a part may or may not be loaded at
each end-effector. As a result, there are a minimum of two and a max-
imum of four polygons in the working area that define the bounding
boxes of the dynamic elements. Each polygon is actually constrained
to move fixed to one arm or the other, resulting in two groups of
polygons to which the same geometric transformations are applied.
To simplify and reduce subsequent calculations, the polygons of each
group are then merged into a single convex shape using the Jarvis’
algorithm [37], resulting in only two polygons in the environment. An
outer offset 𝜀 is then applied to the resulting polygons in order to ensure
a safe distance between the polygon groups during the movement. To
this end, we use a simple algorithm that calculates the offset vertices
of a convex polygon by iteratively computing the intersection points
between pairs of adjacent edges that have been displaced along the
normal direction by a fixed distance of 𝜀. It should be noted that the
type of convex polygon used to circumscribe head and loaded parts is
arbitrary and not limited to those adopted in this work.

In this application, we want to calculate the maximum 𝑌 -
intersection between the two polygon groups, which we call 𝜅𝑖, and
their upper and lower overlap with respect to the working area for
each frame. There are several efficient solutions in the literature for
computing the intersection between convex polygons [38–41], so we
do not discuss them further in this paper.

The two polygon groups are constrained to move within a working
area defined geometrically by the maximum and minimum values
allowed in the 𝑌 -direction 𝑦+ and 𝑦−. In the proposed approach, the
𝑦+ constraint is assigned to group 2 only, while the 𝑦− constraint is

assigned to group 1. This is justified because if the polygon of group 2
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Fig. 9. Calculation of 𝑌 -intersections and bounding box grouping strategy.

oes not satisfy the 𝑦− constraint, it necessarily intersects the polygon
of group 1. In other words, the constraint set by the other group is
more restrictive than the 𝑦− constraint. A similar logic can be applied
to the 𝑦+ constraint with the polygon of group 1. In order to satisfy
the constraints introduced by the working area, the upper and lower
overlap 𝜅𝑖 and 𝜅𝑖 for the 𝑖th frame are computed with:

𝜅𝑖 = 𝑝𝑖,2,𝑦 − 𝑦+ (124)

𝑖 = 𝑦− − 𝑝
𝑖,1,𝑦

(125)

where 𝒑𝑖,2 = {𝑝𝑖,2,𝑥, 𝑝𝑖,2,𝑦} and 𝒑
𝑖,1

= {𝑝
𝑖,1,𝑥

, 𝑝
𝑖,1,𝑦

} are the vertices of
roups 1 and 2 having the maximum and minimum ordinate of the
erged polygon.

Finally, the frame sampling strategy used to discretize the motion
hould take into account the point-to-point path length and the 𝜀
olerance used in collision detection. In this way, an excessive number
f frames can be avoided, which would increase the computation time,
hile ensuring a sufficient number of frames to avoid collisions. Details
f the frame sampling strategy used in this work can be found in
ppendix B.

.3.4. Polygonal channel definition
Let 𝒓̄(𝜏) ∶ R → R7 be a 5th-degree spline function, with 𝒖̄ =

𝑢̄𝑗 )𝑚+6𝑗=0 knots, defining a geometric path computed with the approach
f Section 3.3.2. Knowing the robot’s operating conditions, the 𝑌 -
ntersections 𝜅𝑖, 𝜅𝑖 and 𝜅𝑖 can be computed on a strictly increasing

frames sequence 𝝉 = (𝜏𝑖)
(M)
𝑖=0 computed as detailed in the previous

section. This results in the definition of vectors:

∙ Overlap vector: 𝜿 = (𝜅 )𝑀 (126)
12

𝑖 𝑖=0
∙ Top Overrun vector: 𝜿 = {max(𝜅𝑖, 0), 𝑖 ∈ [0,𝑀]} (127)

∙ Bottom Overrun vector: 𝜿 = {max(𝜅𝑖, 0), 𝑖 ∈ [0,𝑀]} (128)

Algorithm 1 Upper Envelope Evaluation
Input:

1. Overlap vector 𝜿 = {𝜅𝑖} with 𝑖 = 0,… ,M.
2. Strictly increasing sequence 𝝉 = {𝜏𝑖} with 𝑖 = 0,… ,M.
3. Absolute tolerance Tol.

Output:

1. Indices sequence I.

Algorithm:
1: Define a function 𝓵(𝜏) according to:

𝓵(𝜏) ∶= 
(

𝜏 | {𝜏0, 𝜅0}, {𝜏M, 𝜅M}
)

(129)
2: 𝜟 = {𝛥𝑖} with 𝛥𝑖 = 𝜅𝑖 − 𝓵(𝜏𝑖)
3: 𝑖∗ = {𝑖 | 𝑖 ∈ [0,M] ∧ 𝛥𝑖 ≥ 𝛥𝑟, ∀𝛥𝑟 ∈ 𝜟}
4: if 𝛥𝑖∗ < Tol then
5: return I = {0,M}
6: end if
7: Define a sequence I𝑙 = {0,… , 𝑖∗} using Algorithm 1 with input

𝜟𝑙 = {𝛥0,… , 𝛥𝑖∗}, 𝝉 𝑙 = {𝜏0,… , 𝜏𝑖∗} and Tol.
8: Define a sequence I𝑟 = {𝑖∗,… , 𝜏M} using Algorithm 1 with input

𝜟𝑟 = {𝛥𝑖∗ ,… , 𝛥M}, 𝝉𝑟 = {𝜏𝑖∗ ,… , 𝜏M} and Tol.
9: return I = {0,… , 𝑖∗,… ,M} = I𝑙 ∪ I𝑟

This section proposes a post-processing method for vectors defined
by (126), (127) or (128) using the algorithm illustrated in Section 3.2.
Since this method works indiscriminately on 𝜿, 𝜿 or 𝜿, in the remainder
of the section only 𝜿 is used, implying that it could refer to any one of
hem.

The problem described in Section 3.2 requires the definition of a
hannel in the form of a lower polyline 𝒄(𝜏) and an upper polyline
𝒄(𝜏). The proposed approach firstly calculates 𝒄(𝜏) starting from 𝜿, after

hich 𝒄̄(𝜏) is defined based on the lower polyline. In this application,
he vector 𝜿 has always an initial and final sequence of null values,
ue to a sequence of initial and final frames with no interpenetration
etween polygons. Therefore, the following subsets are defined:
′ = {𝜅𝑙 ,… , 𝜅𝑟} ⊆ 𝜿 (130)

𝝉 ′ = {𝜏𝑙 ,… , 𝜏𝑟} ⊆ 𝝉 (131)

with

𝑙 = min(𝑖 ∣ 𝜅𝑖 ≠ 0, 𝜅𝑖 ∈ 𝜿) − 1 (132)

𝑟 = max(𝑖 ∣ 𝜅𝑖 ≠ 0, 𝜅𝑖 ∈ 𝜿) + 1 (133)

Then, the upper envelope of 𝜿′ is computed with Algorithm 1.
The solution adopted results in a unimodal lower polyline, that

reduces the number of channel break points compared to how many
would be required to follow the profile more accurately. The main
advantage is that a lower number of constraints is needed to set the
problem detailed in Section 3.2, which increases the computational
performances. Furthermore, from the point of view of this application,
it is convenient to limit the possible fluctuations of the resulting spline
by defining a channel that guides towards this solution. Algorithm 1
takes as input the overlap vector 𝜿, the sequence 𝝉 and a tolerance
parameter Tol, returning a sequence of indices 𝐈 corresponding to the
selected points {𝜅𝑖, 𝜏𝑖}, ∀𝑖 ∈ 𝐈. With reference to Fig. 10a and Fig. 10b,
these points are selected recursively by searching for the maximum
value of the sequence 𝜟, which is obtained by subtracting the values of
the linear function (129), calculated in 𝝉, from the 𝜿 vector. Recursion

terminates on condition 𝛥𝑖 ≤ Tol, ∀𝛥𝑖 ∈ 𝜟.
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Fig. 10. Upper envelope evaluation algorithm. (a) 1st step of Algorithm 1. (b) 2nd
step of Algorithm 1. (c) Tolerance parameter translation.

Fig. 11. Channel definition from overlap vector 𝜿, according to Eqs. (134) to (139).

Given the indices sequence 𝐈 = (I𝑗 )𝑛𝑗=0, the lower polyline 𝒄(𝜏) is
defined as follows (refer to Fig. 10c):

𝑐0 = 𝑐1 = 𝑐𝑛+3 = 𝑐𝑛+4 = 0 (134)

𝑗+2 = 𝜅′
𝐼𝑗
+ Tol, 𝑗 = 0,… , 𝑛 (135)

0 = 𝑢̄0, 𝑥𝑛+4 = 𝑢̄𝑚+6 (136)

1 = (𝑢̄0 + 𝜏𝑙)∕2, 𝑥𝑛+3 = (𝑢̄𝑚+6 + 𝜏𝑟)∕2 (137)

𝑗+2 = 𝜏′𝐼𝑗 , 𝑗 = 0,… , 𝑛 (138)

(𝜏) = 
(

𝜏|{𝑥𝑖, 𝑐𝑖}, {𝑥𝑖+1, 𝑐𝑖+1}
)

with 𝑥𝑖 ≤ 𝜏 ≤ 𝑥𝑖+1,

∀𝑖 ∈ [0, 𝑛 + 4] (139)

Let 𝐴𝑐ℎ,𝑚𝑖𝑛 be the desired minimum channel amplitude the upper
olyline 𝑐(𝜏) adopted in this work is defined in the same form of (139)
y the coefficients (see Fig. 11):

𝑐𝑗 = max(𝑐𝑖) + 𝐴𝑐ℎ,𝑚𝑖𝑛, 𝑖 = 0,… , 𝑛 + 4, 𝑗 = 0,… , 𝑛 + 4 (140)

ote that for a constant upper polyline 𝑐(𝜏), such as that defined by
(140), the inequality constraints (33) and (35) reported in Section 3.2
could be greatly simplified. However, it is preferred to report the
general discussion in case a different formulation from (140) would be
adopted.

3.3.5. Collision avoidance strategy
To avoid the collisions that can occur during the movement, this

section proposes an approach that modifies the control points of the
13
spline 𝒓̄(𝜏), defined in Section 3.3.2, which describes the geometric path
f the two end-effectors. This technique is based on the calculation of
eviation splines using the algorithm described in Section 3.2, with the
hannel defined according to 3.3.4. Depending on whether the vector
f 𝑌 -intersections is defined by (126), (127) or (128), the 5th-degree
-D spline, defined by (1), is named as follows:

∙ Overlap spline: 𝝈(𝜏) (141)

∙ Top Overrun spline: 𝝈(𝜏) (142)

∙ Bottom Overrun spline: 𝝈(𝜏) (143)

with control points

𝒉 = (ℎ𝑖)
𝑞
𝑖=0 𝒉 = (ℎ𝑖)

𝑞
𝑖=0 𝒉 = (ℎ𝑖)

𝑞
𝑖=0 (144)

and knots

𝒌 = (𝑘𝑖)
𝑞+6
𝑖=0 𝒌 = (𝑘𝑖)

𝑞+6
𝑖=0 𝒌 = (𝑘𝑖)

𝑞+6
𝑖=0 (145)

defined by the procedure reported in Section 3.2.3.
Referring to 𝝈(𝜏), the spline can be summed to the two components

long the 𝑌 -axis projections of 𝒓̄(𝜏), first by making the functions
ompatible by knot refinement, then by summing the relative control
oints using the weights 𝑤1 and 𝑤2 [36]:

𝑦̄𝑖,1 ← 𝑦̄𝑖,1 −𝑤1ℎ𝑖 (146)

𝑦̄𝑖,2 ← 𝑦̄𝑖,2 +𝑤2ℎ𝑖 (147)

eferring to Eqs. (124) and (125), be:

𝑦+ =
{

|𝜅𝑖|
|

|

|

𝜅𝑖 ≤ 0 ∧ 𝜅𝑖 ≥ 𝜅𝑗 , ∀𝑖, 𝑗 ∈ [0, 𝑁]
}

(148)

𝛥𝑦− =
{

|𝜅𝑖|
|

|

|

𝜅𝑖 ≤ 0 ∧ 𝜅𝑖 ≥ 𝜅𝑗 , ∀𝑖, 𝑗 ∈ [0, 𝑁]
}

(149)

𝜎𝑚𝑎𝑥 = max({𝝈(𝑢̄𝑖) ∣ ∀𝑢̄𝑖 ∈ 𝒖̄}) (150)

𝑤∗
1 = 𝛥𝑦−∕𝜎𝑚𝑎𝑥 (151)

𝑤∗
2 = 𝛥𝑦+∕𝜎𝑚𝑎𝑥 (152)

The weights 𝑤1 and 𝑤2 of Eqs. (146) and (147) can be calculated
through:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤1 = 𝑤2 = 0.5, if 𝑤∗
1 ≥ 0.5 ∧ 𝑤∗

2 ≥ 0.5
{

𝑤1 = 𝑤∗
1

𝑤2 = (1 −𝑤1)
if (𝑤∗

1 < 0.5 ∨ 𝑤∗
2 < 0.5) ∧𝑤∗

1 < 𝑤∗
2

{

𝑤2 = 𝑤∗
2

𝑤1 = (1 −𝑤2)
otherwise

(153)

More generally, depending on whether the deviation spline is 𝝈, 𝝈
or 𝝈, the weights 𝑤1 and 𝑤2 are calculated as follows:

Overlap spline 𝝈 ∶ Eq. (153)
Top overrun spline 𝝈 ∶ 𝑤1 = 0, 𝑤2 = 1

ottom overrun spline 𝝈 ∶ 𝑤1 = 1, 𝑤2 = 0

Fig. 12 reports the pipeline of the proposed collision-free path
lanning strategy. First the geometric path is calculated using the
trategy of Section 3.3.2 from the start and target positions, assumed
o be free of self-collisions. These positions are calculated using a work
one partitioning approach similar to that used in [18], and is not
ealt with in this work. Subsequently, the calculated path must be post-
rocessed in order to ensure collision-free movement in tasks involving
he rotation of loaded parts. To this end, a frame analysis is performed
sing the method proposed in Section 3.3.3 by determining the 𝒌, 𝒌,

and 𝒌 vectors. The pipeline is then divided into three cases according
o the vectors obtained:

Case 1: 𝜿 ≠ 𝟎 ∧ 𝜿 ≠ 𝟎. Both overrun vectors have values greater than
zero. In this case, both groups do not meet the constraints of the work
zone. 𝝈 and 𝝈 are then calculated according to the approach described
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in Section 3.3.4 and added to the respective components of 𝒓(𝜏) as
described in this section.
Case 2: 𝜿 ≠ 𝟎 ∨ 𝜿 ≠ 𝟎. An overrun vector has values greater
than zero. Depending on which group does not meet the work zone
constraint, the appropriate overrun spline is calculated and added to
the relevant component of 𝒓(𝜏). After that, the calculation of the 𝜿
vector is updated, and the process is iterated again.
Case 3: 𝜿 = 𝟎∧𝜿 = 𝟎∧𝜿 ≠ 𝟎. Only the overlap curve has values greater
than zero. 𝝈 is then calculated according to the approach described
in Section 3.3.4 and summed by means of the weights 𝑤1 and 𝑤2 to
the 𝒓̄(𝜏) 𝑌 -axes components.

f none of the above cases apply, the spline 𝒓̄(𝜏) is returned without
ny variation. In this specific application case, this occurs about 50%
f the time, i.e. during the loading phase. Otherwise, if one of the above
ases occurs, an additional collision check must be performed. Should
his check detect any violation of the constraints imposed by the work
one, or detect any collision, a solution cannot be found for this specific
onfiguration of start and target points. If this case occurs, another
onfiguration of start and target points must be set; on the contrary,
f the check is passed, the new collision-free spline 𝒓̄(𝜏) is returned.

In the case where the pipeline in Fig. 12 returned a modified
eometric path, in line with the proposed approach its parametrization
ust be corrected. The detailed collision avoidance strategy allows
14

t

at most two deviation curves to be determined, to be applied to
the 𝑌 -components of the geometric paths of the two end-effectors
respectively. Eqs. (118) and (119) can still be used, provided that the
contribution of the calculated deviation splines is considered. In this
work, if only one deviation curve is returned by the procedure Fig. 12,
it is added to the 𝑌 -component of the master path before calculating
𝑠𝑚𝑎𝑥 with (118) and (119). Considering e.g. the overlap spline 𝝈(𝜏),
after making the 𝒓𝜙(𝜏) and 𝝈(𝜏) compatible with knot refinement, the
ontribution is added summing the control points with the relation:

𝑦̄𝑖,𝜙 ← 𝑦̄𝑖,𝜙 + ℎ𝑖, 𝑖 = 0,… , 𝑚 (154)

ith 𝑚 the maximum index of control points after knot refinement
peration. In the case where the collision avoidance routine returns
wo deviation curves, the spline that makes a greater contribution to
he calculation of 𝑠𝑚𝑎𝑥 is selected, and used in (154).

. Motion profile with IPTP algorithm

IPTP is a trajectory planning paradigm introduced in a previous
uthors’ work [21], by which reusable I/O blocks, called macro-
nstructions, are defined to set kino-dynamic constraints. Subsequently,
hese macro-instructions can be combined with each other to obtain
he final trajectory. In [21], a framework based on this paradigm is
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Fig. 13. Pipeline of the motion profile computation.

escribed, where each piece of trajectory is defined by a 1-D time-
arametrized B-spline, and modified with object-oriented approach
sing computer-aided design techniques, such as scaling, translation,
plitting and concatenation. The main objects class used in the frame-
ork is Trajectory1D, whose instances define pieces of trajectory by

toring the B-spline parameters, which can be obtained through the
ublic attributes 𝑡[0..(𝑚 + 𝑝 + 1)], 𝑐[0..𝑚] and 𝑑, for knots, control
oints and degree, respectively. Another class, useful to store kinematic
onstraints, is Point1D, which allows the storage of a value associated
ith a time instant for a specific derivation order. Even for instances of

his class, it is possible to obtain these parameters via public attributes,
amely 𝑣𝑎𝑙, 𝑡 and 𝑜𝑟𝑑. This framework allows the trajectory designer
o easily test different solutions before determining the most effective
pproach for the specific application, and is suitable both a joint
pace (or coordinate-based) and Cartesian space (or path-based) motion
lanning approach. In this section, to add time information to the
reviously defined geometric path, a motion profile planner using this
ramework is proposed. In the remainder of this section, some notations
rom the previous work are adopted; in this regard, please refer to [21].

Let 𝒔(𝑡) be a 1-D time-parametrized spline of degree 𝑑, defined by
1), with unknown control points 𝒌 = (𝑘𝑖)𝑚𝑖=0 and knots 𝒕 = (𝑡𝑖)𝑚+𝑑+1𝑖=0 .
urthermore, 𝒔(𝑡) is strictly increasing in the domain range [𝑡0, 𝑡𝑚+𝑑+1],
hen:

(𝑡𝑏) > 𝒔(𝑡𝑎) ∀𝑡𝑏 > 𝑡𝑎, with: 𝑡𝑏, 𝑡𝑎 ∈ [𝑡0, 𝑡𝑚+𝑑+1] (156)

et position, velocity, acceleration and jerk of the axes be defined
y a 7-D vector function 𝒑, 𝒗,𝒂, 𝒋 ∶ R → R7 in the time variable 𝑡.
dopting 𝒔(𝑡) as the motion profile along the geometric path described

n Section 3.3.2, it follows:

(𝑡) = {𝒑𝑖(𝑡)} = (𝒓̄◦𝒔)(𝑡) (157)

(𝑡) = {𝒗𝑖(𝑡)} = 𝒔̇(𝑡)(𝐷𝒓̄◦𝒔)(𝑡) (158)

(𝑡) = {𝒂𝑖(𝑡)} = 𝒔̈(𝑡)(𝐷𝒓̄◦𝒔)(𝑡) + 𝒔̇2(𝑡)(𝐷(2)𝒓̄◦𝒔)(𝑡) (159)
(𝑡) = {𝒋𝑖(𝑡)} = 𝒔⃛(𝑡)(𝐷𝒓̄◦𝒔)(𝑡) + 3𝒔̇(𝑡)𝒔̈(𝑡)(𝐷(2)𝒓̄◦𝒔)(𝑡)+

𝒔̇3(𝑡)(𝐷(3)𝒓̄◦𝒔)(𝑡) (160)
15

t

Algorithm 2 Symmetric motion profile computation
Input:

1. Geometric path described from 7-D spline 𝒓̄(𝜏) in domain [0, 𝑠𝑚𝑎𝑥].
2. Kinematic limits 𝑉 𝐶𝑖 and 𝐴𝐶𝑖, with 𝑖 = 0,… , 6.
3. Input jerk Trajectory1D object 𝐽𝑖𝑛.
4. Number of samples N.
5. Tolerance Tol.
6. Initial incremental step 𝜀 and step ratio 𝜙.

Output:

1. Trajectory1D object 𝑆.

Algorithm:
1: 𝐽𝑙 ←Copy of 𝐽𝑖𝑛
2: 𝐴 ← 𝐴𝑚𝑖𝑛 ∶= |𝐽𝑙 .𝑡[0] − 𝐽𝑙 .𝑡[−1]|
3: Mirror 𝐽𝑙 and set the new instance 𝐽𝑟.
4: Initialize a null Trajectory1D instance 𝐽𝑐 .
5: repeat
6: repeat
7: 𝐴 ← 𝐴 + 𝜀
8: Adapt 𝐽𝑙 in the new domain [0..𝐴].
9: Compute 𝐷(−2)𝐽𝑙 and evaluate it in 𝐴 by setting 𝑉 𝑝𝑒𝑎𝑘.

10: Compute 𝐷(−3)𝐽𝑙 and evaluate it in 𝐴 by setting 𝑙.
1: Set 𝐽𝑐 period value:

𝐴𝑐 ← (𝑠𝑚𝑎𝑥 − 2𝑙)∕𝑉 𝑝𝑒𝑎𝑘 (155)
2: if 𝐴𝑐 < 0 then
3: Initialize an empty Point1D object 𝑃 .
4: 𝑃 .𝑣𝑎𝑙 ← 𝑠𝑚𝑎𝑥∕2; 𝑃 .𝑜𝑟𝑑 ← 0; 𝑃 .𝑡 ← 𝐴
5: 𝐽𝑙 ←setValueEn(𝐽𝑙, 𝑃 ). ⊳ Refer to [21]
6: Mirror 𝐽𝑙 and save the new instance 𝐽𝑟.
7: Concatenate 𝐽𝑙, 𝐽𝑟, and set 𝐽 .
8: Compute 𝐷(−3)𝐽 and set 𝑆.
9: if checkLimitsOnAxes(𝒓̄(𝜏),𝑆,{𝑉 𝐶𝑖},{𝐴𝐶𝑖},N) then
0: break
1: end if
2: return 𝑆 ← 𝐷(−3)𝐽
3: end if
4: Adapt 𝐽𝑟 in the new domain [0..𝐴].
5: Adapt 𝐽𝑐 in the new domain [0..𝐴𝑐 ].
6: Concatenate 𝐽𝑙, 𝐽𝑐 , 𝐽𝑟, and set 𝐽 .
7: Compute 𝐷(−3)𝐽 and set 𝑆
8: until checkLimitsOnAxes(𝒓̄(𝜏), 𝑆, {𝑉 𝐶𝑖}, {𝐴𝐶𝑖}, N)
9: 𝐴 ← 𝐴 − 𝜀; 𝜀 ← 𝜀 ⋅ 𝜙
0: until checkLimitsOnAxesWithTol(𝒓̄(𝜏), 𝑆, {𝑉 𝐶𝑖}, {𝐴𝐶𝑖}, N, Tol)
1: return 𝑆

Defining 𝑉 𝐶𝑖 and 𝐴𝐶𝑖, 𝑖 = 0,… , 6, as the maximum velocity and
cceleration limits of the 𝑖th-axis, the problem of planning the time-
ptimal motion profile can be defined in the unknown vectors 𝒕 and 𝒌
s follows:
onstraints:

𝒔(𝑡0) = 0, 𝒔(𝑡𝑚+𝑑+1) = 𝑠𝑚𝑎𝑥 (161)

𝒔̇(𝑡0) = 0, 𝒔̇(𝑡𝑚+𝑑+1) = 0 (162)

𝒔̈(𝑡0) = 0, 𝒔̈(𝑡𝑚+𝑑+1) = 0 (163)

max
𝑡∈[𝑡0 ,𝑡𝑚+𝑑+1]

|

|

|

𝒗𝑖(𝑡)
|

|

|

≤ 𝑉 𝐶𝑖, for 𝑖 = 0,… , 6 (164)

max
𝑡∈[𝑡0 ,𝑡𝑚+𝑑+1]

|

|

|

𝒂𝑖(𝑡)
|

|

|

≤ 𝐴𝐶𝑖, for 𝑖 = 0,… , 6 (165)

ost function:

minimize 𝑇 =
∑𝑚+𝑑

𝑖=0 (𝑡𝑖+1 − 𝑡𝑖) =
∑𝑚+𝑑

𝑖=0 𝛥𝑡𝑖 (166)

Fig. 13 reports the pipeline of the proposed solution for the motion
rofile calculation. The strategy adopted first defines a symmetrical
otion profile starting from the geometric path 𝒓̄(𝜏), within the kine-
atic limits from (161) to (165), using Algorithm 2. With reference to

ig. 14, the algorithm is parametrized on a Trajectory1D instance 𝐽𝑖𝑛

hat defines a positive acceleration impulse in the jerk order. In this
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Algorithm 3 Asymmetric motion profile computation
Input:

1. Geometric path described from 7-D spline 𝒓̄(𝜏) in domain [0, 𝑠𝑚𝑎𝑥].
2. Kinematic limits 𝑉 𝐶𝑖 and 𝐴𝐶𝑖, with 𝑖 = 0,… , 6, and 𝐽 𝑝𝑒𝑎𝑘.
3. Trajectory1D instance 𝑆 from Algorithm 2.
4. Input jerk Trajectory1D object 𝐽𝑖𝑛.
5. Period 𝐴 determined by Algorithm 2.
6. Number of samples N.
7. Tolerance Tol.
8. Initial incremental step 𝜀 and step ratio 𝜙.

Output:

1. Trajectory1D object 𝑆.

Algorithm:
1: 𝐴𝑙 ← 𝐴𝑟 ← 𝐴
2: Split 𝑆 in 𝐴 and 𝑆.𝑡[−1] − 𝐴, and set 𝑆𝑙, 𝑆𝑐 , 𝑆𝑟.
3: Compute 𝐷(1)𝑆𝑟 and set 𝑉𝑟
4: Compute 𝐷(3)𝑆𝑙, 𝐷(3)𝑆𝑟 and set 𝐽𝑙, 𝐽𝑟.
5: Initialize the empty Point1D objects 𝑃1, 𝑃2, 𝑃3.
6: repeat
7: repeat
8: 𝐴𝑙 ← 𝐴𝑙 + 𝜀
9: Adapt 𝐽𝑙 in the new domain [0..𝐴𝑙].

10: Compute 𝐷(−2)𝐽𝑙, 𝐷(−3)𝐽𝑙 and set 𝑉𝑙, 𝑆𝑙.
11: 𝛥𝑆 ← 𝑆𝑟.𝑐[0] − 𝑆𝑙 .𝑐[−1]
12: 𝛥𝑉 ← 𝑉𝑟.𝑐[0] − 𝑉𝑙 .𝑐[−1]
13: 𝐽𝑐 ← Copy of 𝐽𝑖𝑛
14: Multiply 𝐽𝑐 by the sign of 𝛥𝑉 .
15: 𝑃1.𝑣𝑎𝑙 ← 𝛥𝑉 ; 𝑃1.𝑜𝑟𝑑 ← 1; 𝑃1.𝑡 ← 𝐽𝑐 .𝑡[−1]
16: 𝐽𝑐 ←setValueEn(𝐽𝑐 ,𝑃1) ⊳ Refer to [21]
17: Compute 𝐷(−2)𝐽𝑐 and save the result in 𝑉𝑐 .
18: 𝑃2.𝑣𝑎𝑙 ← 𝑉𝑙 .𝑐[−1]; 𝑃2.𝑜𝑟𝑑 ← 1; 𝑃2.𝑡 ← 𝑉𝑐 .𝑡[0]
19: 𝑉𝑐 ←setValueTr(𝑉𝑐 ,𝑃2) ⊳ Refer to [21]
20: 𝑃3.𝑣𝑎𝑙 ← 𝛥𝑆; 𝑃3.𝑜𝑟𝑑 ← 0; 𝑃3.𝑡 ← 𝑉𝑐 .𝑡[−1]
21: 𝑉𝑐 ←setValueEn(𝑉𝑐 ,𝑃3) ⊳ Refer to [21]
22: Compute 𝐷(2)𝑉𝑐 and set 𝐽𝑐 .
23: 𝐴𝑐 ← 𝐽𝑐 .𝑡[−1] − 𝐽𝑐 .𝑡[0]
24: Evaluate the absolute value of 𝐽𝑐 in 𝐴𝑐∕4 and set 𝐽 𝑝𝑒𝑎𝑘

𝑐 .
25: if 𝐽 𝑝𝑒𝑎𝑘

𝑐 > 𝐽 𝑝𝑒𝑎𝑘 then
26: break
27: end if
28: Concatenate 𝑉𝑙, 𝑉𝑐 and set 𝑉𝑙𝑐 .
29: Compute 𝐷(−1)𝑉𝑙𝑐 and set 𝑆𝑙𝑐 .
30: until checkLimitsOnAxes(𝒓̄(𝜏), 𝑆𝑙𝑐 , {𝑉 𝐶𝑖}, {𝐴𝐶𝑖}, N)
31: if |𝐽 𝑝𝑒𝑎𝑘

𝑐 − 𝐽 𝑝𝑒𝑎𝑘
| < Tol then

32: break
33: end if
34: 𝐴𝑙 ← 𝐴𝑙 − 𝜀; 𝜀 ← 𝜀 ⋅ 𝜙
35: until checkLimitsOnAxesWithTol(𝒓̄(𝜏),𝑆𝑙𝑐 ,{𝑉 𝐶𝑖},{𝐴𝐶𝑖},N,Tol)
36: Concatenate 𝑉𝑙𝑐 , 𝑉𝑟 and set 𝑉 .
37: Compute 𝐷(−1)𝑉 and set 𝑆
38: Repeat on the right side in the same way, trying to enlarge 𝐽𝑟.
39: return 𝑆

application, 𝐽𝑖𝑛 is defined by a cubic spline with the following knots
and control points:

knots: (0, 0.25𝐴𝑚𝑖𝑛, 0.5𝐴𝑚𝑖𝑛, 0.75𝐴𝑚𝑖𝑛, 𝐴𝑚𝑖𝑛) (167)
control points:

(0, 𝐽 𝑝𝑒𝑎𝑘, 𝐽 𝑝𝑒𝑎𝑘, 𝐽 𝑝𝑒𝑎𝑘,−𝐽 𝑝𝑒𝑎𝑘,−𝐽 𝑝𝑒𝑎𝑘,−𝐽 𝑝𝑒𝑎𝑘, 0) (168)

with 𝐴𝑚𝑖𝑛 the initial period of the acceleration section, and 𝐽 𝑝𝑒𝑎𝑘 the
upper limit imposed in absolute value on 𝒔⃛(𝑡). As will be clarified in
the remainder of this section, the control points defined by (168) limit
the codomain of the function (160), in other words:

∃𝑘 > 0 ∶ |𝒋𝑖(𝑡)| ≤ 𝑘 ∀𝑡 ∈ [𝑡0, 𝑡𝑚+𝑑+1], for 𝑖 = 0,… , 6 (169)

Algorithm 2 divides the motion profile into three sections; acceleration,
constant velocity, and deceleration. In the jerk order these sections are
referred to the Trajectory1D instances 𝐽 , 𝐽 , and 𝐽 . The 𝐽 instance
16

𝑙 𝑐 𝑟 𝑙 i
is obtained in the first iteration as a copy of 𝐽𝑖𝑛. The main mechanism
of the algorithm consists in iteratively enlarging 𝐽𝑙, of period 𝐴, by
a parameter 𝜀. The motion profile is computed for each iteration
concatenating 𝐽𝑙 with a null Trajectory1D instance 𝐽𝑐 and a third
Trajectory1D instance 𝐽𝑟, obtained by mirroring 𝐽𝑙. The period of 𝐽𝑐 ,
called 𝐴𝑐 , is calculated for each iteration to set condition (161) using
the relation (155). The overall period of the motion profile is therefore
equal to 𝑇 = 2𝐴 + 𝐴𝑐 , and this becomes shorter of 𝛥𝑇 during the
iterations. The algorithm terminates when one, or more, of the limits
𝑉 𝐶𝑖 and 𝐴𝐶𝑖 are exceeded by the respective axes within a tolerance

ol. The function checkLimitsOnAxes is used to detect exceeding of the
imits. Firstly it uses a brute-force method that finds the time gridpoint
t which the greatest absolute value of the functions (158) and (159)
ccurs. In this application, an equispaced time grid of N samples is
dopted. Once the point on the time grid is selected, the search of
he maximum is improved by applying a local method based on the
olden Section search [42] in the range defined by the previous and

he next value of the grid. The number of samples N must be high
nough to ensure that, in the range where the local search method
s applied, the function is unimodal. A variant of this function, called
heckLimitsOnAxesWithTol, detects if these limits are set to less than
tolerance Tol. This approach allows a variable iteration step 𝜀 to

e used, which leads to acceptable computational performance. When
ome of the limits 𝑉 𝐶𝑖 and 𝐴𝐶𝑖 are exceeded, if the most restrictive one
alls outside the set tolerance, the algorithm returns to the previous
tep and restarts the iteration scaling the incremental step 𝜀 of the
tep ratio 𝜙. If none of the kinematic limits are exceeded during the
terations, the period 𝐴𝑐 collapses to zero and the constraint (161) is
et with the macro-instruction setValueEn (please refer to [21]). If the
otion profile resulting from the concatenation of 𝐽𝑙 with 𝐽𝑟 exceeds

he kinematic axes limits, the iteration is repeated for an iteration step
alue 𝜀 scaled by 𝜙. If 𝐴𝑐 = 0, no further optimization is possible unless
he input parameters of the algorithm are changed, so the calculated
otion profile enters in the velocity override setting block. Otherwise,

f 𝐴𝑐 ≠ 0, an optimization can be applied to further reduce the overall
eriod 𝑇 . In this case, the pipeline of Fig. 13 involves post-processing
he previously calculated motion profile.

It is common knowledge that a symmetrical motion profile has
he peak velocity value 𝑉 𝑝𝑒𝑎𝑘 strongly constrained by the maximum
urvature of the geometric path. In this application case, it is distinctly
vident (but not limited to) in cases where the geometric path is
issing the rise or fall section, such as that shown in Fig. 15b. In these

eometric paths, Algorithm 2 generally terminates due to exceeding an
xis kinematic limit at the transition segment, while it may accelerate
ore in the 𝑋𝑌 linear section, resulting in a further reduction of the

verall period 𝑇 . Consequently, it is reasonable to deduce that an asym-
etrical motion profile can provide significant advantages in terms

f the objective function (166). For this reason, the authors propose
post-processing of the symmetrical motion profile computed with

lgorithm 2, which consists of further enlarging the acceleration or
eceleration section on the side where the kinematic limits allow it. The
seudo-code of this routine is reported in Algorithm 3. Fig. 15a shows
n example where Trajectory1D instance 𝐽𝑙, of period 𝐴𝑙, is enlarged
ntil the 𝑋-axis exceeds the limit 𝐴𝐶0, while 𝐽𝑟 remains unchanged.
his procedure defines a two-level velocity profile, and an appropriate

unction to bridge the gap 𝛥𝑉 must replace the null Trajectory1D
nstance 𝐽𝑐 . With reference to Algorithm 3, this velocity junction can
asily be defined from the same input 𝐽𝑖𝑛 used by the Algorithm 2. Let
𝑙 and 𝐴𝑟 be the periods of acceleration and deceleration of 𝑆, which
efines the motion profile of overall period 𝑇 at the generic iteration.
sing a slicing operation, select the two sections of 𝑆 corresponding to

he domain [0..𝐴𝑙] and [𝐴𝑟 − 𝑇 ..𝑇 ], and call the resulting Trajectory1D
nstances 𝑆𝑙 and 𝑆𝑟. In order to define the velocity junction describing
he central section, 𝐽𝑐 is first defined as a copy of 𝐽𝑖𝑛, then corrected
n sign according to the sign of 𝛥𝑉 . The gap constraint 𝛥𝑉 is set

n the jerk order through setValueEn macro-instruction. Following, 𝐽𝑐
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G

Fig. 14. Schematic representation of the symmetric motion profile generation algorithm reported in Algorithm 2. (a) Motion profile and input jerk Trajectory1D instance. (b)

eometric path 𝒓̄(𝜏) of reference. (c) Joint trajectories obtained with (158) and (159). The algorithm is terminated for reaching the acceleration limit 𝐴𝐶0 on 𝑋-axis.
is integrated twice obtaining 𝑉𝑐 , which is translated vertically with
setValueTr macro-instruction (please refer to [21]) to ensure velocity
continuity in the concatenation with the acceleration and deceleration
sections. Finally 𝑉𝑐 is enlarged to set the constraint of 𝛥𝑆, again using
setValueEn macro-instruction. Iteration terminate when at least one of
the limits 𝐴𝐶𝑖 or 𝑉 𝐶𝑖 is exceeded within the tolerance Tol, or if the
maximum amplitude 𝐽 𝑝𝑒𝑎𝑘

𝑐 of 𝐽𝑐 reaches the limit 𝐽 𝑝𝑒𝑎𝑘 within the same
tolerance.

5. Case study

This section presents a use case of the proposed motion planning
solution for a classic nest sorting task. Fig. 16 shows the 2-D layout
of the machine utilized in the test, delineating loading and unloading
areas, working area, and picking positions in the 𝑋𝑌 -plane, with
reference to the absolute coordinate system. Fig. 16 also illustrates
the rectangular bounding boxes of the parts in the nest, the stacks’
position in the unloading area, and the sequence in which the parts are
loaded and unloaded by the end-effectors. If the same loading or sorting
numbers are assigned to multiple parts or stacks, this identifies parallel
loading or unloading using both arms. The process of sorting the nest is
resolved in eight point-to-point movements; four loading tasks and four
unloading tasks. In conclusion, an additional task returns the system
17

to its initial configuration, amounting to a total of nine movements.
The starting positions, coinciding with the target points of the previous
movement, are reported in Table 2. Regarding the dimensions of the
parts involved in the sorting operation, Table 3 details the rectangular
bounding boxes in the form of 𝑋𝑌 vertex coordinates with respect to
the picking point. The polygons used in the frame sampling analysis
are subsequently defined as reported in Section 3.3.3 by adopting an
edge length of the head octagon of 𝑙𝑒 = 0.0746m and an outer offset
of 𝜀 = 0.025m. The transmission ratios’ vector 𝑲𝑟, necessary for the
geometric path parametrization, can be found in Table 4. According
with the proposed approach, the parameters that still must be defined
to uniquely determine the geometric paths of the end-effectors are:
𝑧𝑠𝑓 = 1.13m, 𝑧𝑡𝑟 = 2m, 𝐿𝑇 ,𝑚𝑖𝑛 = 0.225m, 𝐴𝑐ℎ,𝑚𝑖𝑛 = 0.05m.

The geometric paths computed using the approach detailed in Sec-
tion 3 are shown in Fig. 17. In the first movement the start heights of
the two heads are equal to the travel height 𝑧𝑡𝑟, so the master path 𝒓𝜙(𝜏)
is missing the rise section by defining a three-segment trajectory (case
4 in Fig. 8). A similar case is the movement 9, where the target height
of the two heads coincides with 𝑧𝑡𝑟, and the master path is missing the
fall section (case 8 in Fig. 8). In movements 1, 3, 5, and 6, end-effectors
execute the parts loading, and as previously discussed, no deviation
from the geometric paths calculated in accordance with Section 3.3.2 is
required. In particular, movement 6 performs the loading of part 5 with
head 1, and is executed as a rectangular trajectory due to a transition
length 𝐿 , calculated with (67), lower than the threshold 𝐿 . The
𝑇 𝑇 ,𝑚𝑖𝑛
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Fig. 15. Schematic representation of the asymmetrical motion profile generation algorithm reported in Algorithm 3. (a) Asymmetrical motion profile compared with the symmetrical
solution computed with Algorithm 2. (b) Geometric path 𝒓̄(𝜏) of reference. (c) Joint trajectories obtained with (158) and (159).
Fig. 16. Working area 2-D layout referred to the case study. All dimensions are
expressed in metres.

master path is therefore separated into three sub-paths, corresponding
to cases 15, 14, and 16 in Fig. 8. Different is movement 8, where 𝐿𝑇 is
slightly greater than 𝐿𝑇 ,𝑚𝑖𝑛, and the master path is defined according to
case 10 in Fig. 8. From the path planning point of view, the most inter-
esting movements are 2, 4 and 7, which perform the sorting of loaded
parts. As described in Table 2, each of these movements performs a
18
Table 2
Start positions of the nine movements of the sequence.

Mov. Axes

𝑥𝑠(m) 𝑦𝑠,1(m) 𝑧𝑠,1(m) 𝑤𝑠,1(rad) 𝑦𝑠,2(m) 𝑧𝑠,2(m) 𝑤𝑠,2(rad)

1 0.5 1.500 2.00 0 2.500 2.00 0
2 4.3 1.025 1.13 0 1.575 1.13 0
3 1.0 1.500 0.51 𝜋 2.000 0.51 0
4 4.3 1.225 1.13 0 2.075 1.13 0
5 1.0 1.500 0.51 0 2.000 0.51 𝜋
6 4.5 2.525 2.00 0 3.025 1.13 0
7 4.1 2.525 1.13 0 3.025 2.00 0
8 0.8 2.500 0.51 0 3.000 2.00 𝜋
9 0.8 2.00 2.00 0 2.500 0.51 𝜋

Table 3
Vertices coordinates of the parts bounding boxes relative to the picking position. All
dimensions are expressed in metres.

Part n. Vertex coordinates

Vertex 1 Vertex 2 Vertex 3 Vertex 4

1 {−0.7,−0.05} {0.7,−0.05} {0.7, 0.05} {−0.7, 0.05}
2 {−0.7,−0.05} {0.7,−0.05} {0.7, 0.05} {−0.7, 0.05}
3 {−0.7,−0.1} {0.7,−0.1} {0.7, 0.1} {−0.7, 0.1}
4 {−0.7,−0.1} {0.7,−0.1} {0.7, 0.1} {−0.7, 0.1}
5 {−0.5,−0.15} {0.9,−0.15} {0.9, 0.15} {−0.5, 0.15}
6 {−0.9,−0.15} {0.5,−0.15} {0.5, 0.15} {−0.9, 0.15}
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Fig. 17. End-effector geometric paths for the nine movement of the case study.
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Table 4
Transmission ratios and axes limits.

Axes

𝑋 (𝑖 = 0) 𝑌 (𝑖 = 1, 4) 𝑍 (𝑖 = 2, 5) 𝑊 (𝑖 = 3, 6)

𝐾𝑟,𝑖
112.20 124.94 161.70 104.35
(rad∕m) (rad∕m) (rad∕m) (rad∕rad)

𝐴𝐶𝑖 3.25 (m∕s2) 4.2 (m∕s2) 6 (m∕s2) 6.28 (rad∕s2)
𝑉 𝐶𝑖 2.75 (m∕s) 2.6 (m∕s) 2.4 (m∕s) 2.14 (rad∕s)

Table 5
Parameters of the nine computed movements. Movements 2, 4, and 7 reports the
number of frames for all step of the anti-collision sequences. Movements 6 reports
the number of knots for all sub-paths.

Mov. Num. of frames 𝐿𝑇 (m) 𝑠𝑚𝑎𝑥(rad) Num. of knots 𝑇 (s)

1 205 0.87 537.3 15 4.17
2 252∕263∕263 0.87 806.9 42 4.95
3 163 0.87 663.5 21 4.86
4 252∕263 0.87 785.1 30 4.94
5 170 0.87 704.2 21 5.00
6 28 0.2 326.0 3 × 12 6.62
7 238∕236∕242 0.87 831.5 46 4.97
8 42 0.25 516.9 21 5.08
9 39 0.292 296.1 18 3.95

rotation of one of the parts involved in the task. Consequently, it may be
necessary to compute and apply deviation curves to the 𝑌 -components
of both end-effectors’ paths in order to avoid self-collision between
the robotic arms. The frame sampling analysis and the anti-collision
sequences, followed by the overlap and overrun spline computation, are
presented in Table 6. For each movement, an outer offset of 𝜀 = 0.025m
is used to expand the bounding boxes of group 1 and 2. The number of
frames and other computed parameters for each movement are shown
in Table 5.

In movement 2, the bounding box of the group 1 exceeds the
working area during the rototranslation. According to the pipeline of
Fig. 12, this movement falls into case 2 because the frame sampling
analysis returns 𝜿 ≠ 0. The bottom overrun spline 𝝈(𝜏) is computed
with the method detailed in Section 3, and summed to the 𝑌 -axis of
𝒓𝐻1(𝜏) using (146). After that, the frame sampling is updated, and the
overlap spline 𝝈(𝜏) is computed and summed to the 𝑌 -axis of 𝒓𝐻2(𝜏)
sing (147). In movement 4, the rotation of head 1 leads to 𝜿 ≠ 0,
hich corresponds to case 3 in the pipeline reported in Fig. 12. The
verlap spline 𝝈(𝜏) is then computed and summed to the 𝑌 -axes of 𝒓̄(𝜏)
sing (146) and (147) using weights 𝑤1 = 𝑤2 = 0.5. Similarly to the 2nd
ovement, movement 7 also falls in case 2 of the pipeline of Fig. 12,
19

ith the difference that it is the bounding box of group 2 that exceeds 2
Fig. 18. Motion profile of the sorting sequence under study. Between each movement,
a pause of 1 s is inserted. A 100% velocity override is used.

the working area, resulting in 𝜿 ≠ 0. The top overrun spline 𝝈(𝜏) is
omputed and summed to the 𝑌 -axis of 𝒓𝐻2(𝜏) using (147). Hereafter,
he frame sampling is updated, and the overlap spline 𝝈(𝜏) is computed
nd summed to the 𝑌 -axis of 𝒓𝐻1(𝜏) using (146).

The motion profile computed for the complete paths sequence using
he pipeline reported in Section 4 is shown in Fig. 18. A pause of 1 s
s inserted between successive movements. The axis limits adopted to
efine the constraints (164) and (165) can be found in Table 4. The
ollowing parameters are used for both Algorithm 2 and 3: 𝐽 𝑝𝑒𝑎𝑘 =
00 rad∕s3, number of samples N = 150, Tol= 10−9, initial incremental
tep 𝜀 = 0.1, step ratio 𝜙 = 0.1. Table 5 details the periods 𝑇 for each
ovement, corresponding to the cost function (166). In Fig. 19 the

oint trajectories computed with (157), (158) and (159) are reported,
ighlighting the axis limits that terminate the algorithms of the pipeline
f Fig. 13. Starting to analyse the results obtained from movement 1,
he motion profile computation terminates due to the condition 𝐽 𝑝𝑒𝑎𝑘

𝑐 =
𝑝𝑒𝑎𝑘 in Algorithm 3, while Algorithm 2 has previously set the accel-
ration limit on the 𝑋-axis at the transition segment. In Movements
, 3, 4, 5, and 7, the acceleration limit on the 𝑋-axis is reached in
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Fig. 19. Joint trajectory of the movement sequence of the case study. The red square markers are the axis limits that terminate the algorithms of the pipeline in Fig. 13. Between
each movement, a pause of 1 s is inserted. A 100% velocity override is used.
both transition segments. The motion profile is asymmetrical due to the
different height of the loading and unloading positions. In particular,
Algorithm 2 terminates at the transition segment corresponding to
the loading zone, while Algorithm 3 allows a higher velocity on the
unloading side. In the three geometric paths that constitute movement
6, the calculation of the motion profile terminates after execution of
Algorithm 2 for condition 𝑇 = 2𝐴, resulting in symmetrical profiles
where a constant velocity section is missing. In this case, it is generally
possible to increase the parameter 𝐽 𝑝𝑒𝑎𝑘 in 𝑍-axis direction, without
compromising the machine’s operation. For example, in the real appli-
cation documented in the attachment Video1.mp4, 𝐽 𝑝𝑒𝑎𝑘 = 2000 rad∕s3
is used. The motion profile computation of the movement 8 returns
a symmetrical profile where the acceleration limit along the 𝑌 -axis
is set twice in the middle section of the path, consisting of the two
transition segments joined together. In the end, movement 9 also results
in a symmetrical motion profile, limited by the velocity limit along the
𝑊 -axis.

In order to verify the effectiveness of the proposed approach, the
movements sequence is tested first in a simulated environment and then
using a test machine in the real world. In this regard, please refer to
Video1.mp4 and Video2.mp4 in the supplementary material. Fig. 20
shows the geometric paths trails in the simulated environment, with
the end-effectors in target position for each movement.

Fig. 21 reports the resulting trails of the vertex positions of the parts
bounding boxes, corresponding to the movements 2, 4, and 7. Finally,
Fig. 22 shows the photos of the test machine in the start positions for
each movement of the sequence.

The real-time control strategy adopted in the real application is
strongly influenced by the hardware configuration installed on the test
machine, which uses Mitsubishi Electric®motors and drives that com-
municate, through CANopen®protocol, with the programmable logic
controller (PLC). The control-chain is based on the cyclic synchronous
position (CSP) mode described in CiA®402 (IEC 61800-7), implement-
ing the classic position, velocity and torque controllers cascaded for
each axis. In the test, the axes are controlled by position feedback and
torque feedforward using a B-spline set-point generator and a cycle
times of 2ms.

6. Conclusions

This paper proposes a new path-based motion planning approach
for 7-d.o.f. dual-arm Cartesian robots, which ensures the C2-continuity
20
Fig. 20. The process of sorting of the nest under study in the simulated environment.
Sub-pictures 1 to 9 represent the target position and the end-effectors trails.

Fig. 21. Vertex position trails of part bounding boxes. Sub-pictures 1 to 3 correspond
to movements 2, 4, and 7.

of axis trajectories within the velocity and acceleration constraints. The
research specifically aims to enhance the motion of a sorting system for
laser machine (LST), characterizing this work in the field of pick-and-
place application. The geometric path is described by a 7-D spline in
its B-form, defining the two end-effectors paths through a classical five-
segment planar pick-end-place trajectories, where the adjacent straight
lines are blended by quintic Bézier curves with minimized curvature.
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Table 6
Results of the three movements in which the collision avoidance algorithm detailed in Section 3.3.5 is performed. In frame sampling analysis,
green for the bounding box of group 1, blue for group 2. For each movement, an outer offset of 𝜀 = 0.025m is used to expand the bounding
boxes.

a For illustrative purposes, only one out of five of the calculated frames is shown in the figure.
b Performance evaluated on Intel® Core™ i7-11800H CPU, 2.30 GHz.
The problem of self-collision involving the loaded parts during rotation
is addressed through bounding box sampling and the subsequent res-
olution of a quadratic programming (QP) problem. This process yields
deviation splines that, when summed to the initially computed path,
ensure a collision-free path with minimal curvature. The motion profile
is defined using an IPTP-based, time-optimal algorithm, represented by
a 1-D time-parametrized spline. The problem of maximum geometric
path curvature is partially addressed through asymmetrical motion
profile planning, which defines two velocity levels. The efficacy of the
proposed method is validated through a simulation and experiments.
The proposed approach significantly reduces the point-to-point mo-
tion time compared to solutions traditionally adopted in the specific
21
industrial field. The proposed solution allows easy expansion of the
kinematics to a dual-gantry configuration, thereby considering a total of
four end-effectors sharing the same workspace. In the particular indus-
trial field, this solution is intriguing since it permits the rototranslation
of parts loaded simultaneously by two end-effectors (due to high weight
or deflection of the parts) and the translation of parts by four arms. The
authors presume that an accurate study of the kino-dynamic limits that
considers the constraints introduced by the gripping tool can provide
the basis for further performance improvements. Future research may
extend this work to other applications by exploring collision-free path
planning in 3-D space and extending the system to a dual-gantry
configuration, as well as evaluating the benefits of adopting a corner
smoothing algorithm that allows for C3-continuity of axis trajectories.
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Fig. 22. The process of sorting of the nest under study in the real world. Sub-pictures
1 to 9 represent the starting position of the point-to-point movements, according to
Table 2.
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Appendix A. Definition of cost function coefficients

In the following, the cost function matrix 𝑃 of Eq. (18) is derived.
From (10):

𝛥2𝑏𝑖 =
𝑏𝑖+1−𝑏𝑖
𝑢∗𝑖+1−𝑢

∗
𝑖
− 𝑏𝑖−𝑏𝑖−1

𝑢∗𝑖 −𝑢
∗
𝑖−1

= 1
𝛥𝑢∗𝑖+1𝛥𝑢

∗
𝑖

[

(𝑏𝑖+1 − 𝑏𝑖)𝛥𝑢∗𝑖 − (𝑏𝑖 − 𝑏𝑖−1)𝛥𝑢∗𝑖+1
]

= 1
𝐾𝑖

[

𝑏𝑖+1𝛥𝑢
∗
𝑖 − 𝑏𝑖(𝛥𝑢∗𝑖 + 𝛥𝑢∗𝑖+1) + 𝑏𝑖−1𝛥𝑢

∗
𝑖+1

]

(170)

with:

𝛥𝑢∗𝑖 = 𝑢∗𝑖 − 𝑢∗𝑖−1 > 0 (171)

𝐾𝑖 = 𝛥𝑢∗𝑖+1𝛥𝑢
∗
𝑖 > 0 (172)

It follow that:

(𝛥 𝑏 )2 = 1 [

𝑏2 𝛥𝑢∗2 + 𝑏2(𝛥𝑢∗ + 𝛥𝑢∗ )2+
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2 𝑖 𝐾2
𝑖

𝑖+1 𝑖 𝑖 𝑖 𝑖+1
𝑏2𝑖−1𝛥𝑢
∗2
𝑖+1 − 2𝑏𝑖+1𝑏𝑖𝛥𝑢∗𝑖 (𝛥𝑢

∗
𝑖 + 𝛥𝑢∗𝑖+1)−

2𝑏𝑖𝑏𝑖−1(𝛥𝑢∗𝑖 + 𝛥𝑢∗𝑖+1)𝛥𝑢
∗
𝑖+1 + 2𝑏𝑖+1𝑏𝑖−1𝛥𝑢∗𝑖 𝛥𝑢

∗
𝑖+1

]

= 𝑔(𝑏𝑖−1, 𝑏𝑖, 𝑏𝑖+1) (173)

∀𝑏𝑖 with 𝑖 = 2,… , 𝑚 − 2:

𝛿𝑓 (𝒃)
𝛿𝑏𝑖

= 𝛿(𝛥2𝑏1)2

𝛿𝑏𝑖
+⋯ +

(𝟏𝐬𝐭 𝐜𝐨𝐦𝐩.) (𝟐𝐧𝐝𝐜𝐨𝐦𝐩.) (𝟑𝐫𝐝𝐜𝐨𝐦𝐩.)
𝛿(𝛥2𝑏𝑖−1)2

𝛿𝑏𝑖
+ 𝛿(𝛥2𝑏𝑖)2

𝛿𝑏𝑖
+ 𝛿(𝛥2𝑏𝑖+1)2

𝛿𝑏𝑖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

For (173) only these component are not null

+⋯ + 𝛿(𝛥2𝑏𝑚−1)2

𝛿𝑏𝑖
(174)

1st component:

𝛿(𝛥2𝑏𝑖−1)2

𝛿𝑏𝑖
= 𝛿

𝛿𝑏𝑖

[

1
𝐾2
𝑖−1

[

𝑏2𝑖 𝛥𝑢
∗2
𝑖−1 + 𝑏2𝑖−1(𝛥𝑢

∗
𝑖−1 + 𝛥𝑢∗𝑖 )

2

+ 𝑏2𝑖−2𝛥𝑢
∗2
𝑖 − 2𝑏𝑖𝑏𝑖−1𝛥𝑢∗𝑖−1(𝛥𝑢

∗
𝑖−1 + 𝛥𝑢∗𝑖 )−

2𝑏𝑖−1𝑏𝑖−2(𝛥𝑢∗𝑖−1 + 𝛥𝑢∗𝑖 )𝛥𝑢
∗
𝑖 + 2𝑏𝑖𝑏𝑖−2𝛥𝑢∗𝑖−1𝛥𝑢

∗
𝑖
]

]

= 2
𝐾2

𝑖−1

[

𝑏𝑖𝛥𝑢
∗2
𝑖−1 − 𝑏𝑖−1𝛥𝑢

∗
𝑖−1(𝛥𝑢

∗
𝑖−1 + 𝛥𝑢∗𝑖 )+

𝑏𝑖−2𝛥𝑢
∗
𝑖−1𝛥𝑢

∗
𝑖
]

(175)

2nd component:

𝛿(𝛥2𝑏𝑖)2

𝛿𝑏𝑖
= 𝛿

𝛿𝑏𝑖

[

1
𝐾2
𝑖

[

𝑏2𝑖+1𝛥𝑢
∗2
𝑖 + 𝑏2𝑖 (𝛥𝑢

∗
𝑖 + 𝛥𝑢∗𝑖+1)

2+

𝑏2𝑖−1𝛥𝑢
∗2
𝑖+1 − 2𝑏𝑖+1𝑏𝑖𝛥𝑢∗𝑖 (𝛥𝑢

∗
𝑖 + 𝛥𝑢∗𝑖+1)−

2𝑏𝑖𝑏𝑖−1(𝛥𝑢∗𝑖 + 𝛥𝑢∗𝑖+1)𝛥𝑢
∗
𝑖+1 + 2𝑏𝑖+1𝑏𝑖−1𝛥𝑢∗𝑖 𝛥𝑢

∗
𝑖+1

]

]

= 2
𝐾2
𝑖

[

𝑏𝑖(𝛥𝑢∗𝑖 + 𝛥𝑢∗𝑖+1)
2 − 𝑏𝑖+1𝛥𝑢

∗
𝑖 (𝛥𝑢

∗
𝑖 + 𝛥𝑢∗𝑖+1)

−𝑏𝑖−1(𝛥𝑢∗𝑖 + 𝛥𝑢∗𝑖+1)𝛥𝑢
∗
𝑖+1

]

(176)

3rd component:

𝛿(𝛥2𝑏𝑖+1)2

𝛿𝑏𝑖
= 𝛿

𝛿𝑏𝑖

[

1
𝐾2
𝑖+1

[

𝑏2𝑖+2𝛥𝑢
∗2
𝑖+1 + 𝑏2𝑖+1(𝛥𝑢

∗
𝑖+1 + 𝛥𝑢∗𝑖+2)

2

+ 𝑏2𝑖 𝛥𝑢
∗2
𝑖+2 − 2𝑏𝑖+2𝑏𝑖+1𝛥𝑢∗𝑖+1(𝛥𝑢

∗
𝑖+1 + 𝛥𝑢∗𝑖+2)−

2𝑏𝑖+1𝑏𝑖(𝛥𝑢∗𝑖+1 + 𝛥𝑢∗𝑖+2)𝛥𝑢
∗
𝑖+2 + 2𝑏𝑖+2𝑏𝑖𝛥𝑢∗𝑖+1𝛥𝑢

∗
𝑖+2

]

]

= 2
𝐾2
𝑖+1

[

𝑏𝑖𝛥𝑢
∗2
𝑖+2 − 𝑏𝑖+1(𝛥𝑢∗𝑖+1 + 𝛥𝑢∗𝑖+2)𝛥𝑢

∗
𝑖+2

+𝑏𝑖+2𝛥𝑢∗𝑖+1𝛥𝑢
∗
𝑖+2

]

(177)

Summing the three components (175), (176) and (177):

𝛿𝑓 (𝒃)
𝛿𝑏𝑖

=
2𝑏𝑖𝛥𝑢∗2𝑖−1
𝐾2
𝑖−1

−
2𝑏𝑖−1𝛥𝑢∗𝑖−1(𝛥𝑢

∗
𝑖−1+𝛥𝑢

∗
𝑖 )

𝐾2
𝑖−1

+
2𝑏𝑖−2𝛥𝑢∗𝑖−1𝛥𝑢

∗
𝑖

𝐾2
𝑖−1

+
2𝑏𝑖(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)

2

𝐾2
𝑖

−
2𝑏𝑖+1𝛥𝑢∗𝑖 (𝛥𝑢

∗
𝑖 +𝛥𝑢

∗
𝑖+1)

𝐾2
𝑖

−
2𝑏𝑖−1(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)𝛥𝑢

∗
𝑖+1

𝐾2
𝑖

+
2𝑏𝑖𝛥𝑢∗2𝑖+2
𝐾2
𝑖+1

−
2𝑏𝑖+1(𝛥𝑢∗𝑖+1+𝛥𝑢

∗
𝑖+2)𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

+
2𝑏𝑖+2𝛥𝑢∗𝑖+1𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

=2𝑏𝑖−2𝐴𝑖 − 2𝑏𝑖−1𝐵𝑖 + 2𝑏𝑖𝐶𝑖 − 2𝑏𝑖+1𝐷𝑖 + 2𝑏𝑖+2𝐸𝑖 (178)

with:

𝐴𝑖 =
𝛥𝑢∗𝑖−1𝛥𝑢

∗
𝑖

𝐾2
𝑖−1

> 0 (179)

𝐵𝑖 =
𝛥𝑢∗𝑖−1(𝛥𝑢

∗
𝑖−1+𝛥𝑢

∗
𝑖 )

𝐾2
𝑖−1

+
(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)𝛥𝑢

∗
𝑖+1

𝐾2
𝑖

> 0 (180)

𝐶𝑖 =
𝛥𝑢∗2𝑖−1
𝐾2
𝑖−1

+
(𝛥𝑢∗𝑖 +𝛥𝑢

∗
𝑖+1)

2

𝐾2
𝑖

+
𝛥𝑢∗2𝑖+2
𝐾2
𝑖+1

> 0 (181)

𝐷𝑖 =
𝛥𝑢∗𝑖 (𝛥𝑢

∗
𝑖 +𝛥𝑢

∗
𝑖+1)

𝐾2
𝑖

+
(𝛥𝑢∗𝑖+1+𝛥𝑢

∗
𝑖+2)𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

> 0 (182)
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f

T
(

𝐷

𝐸

a

𝐵

𝑖

∇

i
s

I

𝑃

T

⎡

⎢

⎢

⎢

⎣

w

𝑄

w

s
𝑖

∀

w

𝐸𝑖 =
𝛥𝑢∗𝑖+1𝛥𝑢

∗
𝑖+2

𝐾2
𝑖+1

> 0 (183)

rom (178):

𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑗

|

|

|

|

|𝑗∉[𝑖−2,𝑖−1,𝑖,𝑖+1,𝑖+2]
= 0 (184)

𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑖−2

= 2𝐴𝑖,
𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑖−1

= −2𝐵𝑖,
𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑖

= 2𝐶𝑖,

𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑖+1

= −2𝐷𝑖,
𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑖+2

= 2𝐸𝑖 (185)

he special cases 𝛿𝑓 (𝒃)∕𝛿𝑏1 and 𝛿𝑓 (𝒃)∕𝛿𝑏𝑚−1 remain to be defined. From
174) it follows that
𝛿𝑓 (𝒃)
𝛿𝑏1

= −2𝑏0𝐵1 + 2𝑏1𝐶1 − 2𝑏2𝐷1 + 2𝑏3𝐸1 (186)

with

𝐵1 =
(𝛥𝑢∗1+𝛥𝑢

∗
2 )𝛥𝑢

∗
2

𝐾2
1

> 0 (187)

𝐶1 =
(𝛥𝑢∗1+𝛥𝑢

∗
2 )

2

𝐾2
1

+
𝛥𝑢∗23
𝐾2
2

> 0 (188)

1 =
𝛥𝑢∗1 (𝛥𝑢

∗
1+𝛥𝑢

∗
2 )

𝐾2
1

+
(𝛥𝑢∗2+𝛥𝑢

∗
3 )𝛥𝑢

∗
3

𝐾2
2

> 0 (189)

1 =
𝛥𝑢∗2𝛥𝑢

∗
3

𝐾2
2

> 0 (190)

nd
𝛿𝑓 (𝒃)
𝛿𝑏𝑚−1

=

2𝑏𝑚−3𝐴𝑚−1 − 2𝑏𝑚−2𝐵𝑚−1 + 2𝑏𝑚−1𝐶𝑚−1 − 2𝑏𝑚𝐷𝑚−1 (191)

with

𝐴𝑚−1 =
𝛥𝑢∗𝑚−2𝛥𝑢

∗
𝑚−1

𝐾2
𝑚−2

> 0 (192)

𝑚−1 =
𝛥𝑢∗𝑚−2(𝛥𝑢

∗
𝑚−2+𝛥𝑢

∗
𝑚−1)

𝐾2
𝑚−2

+
(𝛥𝑢∗𝑚−1+𝛥𝑢

∗
𝑚)𝛥𝑢

∗
𝑚

𝐾2
𝑚−1

> 0 (193)

𝐶𝑚−1 =
𝛥𝑢∗2𝑚−2
𝐾2
𝑚−2

+
(𝛥𝑢∗𝑚−1+𝛥𝑢

∗
𝑚)

2

𝐾2
𝑚−1

> 0 (194)

𝐷𝑚−1 =
𝛥𝑢∗𝑚−1(𝛥𝑢

∗
𝑚−1+𝛥𝑢

∗
𝑚)

𝐾2
𝑚−1

> 0 (195)

In our case, 𝑏0 = 𝑏𝑚 = 0, so the first component of (186) and the last
component of (191) are null. From (186) and (191):

𝛿2𝑓 (𝒃)
𝛿𝑏1𝛿𝑏𝑗

|

|

|

|

|𝑗>3
= 0, 𝛿2𝑓 (𝒃)

𝛿𝑏𝑚−1𝛿𝑏𝑗

|

|

|

|

|𝑗<𝑚−3
= 0 (196)

𝛿2𝑓 (𝒃)
𝛿2𝑏1

= 2𝐶1,
𝛿2𝑓 (𝒃)
𝛿𝑏1𝛿𝑏2

= −2𝐷1,
𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏3

= 2𝐸1 (197)

𝛿2𝑓 (𝒃)
𝛿2𝑏𝑚−1

= 2𝐶𝑚−1,
𝛿2𝑓 (𝒃)

𝛿𝑏𝑚−1𝛿𝑏𝑚−2
= −2𝐵𝑚−1,

𝛿2𝑓 (𝒃)
𝛿𝑏𝑚−1𝛿𝑏𝑚−3

= 2𝐴𝑚−1 (198)

The Hessian matrix, defined from
[

∇2𝑓 (𝒃)
]

𝑖𝑗 ≡ 𝛿2𝑓 (𝒃)
𝛿𝑏𝑖𝛿𝑏𝑗

with
, 𝑗 = 1,… , 𝑚 − 1, thus results in the following band matrix:

2𝑓 (𝒃) = 2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶1 −𝐷1 𝐸1 0
−𝐵2 𝐶2 −𝐷2 𝐸2

𝐴3 −𝐵3 𝐶3 −𝐷3 𝐸3

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

𝐴𝑚−3 −𝐵𝑚−3 𝐶𝑚−3 −𝐷𝑚−3 𝐸𝑚−3

𝐴𝑚−2 −𝐵𝑚−2 𝐶𝑚−2 −𝐷𝑚−2

0 𝐴𝑚−1 −𝐵𝑚−1 𝐶𝑚−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Equal to matrix 𝑃 of Eq. (17)

(199)
23

v

Fig. 23. Convex polygon of group 𝑗 in the frames 𝑖 and 𝑖 + 1. The expanded polygon
n the 𝑖th frame is also reported. In this case, an intermediate frame must be inserted
ince vertex 𝑣(𝑖+1)8,𝑗 exceeds the expanded polygon.

t follows that the matrix 𝑃 of Eq. (17) is defined by

= 1
2
∇2𝑓 (𝒃) (200)

Appendix B. Frame sampling strategy

Section 3.3.3 detailed the calculation of 𝑌 -intersections 𝜅𝑖, 𝜅𝑖 and
𝜅𝑖, relative to a frame 𝑖 corresponding to the 𝑖th element of a strictly
increasing sequence 𝝉 = (𝜏𝑖)

(M)
𝑖=0 . This section details the methodology

used in this work to define the 𝝉 vector.
With reference to Fig. 23, the following definitions are given for

frame 𝑖 and group 𝑗:

∙ [𝜏𝑖, 𝜏𝑖+1) ∶= 𝑖th span.
∙ 𝒗(𝑖)𝑘,𝑗 = {𝑣(𝑖)𝑘,𝑗,𝑥, 𝑣

(𝑖)
𝑘,𝑗,𝑦} ∶= 𝑘th vertex of the convex polygon obtained by

Jarvis’ algorithm.
∙ 𝒑(𝑖)𝑘,𝑗 = {𝑝(𝑖)𝑘,𝑗,𝑥, 𝑝

(𝑖)
𝑘,𝑗,𝑦} ∶= 𝑘th vertex of the polygon, expanded by an

outer offset 𝜀.
∙ 𝒄(𝑖)𝑗 = {𝑥(𝑖)𝑐,𝑗 , 𝑦

(𝑖)
𝑐,𝑗} ∶= centre head 2-D point.

∙ 𝛥𝑙(𝑖)𝑗 = {𝛥𝑥(𝑖)𝑗 , 𝛥𝑦(𝑖)𝑗 } ∶= translation vector in the span 𝑖.
∙ 𝛥𝑤(𝑖)

𝑗 ∶= rotation of the polygon around the centre in the span 𝑖.

he vertices 𝒗(𝑖+1)𝑘,𝑗 relative to the frame 𝑖 + 1 are defined by:

𝑣(𝑖+1)𝑘,𝑗,𝑥
𝑣(𝑖+1)𝑘,𝑗,𝑦
1

⎤

⎥

⎥

⎥

⎦

= 𝑄(𝑖)
𝑗

⎡

⎢

⎢

⎢

⎣

𝑣(𝑖)𝑘,𝑗,𝑥
𝑣(𝑖)𝑘,𝑗,𝑦
1

⎤

⎥

⎥

⎥

⎦

with: 𝑘 = 1,… ,N𝑗 (201)

ith:

(𝑖)
𝑗 =

⎡

⎢

⎢

⎢

⎣

𝐶𝛥𝑤(𝑖)
𝑗

−𝑆𝛥𝑤(𝑖)
𝑗

𝑥(𝑖)𝑐,𝑗 (1 − 𝐶𝛥𝑤(𝑖)
𝑗
) + 𝑦(𝑖)𝑐,𝑗𝑆𝛥𝑤(𝑖)

𝑗
+ 𝛥𝑥(𝑖)𝑗

𝑆𝛥𝑤(𝑖)
𝑗

𝐶𝛥𝑤(𝑖)
𝑗

−𝑥(𝑖)𝑐,𝑗𝑆𝛥𝑤(𝑖)
𝑗
+ 𝑦(𝑖)𝑐,𝑗 (1 − 𝐶𝛥𝑤(𝑖)

𝑗
) + 𝛥𝑦(𝑖)𝑗

0 0 1

⎤

⎥

⎥

⎥

⎦

(202)

here 𝐶𝜃 and 𝑆𝜃 correspond to cos(𝜃) and sin(𝜃).
The proposed solution for the definition of the 𝝉 vector can be

ummarized as follows. Define 𝝉𝑠 the initial frames sequence. For each
th span of the vector 𝝉𝑠 the following condition is checked:

𝑗 ∈ {1, 2},∀𝑘 ∈ {1,… ,N𝑗},∀𝑟 ∈ {1,… ,N𝑗},


(

𝒗(𝑖+1)𝑘,𝑗
|

|

|

𝒑(𝑖)𝑟,𝑗 ,𝒑
(𝑖)
(𝑟+1)mod(N𝑗+1),𝑗

)

≥ 0 (203)

ith  ({𝑥, 𝑦} ∣ {𝑥1, 𝑦1}, {𝑥2, 𝑦2}) direction of the cross product between

ectors {𝑥2−𝑥1, 𝑦2−𝑦1} and {𝑥−𝑥1, 𝑦−𝑦1}, defined by sgn((𝑥2−𝑥1)(𝑦−
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t

𝑦1) − (𝑦2 − 𝑦1)(𝑥 − 𝑥1)). Condition (203) checks, for each group, that
he vertices of the polygon of the frame 𝑖 + 1 are all contained within

the expanded polygon of the frame 𝑖. This validation is performed by
verifying that each of these vertices is to the left of all the edges of
the expanded polygon. If condition (203) is not true, an additional
frame is inserted in the middle of the span considered in the previous
iteration. This procedure is then iterated until all considered spans of
the resulting vector 𝝉 are compliant with (203).

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104534.
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