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Higher-order time domain boundary elements for elastodynamics –

graded meshes and hp versions

Alessandra Aimi* Giulia Di Credico∗� Heiko Gimperlein† Ernst P. Stephan�

Abstract

The solution to the elastodynamic equation in the exterior of a polyhedral domain or a screen exhibits
singular behavior from the corners and edges. The detailed expansion of the singularities implies
quasi-optimal estimates for piecewise polynomial approximations of the Dirichlet trace of the solution
and the traction. The results are applied to hp and graded versions of the time domain boundary
element method for the weakly singular and the hypersingular integral equations. Numerical examples
confirm the theoretical results for the Dirichlet and Neumann problems for screens and for polygonal
domains in 2d. They exhibit the expected quasi-optimal convergence rates and the singular behavior
of the solutions.

Mathematics Subject Classification: 65M38 (primary); 65M15; 74S15; 35L67 (secondary)
Key words: time domain boundary element method, graded mesh, hp version, elastodynamics.

1 Introduction

Solutions to elliptic and parabolic boundary value problems in polyhedral domains exhibit singularities
in a neighborhood of the corners and edges. Numerical approximations by finite or boundary element
methods take into account the nonsmooth behavior with local mesh refinements or higher polynomial
degrees to recover optimal convergence rates. The resulting h, p and hp methods have been studied for
several decades, see e.g. [53] for finite elements and [28] for boundary elements.

For hyperbolic equations in conical or wedge domains the singular behavior of the solution has been
clarified by Plamenevskǐı and collaborators since the late 1990’s [33, 35, 40, 50]. The explicit singular
expansions were used by Müller and Schwab to prove optimal convergence rates for a finite element
method on algebraically graded meshes for the wave and elastodynamic equations in polygonal domains
in R2 [42, 43]. Corresponding results for the wave equation in R3 were obtained by two of the authors,
leading to approximation results for boundary element methods (TDBEM) on graded meshes [21], hp
versions [23] and the efficiency of a posteriori error estimates for adaptive refinement procedures [24].

In this article we initiate the study of h, p and hp time domain boundary element methods for the
Dirichlet and Neumann problems of elastodynamics in a polyhedral domain Ω ⊂ Rn, n = 2, 3. Based
on the approach by Plamenevskǐı and singular expansions for the time independent Lamé equation, we
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obtain a detailed description of the singularities of the solution for the model 3d geometries of a wedge
and a cone, as well as 2d polygonal domains. The expansions imply quasi-optimal convergence rates for
piecewise polynomial approximations on graded meshes and by hp versions.

To be specific, we formulate the set-up and results for exterior problems. Let Γ ⊂ Rn, n = 2, 3, be a
screen or closed surface and denote by Ω the connected exterior Ω ⊂ Rn of Γ. This article considers the
dynamics of a linear elastic body with Lamé parameters λ, µ > 0 and mass density ρ, as described by
the time dependent elastodynamic equation

(λ+ µ)∇(∇ · u) + µ∆u− ρü = 0, x ∈ Ω, t ∈ (0, T ] . (1)

We impose homogeneous initial conditions u(0,x) = ∂tu(t,x) = 0 and consider either Dirichlet boundary
conditions, u = g, or Neumann boundary conditions involving the traction, p(u) = h.

To solve (1) numerically, we formulate it as an equivalent time dependent integral equation on Γ. For
Dirichlet boundary conditions we study

VΦΦΦ(x, t) =
(
K +

1

2

)
g(x, t), (x, t) ∈ Γ× [0, T ] , (2)

involving the weakly singular integral operator V and the double layer integral operator K. V and K are
defined from a fundamental solution G to (1) and its traction pξξξ(G)

VΦΦΦ(x, t) =
ˆ t

0

ˆ
Γ
G(x, ξξξ; t, τ)ΦΦΦ(ξξξ, τ)dΓξξξdτ ,

KΦΦΦ(x, t) =
ˆ t

0

ˆ
Γ
pξξξ(G)(x, ξξξ; t, τ)TΦΦΦ(ξξξ, τ)dΓξξξdτ .

The Neumann problem is similarly formulated as an equation for the hypersingular integral operator W,
see (13). The weak formulation of these integral equations is approximated using Galerkin boundary

elements ΦΦΦh,∆t ∈
(
V∆t,q ⊗X−1

h,p

)n
, based on tensor products of piecewise polynomial functions on a

quasi-uniform or graded mesh in space and a uniform mesh in time.

The convergence rate of the error is determined by the singularities of the solution of (1) at non-
smooth boundary points of the domain Ω. Near an edge or a cone point of the boundary Γ ⊂ R3 we
obtain a singular expansion of the solution into a leading part of explicit singular functions plus smoother
remainder terms. Expansions in a wedge, respectively a cone, are obtained in (45) and (59): if we treat
the variable along the edge as a parameter, the expansion in a wedge reduces to the case of a polygon in
2d, where in a neighborhood of a vertex it takes the form

u(t,x) = χ(r)rν
∗
a(t, ϕ) + u0(t, r, ϕ) ,

p(u)(t,x) = χ(r)rν
∗−1b(t, ϕ) +ϕϕϕ0(t, r, ϕ) .

Here, (r, ϕ) are polar coordinates centered at the vertex, the exponent ν∗ is determined by the opening
angle ω at the vertex and by the elastic parameters, and u0, ϕϕϕ0 are remainder terms of lower order. In
particular, for a fixed time t the solution to (1) admits an explicit singular expansion with the same
behavior as the time independent Lamé equation.

This asymptotic expansion of the solution u and the traction p(u) gives rise to quasi-optimal convergence
rates in space-time anisotropic Sobolev norms. See (85) for the definition of the Sobolev spaceHr

σ(R+, H̃s(Γ))
and (86) for the definition of the norm ∥ · ∥r,s,Γ,∗. We consider the approximation error of the solution
on graded meshes, as defined in (62), in Corollary 5.4a) and the hp version on quasi-uniform meshes in
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Corollary 5.8a). There the approximation error is determined by an exponent α̃, which depends on the
geometry (wedge, cone) and the elastic parameters, see (68):

Theorem. Let ε > 0 and σ > 0. a) Let ΦΦΦ be the solution to the single layer integral equation (2) and

ΦΦΦβ̃
h,∆t ∈

(
V∆t,q ⊗X−1

h,0

)n
the best approximation to ΦΦΦ in the norm of Hr

σ(R+, H̃− 1
2 (Γ))n on a β̃-graded

spatial mesh with ∆t ≲ h1. Then for p = 1, 2, 3, . . . ∥ΦΦΦ−ΦΦΦβ̃
h,∆t∥r,− 1

2
,Γ,∗ ≤ Cβ̃,εh

min{β̃α̃−ε, 3
2
}.

b) Let ΦΦΦ be the solution to the single layer integral equation (2) and ΦΦΦh,∆t ∈
(
V∆t,p ⊗X−1

h,p

)n
the best

approximation in the norm of Hr
σ(R+, H̃− 1

2 (Γ))n to ΦΦΦ on a quasiuniform spatial mesh with ∆t ≲ h. Then
for p = 0, 1, 2, . . .

∥ΦΦΦ−ΦΦΦh,∆t∥r,− 1
2
,Γ,∗ ≲

(
h

(p+ 1)2

)α̃−ε

+

(
∆t

p+ 1

)p+1−r

+

(
h

p+ 1

) 1
2
+η

,

where r ∈ [0, p+ 1) and ϕϕϕ0 ∈ Hp+1
σ (R+, H̃η(Γ))n is the regular part of the singular expansion of ppp(u)|Γ.

Corresponding results in the case of a 2d polygon are obtained as a result of the edge problem.
Corollaries 5.4b) and 5.8b) contain analogous results for the hypersingular integral equation of the
Neumann problem. As the analysis is local on Γ, the extension to the single layer and hypersingular
integral equations for interior problems is immediate.

Numerical experiments are presented for the weakly singular and hypersingular integral operators in
polygonal and crack geometries in R2. They achieve the predicted convergence rates on graded meshes
and for the hp version. Furthermore, they confirm the leading singular exponents of the solution, and
the hp version on a geometrically graded mesh (82) exhibits faster than algebraic convergence.

Boundary element methods for time dependent problems have attracted much recent interest, see
[14, 20, 29, 51] for an overview. They are of particular relevance for problems which cannot be reduced
to the frequency domain, such as nonlinear problems or problems involving a broad range of frequencies
[22]. While their application to elasticity has long been studied in engineering [4], their analysis for
elastodynamic scattering and crack problems was initiated by Bécache and Ha Duong in [7, 8]. Recent
developments include space-time Galerkin and convolution quadrature methods, fast discretizations [3,
17, 32, 52], as well as more complex elastic behavior [30].

For the time independent Lamé equation in singular domains, such as with a crack, detailed asymptotic
expansions have been studied extensively, partly motivated by applications to computing quantities of
interest like stress intensity factors, see e.g. [6, 13, 25, 27, 45]. Using such expansions, von Petersdorff
[46] derived quasi-optimal error estimates for boundary elements on graded meshes. The hp version on
geometrically graded meshes was studied in [39]. Sharp hp-explicit estimates on smooth open surfaces
with quasiuniform meshes are due to Bespalov [9], following earlier work of Bespalov and Heuer for the
Laplace and Lamé equations [10, 11].

Structure of this article: Section 2 reviews the Dirichlet and Neumann boundary value problems for
(1) and their formulation as boundary integral equations in terms of the weakly singular, respectively
hypersingular operators. Proposition 2.1 establishes the well-posedness of these equations. The regularity
of solutions to the elastodynamic problem is addressed in Section 3, see also Appendix B for the theoretical
setting used to formulate the results. Taking their traces we get corresponding results for the solutions
of the integral equations. In Subsection 3.2 the solution of the elastodynamic problem in a wedge is
analyzed, in Subsection 3.3 in a cone. Special consideration is given to 2d problems in Subsection 3.1.
The BEM discretization and time integration are discussed in Section 4. In Section 5 approximation
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results are derived, both for the h version TDBEM on graded meshes and the hp version. Both a circular
wedge and a cone geometry are considered. The 2d case of a polygon corresponds to the theoretical
error estimates for the numerical results in Section 7. Section 6 discusses algorithmic aspects of the
implementation. Appendix A introduces the relevant Sobolev space setting for the error analysis together
with the mapping properties of the integral operators and the associated weak formulations. Appendix
B describes crucial theoretical ingredients for the analysis of the elastodynamic problem in a wedge and
in a cone. In Appendix C we collect some additional auxiliary results for the error analysis.

Notation: For vectors/vector fields (written in bold letters) the operators and norms are understood
componentwise and not marked additionally. We write f ≲ g provided there exists a constant C such
that f ≤ Cg. If the constant C is allowed to depend on a parameter σ, we write f ≲σ g.

2 Model problem and boundary integral equations

We consider elastic wave propagation in a Lipschitz domain Ω = Rn \Ω′ exterior to the bounded domain
Ω′, with piecewise smooth boundary Γ = ∂Ω, n = 2 or 3. As a limiting case, also screen problems in
Ω = Rn \ Γ are considered, outside an open arc Γ ⊂ R2 or open surface Γ ⊂ R3. In the absence of
external body forces the displacement field u(x, t) = (u1, . . . , un)

⊤(x, t), x = (x1, . . . , xn)
⊤ ∈ Rn, satisfies

the elastodynamic equation:

(λ+ µ)∇(∇ · u) + µ∆u− ϱü = 0, x ∈ Ω, t ∈ (0, T ], (3)

where λ, µ > 0 are the Lamé parameters and ϱ represents the mass density. Upper dots indicate the
derivative with respect to time, and we later in particular consider T = ∞. Using the Hooke tensor
Ckl
ih = λδihδkl + µ(δikδhl + δilδhk), i, h, k, l = 1, . . . , n, we rewrite equation (3) in components as

n∑
h,k,l=1

∂

∂xh

(
Ckl
ih

∂uk
∂xl

(x, t)

)
− ϱüi(x, t) = 0, x ∈ Ω, t ∈ (0, T ], i = 1, . . . , n. (4)

We also define the traction p = (p1, . . . , pn)
⊤ along Γ,

pi(x, t) = pi(u)(x, t) =

n∑
h,k,l=1

Ckl
ih

∂uk
∂xl

(x, t)nxh, x ∈ Γ, t ∈ (0, T ], i = 1, . . . , n,

where nx is the unit normal vector to Γ calculated in x, pointing from Ω to Ω′. To emphasize that p is
defined on Γ, we also use the notation p|Γ. Equation (3) is equipped with initial vanishing conditions (5)
and a Dirichlet boundary condition on Γ, modelling a soft scattering by the boundary:

u(x, 0) = u̇(x, 0) = 0, x ∈ Ω, (5)

u(x, t) = g(x, t), (x, t) ∈ Σ := Γ× (0, T ]. (6)

In addition to (6), also hard scattering is considered, corresponding to a prescribed Neumann boundary
condition

p(u)(x, t) = h(x, t), (x, t) ∈ Σ := Γ× (0, T ]. (7)

We remark that the unknown u can be written as the sum of two displacements u = uP+uS (Chapter V
of [18]): the term uP, called primary wave, spreads in Ω with phase speed cP =

√
(λ+ 2µ)/ϱ > 0, while

uS, called secondary wave, propagates in Ω with phase speed cS =
√
µ/ϱ > 0.
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2.1 Representation formula and direct boundary integral formulation

If pure Dirichlet conditions (6) are imposed, to describe the unknown u in Ω × (0, T ] we consider the
following direct integral representation formula:

ui(x, t) =
n∑

j=1

ˆ t

0

ˆ
Γ
Gij(x, ξξξ; t, τ)pj(ξξξ, τ)dΓξξξdτ −

n∑
j=1

ˆ t

0

ˆ
Γ

n∑
h,k,l=1

Ckl
jh

∂Gik

∂ξl
(x, ξξξ; t, τ)uj(ξξξ, τ)nξξξhdΓξξξdτ,

(x, t) ∈ Ω× (0, T ], i = 1, . . . , n,
(8)

where the traction p is unknown on the boundary Γ. This formula is compactly written as

u(x, t) = Vp(x, t)−Ku(x, t), (x, t) ∈ Ω× (0, T ],

with the space-time single layer integral operator V = (Vij)
n
i,j=1 and the double layer integral operator

K = (Kij)
n
i,j=1.

The second order tensor G = (Gij)
n
i,j=1 in formula (8) is the fundamental solution of the considered

differential problem: in 2d

Gij(x, ξξξ; t, τ) :=
H[cP(t− τ)− r]

2πϱcP

{
rirj
r4

2c2P(t− τ)2 − r2√
c2P(t− τ)2 − r2

− δij
r2

√
c2P(t− τ)2 − r2

}

−H[cS(t− τ)− r]

2πϱcS

{
rirj
r4

2c2S(t− τ)2 − r2√
c2S(t− τ)2 − r2

− δij
r2

c2S(t− τ)2√
c2S(t− τ)2 − r2

}
, i, j = 1, 2, (9)

while in 3d

Gij(x, ξξξ; t, τ) :=
t− τ

4πϱr2

(
rirj
r3

− δij
r

)
(H[cP(t− τ)− r]−H[cS(t− τ)− r])

+
rirj
4πϱr3

(
c−2
P δ(cP(t− τ)− r)− c−2

S δ(cS(t− τ)− r)
)

+
δij

4πϱrc2S
δ(cS(t− τ)− r), i, j = 1, 2, 3. (10)

Here we set the vector r = (r1, . . . , rn)
⊤ = x − ξξξ = (x1 − ξ1, . . . , xn − ξn)

⊤, r = |r|, H is the Heaviside
function and δ the Dirac distribution.
Exploiting the Dirichlet boundary condition (6), we obtain the following boundary integral equation:

VΦΦΦ(x, t) =
(
K +

1

2

)
g(x, t), (x, t) ∈ Σ, (11)

with solution ΦΦΦ = p|Γ. This solution can then be used in the representation formula (8).
In case of hard scattering problems, namely with assigned condition (7), the unknown displacement

can be calculated in Ω considering the representation formula (8) with the Hooke tensor applied:

n∑
h,k,l=1

Ckl
ih

∂uk
∂xl

(x, t)nxh =

n∑
j=1

n∑
h,k,l=1

ˆ t

0

ˆ
Γ
Ckl
ih

∂Gjk

∂xl
(x, ξξξ; t, τ)pj(ξξξ, τ)nxhdΓξξξdτ

−
n∑

j=1

n∑
h,k,l=1

n∑
h′,k′,l′=1

ˆ t

0

ˆ
Γ
Ckl
ihC

k′l′
jh′

∂Gkk′

∂xl∂ξl′
(x, ξξξ; t, τ)uj(ξξξ, τ)nξξξh′nxhdΓξξξdτ,

(x, t) ∈ Ω× (0, T ], k = 1, . . . , n, (12)
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where the the displacement u is unknown on the boundary Γ. The related compact notation is

p(x, t) = K′p(x, t)−Wu(x, t), (x, t) ∈ Ω× (0, T ],

where the operator K′ = (K ′
ij)

n
i,j=1 is the adjoint double layer operator and W = (Wij)

n
i,j=1 is the

space-time hypersingular integral operator.
Letting x ∈ Ω tend to Γ in (12), we obtain the time dependent boundary integral equation

WΨΨΨ(x, t) =

(
K′ − 1

2

)
h(x, t), (x, t) ∈ Σ, (13)

with solution ΨΨΨ = u|Γ depending on the Neumann condition p(u) = h as prescribed in (7). Therefore,
our purpose is the numerical solution of the system (13) through the approximation of ΨΨΨ, which can then
be used in the representation formula (8).

The Galerkin approximations to the integral equations (11) and (13) are based on their weak formulations.
The weak formulation of (11) in the space-time cylinder Σ is given in terms of the bilinear form

BD,Σ(ΦΦΦ, Φ̃̃Φ̃Φ) := ⟨V∂tΦΦΦ, Φ̃̃Φ̃Φ⟩L2(Σ). (14)

Find ΦΦΦ ∈ H1
σ((0, T ], H̃

− 1
2 (Γ))n, such that

BD,Σ(ΦΦΦ, Φ̃̃Φ̃Φ) = ⟨∂t(K + 1/2)g, Φ̃̃Φ̃Φ⟩L2(Σ), (15)

for all Φ̃̃Φ̃Φ = (Φ̃1, . . . , Φ̃n)
⊤ ∈ H1

σ((0, T ], H̃
− 1

2 (Γ))n.

Similarly, the weak formulation of (13) is given in terms of the bilinear form

BN,Σ(ΨΨΨ, Ψ̃̃Ψ̃Ψ) := ⟨W∂tΨΨΨ, Ψ̃̃Ψ̃Ψ⟩L2(Σ). (16)

Find ΨΨΨ ∈ H1
σ((0, T ], H̃

1
2 (Γ))n, such that

BN,Σ(ΨΨΨ, Ψ̃̃Ψ̃Ψ) = ⟨∂t
(
K′ − 1/2

)
h, Ψ̃̃Ψ̃Ψ⟩L2(Σ), (17)

for all Ψ̃̃Ψ̃Ψ = (Ψ̃1, . . . , Ψ̃n)
⊤ ∈ H1

σ((0, T ], H̃
− 1

2 (Γ))n.

As in previous works the theoretical analysis requires a σ-dependent weight in the inner product for
T = ∞, see (87). Then the boundary integral equation (15) for the Dirichlet problem in the infinite
space-time cylinder Γ × R+ is well-posed, as follows from the coercivity and continuity of V shown in
Appendix A, together with a proper setting of the functional spaces. Corresponding results for the
hypersingular operator W in formulation (17) go back to [7, 8], where the 2d case is analyzed. The
results easily generalize to 3d, for example, following the arguments in Appendix A.

Proposition 2.1. Let σ > 0, r ∈ R.
a) Assume that g ∈ Hr+1

σ (R+, H
1
2 (Γ))n. Then there exists a unique solution ΦΦΦ ∈ Hr

σ(R+, H̃− 1
2 (Γ))n of

(15) and
∥ΦΦΦ∥r,− 1

2
,Γ,∗ ≲σ ∥g∥r+1, 1

2
,Γ . (18)

b) Assume that h ∈ Hr+1
σ (R+, H− 1

2 (Γ))n. Then there exists a unique solution ΨΨΨ ∈ Hr
σ(R+, H̃

1
2 (Γ))n of

(17) and
∥ΨΨΨ∥r, 1

2
,Γ,∗ ≲σ ∥h∥r+1,− 1

2
,Γ . (19)

The proof for r = 0 follows from Proposition A.3 and the mapping properties of K,K′, as found in [12].
The result for general r then follows by the result for r = 0 by differentiating the equation r times, and
complex interpolation for non-integer r.
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3 Regularity of solutions to the Dirichlet problem

In this section we obtain precise results for the singular behaviour of the solution to the original initial-
boundary value problem of elastodynamics with Dirichlet conditions (4) - (6) for two model geometries,
the circular cone and the wedge. The decomposition results for the solution of the differential equation
lead (by taking traces) to decompositions also for the solutions of the integral equations in singular terms
and more regular remainders. The problem with Neumann conditions can be dealt with by appropriate
modifications; therefore this is omitted for brevity. The analysis is local and therefore applies to both
exterior and interior problems. While we treat arbitrary polygonal domains in R2, an extension to
arbitrary polyhedral domains in R3 would require the extension of the analysis recalled in Appendix B to
general corner singularities. Results in this generality are not currently available in the analysis literature
and beyond the scope of this article.

Subsection 3.1 outlines the asymptotics of solutions near a vertex in a polygonal domain in R2,
corresponding to the numerical experiments in Section 7. It includes a detailed discussion of the singular
exponents for both the elastodynamic boundary problem and the scalar wave equation. First, we consider
the time-independent case (Proposition 3.1). The results for the time-dependent case in a polygon follow
from the analysis for a wedge in R3, see Corollary 3.6 in Subsection 3.2, by explicit calculation of the
singular exponents and the singular functions. Theorem 3.5 in Subsection 3.2 presents the abstract
asymptotic expansion for the solution in a wedge. It turns out that the singular exponents are the
same as in the time-independent case, but the coefficients of the singular functions depend additionally
on time. The behavior of the solution in a wedge is obtained by applying a partial Fourier transform
along the edge and in time. Then the leading term of the resulting system (36) decouples into a 2d
elastic system for the plane components of the elastodynamic field and into a scalar inhomogeneous wave
equation (40) for the z component along the edge. In Theorem 3.3 we therefore recall our results for the
wave equation in a wedge. Then we apply Dauge’s approach [15] to the full system (36) with parameter
(ξ, τ) by inserting the expansions (23) and (30) of the time-independent, elliptic situation. In this way we
obtain the expansion (44) and via inverse Fourier transform the expansion (45) for the time-dependent
problem.

The solution of the elastodynamic boundary problem in a circular cone is discussed in Subsection 3.3.
We consider the elastodynamic system in spherical coordinates. For fixed time t we derive rotationally
symmetric solutions (54). Its asymptotic expansion is obtained in Theorem 3.7.

We denote model geometries by D. For ease of reference to the work of Plamenevskǐı and coauthors, as
well as to Appendix B and to [23], this section adopts some of the notation from the analysis community,
rather than the notation commonly found in numerical works. In particular, the σ > 0 from other sections
in the article is here called γ, singular exponents λk are denoted by iλk, and the definition of the Fourier
transform and its inverse are interchanged.

3.1 Behavior of solutions in a 2d sector

In the 2d case, for the inhomogeneous elastodynamic equation in a polygonal interior or exterior domain
Ω, we introduce the radial and tangential components of u, ur = rν

∗
φr(ϕ, t) and uϕ = rν

∗
φϕ(ϕ, t) locally

near a vertex of interior opening angle ω. The system then becomes

µ∂2ϕφr + (λ+ 2µ)((ν∗)2 − 1)φr + ((λ+ µ)ν∗ − (λ+ 3µ))∂ϕφϕ − r2−ν∗Fr = ϱr2∂2t ur , (20)

(λ+ 2µ)∂2ϕφϕ + µ((ν∗)2 − 1)φϕ + ((λ+ µ)ν∗ + (λ+ 3µ))∂ϕφr − r2−ν∗Fϕ = ϱr2∂2t uϕ . (21)

The time independent solutions of this system with right hand side (Fr, Fϕ) = (0, 0) are given by (cos(1+
ν∗)ϕ,− sin(1+ν∗)ϕ)T , (sin(1+ν∗)ϕ, cos(1+ν∗)ϕ)T , (cos(1−ν∗)ϕ,−ν̄ sin(1−ν∗)ϕ)T , (sin(1−ν∗)ϕ, ν̄ cos(1−
ν∗)ϕ)T with ν̄ = 3+ν∗−4ν

3−ν∗−4ν where ν = λ
2(λ+µ) is the Poisson number.
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We briefly review the time independent problem with Dirichlet conditions ur(±ω/2) = uφ(±ω/2) = 0:
with arbitrary constants A,B,C,D we obtain

A cos(1 + ν∗)ω/2±B sin(1− ν∗)ω/2 + C cos(1− ν∗)ω/2±D sin(1− ν∗)ω/2 = 0

∓A sin(1 + ν∗)ω/2 +B cos(1 + ν∗)ω/2∓ ν̄C sin(1− ν∗)ω/2 + ν̄D cos(1− ν∗)ω/2 = 0 ,

and therefore the plane strain condition

sin ν∗ω = ± ν̄ − 1

ν̄ + 1
sinω with

ν̄ − 1

ν̄ + 1
=

ν∗

3− 4ν
. (22)

Since one can proceed analogously for Neumann boundary conditions one gets the following theorem for
the time-independent problem.

Proposition 3.1. Let f ∈ Hs−1(Ω)2 and s > 0, s /∈ Re ν∗jk with ν∗jk as in (25), (26). Then the weak

solution u ∈ H1(Ω)2 of the time-independent equations (20), (21) admits with C∞ cut-off functions χj

near the vertex tj with interior opening angle ωj the decomposition

u = u0 +
∑

Re ν∗jk<s

a∗jkS
∗
jk(r, ϕ)χj(r) (23)

with a regular part u0 ∈ H1+s(Ω)2, ajk ∈ C and the singularity functions

S∗
jk(r, ϕ) =

{
rν

∗
jkφφφ∗

jk(ϕ) for ν
∗
jk /∈ N,

rν
∗
jk ln r φφφ∗

jk(ϕ) + rν
∗
jkφ̃̃φ̃φ∗

jk(ϕ) for ν
∗
jk ∈ N,

(24)

Here the singular exponents ν∗jk ∈ C with Re ν∗jk > 0 are solutions of the following equations depending
on the kind of boundary conditions at the two sides meeting at the corner tj

Dirichlet: sin ν∗jkωj = ±ν∗jk
k∗ sinωj (25)

Neumann: sin ν∗jkωj = ±ν∗jk sinωj (26)

The functions φφφjk with the components (φjk)r in r-direction and (φjk)ϕ in ϕ-direction are of the form

(φ∗
jk)r = A cos(1 + ν∗jk)ϕ+B sin(1 + ν∗jk)ϕ+ C cos(1− ν∗jk)ϕ+D sin(1− ν∗jk)ϕ (27)

(φ∗
jk)ϕ = −A sin(1 + ν∗jk)ϕ+B cos(1 + ν∗jk)ϕ− γjkC sin(1− ν∗jk)ϕ+ γjkD cos(1− ν∗jk)ϕ (28)

with constants A,B,C,D ∈ C depending on the type of boundary conditions at the corner and the
constants

γjk =
3+ν∗jk−4ν

3−ν∗jk−4ν , k
∗ = 3− 4ν .

As remarked in [26], p. 73, for Dirichlet boundary conditions there exist two leading real roots of the
equation (25) in (0, 1).

Remark 3.2. For a crack, i.e. ωj = 2π for Dirichlet and Neumann boundary conditions ν∗j1 = 1/2.
More generally, we can use (25) to study the leading singular exponents for the solution of the Dirichlet

problem near an angle ω when ω → 0, respectively ω → 2π.
To do so, note that for the leading singular exponent ν∗ = ν∗j1

sin ν∗ω =
ν∗

k∗
sinω =

ν∗ω

k∗
+ o(ω) (29)
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for ω → 0, or
sin ν∗ω

ν∗ω
→ 1

k∗
.

We conclude ν∗ = c
ω +O(1), where c satisfies sin c

c = 1
k∗ .

For the corresponding exterior angle, ω = 2π − ε with ε → 0, we set ν∗ = 1
2 + ν̃(ε). Then sin ν∗ω =

sin
(
(12 + ν̃(ε))(2π − ε)

)
, and Taylor expanding for ε, ν̃(ε) → 0 leads to

sin ν∗ω = −2πν̃(ε) +
ε

2
+ o(ε) .

On the other hand, from equation (25) sin ν∗ω = ν∗

k∗ sinω = −ν∗

k∗ ε + o(ε), so that −2πν̃(ε) + ε
2 =

− 1
2k∗ ε+ o(ε), or ν̃(ε) = ε

4π

(
1 + 1

k∗

)
+ o(ε) and

ν∗ =
1

2
+

ε

4π

(
1 +

1

k∗

)
+ o(ε) .

Figure 10 numerically illustrates ν∗ as a function of ω, when λ = 2, µ = 1 and ρ = 1. It confirms the
above analysis.

In the next section we also require a corresponding description of the singularities for the scalar wave
equation [23]

ϱ∂2t u = (∂2x + ∂2y)u− F .

in Ω with Dirichlet or Neumann boundary conditions.
Again, we first describe the singularities for the well-studied time independent problem. In this case

near the vertex tj with interior opening angle ωj the weak solution u admits the decomposition

u = u0 +
∑
νjk<s

ajkSjk(r, ϕ)χ(r) (30)

with C∞ cut-off functions χj , a regular part u0 ∈ H1+s(Ω), ajk ∈ C and the singularity functions

Sjk(r, ϕ) =

{
rνjkφjk(ϕ) for νjk /∈ N,
rνjk ln r φjk(ϕ) + rνjk φ̃jk(ϕ) for νjk ∈ N,

(31)

where νjk = kπ
ωj
. For Dirichlet boundary conditions φjk,D = sin(νjkϕ), k ∈ N, while for Neumann

boundary conditions φjk,N = cos(νjkϕ), k ∈ N0.

3.2 Behavior of solutions in a wedge

The behavior of solutions in a wedge of opening angle ω, D = K×R with K = {(r, ϕ) : r > 0, ϕ ∈ (0, ω)},
generalizes the discussion in Section 3.1 from dimension n = 2 to n = 3. As long as we discuss this model
geometry with only one non-smooth subset {0}×R of ∂D, we omit the index numbering the non-smooth
subsets (j in Subsection 3.1).

We here consider the elastodynamic system (3) in the space-time cylinder Q = D × R with a right
hand side f

L(∂x, ∂y, ∂z, ∂t)u := −(λ+ µ)∇(∇ · u)− µ∆u+ ϱü = f . (32)

Applying a partial Fourier transform F(z,t)7→(ξ,τ) along the edge and in time, the equation becomes

L(∂x, ∂y,−iξ,−iτ)û(x, y, ξ, τ) = f̂(x, y, ξ, τ), (33)

posed in the sector K.

9



More precisely, the operator L here takes the form

L(∂x, ∂y, ∂z, ∂t) =−(λ+ 2µ)∂2x − µ(∂2y + ∂2z ) + ϱ∂2t −(λ+ µ)∂x∂y −(λ+ µ)∂x∂z
−(λ+ µ)∂x∂y −(λ+ 2µ)∂2y − µ(∂2x + ∂2z ) + ϱ∂2t −(λ+ µ)∂y∂z
−(λ+ µ)∂x∂z −(λ+ µ)∂y∂z −(λ+ 2µ)∂2z − µ(∂2x + ∂2y) + ϱ∂2t

 .

(34)

The Fourier transform F(z,t)7→(ξ,τ) transforms the system into

L(∂x, ∂y,−iξ,−iτ) =−(λ+ 2µ)∂2x − µ∂2y + µξ2 − ϱτ2 −(λ+ µ)∂x∂y i(λ+ µ)ξ∂x
−(λ+ µ)∂x∂y −(λ+ 2µ)∂2y − µ∂2x + µξ2 − ϱτ2 i(λ+ µ)ξ∂y
i(λ+ µ)ξ∂x i(λ+ µ)ξ∂y −µ(∂2x + ∂2y) + (λ+ 2µ)ξ2 − ϱτ2

 .

(35)

With ζ2 = (µξ2 − ϱτ2)−1, we obtain

M(∂x, ∂y, ξ, τ) = ζ2L(ζ−1∂x, ζ
−1∂y,−iξ,−iτ) = L0 + L1 + L2

=

−(λ+ 2µ)∂2x − µ∂2y −(λ+ µ)∂x∂y 0

−(λ+ µ)∂x∂y −(λ+ 2µ)∂2y − µ∂2x 0

0 0 −µ(∂2x + ∂2y)


+

 0 0 i(λ+ µ)ξζ∂x
0 0 i(λ+ µ)ξζ∂y

i(λ+ µ)ξζ∂x i(λ+ µ)ξζ∂y 0

+

1 0 0
0 1 0
0 0 ζ2[(λ+ 2µ)ξ2 − ϱτ2]

 . (36)

The principal part L0 of the operator M in (36) is

L0 := −
(
∆∗

x,y 0

0 µ∆x,y

)
, (37)

and (33) becomes
Mv = ζ2f̂ =: k(ζ) . (38)

We study this equation in rescaled variables v(x̃, ỹ) = û(x, y, ξ, τ), with (x̃, ỹ) = ζ−1(x, y) and r̃ =
|(x̃, ỹ)| = r/ζ, and in this way obtain uniform assertions for û in ζ below.

The leading term L0 decomposes into the Laplace operator ∆x,y (in direction of the edge) and into
the two-dimensional elasticity operator ∆∗

x,y on the cross section K. L0 decouples the equations for the
components (vx, vy) and vz into a 2d elastic system for the plane components of v, discussed in Section
3.1, and a scalar problem for the z-component, both posed in the sector K.

The singularities for M result from the singularities of L0 plus correction terms of higher regularity,
which come from the differential operators of lower order. For time-independent problems this is shown
in Proposition 16.8 and equation (5.9) in [15], as well as in [46].

For the Dirichlet problem the singularities for L0 follow directly from Proposition 3.1, giving for û
the expansion (43) for p = 0. Here the singularities Sk,0 = (0, 0, Sk), S

∗
k,0 are those in (31), respectively

(24). (Recall that we omit the index j numbering the vertices in Subsection 3.1.)
The singularities for the whole operator M are then obtained as follows. First, one moves the lower-

order terms in the operator to the right hand side of the differential equation and repeats this process.
The additional correction terms Sk,ℓ, S

∗
k,ℓ for ℓ > 0 are defined recursively as

Sk,1 = −RL1Sk,0, Sk,ℓ = −RL2Sk,ℓ−2 −RL1Sk,ℓ−1 (ℓ > 1), (39)
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and correspondingly for S∗
k,ℓ. Here R = (R∗

∆, R∆) is the solution operator for ∆, respectively ∆∗.
More explicitly, we obtain

L1Sk,0 =

(
i(λ+ µ)ξζ∇Sk

0

)
,

and we make the ansatz Sk,1 = (Bk,1, Ak,1) with a scalar function Ak,1 in the edge direction and a
two-component vector Bk,1 for the components in the cross section.

Then
Ak,1 = −(λ+ µ)R∆0 = 0, Bk,1 = −(λ+ µ)ξζR∗

∆∇Sk .

Corresponding formulas can be derived for the higher singular functions Sk,ℓ. They satisfy S∗
k,ℓ(r, ϕ) ∼

rν
∗
k+ℓφφφ∗

k,ℓ(ϕ), respectively Sk,ℓ(r, ϕ) ∼ rνk+ℓφφφk,ℓ(ϕ), with φφφk,0 = (0, 0, φk) from (31). This is abstractly
described in [40], p. 495, relying on Proposition 3.9 in [44], and explicit formulas are not easily derived for
the wedge. While only the leading terms are given explicitly, and confirmed in our numerical experiments,
the general structure of the singular functions is sufficient for the error analysis in Section 5.

For the time-dependent situation we first consider the third equation, for uz in (34), which up to
operators of lower order in x and y is simply the wave equation in the wedge geometry D×R. As above,
D = K × R ⊂ R3 and K is the sector {(r, ϕ) : r > 0, ϕ ∈ (0, ω)}. Using (35) in cylindrical coordinates
and taking the Fourier transform F(z,t) 7→(ξ,τ), we obtain

−∆x,yûz(r, ϕ, ξ, τ) +

(
λ+ 2µ

µ
ξ2 − ϱ

µ
τ2
)
ûz(r, ϕ, ξ, τ) = µ−1k̂ , (40)

up to lower order terms. Here k is the third component of k(ζ). To find the behavior of the solutions of
(40), after rescaling τ, ξ it suffices to study the wave equation

−∆x,yûz − (τ2 − ξ2)ûz = k̂ . (41)

The approach in [23] makes an ansatz

ûz = riλ−kφ−k(ϕ)ρ−k(rη) = riλ−k sin (iλ−kϕ) ρ−k(rη)

with η2 = ξ2 − τ2 and reduces (40) for k̂ = 0 to a Bessel differential equation:

r2η2ρ′′−k(rη) + (2iλ−k + 1) rηρ′−k(rη) + r2η2ρ−k(rη) = 0 .

For the edge with Dirichlet or Neumann boundary conditions, iλ−k = πk
ω . The solution of the Bessel

differential equation can be given explicitly in terms of a Bessel function as in [23]:

ρ−k(tτ) = c (rτ)iλ−kKiλ−k
(irτ).

The resulting asymptotic expansion obtained for ρ−k(tτ) in Theorem 14 from [21] corresponds to the
expansion of ûz. Theorem B.10 describes the general singular behavior in the space-time cylinder Q =
D×R. The above arguments lead to the following more precise expansion in Theorem 3.3 for the wedge
D = K×R, involving the following special solutions w−k,B of the Dirichlet (B = D) or Neumann (B = N)
problem with φk,B as at the end of Section 3.1 (see [36, (3.5)], respectively [33, (4.4)]):

w−k,B(r, ϕ, ξ, τ) =
21−iλk,B

Γ(iλk,B)
(ir
√
−|ξ|2 + τ2)iλk,BKiλk,B

(ir
√
−|ξ|2 + τ2)r−iλk,Bφk,B(ϕ) .

We recall the following theorem for the wave equation in the wedge, which gives an expansion of the
solution in terms of singular functions (Theorem 14 in [21], n = 3, d = 1 in their notation).
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Theorem 3.3 ([21]). Let β ≤ 1 and γ > 0, (f, g) ∈ RHβ,q(Q, γ), and assume that the line Im λ = β− 1
does not intersect the spectrum of AB from (107). Further, define

Jβ,B = {k : 0 > Im λk,B > β − 1} ∪A ,

with A = {0} for β ≤ 0 and A = ∅ otherwise.
If u is a strong solution to the inhomogeneous wave equation with homogeneous Dirichlet or Neumann
boundary conditions (B = D, resp. N), then near the edge u is of the form

∑
j∈Jβ,B

Γ(1 + νj,B)r
iλj,Bφj,B(ϕ)

Nj∑
m=0

(∂2t −∆z)
m(ir)2m

22mm!Γ(m+ νj,B + 1)

(
F−1
(ξ,τ)→(z,t)cj,B(r, ϕ, ξ, τ)

)
+ ǔ0(r, ϕ, z, t) ,

assuming that iλj,B = νj,B = π
ω ̸∈ N0. Here Nj sufficiently large, and depending on the boundary

conditions

cj,D(ξ, τ) = ⟨f̂(·, ξ, τ), w−j,D(·, ξ, τ)⟩L2(K) + (ĝ(·, ξ, τ), ∂νw−j,D(·, ξ, τ))L2(∂K);

cj,N (ξ, τ) = ⟨f̂(·, ξ, τ), w−j,N (·, ξ, τ)⟩L2(K) + (ĥ(·, ξ, τ), w−j,N (·, ξ, τ))L2(∂K).

The regularity of cj,B is determined by the right hand side, and the remainder ǔ0 is less singular than u, in
the sense that ∥ǔ0∥DVβ,q(Q;γ) ≲ ∥(f, g)∥RHβ,q(Q,γ) for the Dirichlet problem, with analogous results in the
Neumann case. We refer to Appendix B for the definition of the weighted spaces DVβ(Q, γ),RHβ,q(Q, γ).
If iλj,B ∈ N0, additional terms riλj,B log(r) appear.

While Theorem 3.3 is for homogeneous Dirichlet or Neumann boundary conditions, it is readily
translated into inhomogeneous boundary conditions, as for elliptic problems [48, Section 5]: For Dirichlet
boundary conditions u = g, choose an extension g̃ in the domain with Dirichlet trace g. The function
U = u− g̃ then satisfies homogeneous Dirchlet boundary conditions U = 0. Theorem 3.3 then assures an
asymptotic expansion of U , and therefore of u = U + g̃.
An analogous argument applies to Neumann boundary conditions, using an extension g̃ with the given
Neumann trace.

In particular, we mention the leading term of the expansion for the Dirichlet problem:

Corollary 3.4. Let γ > 0, β < 1, and assume that iλ1 = π
ω is the only eigenvalue in the strip β − 1 ≤

Im λ ≤ 0. Then for (f, g) ∈ RVβ(Q, γ) the solution u ∈ DV1(Q, γ) of the inhomogenous boundary
problem admits the representation

u(r, ϕ, z, t) = χ(r)rπ/ωφ(ϕ)Xc(r, ϕ, z, t) + u0(r, ϕ, z, t),

where u0 ∈ DVβ(Q, γ), γ > γ0, χ is a cut-off function, X as in (123), and

c(r, ϕ, z, t) =

ˆ {
⟨f(t′),W (t− t′)⟩D + ⟨g(t′), ∂νW (t− t′)⟩∂D

}
dt′ . (42)

Here,
W (r, ϕ, z, t) = F−1

(ξ,τ)→(z,t)w(r, ϕ, ξ, τ)

and w solves (41) with Dirichlet boundary condition w|∂K = 0.

Near the edge, the function w behaves like r
π
ωφ(ϕ) from (113).

Now the expansions (23) and (30) can be applied to v in (38), yielding with (x̃, ỹ) = ζ−1(x, y) and
r̃ = |(x̃, ỹ)| = r/ζ,

v = v0 + χ(r̃)
( ∑

Re νk<s

ak,(ζ)
∑

0≤ℓ<s−Re νk

Sk,ℓ(r̃, ϕ) +
∑

Re ν∗k<s

a∗k,(ζ)
∑

0≤ℓ<s−Re ν∗k

S∗
k,ℓ(r̃, ϕ)

)
(43)
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with v0 ∈ Hs+1(K)n, ak,(ζ), a
∗
k,(ζ) ∈ C for fixed ζ. Here, as before, the singular functions Sk,ℓ are to

leading order those of the wave equation, in the third component (0, 0, Sk), while S
∗
k,ℓ are to leading order

those of the 2d elastostatic system (31). In the following we consider the case of large ζ (see [15]). We
transform (43) back in the coordinates ξ, x, y. When Sk,ℓ and S∗

k,ℓ have no log term, then Sk,ℓ(ζ
−1r, ϕ) =

ζ−νk−ℓSk,ℓ(r, ϕ) and correspondingly for S∗
k,ℓ. Using that ĉk,(ζ) = ζ−νkak,(ζ) and ĉ∗k,(ζ) = ζ−ν∗ka∗k,(ζ) we

obtain ak,(ζ)
∑

0≤ℓ<s−Re νk
Sk,ℓ(ζ

−1r, ϕ) =
∑

0≤ℓ<s−Re νk
ζ−ℓĉk,(ζ)Sk,ℓ(r, ϕ) and correspondingly for S∗

k,ℓ.
With v(x̃, ỹ) = û(x, y, ξ, τ) and v0(x̃, ỹ) = û0(x, y, ξ, τ) we obtain

û(x, y, ξ, τ) = û0(x, y, ξ, τ) + χ(r/ζ)
( ∑

Re νk<s

ak,(ζ)
∑

0≤ℓ<s−Re νk

Sk,ℓ(ζ
−1r, ϕ)

+
∑

Re ν∗k<s

a∗k,(ζ)
∑

0≤ℓ<s−Re ν∗k

S∗
k,ℓ(ζ

−1r, ϕ)
)

= û0(x, y, ξ, τ) + χ(r/ζ)
( ∑

Re νk<s

∑
0≤ℓ<s−Re νk

ζ−ℓĉk,(q)Sk,ℓ(ζ
−1r, ϕ)

+
∑

Re ν∗k<s

∑
0≤ℓ<s−Re ν∗k

ζ−ℓĉ∗k,(ζ)S
∗
k,ℓ(ζ

−1r, ϕ)
)
. (44)

In the notation of Appendix B, we obtain by applying the inverse Fourier transform F−1
(ξ,τ)7→(z,t)

u(x, y, z, t) = u0(x, y, z, t) +
∑

Re νk<s

∑
0≤ℓ<s−Re νk

(Xck,ℓ)(y, z, t)Sk,ℓ(r, ϕ)

+
∑

Re ν∗k<s

∑
0≤ℓ<s−Re νk

(Xc∗k,ℓ)(y, z, t)S
∗
k,ℓ(r, ϕ). (45)

Here, ĉk,ℓ = ζ−ℓĉk,(ζ), ĉ
∗
k,ℓ = ζ−ℓĉ∗k,(ζ), with ζ2 = (µξ2 − ϱτ2)−1 as before. As in Appendix B, the

smoothing operator X is given by

Xc(y, z, t) = F−1
(ξ,τ)→(z,t)χ(

√
|ξ|2 + |τ |2y)ĉ(ξ, τ)

for ĉ = ĉk,ℓ, ĉ
∗
k,ℓ. The regularity of u0 and of the edge functions ck,p, c

∗
k,p follows corresponding to the case

of the scalar wave equation in Theorem 3.3, generalizing the results of [23] to elastodynamics.
Altogether, we obtain the following theorem, formulated corresponding to Theorem B.10 in Appendix

B.

Theorem 3.5. Let γ > 0, q ∈ N0, β ∈ (βr+1, βr) with 0 < βr − β < 1, (f ,g) ∈ RVβ,q(Q, γ) and assume
that the orthogonality condition (128) holds for all νk, ν

∗
k with Re νk,Re ν

∗
k ∈ [1 − βr, 1 − β1]. Then the

solution of the initial-boundary value problem (4) - (6) admits the expansion (45) in terms of the singular
functions Sk,ℓ, S

∗
k,ℓ constructed from (31), respectively (24). Further, in (45) s < min{Re νk,Re ν∗k} +

ℓ+ 1 + β for all k and u0 ∈ DVβ,q(Q, γ).

By considering the coordinate z along the edge as a parameter, we recover and refine the results for
polygonal domains in 2d from Section 3.1. More precisely, we obtain for the solution of the elastodynamic
problem (20)-(21):

Corollary 3.6. Let γ > 0, q ∈ N0, β ∈ (βr+1, βr) with 0 < βr − β < 1, (f ,g) ∈ RVβ,q(Q, γ) and
assume that the orthogonality condition (128) holds for all ν∗k with Re ν∗k ∈ [1− βr, 1− β1]. Then in the
neighborhood of a vertex tj with interior opening angle ωj the solution to (4) - (6) admits the expansion

u(x, y, t) = u0(r, ϕ, t) +
∑
k,ℓ

(Xc∗k,ℓ)(t)S
∗
k,ℓ(r, ϕ), (46)

where s < min{Re νk,Re ν∗k}+ ℓ+ 1 + β for all k and u0 ∈ DVβ,q(Q, γ).
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Corollary 3.6 recovers Theorem 3.5 in [43]; note that the sum in k in both (45) and (46) implicitly
includes multiplicities of the eigenvalues.

We finally recall embedding theorems DVβ,q(Q, γ) ⊂ Hr
σ(R+, Hs(D))n [42]. Corollary 3.6 then

says that given parameters β, γ, the solution may be written as the sum of a remainder term u0 ∈
DVβ,q(Q, γ) ⊂ Hr

σ(R+, Hs(D))n and, depending on the order s, a finite number of singular functions S∗
k,ℓ.

3.3 Behaviour of solutions in a circular cone

We consider the elastodynamic system in spherical coordinates (r, θ, ϕ) with origin at the apex. It takes
the form

(λ+ µ)∂r(∇ · u) + µ[∇2ur −
2ur
r2

− 2

r2 sin θ
∂θ(uθ sin θ)−

2

r2 sin θ
∂ϕuϕ] + fr = ϱ∂2t ur (47)

(λ+ µ)

r
∂θ(∇ · u) + µ[∇2uθ +

2

r2
∂θur −

uθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ
∂ϕuϕ] + fθ = ϱ∂2t uθ (48)

(λ+ µ)

r sin θ
∂ϕ(∇ · u) + µ[∇2uϕ +

2

r2 sin θ
∂ϕur +

2cosθ

r2 sin2 θ
∂ϕuθ −

uϕ

r2 sin2 θ
] + fϕ = ϱ∂2t uϕ (49)

with

∇ · u =
1

r2
∂r(r

2ur) +
1

r sin(θ)
∂θ(sin(θ)uθ) +

1

r sin(θ)
∂ϕuϕ (50)

∇2ui =
1

r2
∂r(r

2∂rui) +
1

r2 sin(θ)
∂θ(sin(θ)∂θui) +

1

r2 sin(θ)
∂2ϕui, with i = r, ϕ, θ. (51)

Note that we include a force term f = (fr, fϕ, fθ)
⊤ in the domain.

We denote by x the point with spherical coordinates (r, ϕ, θ). The local orthonormal basis vectors are

er = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))⊤,

eθ = (cos(θ) cos(ϕ), cos(θ) sin(ϕ),− sin(θ))⊤,

eϕ = (− sin(ϕ), cos(ϕ), 0)⊤,

and we write the components of an arbitrary vector u in this basis as u = urer + uθeθ + uϕeϕ.
Any vector field symmetric under rotations in ϕ will take the form

u(x, t) = ur(r, θ, t)er + uθ(r, θ, t)eθ =: (er, eθ)
⊤ũ(r, θ, t) .

First we consider the system (47) - (49) for fixed t. Beagles and Sändig [6] use Papkovich-Neuber
potentials to construct solutions from the ansatz

u = 4(1− ν)B−∇(x ·B+B4) (52)

with Poisson’s ratio ν and where the components of B = (B1, B2, B3)
⊤ and B4 are harmonic functions.

In spherical coordinates (52) becomes

u = (ur, uθ, uϕ)
⊤ = (3− 4ν)(B · er,B · eθ,B · eϕ)⊤

− (rer · ∂rB+ ∂rB4, er · ∂θB+
1

r
∂θB4,

1

sin(θ)
er · ∂ϕB+

1

r sin(θ)
∂ϕB4)

⊤. (53)

Set B1 = B2 = 0,
B3 = c1r

αPα(cos(θ)), B4 = c2r
α+1Pα+1(cos(θ)),
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where Pα(cos(θ)) are Legendre functions of the first kind and α > 0 will be specified below. Substituting
this ansatz into (53) gives the general form of the rotationally symmetric solutions to (47) - (49) at fixed
time t,

u(r, θ) = c1r
α

(
A11(α, θ)
A21(α, θ)

)
+ c2r

α

(
B11(α, θ)
B21(α, θ)

)
(54)

with (A11(α, θ), A21(α, θ)) = ((3 − 4ν − α)Pα cos(θ), P
′
α cos(θ) sin(θ) − (3 − 4ν)Pα sin(θ)) as well as

(B11(α, θ), B21(α, θ)) = (−(α+ 1)Pα+1, sin(θ)P
′
α+1).

Using the Mellin transform with respect to r,

w̃(α, θ, ϕ) =
1√
2π

ˆ ∞

0
r−α−1w(r, θ, ϕ) dr

the system (47) - (49) with Dirichlet boundary conditions transforms into a parameter-dependent boundary
value problem. The exponents α are given by the roots of the equation

det

(
A11(α, ω) B11(α, ω)
A21(α, ω) B21(α, ω)

)
= 0 ,

where ω is the opening angle. The vanishing of the determinant is equivalent to the following transcendental
equation for α:

0 =
−(α+ 1)

sin(ω)

(
P 2
α cos(ω)(α+ 4ν − 3) + PαPα+1(3− 4ν − cos2(ω)(2α+ 1)) + P 2

α+1 cos(ω)(α+ 1)
)
.

(55)
Imposing homogeneous Dirichlet conditions on u in (54) determines the coefficients c1, c2 and hence the
corresponding eigenfunction. For numerical results for αℓ and their dependence on ω, see [6].

Now we apply the partial Fourier transform Ft→τ to the system (47) - (49) and obtain the following
parameter dependent Lamé equation in the cone K with opening angle ω,

(λ+ µ)∇(∇ · û) + µ∆û+ τ2û = f̂ , x ∈ K, (56)

with Dirichlet boundary condition û|∂K = ĝ. Let f̂ ∈ H0
β(K)n, ĝ ∈ H

3/2
β (∂K)n Assume that no eigenvalues

of the pencil AD from (107), more concretely no roots of (55), lie on the lines

Re α = −β +
1

2
=: h Re α = −β′ + 1

2
=: h′. (57)

We apply the framework of Appendix B, especially Section B.1. We observe that the eigenfunctions
A11(α, θ), A21(α, θ), B11(α, θ), B21(α, θ) with α from (55) for the homogeneous Dirichlet problem are

just the eigenfunctions φφφ
(k)
ℓ in the power-like solution (109) of the homogeneous Dirichlet boundary value

problem (110), (111). Now equation (56) with Dirichlet boundary conditions is just (102), (103) in
Appendix B. We can therefore apply Theorem B.5 in Appendix B with iλℓ = αℓ and Re αℓ = −Im λℓ.
Now if h < Re αℓ < h′, then there holds the following result as a consequence of Theorem B.5 (with
inhomogeneous Dirichlet data g): the solution of (47) - (49) has the expansion

û(r, θ, ϕ, τ) = χ(pr)
∑
ℓ

∑
k,j

ĉ
(k,j)
ℓ (ϕ, τ)u

(k,j)
ℓ (r, θ) + û0(r, θ, ϕ, τ) , (58)

with û0 ∈ DHβ′(K, τ), u(k,j)
ℓ as in (54) with α = αℓ a root of (55) and −h < Re αℓ < −h′. The sum

extends over the index k of the roots αℓ. The coefficients ĉ
(k,j)
ℓ in the expansion (58) can be computed

from the results by Maz’ya and Plamenevskǐı, see [6].

Taking an inverse Fourier transform from τ to t, the results by Matyukevich and Plamenevskǐı [40]
in Section B give through Theorem B.10 the following result, using the function spaces in (125), (126):
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Theorem 3.7. Let γ > 0 and β ∈ (βr+1, βr) with 0 < βr − β < 1, (f ,g) ∈ RVβ(Q, γ) and assume that
the orthogonality condition (128) holds for all αℓ with Re αℓ ∈ [12 −β1,

1
2 −βr]. Then the solution of (47)

- (49) with Dirichlet condition u|∂Q = g admits an expansion

u(r, θ, ϕ, t) =
∑
ℓ

∑
k,j

c̃k,jℓ (ϕ, t)uk,j
ℓ (r, θ) + u0(r, θ, ϕ, t), (59)

where u0 ∈ DHβ(Q, γ), with uk,j
ℓ from (54) and the variable coefficients c̃k,jℓ as in Theorem B.10. The

sum in ℓ is over all αℓ with Re αℓ = 1
2 − βr, while the sum over k, j extends over all the generalized

eigenfunctions uk,j
ℓ of the form (54) corresponding to αℓ.

Analogous to Corollary 3.6 for the wedge, Theorem 3.7 for the cone says that the solution may be
written as the sum of a remainder term u0 ∈ DVβ(Q, γ) ⊂ Hr

σ(R+, Hs(D))n and, depending on the order

s, a finite number of singular functions uk,j
ℓ .

4 BEM discretization

To solve the energetic weak formulations (15) and (17) in a discretized form, we consider a uniform
decomposition of the time interval [0, T ] with time step ∆t = T/N∆t, N∆t ∈ N+, generated by the N∆t+1
times tn = n∆t, n = 0, . . . , N∆t. We define the corresponding space V∆t,s of piecewise polynomial
functions of degree s in time (continuous and vanishing at t = 0 if s ≥ 1).

For the space discretization in 2d, we introduce a boundary mesh constituted by a set of straight line
segments T = {e1, ..., eM} such that hi := length(ei) ⩽ h, ei ∩ ej = ∅ if i ̸= j and ∪M

i=1ei = Γ if Γ is
polygonal, or a suitably fine approximation of Γ otherwise. In 3d, we assume that Γ is triangulated by
T = {e1, · · · , eM}, with hi := diam(ei) ⩽ h, ei ∩ ej = ∅ if i ̸= j and if ei ∩ ej ̸= ∅, the intersection either
an edge or a vertex of both triangles.

On T we define Pp as the space of polynomials of degree p, and consider the spaces of piecewise
polynomial functions

X−1
h,p =

{
w ∈ L2(Γ) : w|ei ∈ Pp, ei ∈ T

}
⊂ H̃−1/2(Γ)

and
X0

h,p =
{
w ∈ C0(Γ) : w|ei ∈ Pp, ei ∈ T

}
⊂ H̃1/2(Γ).

The Galerkin approximations of (15), (17) corresponding to these discrete spaces read, with BD/N,Σ

as in (14), (16):

Find ΦΦΦh,∆t ∈
(
V∆t,sp ⊗X−1

h,p

)n
such that

BD,Σ(ΦΦΦh,∆t, Φ̃̃Φ̃Φh,∆t) = ⟨∂t
(
K′ + 1/2

)
g, Φ̃̃Φ̃Φh,∆t⟩L2(Σ), (60)

for all Φ̃̃Φ̃Φh,∆t ∈
(
V∆t,sp ⊗X−1

h,p

)n
.

Find ΨΨΨh,∆t ∈
(
V∆t,sq ⊗X0

h,q

)n
such that

BN,Σ(ΨΨΨh,∆t, Ψ̃̃Ψ̃Ψh,∆t) = ⟨∂t(K − 1/2)h, Ψ̃̃Ψ̃Ψh,∆t⟩L2(Σ), (61)

for all Ψ̃̃Ψ̃Ψh,∆t ∈
(
V∆t,sq ⊗X0

h,q

)n
.
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Remark 4.1. Due to the continuity and coercivity of the bilinear forms (15) (Proposition A.3), respectively
(17) [7], the discretized equations (60), respectively (61), admit a unique solution. Stability and a priori
error estimates for the numerical error follow as in [5]. The intention of this article is to show that the
use of graded meshes and of higher-order polynomials leads to improved approximation rates for the
solution. This is the subject of Section 5.

(a) (b)

Figure 1: β̃-graded meshes for the square and the circular screen with β̃ = 2 (a) and β̃-graded meshes
for 1D obstacles with β̃ = 3 (b).

In this article we consider the approximation on quasiuniform and β̃-graded meshes, for a constant
β̃ ≥ 0. To define β̃-graded meshes on the interval [−1, 1], by symmetry it suffices to specify the nodes in
[−1, 0]. There we let

xk = −1 +

(
k

Nl

)β̃

(62)

for k = 1, . . . , Nl. We denote by h the size of the longest interval and by h1 = x1 − x0 the size of the
smallest interval. For the square [−1, 1]2, the nodes of the β̃-graded mesh are tuples of such points,
(xk, xl), k, l = 1, . . . , Nl. For β̃ = 1 we recover a uniform mesh.

For general polyhedral geometries graded meshes can be locally modeled on these examples. In
particular, on the circular screen of radius 1, for β = 1 we take a uniform mesh with nodes on concentric
circles of radius rk = 1 − k

Nl
for k = 0, . . . , Nl − 1. For the β̃-graded mesh, the radii are moved to

rk = 1 − ( k
Nl
)β̃ for k = 0, . . . , Nl − 1. While the triangles become increasingly flat near the boundary,

their total number remains proportional to N2
l .

The global mesh size h of a graded mesh is defined to be the diameter of the largest element. The
diameter of the smallest element is of order hβ̃.

Examples of the resulting 2-graded meshes on the square and the circular screens are depicted in
Figure 1(a).

We also consider geometrically graded meshes on Γ. To define them on the reference interval [−1, 1]
and with a refinement parameter σ ∈ (0, 1/2], in [−1, 0] we let x0 = −1,

xk = σNl+1−k − 1 (63)

for k = 1, . . . , Nl, and we specify corresponding nodes in [0, 1] by symmetry. For the hp version the
polynomial degree p increases linearly from ∂Γ: p = µk in [xk, xk+1] for a given µ > 0.
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5 Approximation results for Dirichlet and Neumann traces

This section splits into three subsections. In Subsection 5.1 we consider the time-dependent elastodynamic
problem in an exterior Lipschitz domain Ω ⊂ Rn \ Ω′, where Ω′ has a piecewise smooth boundary with
curved, non-intersecting edges, respectively cone points. Using the results from Section 3, we see that the
solution admits an explicit singular expansion with the same singular behavior in the spatial variables
as the time independent Lamé equation. This behavior is then used to analyze the error of piecewise
polynomial approximations on a graded mesh in Subsection 5.2, respectively hp approximations on a
quasi-uniform mesh in Subsection 5.3.

5.1 Statement of regularity results

We first consider a circular wedge (Figure 2), leading to the regularity result in Proposition 5.1. The
case of a circular cone (Figure 3) is then discussed, leading to Proposition 5.2.

For the exterior of a circular wedge with opening angle ω and edge {(x1, x2, 0) ∈ R3 : x21 + x22 = 1}, in
a neighborhood of the edge we use local cylindrical coordinates (r, ϕ, z) as in Subsection 3.2: the distance
to the edge is given by r = |1−

√
x21 + x22|, ϕ is the polar angle, while the edge variable z is the azimuthal

angle in the x1 − x2-plane, along the equator, tan(z) = x2
x1
. For ω → 2π−, the wedge degenerates into

the circular screen {(x1, x2, 0) ∈ R3 : x21 + x22 ≤ 1}. The geometry of the wedge and its discretization by
a graded mesh are illustrated in Figure 2. As in [49], an analogous expansion to Theorem 3.5 for the
solution of the elastodynamic equation (3) also holds for curved edges, with the same leading singular
term rν

∗
.

For the Dirichlet problem (B = D), respectively the Neumann problem (B = N), assume that the
spectrum σ(AB) of the pencil AB (from (107) and its special case (108)) is constant on the edge and
that there exists β ∈ R such that {λ ∈ C : Im λ = β − 1} ∩ σ(AB) = ∅.

Using Section 3 and Appendix B we can show the following regularity result for the boundary traces
of the solution:

Proposition 5.1. a) Let γ > 0, q ∈ N0 and ν∗ the leading singular exponent, which is the minimum
between π

ω and the minimal root of (25). Let (f ,g) ∈ RVβ,q(Q, γ) and assume that the orthogonality
condition (128) holds. Then the Neumann trace of the solution u of the Dirichlet problem (3), (6) with
right hand side f , Dirichlet data g and initial conditions (5) satisfies

pi(u)(r, ϕ, z, t)|Γ = bi(ϕ, z, t)r
ν∗−1 + ϕi,0(r, ϕ, z, t) . (64)

Here, bi is smooth for smooth data and ϕi,0 is a less singular remainder.
b) Let γ > 0, q ∈ N0 and ν∗ the leading singular exponent, which is the minimum of π

ω and the minimal
root of (26). Assume that iλ1 = ν∗ is the only eigenvalue in the strip β − 1 ≤ Im λ1 ≤ 0. Let
(f ,h) ∈ RVβ,q−1(Q, γ) and assume that the orthogonality condition (128) holds. Then the Dirichlet trace
of the solution u of the Neumann problem (4), (7) with right hand side f , Neumann data h and initial
conditions (5) satisfies

ui(r, ϕ, z, t)|Γ = ai(ϕ, z, t)r
ν∗ + ui,0(r, ϕ, z, t) . (65)

Figure 2: Geometry and graded mesh on the wedge.
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Here, ai is smooth for smooth data and ui,0 is a remainder which is less singular in the variable r.

Proof. a) First we note that for the Dirichlet problem with u|Γ = 0 we locally have the regularity
estimate in Proposition B.7 by use of a partition of unity (see Proposition 9.3, (160) in [40]). The
corresponding estimate for the solution of the inhomogeneous problem is estimate (159) in Proposition
9.3, [40]. Here, for curved edges, one introduces local charts in a neighborhood of the edge, to obtain
a problem with variable coefficients in a wedge D = Dj in the j-th coordinate chart. First one uses a
function (y, z) 7→ ζ(j)(y, z) ∈ C∞(Dj) which is independent of z and, for sufficiently small δ > 0, ζ(j) = 1

for |y| < δ and ζ(j) = 0 for |y| > 2δ. Set ζ
(j)
τ (y, z) = ζ(j)(|τ |y, z). Then one glues the functions ζ

(j)
τ

together with a partition of unity. In the proof of (122) one replaces χτ by the map (y, z) 7→ η(z)ζ
(j)
τ (y, z)

supported in a small neighborhood of z = 0, and η = 1 near z = 0. Compared to Proposition B.7 some
additional terms arise from the differentiation of the cut-off functions in z. This differentiation does not
increase the order of growth in |τ |. Therefore, with a sufficiently large constant γ0 > 0 and γ > γ0
in Proposition B.7, we can remove these additional terms from the estimate. The expansion (129) in
Theorem B.10 is thereby also obtained for curved edges, and expression (64) follows by taking traces.

Smoother data f , g lead to a smoother remainder term in the expansion (129).
b) The proof for the Neumann problem is analogous. The relevant regularity estimates may be found in
Proposition 9.4 in [40].

(a) (b)

Figure 3: Geometry and graded mesh on a circular cone: viewed from the side (a) and from above (b).

We now consider the elastodynamic equations in the exterior of a cone K with vertex at r = 0, as
illustrated in Figure 3.

For the Dirichlet problem (B = D), respectively the Neumann problem (B = N), assume that the
spectrum σ(AB) of the pencil AB (from (107) and its special case (108)) is constant on the edge and
that there exists β ∈ R such that {λ ∈ C : Im λ = β − 1

2} ∩ σ(AB) = ∅.
Using Subsection 3.3 and Appendix B we can show the following result near the vertex of the cone

for the boundary traces of the solution in spherical coordinates:

Proposition 5.2. a) Let γ > 0, q ∈ N0. Assume that iλ1 = α is the only eigenvalue of the pencil AD in
the strip β − 1

2 ≤ Im λ1 ≤ 0. Let (f ,g) ∈ RVβ,q(Q, γ) and assume that the orthogonality condition (128)
holds. Then the Neumann trace of the solution u of the Dirichlet problem (3), (6) with right hand side
f , Dirichlet data g and initial conditions (5) satisfies

pi(u)(r, ϕ, θ, t)|Γ = χ(r)rα−1bi(ϕ, θ, t) + ϕi,0(r, ϕ, θ, t) . (66)

Here, bi is smooth for smooth data and ϕi,0 a less singular remainder.
b) Let γ > 0, q ∈ N0. Assume that iλ1 = α is the only eigenvalue of the pencil AN in the strip
β − 1

2 ≤ Im λ1 ≤ 0. Let (f ,h) ∈ RVβ,q−1(Q, γ) and assume that the orthogonality condition (128)
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holds. Then the Dirichlet trace of the solution u of the Neumann problem (4), (7) with right hand side
f , Neumann data h and initial conditions (5) satisfies

ui(r, ϕ, θ, t)|Γ = χ(r)rαai(ϕ, θ, t) + ui,0(r, ϕ, θ, t) . (67)

Here, ai is smooth for smooth data and ui,0 a less singular remainder.

Proof. a) First one notices that locally for the cone K the estimate (106) for the Dirichlet problem holds,
see also Proposition 9.1, (150) in [40]. Taking traces of the resulting expansion (59) gives (67). As in the
case of a wedge (Proposition 5.1 and Theorem B.10), using the analogue of (106) for smoother data f ,
g, we can derive expansion (66) by taking the boundary traction pi(u) of the decomposition (129) of the
solution of the Dirichlet boundary value problem of the elastodynamic equations.

b) For the Neumann problem, Proposition 9.2 in [40] gives an estimate analogous to (106) for γ >
γ0 > 0 sufficiently large. Again one derives an expansion for the solution like in Theorem B.10, and takes
the trace.

For both the wedge and the cone, we may assume, after possibly expanding ui,0 and ϕi,0 further in
(65), (64), respectively (67), (66), that the regular part ui,0 belongs to H3 in space and ϕi,0 belongs to
H1 in space. Corresponding expansions then also hold for the solutions ΨΨΨ and ΦΦΦ to the integral equations
(11), respectively (13).

To simplify notation, for a domain in R3 with both wedge and cone singularities we define

α̃ = min

{
Re ν∗,Re α+

1

2

}
, (68)

where we recall that ν∗ denotes the leading singular exponent at the edge (the minimum of π
ω and the

minimal root of (26)), while α is the leading singular exponent at the cone (the leading eigenvalue of the
pencil AD/N ). For a polygonal domain in R2, we set α̃ = Re ν∗. Note that ν∗ = 1

2 for a screen in R3,
respectively a crack in R2.

5.2 Approximation on graded meshes

We use the regularity results from the beginning of this section to deduce approximation properties on
graded meshes:

Theorem 5.3. Let r ≥ 0 and ε > 0. a) Let u be a strong solution to the homogeneous elastodynamic
equation (3) with inhomogeneous Dirichlet boundary conditions u|Γ = g, with g smooth. Further, let

ΦΦΦβ̃
h,∆t ∈

(
V∆t,q ⊗X−1

h,0

)n
be the best approximation to p(u) in the norm of Hr

σ(R+, H̃− 1
2 (Γ))n on a β̃-

graded spatial mesh with ∆t ≲ h1. Then ∥p(u)|Γ −ΦΦΦβ̃
h,∆t∥r,− 1

2
,Γ,∗ ≤ Cβ̃,εh

min{β̃α̃−ε, 3
2
}.

b) Let u be a strong solution to the homogeneous elastodynamic equation (3) with inhomogeneous

Neumann boundary conditions p(u)|Γ = h, with h smooth. Further, let ΨΨΨβ̃
h,∆t ∈

(
V∆t,q ⊗X0

h,1

)n
be the

best approximation to u|Γ in the norm of Hr
σ(R+, H̃

1
2
−s(Γ))n on a β̃-graded spatial mesh with ∆t ≲ h1.

Then ∥u|Γ −ΨΨΨβ̃
h,∆t∥r, 12−s,Γ,∗ ≤ Cβ̃,εh

min{β̃(α̃+s)−ε, 3
2
+s}, where s ∈ [0, 12 ].

Recall that ∥ · ∥r,± 1
2
,Γ,∗ denotes the norm on Hr

σ(R+, H̃± 1
2 (Γ))n, as in Appendix A, and that h is the

diameter of the largest element in the graded mesh. Theorem 5.3 implies a corresponding result for the
solutions of the single layer and hypersingular integral equations on the surface:

Corollary 5.4. Let r ≥ 0 and ε > 0. a) Let ΦΦΦ be the solution to the single layer integral equation

(11) and ΦΦΦβ̃
h,∆t ∈

(
V∆t,q ⊗X−1

h,0

)n
the best approximation to ΦΦΦ in the norm of Hr

σ(R+, H̃− 1
2 (Γ))n on a

β̃-graded spatial mesh with ∆t ≲ h1. Then ∥ΦΦΦ−ΦΦΦβ̃
h,∆t∥r,− 1

2
,Γ,∗ ≤ Cβ̃,εh

min{β̃α̃−ε, 3
2
}.
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b) Let ΨΨΨ be the solution to the hypersingular integral equation (17) and ΨΨΨβ̃
h,∆t ∈

(
V∆t,q ⊗X0

h,1

)n
the

best approximation to ΨΨΨ in the norm of Hr
σ(R+, H̃

1
2
−s(Γ))n on a β̃-graded spatial mesh with ∆t ≲ h1.

Then ∥ΨΨΨ−ΨΨΨβ̃
h,∆t∥r, 12−s,Γ,∗ ≤ Cβ̃,εh

min{β̃(α̃+s)−ε, 3
2
+s}, where s ∈ [0, 12 ].

Indeed, the solutions to the integral equations are given by ΨΨΨ = u|Γ in terms of the solution u which
satisfies traction conditions p(u)|Γ = g, respectively ΦΦΦ = p(u)|Γ in terms of the solution u which satisfies
Dirichlet conditions u|Γ = f .

The proof extends the arguments for the wave equation in [21], where ν∗ = 1
2 . It uses the decompositions

from Section 5. In the approximation a cone is locally mapped by affine transformations onto a square,
as in Figure 4. Further, the following approximation properties in 1d are crucial. They may be found in
[46, Satz 3.7, Satz 3.10].

Lemma 5.5. Let ε > 0, a ∈ C with Re a > 0 and s ∈ [−1,−Re a + 1
2). Then there holds with the

piecewise constant interpolant Π0
rr

−a of r−a on a β̃-graded mesh

∥r−a −Π0
rr

−a∥
H̃s([0,1])

≲ hmin{β̃(−Re a−s+ 1
2
)−ε,1−s}.

Lemma 5.6. Let ε > 0, a ∈ C with Re a > 0 and s ∈ [0,Re a + 1
2). Then there holds with the linear

interpolant Π1
rr

a of ra on a β̃-graded mesh

∥ra −Π1
rr

a∥
H̃s([0,1])

≲ hmin{β̃(Re a−s+ 1
2
)−ε,2−s}.

Proof of Theorem 5.3. (a), wedge singularity: Approximating p(u) on a rectangular mesh Γh =
⋃
Γj ,

we obtain with the triangle inequality and the approximation properties in the time variable:

∥p(u)−ΠxΠtp(u)∥r,− 1
2
,Γ,∗

≤
∑
k

∥p(u)−Πtp(u)∥r,− 1
2
,(tk,tk+1]×Γ,∗ +

∑
k,j

∥Πtp(u)−ΠxΠtp(u)∥r,− 1
2
,(tk,tk+1]×Γj ,∗

≤
∑
k

(∆t)a∥p(u)∥r+a,− 1
2
,(tk,tk+1]×Γ +

∑
k,j

∥Πtp(u)−ΠxΠtp(u)∥r,− 1
2
,(tk,tk+1]×Γj ,∗ .

Now, we use the decomposition (64) for p(u) and consider the singular and regular parts separately. For
the second sum, we use the singular expansion of each component,

∥Πtpi(u)−ΠxΠtpi(u)∥r,− 1
2
,(tk,tk+1]×Γj ,∗ ≤ ∥Πtbi(ϕ, z, t)r

ν∗−1 −ΠtΠxbi(ϕ, z, t)r
ν∗−1∥r,− 1

2
,(tk,tk+1]×Γj ,∗

+ ∥Πtϕi,0 −ΠxΠtϕi,0∥r,− 1
2
,(tk,tk+1]×Γj ,∗ .

For the first term we deduce from Lemma C.2

∥Πtbi(ϕ, z, t)r
ν∗−1 −ΠtΠxbi(ϕ, z, t)r

ν∗−1∥r,− 1
2
,(tk,tk+1]×Γj ,∗

≤ ∥Πtbi(ϕ, z, t)−ΠtΠzbi(ϕ, z, t)∥r,ε− 1
2
∥rν∗−1∥−ε + ∥ΠtΠzbi(ϕ, z, t)∥r,0∥rν

∗−1 −Πrr
ν∗−1∥− 1

2
.

From Lemma 5.5 we have ∥rν∗−1−Πrr
ν∗−1∥− 1

2
≲ hβ̃Re ν∗−ε and ∥Πtbi(ϕ, z, t)−ΠtΠzbi(ϕ, z, t)∥r,ε− 1

2
≲

h3/2−ε∥Πtbi∥r,H1 , by the approximation properties in z.
Finally, with Lemma C.4 and Lemma C.1, in the anisotropic rectangle R with sidelengths h1, h2 in

the x1, respectively x2 directions:

∥Πtϕ0,i −ΠxΠtϕ0,i∥r,− 1
2
,(tk,tk+1]×R,∗

≲ (∆t)ρ−r∥∂ρt ϕ0,i∥L2([tk,tk+1]×R) +max{h1, h2,∆t}
1
2

(
h1∥ϕ0,i,x1∥L2([tk,tk+1]×R) + h2∥ϕ0,i,x2∥L2([tk,tk+1]×R)

)
.
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Note that the approximation error for the smooth term is of higher order. By summing over all rectangles
Γj of the mesh of the screen and all components, we conclude that ∥p(u)−ΠxΠtp(u)∥r,− 1

2
,Γ,∗ ≲ hβ̃Re ν∗−ε

if ∆t ≤ min{h1, h2}.

(a), cone singularity: To discuss the approximation of p(u) in the cone geometry, for simplicity, we let Γ
be the square R̃ = [0, 1]2. Figure 4 shows how to reduce the mesh on the cone to this case by an affine
map, with the exception of a small number of triangular elements.

For the rectangular elements, the approximation of the singular function follows closely the proof in
[21], and we present it below for the convenience of the reader.

For the additional triangular elements in Figure 4(b) with linear basis functions, the crucial observation
is that their angles are independent of h, leading to a shape-regular mesh. In particular, the quotient ρ of
the radii of the smallest circumscribed to the largest inscribed circle remains bounded and the expected
interpolation inequalities hold: For the linear interpolant p of a function f determined by the vertices of
a triangle T of circumscribed radius ≤ h, one has

∥f − p∥Hs(T ) ≤ C0h
2−s∥f∥H2(T ) .

Here, s ∈ [0, 1] and the constant C0 only depends on ρ and s. The respective proofs for the regular part
ϕϕϕ0 and the singular function rλ−1bi in this way directly apply to the arising triangles.

(a) (b)

Figure 4: Affine map between meshes on (a) square and (b) cone. The parallelograms in (b) correspond
to rectangles in (a), and two adjacent triangles in (b) are mapped to the diagonal squares Rii in (a).

As the approximation of the regular part ϕϕϕ0 in the expansion (66) has already been considered in the
proof for the circular wedge, it remains to analyze the approximation of the vertex singularity in (66).

In the following we approximate the corner singularity:
In every space-time element we estimate

∥rα−1bi(ϕ, θ, t)−ΠtΠr,ϕr
α−1bi(ϕ, θ, t)∥ ≤ ∥rα−1bi(ϕ, θ, t)−Πtr

α−1bi(ϕ, θ, t)∥
+ ∥rα−1Πtbi(ϕ, θ, t)−Πr,ϕr

α−1Πtbi(ϕ, θ, t)∥ .

As bi is smooth in time, the first term ∥rα−1bi(ϕ, θ, t)−Πtr
α−1bi(ϕ, θ, t)∥ can be estimated using standard

approximation properties in time and is neglible for small ∆t. Πtbi(ϕ, θ, t) is of the same form as the
function bi in the elliptic case [28]. One may therefore adapt the elliptic approximation results to ∥(1−
Πr,ϕ)r

α−1Πtbi(ϕ, θ, t)∥. This is then summed over all elements. We consider

∥rα−1Πtbi −Πϕ,rr
α−1Πtbi∥ = ∥(1−Πϕ,r)r

α−1Πtbi(ϕ, θ, t)∥

Let Πtbi(ϕ, θ, t) =
∑
j
tjbi,j(ϕ, θ) and fj(r, ϕ) = rα−1bi,j(ϕ, θ) on [tk, tk+1).
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With pj |Rkl
=
∑
j

tj

hkhl

´
Rkl

fj(x, y)dydx one obtains from (132)

∥rα−1Πtbi −Πr,ϕr
α−1Πtbi∥2r,− 1

2
,R̃,∗ ≲

∑∑
max{∆t, hk, hl}

(h2k∥∂1(rα−1Πtbi)∥2r,0,[tj ,tj+1)×Rkl
+ h2l ∥∂2(rα−1Πtbi)∥2r,0,[tj ,tj+1)×Rkl

)

+ ∥rα−1Πtbi −Πr,ϕr
α−1Πtbi∥2r,− 1

2
,R11

The individual summands are estimated for different ranges of l, k:
Estimate for k ⩾ 2, l ⩾ 2: Note for k ⩾ 2, x ∈ [xk−1, xk] there holds |hk| ≤ β̃2β̃γ̃hxγ̃ with

γ̃ = 1− 1
β̃
> 0. Therefore, if ∆t ≤ hk for all k

max{hk, hl,∆t}h2k∥∂x(rα−1Πtbi)∥2r,0,[tj ,tj+1)×Rkl
≲ h3∥∂x(rα−1Πtbi)max{xγ̃ , yγ̃}1/2xγ̃∥2r,0,[tj ,tj+1)×Rkl

and

∥rα−1Πtbi −Πx,yr
α−1Πtbi∥2r,− 1

2
,
⋃

k≥2,l≥2 Rkl,∗
≲ h3∥∂x(rα−1Πtbi)max{xγ̃ , yγ̃}x2γ̃∥r,0,R̃ (69)

+h3∥∂y(rα−1Πtbi)max{xγ̃ , yγ̃}y2γ̃∥r,0,R̃ .

As |∂1(rα−1Πtbi)| ≲ rα−2b̃i(ϕ, θ, t) for some b̃i square-integrable in space, and max{xγ̃ , yγ̃} ≤ rγ̃ , the
right hand side of (69) is finite if

β̃ >
3

2(α+ 1/2)
. (70)

Therefore

∥rα−1Πtbi −Πr,ϕr
α−1Πtbi∥2r,− 1

2
,
⋃

k≥2,l≥2 Rkl,∗
≲ h3,

provided ∆t ≤ hk for all k.

Estimate for k = 1, l > 1 (analogously k > 1, l = 1): With f(x, y) = rα−1bi(ϕ, θ)

∑
j

N∑
l=2

∥(1−Πr,ϕ)Πtf∥2r,− 1
2
,[tj ,tj+1)×Rkl,∗

≤
∑
j

N∑
l=2

max{∆t, hk, hl}
(
h21∥∂1(rα−1Πtbi)∥2r,0,[tj ,tj+1)×Rkl,∗ + h2l ∥∂2(rα−1Πtbi)∥2r,0,[tj ,tj+1)×Rkl,∗

)
Proceed as in (69) to see that also this term is bounded for β̃ > 3

2(α+ 1
2
)
.

Estimate for k = 1, l = 1: rα−1 ∈ L2(R11) because α > 0. Now ∥(1−Πr,ϕ)r
α−1∥L2(R11) ≲ ∥rα−1∥L2(R11),

by the L2-stability of Πr,ϕ, and

∥rα−1Πtbi(ϕ, θ, t)−Πr,ϕr
α−1Πtbi(ϕ, θ, t)∥2r,− 1

2
,R11,∗

≲ ∥(1−Πr,ϕ)r
α−1Πtbi(ϕ, θ, t)∥r,−1,R11,∗∥(1−Πr,ϕ)r

α−1Πtbi(ϕ, θ, t)∥r,0,R11,∗

The second term is ≤ hα. For the first

∥(1−Πr,ϕ)r
α−1Πtbi(ϕ, θ, t)∥r,−1,R11,∗ ≡ sup

g∈H−r(R+,H̃1(R11))

⟨(1−Πr,ϕ)r
α−1Πtbi(ϕ, θ, t), g⟩

∥g∥−r,1,R11
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Replacing g by g − p, p the H−r(R+, H0(R11))-projection of g, we obtain for ∆t ≤ h1:

∥(1−Πr,ϕ)r
α−1Πtbi(ϕ, θ, t)∥r,−1,R11,∗ ≤ ∥(1−Πr,ϕ)r

α−1Πtbi(ϕ, θ, t)∥r,0,R11 sup
g

∥g − p∥−r,0,R11

∥g∥−r,1,R11

.

The first factor is bounded by hα1 , while the second factor is bounded by h1. We conclude

∥rα−1Πtbi(ϕ, θ, t)−ΠtΠr,ϕr
α−1Πtbi(ϕ, θ, t)∥2r,− 1

2
,R11,∗

≲ h2α+1
1 .

The assertion follows by noting that h1 = hβ̃.

(b), wedge singularity: For the approximation of u a key ingredient is Lemma C.5. Proceeding as above,
using the expansion (65) one estimates the i-th component on every rectangle R of the mesh:

∥Πtui −ΠxΠtui∥r, 1
2
,(tk,tk+1]×R,∗ ≤ ∥Πtai(ϕ, z, t)r

ν∗ −ΠtΠxai(ϕ, z, t)r
ν∗∥r, 1

2
,(tk,tk+1]×R,∗

+ ∥Πtui,0 −ΠxΠtui,0∥r, 1
2
,(tk,tk+1]×R,∗ .

For the first term we note with Lemma C.3, with Πx = Πr,z,

∥Πtai(ϕ, z, t)r
ν∗ −ΠtΠxai(ϕ, z, t)r

ν∗∥r, 1
2
,(tk,tk+1]×R,∗

≤ ∥Πtai(ϕ, z, t)−ΠtΠzai(ϕ, z, t)∥r, 1
2
,(tk,tk+1]×R,∗∥r

ν∗∥ 1
2
+ ∥ΠtΠzai(ϕ, z, t)∥r, 1

2
,(tk,tk+1]×R,∗∥r

ν∗ −Πrr
ν∗∥ 1

2
,R,∗ .

From the approximation properties in space note that

∥Πtai(ϕ, z, t)−ΠtΠzai(ϕ, z, t)∥r, 1
2
≤ C∥Πtai(ϕ, z, t)∥r,H2h

3
2

and, from Lemma 5.6,

∥rν∗ −Πrr
ν∗∥ 1

2
≲ hmin{β̃Re ν∗−ε, 3

2
} .

Each component of the regular part u0 in the expansion (64) may be approximated as in [21, Theorem

18]: We let q ∈ Sβ̃
h denote the interpolant of u0 in space and time. On R̃ := [0, 1] × [0, 1], decomposed

into rectangles Rjk := [xj−1, xj ]× [yk−1, yk] with side lengths hj , hk,

∥u0 − q∥2
r,0,R̃

≲ max{h,∆t}4∥u0∥2r,3,R̃
and

∥u0 − q∥2
r,1,R̃

≲ max{h,∆t}2∥u0∥2r,3,R̃ .

Here we have used hk ≤ β̃ h and recall that we do not indicate the time interval in the norm when it is
R+. Interpolation yields ∥u0 − q∥r, 1

2
,R̃ ≲ max{h,∆t}3/2∥u0∥r,3,R̃.

To approximate each component of the singular part, we set f1(z, t) := ai(ϕ, z, t), f2(r) := rν
∗
and

q(x, t) := q1(z, t)q2(r) with piecewise linear interpolants qj of fj . Hence for 0 ≤ s < 1

∥f − q∥r,s,R̃ ≤∥q1∥r,0,I∥f2 − q2∥Hs(I) + ∥q1∥r,s,I∥f2 − q2∥L2(I) (71)

+ ∥f1 − q1∥r,0,I∥f2∥Hs(I) + ∥f1 − q1∥r,s,I∥f2∥L2(I) .

Using the approximation results for rν
∗
in Lemma 5.6, we conclude

∥f − q∥r, 1
2
,R̃ ≤ c hβ̃Re ν∗−ϵ.

The approximation of the singular function on the cone closely follows the proof for the traction p(u)
in part a) above. For the wave equation the details are presented in [21].
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The approximation argument extends from rectangular to triangular elements as in [46].

The results for the approximation of the edge singularity in n = 3 translate into corresponding results
for a linear crack in n = 2. In particular, in Figure 6 we observe the predicted rates for β̃ = 1, 2, 3, when
ν∗ = 1

2 , and in Figure 12 for ν∗ = 0.5372.

5.3 Approximation by hp methods

We use the regularity results from the beginning of this section to deduce approximation properties of
the hp version on quasi-uniform meshes:

To state the main result for the approximation error of hp-methods, recall from (68) that α̃ =
min

{
Re ν∗,Re α+ 1

2

}
.

Theorem 5.7. Let r ≥ 0 and ε > 0. a) Let u be a strong solution to the homogeneous elastodynamic
equation (3) with inhomogeneous Dirichlet boundary conditions u|Γ = g, with g smooth. Further, let

ΦΦΦh,∆t ∈
(
V∆t,p ⊗X−1

h,p

)n
be the best approximation in the norm of Hr

σ(R+, H̃− 1
2 (Γ))n to the traction

p(u)|Γ on a quasiuniform spatial mesh with ∆t ≲ h. Then for p = 0, 1, 2, . . .

∥p(u)|Γ −ΦΦΦh,∆t∥r,− 1
2
,Γ,∗ ≲

(
h

(p+ 1)2

)α̃−ε

+

(
∆t

p+ 1

)p+1−r

+

(
h

p+ 1

) 1
2
+η

,

where r ∈ [0, p+ 1) and ϕϕϕ0 ∈ Hp+1
σ (R+, H̃η(Γ))n is the regular part of the singular expansion of p(u).

b) Let u be a strong solution to the homogeneous elastodynamic equation (3) with inhomogeneous

Neumann boundary conditions p(u)|Γ = h, with h smooth. Further, let ΨΨΨh,∆t ∈
(
V∆t,p ⊗X0

h,p

)n
be the

best approximation in the norm of Hr
σ(R+, H̃

1
2
−s(Γ))n to the Dirichlet trace u|Γ on a quasiuniform spatial

mesh with ∆t ≲ h. Then for p = 1, 2, 3, . . .

∥u|Γ −ΨΨΨh,∆t∥r, 1
2
−s,Γ,∗ ≲

(
h

p2

)α̃+s−ε

+

(
∆t

p

)p−r

+

(
h

p

)− 1
2
+s+η

,

where r ∈ [0, p) and u0 ∈ Hp
σ(R+, H̃η(Γ)) is the regular part of the singular expansion of u.

Theorem 5.7 implies a corresponding result for the solutions of the single layer and hypersingular
integral equations on the surface:

Corollary 5.8. Let r ≥ 0 and ε > 0. a) Let ΦΦΦ be the solution to the single layer integral equation

(11) and ΦΦΦh,∆t ∈
(
V∆t,p ⊗X−1

h,p

)n
the best approximation in the norm of Hr

σ(R+, H̃− 1
2 (Γ))n to ΦΦΦ on a

quasiuniform spatial mesh with ∆t ≲ h. Then for p = 0, 1, 2, . . .

∥ΦΦΦ−ΦΦΦh,∆t∥r,− 1
2
,Γ,∗ ≲

(
h

(p+ 1)2

)α̃−ε

+

(
∆t

p+ 1

)p+1−r

+

(
h

p+ 1

) 1
2
+η

,

where r ∈ [0, p+ 1) and ϕϕϕ0 ∈ Hp+1
σ (R+, H̃η(Γ))n is the regular part of the singular expansion of ΦΦΦ.

b) Let ΨΨΨ be the solution to the hypersingular integral equation (17) and ΨΨΨh,∆t ∈
(
V∆t,p ⊗X0

h,p

)n
the

best approximation in the norm of Hr
σ(R+, H̃

1
2
−s(Γ))n to ΨΨΨ on a quasiuniform spatial mesh with ∆t ≲ h.

Then for p = 1, 2, 3, . . .

∥ΨΨΨ−ΨΨΨh,∆t∥r, 1
2
−s,Γ,∗ ≲

(
h

p2

)α̃+s−ε

+

(
∆t

p

)p+1−r

+

(
h

p

)− 1
2
+s+η

,

where r ∈ [0, p), s ∈ [0, 12 ] and u0 ∈ Hp+1
σ (R+, H̃η(Γ))n is the regular part of the singular expansion of

ΨΨΨ = u|Γ.
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For the proof, we recall [10, Theorem 3.1]:

Lemma 5.9. For ε > 0, Re a < 1 and s ∈ [−1,min{−Re a + 1
2 , 0}) there holds with the piecewise

polynomial interpolant of degree p, Πp
rr−a, of r−a

∥r−a −Πp
rr

−a∥s,[0,1],∗ ≲
(

h

(p+ 1)2

)−Re a−s+ 1
2
−ε

.

Similarly, for positive powers of r we recall [11, Theorem 3.1]:

Lemma 5.10. For ε > 0, 0 < Re a and s ∈ [0,Re a + 1
2) there holds with the piecewise polynomial

interpolant of degree p+ 1, Πp+1
r ra, of ra

∥ra −Πp+1
y ra∥s,[0,1],∗ ≲

(
h

p2

)min{Re a−s+ 1
2
,2−s}−ε

.

Proof of Theorem 5.7. For the proof of part a), we focus on the case of the wedge singularity, as the
approximation of the singular function on the cone closely follows the proof in [21].

We choose ΦΦΦh,∆t = Πp
xΠ

p
tp(u). Using the decomposition (64) for p(u), we can separate the singular

and regular parts on the rectangular mesh:

∥pi(u)−Πp
xΠ

p
t pi(u)∥r,− 1

2
,Γ,∗ ≤ ∥bi(ϕ, z, t)rν

∗−1 −Πp
tΠ

p
xbi(ϕ, z, t)r

ν∗−1∥r,− 1
2
,Γ,∗ + ∥ϕi,0 −Πp

tΠ
p
xϕi,0∥r,− 1

2
,Γ,∗

≤ ∥bi(ϕ, z, t)rν
∗−1 −Πp

t bi(ϕ, z, t)r
ν∗−1∥r,− 1

2
,Γ,∗ + ∥Πp

t bi(ϕ, z, t)r
ν∗−1 −Πp

tΠ
p
xbi(ϕ, z, t)r

ν∗−1∥r,− 1
2
,Γ,∗

+ ∥ϕi,0 −Πp
tΠ

p
xϕi,0∥r,− 1

2
,Γ,∗

≤ ∥bi(ϕ, z, t)−Πp
t bi(ϕ, z, t)∥r,ϵ− 1

2
∥rν∗−1∥−ε,I,∗ + ∥Πp

t bi(ϕ, z, t)r
ν∗−1 −Πp

tΠ
p
zbi(ϕ, z, t)r

ν∗−1∥r,− 1
2
,Γ,∗

+ ∥Πp
tΠ

p
zbi(ϕ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(ϕ, z, t)Π

p
yr

ν∗−1∥r,− 1
2
,Γ,∗ + ∥ϕi,0 −Πp

tΠ
p
xϕi,0∥r,− 1

2
,Γ,∗ .

In the second term we used Πp
x = Πp

zΠ
p
r . The first term was estimated using Lemma C.2, and the result

is now bounded by

∥bi(ϕ, z, t)−Πp
t bi(ϕ, z, t)∥r,ϵ− 1

2
≲

(
∆t

p+ 1

)p+1−r

∥bi(ϕ, z, t)∥p+1,ϵ− 1
2
.

Using Lemma C.2, we obtain for the second and third terms:

∥Πp
t bi(ϕ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(ϕ, z, t)r

ν∗−1∥r,− 1
2
,Γ,∗ + ∥Πp

tΠ
p
zbi(ϕ, z, t)r

ν∗−1 −Πp
tΠ

p
zbi(ϕ, z, t)Π

p
yr

ν∗−1∥r,− 1
2
,Γ,∗

≲ ∥Πp
t bi(ϕ, z, t)−Πp

tΠ
p
zbi(ϕ, z, t)∥r,ε− 1

2
∥rν∗−1∥−ε,I,∗ + ∥Πp

tΠ
p
zbi(ϕ, z, t)∥r,0∥rν

∗−1 −Πp
rr

ν∗−1∥− 1
2
,I,∗ .

We finally note that

∥rν∗−1 −Πp
rr

ν∗−1∥ 1
2
,I,∗ ≲

(
h

(p+ 1)2

)Re ν∗−ε

from Lemma 5.9, as well as

∥Πp
t bi(ϕ, z, t)−Πp

tΠ
p
zbi(ϕ, z, t)∥r,ε− 1

2
≲

(
h

p+ 1

) 1
2
+k−ϵ

∥bi(ϕ, z, t)∥r,k .

When the regular part ϕϕϕ0 in (64) is Hη in space, we obtain from the approximation properties [23]:

∥ϕi,0 −Πp
tΠ

p
xϕi,0∥r,− 1

2
,Γ,∗ ≲σ

(( ∆t

p+ 1

)p+1−r

+

(
h

p+ 1

)1/2+η )
∥ϕi,0∥p+1,η,Γ .
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Combining these estimates, the asserted estimate follows for ∆t ≲ h

∥p(u)−Πp
xΠ

p
tp(u)∥r,− 1

2
,Γ,∗ ≲

(
h

(p+ 1)2

)Re ν∗−ε

+
(( ∆t

p+ 1

)p+1−r

+

(
h

p+ 1

)1/2+η )
∥ϕi,0∥p+1,η,Γ .

The approximation of the Dirichlet trace u|Γ to prove part b) follows the above arguments.

The approximation argument extends from rectangular to triangular elements as in [46].

A similar estimate is obtained for V∆t,1, with (∆t)p replaced by ∆t.

6 Algorithmic details

The numerical experiments in Section 7 consider the two-dimensional case, therefore in the following we

keep the dimension n = 2 fixed. We introduce the set
{
w

(p)
m (x)

}M
(p)
h

m=1
, containing the basis functions

of the space X−1
h,p, which are piecewise polynomials depending on the Lagrangian polynomials on each

element ei. Similarly, the set
{
w

(q)
m (x)

}M
(q)
h

m=1
corresponds to a basis of the functional space X0

h,q. For the

time discretization we choose piecewise constant basis functions for the approximation of ΦΦΦ (sp = 0),

v(0)n (t) = H[t− tn]−H[t− tn+1], n = 0, ..., N∆t − 1,

and linear basis functions for the approximation of ΨΨΨ (sq = 1),

v(1)n (t) =
t− tn
∆t

H[t− tn]−
t− tn+1

∆t
H[t− tn+1], n = 0, ..., N∆t − 1.

Hence, the components of the discrete functions ΦΦΦh,∆t and ΨΨΨh,∆t can be expressed in space and time as

ΦΦΦi,h,∆t(x, t) =

N∆t−1∑
n=0

M
(p)
h∑

m=1

αi
nmw

(p)
m (x)v(0)n (t), i = 1, 2,

and

ΨΨΨi,h,∆t(x, t) =

N∆t−1∑
n=0

M
(q)
h∑

m=1

βinmw
(q)
m (x)v(1)n (t), i = 1, 2,

The space-time Galerkin equation (60) leads to the linear system
E

(0)
V 0 0 · · · 0

E
(1)
V E

(0)
V 0 · · · 0

E
(2)
V E

(1)
V E

(0)
V · · · 0

...
...

...
. . .

...

E
(N∆t−1)
V E

(N∆t−2)
V E

(N∆t−3)
V · · · E

(0)
V




ααα(0)

ααα(1)

ααα(2)
...

ααα(N∆t−1)

 =


g(0)
g(1)
g(2)
...

g(N∆t−1)

 , (72)

where for all l = 0, ..., N∆t − 1 the l-th block, the l-th entry of the solution vector and the l-th entry of
the right hand side are organized as

E
(l)
V =

(
E

(l)
V,11 E

(l)
V,12

E
(l)
V,21 E

(l)
V,22

)
,

ααα(l) =
(
α1
l1 · · · α1

lM
(p)
h

α2
l1 · · · α2

lM
(p)
h

)⊤
g(l) =

(
g1l1 · · · g1

lM
(p)
h

g2l1 · · · g2
lM

(p)
h

)⊤ .
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Solving (72) by backsubstitution leads to a marching-on-in-time time stepping scheme (MOT). To obtain

the generic matrix entry of the sub-block E
(l)
V , where l = n− ñ is the nonnegative difference between two

time indexes, we can perform an analytical integration in the time variables t, obtaining(
E(l)
V,ij

)
m̃,m

= ⟨Vijw(p)
m ∂tv

(0)
n , w

(p)
m̃ v

(0)
ñ ⟩L2(Σ) = −⟨Vijw(p)

m v(0)n , w
(p)
m̃ ∂tv

(0)
ñ ⟩L2(Σ)

=−
1∑

ξ,ς=0

(−1)ξ+ς

ˆ
Γ
w

(p)
m̃ (x)

ˆ tñ+ξ

0

ˆ
Γ
Gij(x, ξξξ; tñ+ξ, τ)w

(p)
m (ξξξ)H[τ − tn+ς ]dΓξξξdτdΓx. (73)

Further, it is also possible to compute exactly the integration in τ of (73), leading to the matrix entry

(
E

(l)
V,ij

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς

2πρ

ˆ
Γ

ˆ
Γ
w

(p)
m̃ (x)w(p)

m (ξξξ)νVij(r; ∆ñ+ξ,n+ς)dΓxdΓξξξ, (74)

for all i, j = 1, 2; m, m̃ = 1, ...,M
(p)
h and n, ñ = 0, ..., N∆t − 1. Here, the positive time difference

tñ+ξ − tn+ς = ∆ñ+ξ,n+ς and the integration kernel νVij

νVij(r; ∆ñ+ξ,n+ς) :=

∆ñ+ξ,n+ς

(
rirj
r4

− δij
2r2

)[
H[cP∆ñ+ξ,n+ς − r]

cP
φP(r; ∆ñ+ξ,n+ς)−

H[cS∆ñ+ξ,n+ς − r]

cS
φS(r; ∆ñ+ξ,n+ς)

]
+
δij
2

[
H[cP∆ñ+ξ,n+ς − r]

c2P
φ̂P(r; ∆ñ+ξ,n+ς) +

H[cS∆ñ+ξ,n+ς − r]

c2S
φ̂S(r; ∆ñ+ξ,n+ς)

]
.

(75)

For each γ = P, S the specific kernel functions are given by

φγ(r; ∆ñ+ξ,n+ς) :=
√
c2γ∆

2
ñ+ξ,n+ς − r2, (76)

φ̂γ(r; ∆ñ+ξ,n+ς) := log
(√

c2γ∆
2
ñ+ξ,n+ς − r2 + cγ∆ñ+ξ,n+ς

)
− log(r). (77)

If 0 ⩽ r ⩽ cS∆ñ+ξ,n+ς < cP∆ñ+ξ,n+ς the kernel νij has a reduced form:

νVij(r; ∆ñ+ξ,n+ς) =

c2P − c2S
cPcS

(
rirj
r2

− δij
2

)
∆ñ+ξ,n+ς

cP
√
c2S∆

2
ñ+ξ,n+ς − r2 + cS

√
c2P∆

2
ñ+ξ,n+ς − r2

− c2P + c2S
c2Pc

2
S

δij
2

log(r)

+
δij
2

[
1

c2P
log
(
cP∆ñ+ξ,n+ς +

√
c2P∆

2
ñ+ξ,n+ς − r2

)
+

1

c2S
log
(
cS∆ñ+ξ,n+ς +

√
c2S∆

2
ñ+ξ,n+ς − r2

)]
, (78)

with space singularity of kind O (log(r)) for r → 0. This behavior is well-studied for boundary integral
operators related to 2D elliptic problems.
The discrete function ψψψi,h,∆t in the weak formulation (61) produces the linear system EWβββ = h, similar
to the one obtained by the discretization of the single layer operator V. In particular, the same Toeplitz
structure is obtained in time, and the matrix entries are computed with analytical integrations in time
variables, similar to those adopted in (73), leading to

(
E

(l)
W,ij

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς

2πρ∆t2

ˆ
Γ

ˆ
Γ
w

(q)
m̃ (x)w(q)

m (ξξξ)νWij (r; ∆ñ+ξ,n+ς)dΓxdΓξξξ, (79)
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for all i, j = 1, 2; m, m̃ = 1, ...,M
(q)
h and n, ñ = 0, ..., N∆t − 1. Here, tñ+ξ − tn+ς = ∆ñ+ξ,n+ς and the

integration kernel νWij is

νWij (r; ∆ñ+ξ,n+ς) =

H[cP∆ñ+ξ,n+ς − r]

c3P

[(
Dij

φ,cP +Dij
cP

∆2
ñ+ξ,n+ςc

2
P

r2

)
∆ñ+ξ,n+ς φP(r; ∆ñ+ξ,n+ς)

r2
+Dij

φ̂,cP

φ̂P(r; ∆ñ+ξ,n+ς)

cP

]

−
H[cS∆ñ+ξ,n+ς − r]

c3S

[(
Dij

φ,cS +Dij
cS

∆2
ñ+ξ,n+ςc

2
S

r2

)
∆ñ+ξ,n+ς φS(r; ∆ñ+ξ,n+ς)

r2
+Dij

φ̂,cS

φ̂S(r; ∆ñ+ξ,n+ς)

cS

]
,

(80)

where the coefficients Dij
φ,cγ , D

ij
cγ and Dij

φ̂,cγ
are defined in the Appendix A.3 of [16]. If 0 ⩽ r ⩽

cS∆ñ+ξ,n+ς < cP∆ñ+ξ,n+ς the kernel νWij has a reduced form with singularity O(r−2) for r → 0.

We also have to take into account that both kernels νVij and ν
W
ij depend on the difference c2γ∆

2
ñ+ξ,n+ς − r

2

through the Heaviside functions, which lead to a jump at the points where the argument vanishes.
To overcome this issue related to the possible presence of one or two wave fronts which can reduce
the integration domain in local space variables, we apply to the latter a suitable decomposition. This
splitting procedure drastically reduces the number of quadrature nodes required to achieve single precision
accuracy [3].
Moreover, to numerically evaluate (74) and (79), we employ specific quadrature rules to treat the
singularities of the kernels νVij and νWij defined in (78) and (80). The interested reader is refered to
[3] for a detailed description of the applied quadrature schemes in case of the integration of the weakly
singular kernel. For the numerical evaluation of the hypersingular integrals we refer to [16].

7 Numerical results

The numerical experiments in this section consider h, p and hp discretizations for the soft scattering
problem (15) (Sections 7.1-7.2) and the hard scattering problem (17) (Section 7.3). They illustrate the
singular behavior of the solution near the crack tip and the theoretically expected convergence rates.
Unless stated otherwise, for the h version on uniform or graded meshes piecewise constant basis functions
in space and time are chosen to approximate the solution of the Dirichlet problem (60). Piecewise linear
functions are used for the Neumann problem (61). The p and hp versions are implemented with higher
polynomial degrees in space, up to p = 7. The Lamé parameters and the mass density, where it is not
otherwise specified, are set to be λ = 2, µ = 1 and ϱ = 1 for all the results presented in this section.
All the numerical results for the Dirchlet problem are computed for a prescribed right hand side g̃ =
(K+1/2)g in (15). While the analysis in Sections 3 and 5 relies on this form of g̃, as typical in the BEM
literature, for numerical convenience we directly prescribe g̃. Analogously, for the Neumann problem we
prescribe h̃ = (K′ − 1/2)h. Also, we set the weight σ = 0.

7.1 Soft scattering problems on flat obstacle

Example 1. Here we consider the discrete weakly singular integral equation (60) on a flat obstacle
Γ = {(x, 0) ∈ R | x ∈ [−0.5, 0.5]} up to time T = 1. The Dirichlet datum corresponds to g̃i(x, t) =
g̃(x, t) = H[t]f(t)x4, i = 1, 2, where the function

f(t) =

{
sin2(4πt), t ∈ [0, 1/8]
1, t > 1/8

(81)

is a temporal profile that leads to an exact solution ΦΦΦ which becomes static in time. In Figure 5, the
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Figure 5: Horizontal component of ΦΦΦ, calculated on the obstacle Γ at the time instant T = 1. This plot
is obtained from the h version on a 3-graded mesh with 81 nodes and ∆t = 0.00625.

horizontal component of the discrete solution ΦΦΦ of (60) is represented on the obstacle Γ at a fixed time
instant: as we can observe from the plot, the behaviour of the solution is singular near the crack tips.
Tables 1, 2 and 3 contain the values ααα⊤EVααα, namely the squared energy norm of the Galerkin solution,
as the number of spatial degrees of freedom (DOF) is increased (see Section 6 for details about the
construction of the vector ααα and the matrix EV). This number, in particular, corresponds to the L2(Σ)
product at the left hand side of (60) with the discrete solution ΦΦΦh,∆t replacing the test function. For
simplicity, in the following tables the number of DOF is indicated only for one component of the vector-
valued solution. The values reported in 1 are obtained by applying a p version in space: the boundary is
uniformly discretized with segments of length h = 0.1, while the degree p of the space basis function is
increased. For p = 1 we set the time step ∆t = 0.025 and we halve it whenever p increases.

Table 1: Energy norm squared of the approximate solution for T = 1 (p version)

degree p 1 2 3 4 5 6 7

DOF 11 21 31 41 51 61 71

∆t 2.50000 · 10−2 1.25000 · 10−2 6.25000 · 10−3 3.12500 · 10−3 1.56250 · 10−3 7.81250 · 10−4 3.90625 · 10−4

ααα⊤EVααα 3.4108 · 10−2 3.6257 · 10−2 3.7012 · 10−2 3.7338 · 10−2 3.7511 · 10−2 3.7615 · 10−2 3.7684 · 10−2

The energy values reported in Table 2 refer to the solution of the problem with the h version: we fix
an algebraically graded mesh on the arc as in (62), for given grading parameter β̃ = 1, 2, 3 and number
of mesh points 2N + 1. In Table 3 the discretization method used is the hp version. We set on Γ the
mesh points geometrically graded, as indicated in the rule{

x0,L = −1
2 , xL,j =

1
2

(
σN+1−j − 1

)
j = 1, . . . , N + 1

xN+1 =
1
2 , xR,j =

1
2

(
1− σj

)
, j = 1, . . . , N

, (82)

with σ = 0.2, 0.5 and, for ease of programming, at each refinement of the mesh the degree p increases
uniformly on all the space elements. The parameter Lσ in the table represents the length of the smallest
segment of the mesh.

The energy is increasing towards a common benchmark value for the tested discretization methods: to
illustrate the related convergence rate, in Figure 6 the squared error in energy norm is plotted with respect
to the spatial DOF. We observe that the decay of the error follows a straight line in the logarithmic plots
for both the p version and the h version with β̃ = 1, corresponding to algebraic convergence with rate 2
(p), respectively 1 (h) in terms of DOF. This means that the error tends to 0 like p−1, respectively h1/2.
This convergence rate is expected from Corollary 5.8. Indeed, by Proposition A.3 the energy ααα⊤EVααα
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Table 2: Energy norm squared of the approximate solution for T = 1 (h version with algebraically graded
mesh)

∆t DOF ααα⊤EVααα, β̃ = 1 ααα⊤EVααα, β̃ = 2 ααα⊤EVααα, β̃ = 3

1.2500 · 10−2 10 3.0143 · 10−2 3.6212 · 10−2 3.7315 · 10−2

6.2500 · 10−3 20 3.3906 · 10−2 3.7501 · 10−2 3.7835 · 10−2

3.1250 · 10−3 40 3.5933 · 10−2 3.7813 · 10−2 3.7903 · 10−2

1.5625 · 10−3 80 3.6943 · 10−2 3.7890 · 10−2 3.7914 · 10−2

Table 3: Energy norm squared of the approximate solution for T = 1 (hp version geometrically graded)

p L0.5 L0.2 DOF ∆t ααα⊤EVααα, σ = 0.5 ααα⊤EVααα, σ = 0.2

0 5.00000 · 10−1 5.0 · 10−1 2 2.500000 · 10−1 4.0730 · 10−3 4.0730 · 10−3

1 2.50000 · 10−1 1.0 · 10−1 5 1.250000 · 10−1 2.7847 · 10−2 3.4521 · 10−2

2 1.25000 · 10−1 2.0 · 10−2 13 6.250000 · 10−2 3.2960 · 10−2 3.4581 · 10−2

3 6.25000 · 10−2 4.0 · 10−3 25 3.125000 · 10−2 3.6745 · 10−2 3.7256 · 10−2

4 3.12500 · 10−2 8.0 · 10−4 41 1.562500 · 10−2 3.7618 · 10−2 3.7783 · 10−2

5 1.56250 · 10−2 1.6 · 10−4 61 7.812500 · 10−3 3.7828 · 10−2 3.7890 · 10−2

6 7.81250 · 10−3 3.2 · 10−5 85 3.906250 · 10−3 3.7888 · 10−2 3.7911 · 10−2

7 3.90625 · 10−3 6.4 · 10−6 113 1.953125 · 10−3 3.7906 · 10−2 3.7915 · 10−2

is bounded by the Sobolev norm considered in Corollary 5.8. Analogous results are obtained for the h
version with polynomial degrees p = 1, 2 in space.

On algebraically graded meshes with β̃ = 2 and 3 the error similarly decays along a straight line, but
of slope −β̃ with increasing DOF. In particular, the BEM on the graded mesh (62) with β̃ = 3 recovers
the optimal convergence order h3/2 expected in the energy norm for smooth solutions, as in Corollary
5.4.

The fastest convergence in Figure 6 is obtained by the hp version, for which the error decays faster
than a straight line for both σ = 0.2, 0.5. The graph of the squared error indicates exponential decay.
Convergence is fastest for σ = 0.2, which is close to the theoretically optimal σ ≃ 0.17. The nodes in this
case are more densely clustered near the endpoints of Γ than for σ = 0.5.
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Figure 6: Squared error of the energy norm for various discretization methods.

To illustrate the singular behavior of the solution, Figure 7 plots the horizontal and the vertical
components of the approximate ΦΦΦ with respect to the distance r towards the left end of the arc (−0.5, 0)⊤
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for various time instants: one observes that the singular behavior is independent of time, and the
components increase as O(r−1/2) for r → 0. This confirms the discussion in Section 3.1. The solution in
this figure is obtained from the h version on a 3-graded mesh with 81 nodes.
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Figure 7: Asymptotic behaviour towards the left end of Γ

Example 2. Similar results as in Example 1 are obtained also for other boundary data on a flat obstacle
Γ = {(x, 0) ∈ R | x ∈ [−0.5, 0.5]}. We here set g̃i(x, t) = g̃(x, t) = H[t]f(t)x, i = 1, 2, where the function
f(t) is the temporal profile defined in (81). The solution of the problem (60) is again singular at the end
points of the arc and, as observed in the previous experiment, the components of ΦΦΦ increase as O(r−1/2)
when the distance r tends to zero (see Figure 8).
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Figure 8: Behaviour of the horizontal component Φ1 on Γ and w.r.t the distance towards the right
endpoint at T = 1. Both plots are obtained imposing on Γ an algebraically 3-graded mesh of 80 segments.

We again study the decay of the error in energy norm for this new Dirichlet condition, leading to
similar considerations for the rate of convergence of the different discretization methods. The spatial and
temporal discretization parameters for the h, p and hp version are chosen as in the previous experiment.

The results are shown in Figure 9. The squared error for the h version is O
(
hβ̃
)
on the algebraically

β̃-graded mesh, as in Corollary 5.4. The corresponding result for the p version is O
(
p−2
)
, in agreement

with Corollary 5.8. Faster than algebraic convergence is achieved by the hp version on a geometrically
graded mesh.
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Figure 9: Squared error of the energy norm for various discretization methods

7.2 Soft scattering problems on polygonal obstacles

In the following we consider the weakly singular integral equation (15) on different types of closed obstacles
Γ, as shown in Figure 10(b), where the four considered convex polygonal geometries are collected.

Recalling the notation stated in Section 2, a closed arc Γ determines a partition of R2 made by the
bounded interior domain Ω′, with ∂Ω′ = Γ, and its complement Ω = R2 \ Ω′. From Section 3.1 we know
that the solution u in the exterior set Ω and near a corner point of Γ locally behaves like a power of the
distance r to the vertex:

ui ≈ Ci,ωext(t)r
ν∗(ωext), r → 0,

where ωext is the considered exterior angle (with complement ωint) and the exponent ν∗(ωext) is the
smallest solution of the equation (25), namely

sin2(ωext ν
∗) =

(
ν∗

k
sinωext

)2

, (83)

with positive real part, where k = 3 − 2λ/(λ + µ). The prefactor Ci,ωext(t) is a smooth function in t,
independent of r, so the leading singular behaviour does not change with time. The solution ΦΦΦ = p(u)|Γ
of the boundary integral equation (15) represents the traction at the obstacle and, from the discussion
in Section 3, its asymptotic behaviour a the vertex can be expressed as

Φi ≈ C̃i,ωext(t)r
ν∗(ωext)−1, r → 0.

For Lamé parameters λ = 2, µ = 1 and mass density ϱ = 1, Figure 10(a) shows the exterior and interior
exponents, ν∗(ωext) = ν∗(2π−ωint) and ν

∗(ωint), as a function of ωint. Red crosses indicate the exponents
ν∗ corresponding to the red corners of the polygons depicted on the right of Figure 10(b), for interior
angles 7π

24 (ν∗ = 0.5372), π
3 (ν∗ = 0.5451), 3π

8 (ν∗ = 0.542) and 3π
5 (ν∗ = 0.6306).

Example 3. We consider the Galerkin solution of the weakly singular integral equation (60) on the
polygons represented in Figure 10(b) up to time T = 1. In all cases the right hand side imposed is
g̃1(x, t) = 0, g̃2(x, t) = H[t]f(t)100|x|9.5. An example of the solution produced by the boundary condition
is in Figure 10(c), where the vertical component of ΦΦΦ is plotted at the base of the equilateral triangle
Γ1. The solution is characterized by a high gradient near the corners on the base. The mesh on each
side of polygons Γi, i = 1, . . . , 4, is algebraically graded towards the corners following (62), for given
grading parameter β̃ = 1, 2, 3. The polygons Γ1 and Γ4, which are both equilateral, are discretized
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with 80 segments per side, while for Γ2 and Γ3 we use 80 segments on the two sides which are of equal
length and 75 and 87 segments on the base, respectively. The time step is chosen as ∆t = 0.00625 for all
experiments.
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Figure 10: Expected exponent with dependence on ωint and its complementary (k = 5/3) and tested
polygonal meshes (a and b); plot of the vertical component of ΦΦΦ on the base of Γ1 (c).
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Figure 11: Asymptotic behavior towards the vertices

In Figure 11, for each geometry the Euclidean norm of ΦΦΦ is plotted with respect to the distance r
towards the angle indicated in Figure 10. We observe that the solution follows the expected behavior
O(r−(1−ν∗)) for all the considered geometries. In particular, the asymptotic behavior for acute corners
leads to stronger singularities (1 − ν∗ ≈ 0.5) than for the obtuse angle of the pentagon (1 − ν∗ ≈ 0.37).
This confirms the theoretical discussion in Section 3.1.

We finally consider the convergence in energy on the polygonal obstacles. In particular, we examine
the equilateral triangle Γ1 and report in Table 4 the value of the energy for each level of the space
discretization. The energy tends to a benchmark value with increasing DOF (also in this case the
number refers to one component of the vector solution), and the squared error in energy norm is shown

in Figure 12. The decay of the squared error in a log scale plot is linear, corresponding to O(DOF−2ν∗β̃)
in each experiment as in Corollary 5.4.

Example 4. In this example we show numerically that the singular behavior at the corners and the
decay of the energy error do not depend on the boundary data imposed at the obstacle. We specifically
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Table 4: Energy norm squared of the approximate solution for T = 1

∆t DOF ααα⊤EVααα, β̃ = 1 ααα⊤EVααα, β̃ = 2 ααα⊤EVααα, β̃ = 3

5.00 · 10−2 30 5.7394 · 10−2 7.4875 · 10−2 7.6829 · 10−2

2.50 · 10−2 60 6.8490 · 10−2 7.6828 · 10−2 7.7460 · 10−2

1.25 · 10−2 120 7.3821 · 10−2 7.7448 · 10−2 7.7566 · 10−2

6.25 · 10−3 240 7.5989 · 10−2 7.7558 · 10−2 7.7582 · 10−2
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Figure 12: Squared error of the energy norm with h version on Γ1, β̃-graded mesh

consider the triangular obstacle Γ2 in Figure 10(b). The solution ΦΦΦ of (60) is calculated for a right hand
side with trivial horizontal direction g̃1(x, t) = 0 and different vertical components g̃2(x, t) = H[t]f(t),
g̃2(x, t) = H[t]f(t)x4 and g̃2(x, t) = 100H[t]f(t)|x|9.5. In Figure 13(a), we consider the behavior of the
Euclidean norm of ΦΦΦ for these different boundary data, plotted as a function of the distance r to the
vertex which is highlighted in red (Figure 10(b), geometry Γ2). The singular exponent is expected to be
ν∗ ≃ 0.542 for a base angle of 3π/8. Indeed, we find that, in log scale, the slope of the norm for r → 0 is
parallel to the dashed line corresponding to r−(1−0.542) for each of the tested boundary data. In Figure
13(b) the vertical component of ΦΦΦ is shown on the base of Γ2 at time T = 1, highlighting the singular
behavior at the corners.
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Figure 13: Asymptotic behavior towards the vertices in Γ2 for different boundary conditions (a) and plot
of the vertical component of ΦΦΦ on the base of Γ2 for the indicated boundary condition (b).

In Figure 14 we consider the equilateral triangle Γ1 of 10(b) and study the decay of the error for
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increasing degrees of freedom for the h version. The number of segments and the time step are the same
as in 4. The right hand side is here given by g̃1(x, t) = 0, g̃2(x, t) = H[t]f(t)x4. An algebraically β̃-graded
mesh is used on each side, where β̃ = 1, 2. The energy tends to a benchmark value as the number of
degrees of freedom increases, and the squared error in energy norm in a log scale plot decays linearly as
O(DOF−2ν∗β̃), in agreement with Corollary 5.4.
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Figure 14: Squared error of the energy norm with h version on Γ1, β̃-graded mesh, g̃2(x, t) = H[t]f(t)x4

7.3 Hard scattering problems on flat obstacle

In the following we consider the discrete hypersingular integral equation (17) on the obstacle Γ =
{(x, 0) ∈ R | x ∈ [−0.5, 0.5]} for a time independent Neumann condition. We focus, in particular, on
the solution of the discrete problem (61) using h, p and hp versions.

Example 5. We consider Neumann data corresponding to h̃i(x, t) = ηi, where ηi ∈ R is constant for
i = 1, 2. The datum at the boundary is independent of time. Therefore, as time increases, the components
Ψi(x, t) of the solution tend to the stationary functions

Ψi,∞(x) = ki
√
1/4− x2, ki = − c2P

ρc2S
(
c2P − c2S

)ηi, i = 1, 2, (84)

representing the components of the solution for the reference elastostatic Neumann problem with boundary
datum h∞(x) = ηi. We specifically set ηi = 1 for i = 1, 2, so that both components of ΨΨΨ converge to the
same elastostatic function Ψ1,∞ = Ψ2,∞. Two different sets of velocities are considered, cS = 1, cP = 2
and cS = 1, cP = 3.

Figure 15(a) shows the time history of Ψ1 and Ψ2, calculated at the midpoint (0, 0) of Γ, for both
sets of velocities on the time interval [0, 7.5]. We observe that after an initial transient phase the solution
approaches the stationary value (84). In Figure 15(b) the vertical component Ψ2 is plotted on Γ for
speeds cP = 2, 3 at time T = 7.5. This time is large enough so that for both problems the numerical
solution closely matches the stationary reference solution in (84). For the plots in Figure 15 equation
(61) is solved on a uniform space-time mesh with mesh size h = 0.025 and ∆t = 0.0125, respectively.

To illustrate the behaviour of the solution near ∂Γ, Figure 16 shows the components of −ΨΨΨ, for
cS = 1, cP = 2, with respect to the distance r towards the right end point of the segment (0.5, 0)⊤ for
various time instants: one observes that the singular behaviour is independent of time, and the numerical
solutions decrease like r1/2 for r tending to zero. The plots in Figure 16 are obtained using the h version
on a β̃-graded mesh with 81 nodes, with time step ∆t = 0.00625.

For the case cS = 1, cP = 2, we study the decay of the error in energy norm for the approximate
solution of (61) up to time T = 2 analysing the value βββ⊤EWβββ, namely the squared energetic norm of the
approximate solution, which increases towards a common benchmark value for all tested discretization

36



0 1 2 3 4 5 6 7
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a)

-0.5 0 0.5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b)

Figure 15: Time history of Ψ1 and Ψ2 calculated at the middle point of Γ for the couples of velocities
cS = 1, cP = 2 and cS = 1, cP = 3 (a). Vertical component Ψ2 calculated at the final time instant T = 7.5
and the related elastostatic solution Ψ2,∞(x, t) = k2

√
1/4− x2 (k2 = −4/3 for cP = 2 and k1 = −9/8 for

cP = 3) (b).
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Figure 16: Asymptotic behaviour of −Ψ1 and −Ψ2 towards the right end of Γ for various time instants
(cS = 1, cP = 2). The arc is discretized by a β̃-graded mesh with β̃ = 2 and 81 mesh points.

methods. We refer the reader to section 6 for construction details of βββ and EW . The number of spatial
DOF in the following, as previously, corresponds to one component of the vector solution. For the h
version we choose a β̃-graded mesh on Γ with β̃ = 1, 2 and 10, 20, 40, respectively 80 segments. The time
step ∆t = 0.05 in the case of 10 segments is halved at each refinement of the spatial mesh. The log scale
plot in Figure 17 shows a linear decay of the error for the h version, parallel to the lines O(DOF−β̃). The
results confirm the prediction in Corollary 5.4. For the p version we consider a uniform discretization of
the obstacle with h = 0.1 and a uniform time step ∆t = 1/(2·DOF). The log scale plot shows a linear
decay of the error parallel to the expected line O(DOF−2). The hp version with a geometrically graded
mesh is considered for meshes on Γ with 4, 6, 8, 10 and 12 segments. At each refinement of the mesh
the degree p, starting from 2, increases uniformly on all the space elements. The time step is chosen
as ∆t = 0.125 for 4 segments and halved at each iteration. Similarly to the soft scattering problems
presented above the hp method shows the fastest decay of the error with respect to increasing spatial
DOF.
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Figure 17: Squared error of the energy norm calculated up to time instant T = 2

8 Conclusions

In this work we initiate the study of higher-order versions of the boundary element method for linear
elastodynamics, including h, p and hp versions. The asymptotic expansions for the solution obtained near
geometric singularities of the domain give rise to efficient discretizations, with the same approximation
rates as known for h, p and hp approximations of time independent problems.
The quasi-optimal hp explicit estimates in this article complement the recent analysis for the wave
equation, for both finite and boundary element methods [21, 23, 42], and for linear elastodynamics in
2d [43]. The convergence is determined by the singular behavior of the solution near the non-smooth
boundary points of the domain. Our analysis relies on the classical approximation results for time
independent problems [15], in combination with the analysis of the leading singular terms in the time
dependent problem [40].
Extensive numerical experiments for a slit and polygonal domains in 2d illustrate the quasi-optimal
convergence rates and confirm the expected leading asymptotic behavior of the solution near a vertex.
On a slit the energy error O(p−1) of the p version converges with the same rate as an h version on a
2-graded mesh. For closed polygonal domains the solution is less singular near the vertices, depending
on the material parameters and the opening angle. Accordingly, higher convergence rates are obtained
in both the analysis and in the numerical experiments.

Appendix A

In this appendix we introduce space–time anisotropic Sobolev spaces on the boundary Γ as a convenient
functional analytic setting for the analysis of the time dependent boundary integral operators. A detailed
exposition may be found in [29, 19]. Furthermore, we collect mapping properties of the integral operators
V,W in these space-time anisotropic spaces (Theorem A.2) and show continuity and coercivity of the
associated bilinear forms (Proposition A.3). The latter imply the stability of the Galerkin schemes in
Section 4. In the case of an open screen or line segment, ∂Γ ̸= ∅, we first extend Γ to a closed, orientable
Lipschitz manifold Γ̃. On Γ we recall the usual Sobolev spaces of supported distributions:

H̃s(Γ) = {u ∈ Hs(Γ̃) : supp u ⊂ Γ} , s ∈ R .

The Sobolev space Hs(Γ) is the quotient space Hs(Γ̃)/H̃s(Γ̃ \ Γ). To define a family of Sobolev norms,
αi be a partition of unity subordinate to a covering of Γ̃ by open sets Bi. Given diffeomorphisms φi from
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Bi to the unit cube in Rn, Sobolev norms are induced from Rn, with parameter ω ∈ C \ {0}:

||u||
s,ω,Γ̃

=

(
p∑

i=1

ˆ
Rn

(|ω|2 + |ξξξ|2)s|F
{
(αiu) ◦ φ−1

i

}
(ξξξ)|2dξξξ

) 1
2

.

Here, F = Fx 7→ξξξ denotes the Fourier transform Fφ(ξξξ) =
´
e−ix·ξξξφ(x) dx. Different ω ∈ C \ {0} induce

equivalent norms on Hs(Γ), ∥u∥s,ω,Γ = inf
v∈H̃s(Γ̃\Γ) ∥u+ v∥

s,ω,Γ̃
and on H̃s(Γ), ∥u∥s,ω,Γ,∗ = ∥e+u∥s,ω,Γ̃.

e+ extends the distribution u by 0 from Γ to Γ̃. When a specific ω is fixed, we write Hs
ω(Γ) for H

s(Γ),
respectively H̃s

ω(Γ) for H̃
s(Γ). The norm ∥u∥s,ω,Γ,∗ is stronger than ∥u∥s,ω,Γ.

We may now define a family of space-time anisotropic Sobolev spaces:

Definition A.1. For σ > 0 and r, s ∈ R define

Hr
σ(R+, Hs(Γ)) = {u ∈ D′

+(H
s(Γ)) : e−σtu ∈ S ′

+(H
s(Γ)) and ||u||r,s,Γ <∞} ,

Hr
σ(R+, H̃s(Γ)) = {u ∈ D′

+(H̃
s(Γ)) : e−σtu ∈ S ′

+(H̃
s(Γ)) and ||u||r,s,Γ,∗ <∞} . (85)

Here, D′
+(E) denotes the space of all distributions on R with support in [0,∞), taking values in a

Hilbert space E = Hs(Γ), respectively E = H̃s(Γ). S ′
+(E) ⊂ D′

+(E) denotes the subspace of tempered
distributions. The Sobolev spaces are endowed with the norms

∥u∥r,s := ∥u∥r,s,Γ =

(ˆ +∞+iσ

−∞+iσ
|ω|2r ∥û(ω)∥2s,ω,Γ dω

) 1
2

,

∥u∥r,s,∗ := ∥u∥r,s,Γ,∗ =
(ˆ +∞+iσ

−∞+iσ
|ω|2r ∥û(ω)∥2s,ω,Γ,∗ dω

) 1
2

. (86)

They are Hilbert spaces. For r = s = 0 they correspond to the weighted L2-space with scalar product´∞
0 e−2σt

´
Γ uvdΓx dt. Because Γ is Lipschitz, these spaces are independent of the choice of αi and φi

when |s| ≤ 1, as for standard Sobolev spaces.
We shall also use the norms ∥u∥r,s,(t1,t2]×Γ and ∥u∥r,s,(t1,t2]×Γ,∗ for restrictions on the time interval (t1, t2].

Let now Γ̃ = ∂Ω′ the boundary of a Lipschitz subset Ω ⊂ Rn and Γ ⊂ Γ̃ open. Denote Ω = Rn \ Ω′.
We review the mapping properties for the weakly singular integral operator V and the hypersingular

operator W.

Theorem A.2. The single layer potential operator and the hypersingular operator are continuous for
σ > 0 and r ∈ R:

V : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R+, H

1
2 (Γ)) , ,

K′ : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R+, H− 1

2 (Γ)) ,

K : Hr+1
σ (R+, H̃

1
2 (Γ)) → Hr

σ(R+, H
1
2 (Γ)) ,

W : Hr+1
σ (R+, H̃

1
2 (Γ)) → Hr

σ(R+, H− 1
2 (Γ)) .

This may be found in Theorem 3.1 in [12], see also [8] for W in 2d, with an analogous proof. See also
[31] for a recent discussion of mapping properties for the wave equation.

For convenience of the reader we recall basic properties of the bilinear form for the Dirichlet problem
in the infinite space-time cylinder Γ× R+,

BD,Γ×R+(ΦΦΦ, Φ̃̃Φ̃Φ) :=

ˆ
R+

ˆ
Γ
V∂tΦΦΦ(t,x) Φ̃̃Φ̃Φ(t,x) dΓx dσt , (87)
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where dσt = e−2σtdt, as well as the corresponding bilinear form for the Neumann problem,

BN,Γ×R+(ΨΨΨ, Ψ̃̃Ψ̃Ψ) :=

ˆ
R+

ˆ
Γ
W∂tΨΨΨ(t,x) Ψ̃̃Ψ̃Ψ(t,x) dΓx dσt , (88)

Proposition A.3. Let σ > 0.
a) For every ΦΦΦ, Φ̃̃Φ̃Φ ∈ H1

σ(R+, H− 1
2 (Γ))n there holds:

|BD,Γ×R+(ΦΦΦ, Φ̃̃Φ̃Φ)| ≲ ∥ΦΦΦ∥1,− 1
2
,Γ,∗∥Φ̃̃Φ̃Φ∥1,− 1

2
,Γ,∗ (89)

and
∥ΦΦΦ∥2

0,− 1
2
,Γ,∗ ≲ BD,Γ×R+(ΦΦΦ,ΦΦΦ). (90)

b) For every ΨΨΨ, Ψ̃̃Ψ̃Ψ ∈ H1
σ(R+, H

1
2 (Γ))n there holds:

|BN,Γ×R+(ΨΨΨ, Ψ̃̃Ψ̃Ψ)| ≲ ∥ΨΨΨ∥1,− 1
2
,Γ,∗∥Ψ̃̃Ψ̃Ψ∥1, 1

2
,Γ,∗ (91)

and
∥ΨΨΨ∥2

0, 1
2
,Γ,∗ ≲ BN,Γ×R+(ΨΨΨ,ΨΨΨ). (92)

Proof. The inequalities (89) and (91) follow from the mapping properties in Theorem A.2. The coercivity
(92) was shown in [7, 8] in 2d, and the proof holds verbatim in any dimension.

To show (90), we consider the elastic problem in the frequency domain:{
(λ+ µ)∇(∇ · u) + µ∆u+ ρω2u = div σ(u) + ρω2u = 0, x ∈ Ω′ ∪ Ω

u = g, x ∈ Γ̃.
. (93)

We assume Im (ω) ≥ σ > 0. The energetic weak formulation for the single layer equation for the traction
[p] = [σ(u)n] in frequency domain is given by (using Parseval’s identity):

Find [p] ∈ H
− 1

2
ω (Γ̃)n such that

BD,ω([p], qqq) = ⟨−iωVω[p], qqq⟩Γ̃ = ⟨−iωg, qqq⟩
Γ̃

(94)

for all qqq ∈ H
− 1

2
ω (Γ̃)n.

It involves the single layer operator Vω obtained from V by Fourier transformation. Using Green’s
formula as in [8], Thm 3.1, we have

ˆ
Ω′∪Ω

(
σ(u) : ε(u)− ρω2|u|2

)
dx =

ˆ
Γ̃
u · [σ(u)n]dΓ̃ ≡ ⟨Vω[p], [p]⟩Γ̃.

Now note that |⟨−iωVω[p], [p]⟩Γ̃| ⩾ Re iω⟨Vω[p], [p]⟩Γ̃ and

Re iω⟨Vω[p], [p]⟩Γ̃ = Re

(
iω

ˆ
Ω′∪Ω

σ(u) : ε(u)dx

)
+Re

(
−iω
ˆ
Ω′∪Ω

ρ|ω|2|u|2dx
)

= 2Im(ω)Eω ⩾ 0, (95)

with

Eω =
1

2

ˆ
Ω′∪Ω

(
σ(u) : ε(u) + ρ|ω|2|u|2

)
dx .

Physically, Eω is the energy of the displacement u, and it satisfies

Eω ⩾ Cσ∥u∥21,ω,Ω′∪Ω (96)
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for a positive constant Cσ. From (95) and (96) we deduce that

|⟨−iωVω[p], [p]⟩Γ̃| ⩾ C̃σ∥u∥21,ω,Ω′∪Ω .

From the trace theorem there exists a positive constant Ctrace such that

2Ctrace∥u∥21,ω,Ω′∪Ω ⩾ 2∥p|
Γ̃+

∥2−1/2,ω,Γ̃
+ 2∥p|

Γ̃−
∥2−1/2,ω,Γ̃

⩾ ∥[p]∥2−1/2,ω,Γ̃
.

Coercivity in the frequency domain follows:

|⟨−iωVω[p], [p]⟩Γ̃| ⩾
C̃σ

2Ctrace
∥[p]∥2−1/2,ω,Γ̃

. (97)

To show (90), it remains to translate the coercivity (97) from the frequency domain into the time
domain. Integrating (94) in ω and using the Parseval identity, noting F−1

ω→t (φ̂(ω + iσ)) = φ(t)e−σt, we
get the identity

ˆ
R+iω0

I

ˆ
Γ̃
−iωVωΦ̂ΦΦ · Φ̂ΦΦdΓ̃dω =

ˆ +∞

0

ˆ
Γ̃
e−2σt ∂

∂t
(VΦΦΦ) ·ΦΦΦdΓ̃dt = BD (ΦΦΦ,ΦΦΦ) .

We now use (97):

ReBD (ΦΦΦ,ΦΦΦ) =

ˆ
R+iσ

Re iω⟨VωΦ̂̂Φ̂Φ, Φ̂̂Φ̂Φ⟩Γ̃ ⩾
C̃σ

2Ctrace

ˆ
R+iσ

∥Φ̂̂Φ̂Φ∥2−1/2,ω,Γ̃
dω .

Therefore

|BD (ΦΦΦ,ΦΦΦ) | ≥ C̃ωI

2Ctrace
∥ΦΦΦ∥2

0,−1/2,Γ̃
.

Proposition A.3 follows by restricting to distributions supported in Γ ⊂ Γ̃.

Appendix B

In the following, let us describe the approach by Matyukevich and Plamenevskǐı from [40] to prove the
asymptotic expansion of the solution to the elastodynamic Dirichlet problem (4) - (6) in a neighborhood
of a non-smooth boundary point of the domain. For ease of reference to the work of Plamenevskǐı and
coauthors, as well as [23], this section adopts some of the notation from the analysis community, rather
than the notation commonly found in numerical works. In particular, the σ > 0 from other sections in
the article is here called γ, singular exponents λℓ are denoted by iλℓ, and the definition of the Fourier
transform and its inverse are interchanged. However, note that the dimensions n and m are interchanged
compared to the specific reference [40], but they agree with the main body of this paper.

In the following we consider two model geometries, wedge and corner, to describe the local behavior
of solutions to this and more general systems near non-smooth boundary points of the domain. They
are of the form D = K× Rn−m ⊂ Rn, with m ≥ 2 and K ⊂ Rm an open cone. We use local coordinates
x = (y, z) in the wedge D.

For n ≥ 2 we consider the elastodynamic problem (4) - (6) in the space-time cylinder D×R, written
abstractly in the form:

L(Dx, Dt)u(x, t) = f(x, t), (x, t) ∈ D× R , (98)

u(x, t) = g(x, t), (x, t) ∈ ∂D× R . (99)

with the matrix differential operator (L(Dx, Dt)u(x, t))p = ∂2t u(x, t) −
∑n

k,l,q=0 ∂ka
kl
pq(x)∂luq(x, t), p =

1, . . . , n.
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Applying the Fourier transform Ft7→τ leads to a parameter-dependent elliptic problem, with τ = σ−iγ,
γ > 0, σ ∈ R:

L(Dx, τ)v(x, τ) = f̂(x, τ), x ∈ D, v(x, τ) = 0, x ∈ ∂D . (100)

We denote by AD(τ) = L(Dx, τ) the closure of this operator in L2(D). We first note a well-posedness
result, Theorem 4.1.2 in [40].

Proposition B.1. For every f̂ ∈ L2(D) and τ = σ − iγ, σ ∈ R, γ > 0, there exists a unique solution v
of (100). Further, there exists a constant c > 0 independent of τ and f̂ such that

γ2
ˆ
D
(|τ |2|v(x, τ)|2 + |Dxv(x, τ)|2)dx ≤ c

ˆ
D
|f̂(x, τ)|2dx . (101)

Proof. On the standard Sobolev space H1
0 (D) we define the sesquilinear form

Bτ
D(u,v) =

ˆ
D

∑
i,j,k,l

Cij
kl(x)∂kui(x)∂lvj(x)dx− τ2

ˆ
D
u(x) · v(x)dx ,

where Cij
kl denotes the Hooke tensor from Section 2. A key property of Bτ

D is the Korn inequality, which
estimates Bτ

D in terms of the norm of H1(D); see Proposition 4.1.3 in [40]: If τ2 ∈ C \ R+, then there
exists δ = δ(τ) > 0 such that |Bτ

D(u,u)| ≥ δ∥u;H1(D)∥2.
The assertion then follows by applying the Lax-Milgram theorem.

B.1 Solution of parameter-dependent Dirichlet problem in a cone

For a finer analysis one performs a Fourier transform Fz 7→ξ in the variable z in (98), (99) and introduces
polar coordinates in K: r = |y|, ωωω = y

|y| . We first assume that v solves the non-homogeneous Dirichlet
problem with parameters τ ∈ R− iγ and ξ ∈ R,

L(Dy, ξ, τ)v(y, ξ, τ) = f̂(y, ξ, τ), y ∈ K (102)

v(y, ξ, τ) = ĝ(y, ξ, τ), y ∈ ∂K . (103)

For simplicity, we first consider the homogeneous Dirichlet problem, corresponding to g = 0. The
corresponding statements for nonzero Dirichlet data g can be deduced from the general results for a
wedge in Subsection B.2.

Proposition B.2 (Theorem 6.2.5, [40]). Let τ ∈ R − iγ with γ > 0. For all f̂ ∈ L2(K), There exists a
unique, strong solution v of (102), (103), and

γ2(p2∥v;L2(K)∥2 + ∥Dxv;L
2(K)∥2) ≤ c∥f̂ ;L2(K)∥2 .

Here p =
√

|ξ|2 + |τ |2, and c is independent of ξ, τ .

Define the weighted Sobolev norms

∥v;Hs
β(K)∥ =

∑
|α|≤s

ˆ
K
r2(β+|α|−s)|Dα

xv|2
 1

2

dx , (104)

∥v;Hs
β(K, p)∥ =

(
s∑

k=0

p2k∥v;Hs−k
β (K)∥2

) 1
2

. (105)
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Let χ ∈ C∞
0 (K) be a cut-off function which is = 1 in a neighborhood of the vertex of the cone K, and

χτ (x) = χ(|τ |y). From Proposition B.2 one obtains with p =
√
|ξ|2 + |τ |2, and c independent of ξ, τ ,

γ2∥v;H1
β(K, p)∥2 + ∥χτv;H

2
β(K, p)∥2 ≤ c

{
∥L(Dy, ξ, τ)v;H

0
β(K)∥2 + p2(1−β)

γ2
∥L(Dy, ξ, τ)v;L

2(K)∥

}
.

(106)
Set Ξ = K ∩ Sm−1. For every λ ∈ C the pencil

AD(λ)φφφ =
{
r2−iλL(Dy, 0, 0)r

iλφφφ,φφφ|∂Ξ
}

(107)

defines a map
AD(λ) : H

2(Ξ) → L2(Ξ)×H3/2(∂Ξ) ,

which is an isomorphism except for a discrete set of eigenvalues {λℓ}.
For the elastodynamic equation L has constant coefficients and is of the form L(Dx, Dt)v = ∂2t v +

A(Dx)v with
A(Dx) = A(Dy, Dz) = DkA

klDl ,

where each of the Akl is a constant matrix Akl = (aklij )i,j . The operator pencil is then given by{
r2−iλA(Dy, 0)r

iλφφφ,φφφ|∂Ξ
}
. (108)

We assume that the strip {λ ∈ C : m− 3 ≤ 2Im λ ≤ m− 2} does not intersect the spectrum of AD. For
an eigenvalue λℓ of AD we take a power-like solution

uℓ(y) = riλℓ

k∑
q=0

1

q!
(i ln(r))qφφφ

(k−q)
ℓ (ωωω) (109)

of the homogeneous Dirichlet problem with τ = 0, ξ = 0:

L(Dy, 0, 0)u(y) = 0, y ∈ K , (110)

u(y) = 0, y ∈ ∂K . (111)

Here, {φφφ(0)
ℓ , . . . ,φφφ

(k)
ℓ } is a Jordan chain to λℓ, consisting of an eigenvectorφφφ

(k)
ℓ and generalized eigenvectors

φφφ
(0)
ℓ , . . . ,φφφ

(k−1)
ℓ . Let κ1 ≥ κ2 ≥ · · · ≥ κJ denote the partial multiplicities of the λℓ , and let {φφφ(0,j)

ℓ , . . . ,φφφ
(κj−1,j)
ℓ :

j = 1, . . . , J} be a canonical system of Jordan chains. The functions

u
(k,j)
ℓ (y) = riλℓ

k∑
q=0

1

q!
(i ln(r))qφφφ

(k−q,j)
ℓ (ωωω), (112)

where k = 0, . . . , κj − 1 and j = 1, . . . , J , constitute a basis in the space of power-like solutions
corresponding to λℓ.

Remark B.3. In special geometries the spectral problem for AD admits an explicit solution. See Section
3.1 for a discussion of the eigenvalues and eigenfunctions in the case of a polygon, Section 3.2 for an edge,
and Section 3.3 for a circular cone.

Let V
(k,j)
ℓ be the infinite series of dual functions satisfying the homogeneous equations (110), (111),

and let V
(k,j)
ℓ,M be its truncation after M terms.

The dual vector functions

v
(k,j)
ℓ (y) = riλℓ−(m−2)

k∑
q=0

1

q!
(i ln(r))qψψψ

(k−q,j)
ℓ (ωωω), (113)
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form a basis in the space of power-like solutions to (110), (111) that correspond to the eigenvalue λℓ +
i(m− 2). The bases match under specific orthogonality and normalization conditions (see, for example,
(114) in [40]), respectively [44].

Denote by {uk,j
ℓ }, {vk,j

ℓ } the matched bases of power-like solutions of (110), (111). Next we consider
the homogeneous problem with parameters τ ∈ R− iγ and ξ ∈ Rn−m, corresponding to (102), (103),

L(Dy, ξ, τ)v(y, ξ, τ) = 0, y ∈ K (114)

v(y, ξ, τ) = 0, y ∈ ∂K . (115)

Substituting u
(k,j)
ℓ in (114), (115), we construct the formal series

U
(k,j)
ℓ (y, ξ, τ) =

∞∑
q=0

riλℓ+qP(k, j)q(ωωω, ξ, τ, ln(r)) (116)

satisfying (114), (115). Here P(k, j)q are polynomials in ξ, τ, ln(r), with coefficients smoothly depending

on ωωω ∈ Ξ. Replacing {uk,j
ℓ } by {vk,j

ℓ }, we obtain the formal series

V
(k,j)
ℓ (y, ξ, τ) =

∞∑
q=0

ri(λℓ+i(m−n−2))+qQ(k, j)q(ωωω, ξ, τ, ln(r)), (117)

satisfying (114), (115). The functions Q(k, j)q again obey analogous properties to P(k, j)q.

In reference [40] the formal series U
(k,j)
ℓ , V

(k,j)
ℓ are constructed for these bases.

Consider now (102), (103) with χv ∈ H2
β(K), f̂ ∈ H0

β(K) ∩H0
γ(K), for γ < β. As above, χ ∈ C∞

0 (K)
denotes a cut-off function which is = 1 in a neighborhood of the vertex of the cone K. If the line
{λ ∈ C : Im λ = γ + m

2 − 2} does not intersect the spectrum of the pencil AD, then we have

v = χ
∑

c
(k,j)
ℓ U

(k,j)
ℓ,M + h ,

where the remainder h is such that χh ∈ H2
γ(K). Here U

(k,j)
ℓ,M is the partial sum of the series U

(k,j)
ℓ

containing M terms such that χriλℓ+(M+1)P
(k,j)
M+1 ∈ H2

γ(K). The asymptotic formula for v involves the
summands corresponding to the eigenvalues of the pencil in the strip {λ ∈ C : Im λ ∈ (γ + m

2 − 2, β +
m
2 − 2)}, so that χU

(k,j)
ℓ,M ∈ H2

β(K) and χU
(k,j)
ℓ,M ̸∈ H2

γ(K)
To state the main result for the expansion of the parameter-dependent problem near the vertex of

the cone K, we introduce the following function spaces:

∥v;DHβ(K, ξ, τ)∥ =
(
γ2∥v;H1

β(K, p)∥2 + ∥χpv;H
2
β(K, p)∥2

) 1
2 ,

∥f̂ ;RHβ(K, ξ, τ)∥ =
(
∥f̂ ;H0

β(K)∥2 + p2(1−β)γ−2∥f̂ ;L2(K)∥2
) 1

2
,

where p =
√

|ξ|2 + |τ |2 and τ = σ − iγ (σ ∈ R, γ > 0). By Proposition B.2 and (106), the operator
L(Dy, ξ, τ) from Problem (102), (103), defines a continuous map L(Dy, ξ, τ) : DHβ(K, ξ, τ) → RHβ(K, ξ, τ).

In [40], Matyukevich and Plamenevskǐı investigate the dependence of properties of L(Dy, ξ, τ) on β.
Let 1 > β1 > β2 > . . . be numbers in (−∞, 1] such that every line {λ ∈ C : Im λ = βr +

m
2 − 2} contains

at least one eigenvalue of the pencil AD.
Matyukevich and Plamenevskǐı obtain the following results:

Theorem B.4 (Theorem 6.3.5, [40]). Suppose that β ∈ (β1, 1], γ > 0 and f̂ ∈ RHβ(K, ξ, τ). Then

(102), (103) with right hand side f̂ admits a unique solution v satisfying

∥v;DHβ(K, ξ, τ)∥ ≤ c∥f̂ ;RHβ(K, ξ, τ)∥,

where c is independent of (ξ, τ).
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Theorem B.5 (Proposition 6.4.1, [40]). Suppose γ > 0, β ∈ (βr+1, βr), 0 < βr−β < 1, f̂ ∈ RHβ(K, ξ, τ)
and

(f̂ ,w
(k,j)
ℓ (·, ξ, τ))L2(K) = 0

for all w
(k,j)
ℓ corresponding to eigenvalues of AD in the strip {Im λ ∈ (βr+1 +

m
2 − 2, β1 +

m
2 − 2)}. Then

the solution v of (102), (103), admits the representation

v(y, ξ, τ) = χ(py)
∑
ℓ

∑
k,j

c
(k,j)
ℓ (ξ, τ)u

(k,j)
ℓ (y) + v0(y, ξ, τ) .

Here the outer summmation over ℓ sums over all eigenvalues λℓ of the pencil with Im λ = βr +
m
2 − 2,

while the inner summation sums over a basis {u(k,j)
ℓ } of power-like solutions as in (109) corresponding

to λℓ. The remainder v0 belongs to DHβ(K, ξ, τ).
There holds

c
(k,j)
ℓ (ξ, τ) = piλℓ

∑
q

1

q!
(i ln(p))qd

(k+q,j)
ℓ (ξ, τ) ,

with
d
(k,j)
ℓ (ξ, τ) = p−2

(
f̂(p−1·, ξ, τ),w(k,j)

ℓ (·, ξ/p, τ̄/p)
)
L2(K)

.

Moreover there holds

∥v0;DHβ(K, ξ, τ)∥ ≤ c∥f̂ ;RHβ(K, ξ, τ)∥, |d(k,j)ℓ (ξ, τ)| ≤ cpβ+
m
2
−2∥f̂ ;RHβ(K, ξ, τ)∥,

with a constant c independent of ξ, τ and f̂ .

B.2 Solution of a parameter-dependent Dirichlet problem in a wedge

By means of an inverse Fourier transform F−1
ξ 7→z in the dual edge variable ξ, we obtain results for the

general Dirichlet problem in the wedge D,

L(x, Dx, τ)v(x, τ) = f̂(x, τ), x ∈ D, (118)

v(x, τ) = ĝ(x, τ), x ∈ ∂D , (119)

the problem in the frequency domain corresponding to (98), (99).
The regularity of the solutions is described in the following weighted Sobolev spaces on D = K×Rn−m.

In D, one uses the coordinates x = (y, z) and introduces polar coordinates in K: r = |y|, ωωω = y
|y| . Define

∥u;Hs
β(D)∥ =

∑
|α|≤s

ˆ
D
r2(β+|α|−s)|Dα

xu|2
 1

2

, (120)

∥u;Hs
β(D, p)∥ =

(
s∑

k=0

p2k∥u;Hs−k
β (D)∥2

) 1
2

. (121)

Corresponding spaces Hs
β(∂D) and Hs

β(∂D, p) on ∂D are obtained as trace spaces for Hs
β(D), respectively

Hs
β(D, p).
The basic existence result is given by:

Proposition B.6 (Theorem 4.2.2, [40]). Suppose that the wedge D is admissible in the sense of [40],
{f̂ , ĝ} ∈ L2(D)×H1(∂D) and τ = σ − iγ, σ ∈ R, γ > 0. Then there exists a unique strong solution v of
(118) and (119). Furthermore, there exists a constant c > 0 independent of τ such that

γ2∥v, H1(D, |τ |)∥2 + γ∥p(v), L2(∂D)∥2 ≤ c
(
∥f̂∥2L2(D) + γ∥ĝ, H1(∂D, |τ |)∥2

)
.
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Higher regularity has been obtained by Matyukevich and Plamenevskǐı in the spacesHs
β(D). Following

[40] we only state the result for homogeneous boundary conditions.

Proposition B.7 (Proposition 5.1.1, [40]). Let β ≤ 1. Assume Im λ = β + m
2 − 2 does not intersect the

spectrum of AD. Then for v ∈ H2
β(D, 1) ∩H1

β=0(D) with L(Dx, 0)v ∈ L2(D) there holds

∥χτv, H
2
β(D, |τ |)∥2 + γ2∥v, H1

β(D, |τ |)∥2 (122)

≤ c
{
∥L(Dx, τ)v, H

0
β(D)∥2 + |τ |2(1−β)γ−2∥L(Dx, τ)v, L

2(D)∥2
}
,

where χτ (x) = χ(|τ |y) for some χ ∈ C∞
0 (K) which is = 1 in a neighborhood of the vertex of the cone K.

The constant c is independent of v, τ = σ − iγ, σ ∈ R, γ > 0.

A corresponding result for the wave equation with inhomogeneous boundary conditions has been
considered in [50], Formula (7), but we omit the more involved statement.

The proof in [40] is based on three steps: (i) estimates far from the edge, (ii) estimates near the edge,
(iii) the global a priori estimate (101).

B.3 Solution of a time-dependent problem in a wedge; non-homogeneous boundary
conditions

We now present results for the time-dependent system (98), (99), with constant coefficients, obtained
from the frequency-domain results via the inverse Fourier transform. They are stated in terms of the
following weighted function spaces in the space-time cylinder Q = D×R, with coordinates x = (y, z) ∈ D
and parameter q > 0:

∥w;Hs
β(Q)∥ =

∑
|α|≤s

ˆ
R

ˆ
D
r2(β−s+|α|)|Dα

x,tw(x, t)|2 dx dt

1/2

,

∥w;Hs
β(Q, q)∥ =

(
s∑

k=0

q2k∥w;Hs−k
β (Q)∥2

)1/2

.

If γ > 0, we set wγ(x, t) := exp(−γt)w(x, t) and define

∥w;V s
β (Q, γ)∥ = ∥wγ ;Hs

β(Q, γ)∥ .

The corresponding spaces on the boundary ∂Q are defined as the trace spaces of Hs
β(Q), respectively

V s
β (Q, γ).

Definition B.8. Assume (f ,g) ∈ V 0
0 (Q, γ)× V

3/2
0 (∂Q, γ), and let v be a strong solution to (118), (119)

in D with right hand side (f̂ , ĝ). Then u(y, z, t) = F−1
(ξ,τ)→(z,t)v(y, ξ, τ) is called a strong solution of (98),

(99).

Proposition B.6 implies that for any (f ,g) ∈ V 0
0 (Q, γ) × V

3/2
0 (∂Q, γ) with γ > 0 the problem (98),

(99) admits a unique strong solution and

γ2∥u;V 1
0 (Q, γ)∥2 + γ∥p(u), V 0

γ (∂D, γ)∥2 ≤ c
(
∥f ;V 0

0 (Q, γ)∥2 + γ∥g;V 3/2
0 (∂Q, γ)∥2

)
,

for a constant c > 0 independent of γ.
Let χ ∈ C∞(K) be a cut-off function which is identically 1 in a neighborhood of the conical point 0.

Define
Xu(y, z, t) = F−1

(ξ,τ)→(z,t)χ(py)F(z′,t′)→(ξ,τ)u(y, z
′, t′) (123)
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and
Λµu(y, z, t) = F−1

τ→t|τ |µFt′→τu(y, z, t
′) . (124)

Higher regularity theorems involve the following norms in Q: For β ∈ R and γ > 0

∥v;DVβ(Q, γ)∥ =
(
γ2∥v;V 1

β (Q, γ)∥2 + ∥Xv;V 2
β (Q, γ)∥2 + γ∥∂νv;V 0

β (∂Q, γ)∥2
)1/2

, (125)

∥f ;RVβ(Q, γ)∥ =
(
∥f ;V 0

β (Q, γ)∥2 + γ−2∥Λ1−βf ;V 0
0 (Q, γ)∥2

)1/2
. (126)

∥(f ,g);RVβ(Q, γ)∥ =
(
∥f ;RVβ(Q, γ)∥2 + ∥Xg;V

3/2
β (∂Q, γ)∥2 + γ∥g;V 1

0 (∂Q, γ)∥2

+γ−1∥Λ1−βg;V 1
0 (∂Q, γ)∥2

)1/2
. (127)

More generally, one may introduce for q ∈ N0

∥f ;RVβ,q(Q, γ)∥ =

 q∑
j=0

γ−2j∥Λjf ;V q−j
β+q−j(Q, γ)∥

2 + γ−2(1+q)∥Λ1−β+qf ;V 0
0 (Q, γ)∥2

1/2

,

and similarly RVβ,q(Q, γ) and DVβ,q(Q, γ).
The following result may then be found in Theorem 7.4, [40], for g = 0 and q = 0. It may be extended

to inhomogeneous boundary conditions and q > 0 using the arguments in [34].

Theorem B.9. Suppose q ∈ N0, γ > 0 and (f ,g) ∈ RVβ,q(Q, γ). a) If β ∈ (β1, 1), the strong solution u
to (98), (99) belongs to DVβ,q(Q, γ) and there exists c > 0 independent of γ such that

∥u;DVβ,q(Q, γ)∥ ≤ c∥(f ,g);RVβ,q(Q, γ)∥ .

b) If β ∈ (βr+1, βr), then there exists a solution u to (98), (99) if and only if for all ξ ∈ Rn−m, for all

τ ∈ R− iγ and for all wk,j
ℓ corresponding to eigenvalues λℓ of AD with Im λ ∈ [βr +

m
2 − 2, β1 +

m
2 − 2],

(f̂(·, ξ, τ),wk,j
ℓ (·, ξ, τ))L2(K) + (ĝ(·, ξ, τ), ppp(wk,j

ℓ )(·, ξ, τ))L2(∂K) = 0 . (128)

We can now state the main result of this section, which gives the asymptotics of the time-dependent
problem in a neighborhood of the edge. It may be found in Theorem 7.5, [40], for g = 0 and q = 0.
The extension to inhomogeneous boundary data g follows as in Section 3: choose an extension g̃ in the
domain with Dirichlet trace g. Theorem 7.5, [40] then assures an asymptotic expansion of the function
U = u− g̃, which satisfies homogeneous boundary conditions. The expansion of u = U+ g̃ then follows.

Theorem B.10. Suppose γ > 0 and (f ,g) ∈ RVβ,q(Q, γ) for β ∈ (βr+1, βr) with 0 < βr−β < 1. Assume

that for all ξ ∈ Rn−m, for all τ ∈ R − iγ and for all wk,j
ℓ corresponding to eigenvalues λℓ of AD with

Im λ ∈ [βr +
m
2 − 2, β1 +

m
2 − 2] the relation (128) holds. Then the solution u to (98), (99) admits an

asymptotic expansion

u(y, z, t) =
∑
ℓ

∑
k,j

(Xc̃k,jℓ )(y, z, t)uk,j
ℓ (y) + u0(y, z, t) , (129)

with u0 ∈ DVβ,q(Q, γ). Here the first sum is over all eigenvalues λℓ with Im λ = βr +
m
2 − 2, while the

second sum is over all generalized eigenfunctions uk,j
ℓ corresponding to λℓ. The coefficients c̃k,jℓ (z, t) are

defined by
c̃k,jℓ = F−1

(ξ,τ)→(z,t)c
k,j
ℓ ,

where

ck,jℓ = piλℓ
∑
q

1

q!
(i ln p)qd

(k+q,j)
ℓ (ξ, τ), (130)
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and, with p =
√

|ξ|2 + |τ |2 and wk,j
ℓ as in Theorem B.9,

d
(k+q,j)
ℓ (ξ, τ) = p−2(f̂(p−1·, ξ, τ),wk,j

ℓ (·, ξ/p, τ/p))L2(K) + p−1(ĝ(p−1·, ξ, τ), ppp(wk,j
ℓ )(p−1·, ξ/p, τ/p))L2(∂K).

Moreover, the following estimates hold: ∥e−γtd̃ℓ;H
2−m

2
−β(Rn−m+1)∥ ≤ c∥(f ,g);RVβ,q(Q, γ)∥

and ∥u0;DVβ,q(Q, γ)∥ ≤ c∥(f ,g);RVβ,q(Q, γ)∥.

The explicit formulas show that for f smooth in time also the coefficients dℓ will be smooth in time.
Analogous results for the Neumann problem may be obtained in a similar way, see [35, 40]. The

boundary condition affects the corresponding stencil AN and consequently its eigenvalues iλℓ and singular
functions wk,j

ℓ .

Appendix C

We recall certain auxiliary results from [21], which are used in the proofs of Theorem 5.3 and Theorem
5.7.

Lemma C.1 ([21], Lemma 3). Let Γ, Γj (j = 1, . . . , N) be Lipschitz domains with Γ =
N⋃
j=1

Γj, s ∈ [−1, 1]

and r ∈ R. Then for all ũ ∈ Hr
σ(R+, H̃s(Γ)), u ∈ Hr

σ(R+, Hs(Γ)),

N∑
j=1

∥u∥2r,s,Γj
≤ ∥u∥2r,s,Γ , ∥ũ∥2r,s,Γ,∗ ≤

N∑
j=1

∥ũ∥2r,s,Γj ,∗ . (131)

Lemma C.2 ([21], Lemma 8). Let Ij = [0, hj ], r ∈ R, 0 ≤ sj ≤ 1, f2 ∈ H̃−s2(I2), f1 ∈ H̃r(R+, H−s1(I1).
Then there holds

∥f1(t, x)f2(y)∥r,−s1−s2,I1×I2,∗ ≤ ∥f1∥r,−s1,I1,∗∥f2∥H̃−s2 (I2)
.

A similar result holds in the positive Sobolev norms:

Lemma C.3 ([21], Lemma 9). Let Ij = [0, hj ], 0 ≤ s ≤ 1, f2 ∈ H̃s(I2), f1 ∈ H̃s(R+, Hs(I1). Then
there holds

∥f1(t, x)f2(y)∥r,s,I1×I2,∗ ≤ ∥f1∥r,s,I1,∗∥f2∥H̃s(I2)
.

Lemma C.4 ([21], Lemma 10). Let 0 ≤ r ≤ ρ ≤ q + 1, −1 ≤ s ≤ 0, R = [0, h1] × [0, h2], u ∈
Hρ([0,∆t), H1(R)), Πq

tu the orthogonal projection onto piecewise polynomials in t of order q, Π0
x,yu =

1
h1h2

´
R

u(t, x, y)dy dx. Then for p = Πq
tΠx,yu we have

∥u− p∥r,s,R,∗ ≲ (∆t)ρ−rmax{h1, h2,∆t}−s∥∂ρt u∥L2([0,∆t)×R)

+max{h1, h2,∆t}−s
(
h1∥ux∥L2([0,∆t)×R) + h2∥uy∥L2([0,∆t)×R)

)
. (132)

If u(t, x, y) = u1(t, x)u2(y), u1 ∈ Hρ([0,∆t), H1([0, h1])), u2 ∈ H1([0, h2]) then

∥u−p∥r,s,R,∗ ≲ (∆t)ρ−rmax{h1, h2,∆t}−s∥∂ρt u∥L2([0,∆t)×R)+
(
h1−s
1 ∥ux∥L2([0,∆t)×R) + h1−s

2 ∥uy∥L2([0,∆t)×R)

)
.

Lemma C.5 ([21], Lemma 11). Let Q = [0, h1] × [0, h2], u ∈ H3([0,∆t) × Q), p the bilinear interpolant
of u at the vertices of Q. Then there holds for r ∈ R

∥u− p∥r,0,[0,∆t)×Q ≲ max{h1,∆t}2∥uxx∥r,0,[0,∆t)×Q +max{h2,∆t}2∥uyy∥r,0,[0,∆t)×Q

+ (max{h1,∆t}2 +max{h2,∆t}2)∥utt∥r,0,[0,∆t)×Q

+max{h1,∆t}2max{h2,∆t}∥uxxy∥r,0,[0,∆t)×Q (133)

∥(u− p)x∥r,0,[0,∆t)×Q ≲ max{h1,∆t}∥uxx∥r,0,[0,∆t)×Q +max{h1,∆t}∥uxt∥r,0,[0,∆t)×Q

+max{h2,∆t}2∥uxyy∥r,0,[0,∆t)×Q (134)
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