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Abstract

Flextegrity lattices are spatial grids composed of stiff segments kept in
contact by compliant pre-tensioned tendons. The kinematic skeleton is sen-
sible to the orientation of the segments, since their relative rotation produces
the straining of the tendons to an amount that depends upon the angle of ro-
tation and the shape of the pitch surfaces of the contact joints: these dictate
the constitutive properties of the lattice in response to external actions. Two-
and three-dimensional lattices are investigated, in which the contact pitch
surfaces, obtained with axial-symmetric toothed conjugate profiles, mimic
the kinematics of spheres, centered are at the nodes of a simple cubic lattice,
in pure rolling motion. The allowed mechanisms are discussed under infinites-
imal deformation, to recognize possible eigenstress states in the lattice. The
response under finite deformations is worked out for two-dimensional lattices
under symmetric and asymmetric loading. The theoretical predictions are
compared with experimental results on 3D-printed physical models. Possible
extensions are discussed for lattices with segments of varying size, different
arrangements, and multi-stable contact joints. The flextegrity microstructure
can represent a mesoscopic model for homogenous crystals composed of non-
pointwise molecules, but it could actually be manufactured in metamaterials
with peculiar properties.
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1. Introduction

In the remarkable Robert Boyle Lecture, delivered before the Oxford Uni-
versity Junior Scientific Club on May 16th 1893 (reprinted in Appendix H of
the Baltimore Lectures [1]), Sir William Thomson, 1st Baron Kelvin, while
discussing the “The Molecular Tactics of a Crystal”, presents his insightful
view of the constitution of matter. Every crystal is a homogenous assem-
blage of small bodies (molecules), all equal, similar and in precisely similar
attitudes. Each member of the assemblage may be regarded as a single point
but this is a drastic approximation. One should consider that each member
is a group of points, or a globe, or a cube, or another geometrical (possibly
chiral) figure, in reciprocal contact on a set of points, or lines, or surfaces.
The solids may be perfectly smooth and frictionless, or in frictional contact,
or connected by forces operating at a distance. The coherent assemblage
constitutes a kinematic frame or skeleton for an elastic solid of very pecu-
liar properties: change of shape of the whole can only take place in virtue
of rotation of the constituent members, relative to each other. An interest-
ing problem is represented by supposing any mutual forces, such as may be
produced by springs, to act between the solid molecules, and investigating
configurations of equilibrium on the supposition of frictionless contacts. The
solution of it is that the potential energy of the springs must be stationary
for equilibrium, and a minimum for stable equilibrium, but the constitutive
properties are dictated, besides the nature of intermolecular forces, by pure
geometric consideration of kinematic compatibility. This interpretation of
the macroscopic properties of a crystal, defined by the geometry of the con-
stituent members, the nature of their contact, and the type of intermolecular
forces, is mesoscopic [2], being halfway between the microscopic level of de-
tail, where particles can be taken into account through quantum physics, and
the macroscopic level of continuum mechanics.

Mesoscopic models are usually discrete lattices of points, where lumped
masses interact through elastic forces that depend on mutual distance, schema-
tized as extensional spring linkages [3]. Going beyond the simplest linear elas-
tic response, these can be characterized by nonlinear laws and multi-stable
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(a) (b)

Figure 1: Scandium fluoride lattice: (a) schematics of the crystalline lattice with indication
of octahedral meso-structures; (b) octahedral rotation at increasing temperature, causing
bulk contraction.

equilibrium states [4, 5], in order to achieve complex stress-strain paths at
the macroscopic level. Micropolar bodies can be represented by grid frame-
works, where meso-particles are linked by beam-like connectors [6, 7]. The
field of application of such models is very wide, ranging from the analysis of
propagating acoustic waves in elastic media [8] to the modeling of vibrations
of tensioned membranes [9], from fluid-structure interaction [10] to the repro-
duction of facial movements [11]. A major limitation in models of this kind is
that the points are seen as irrotational entities; instead, there are materials
composed by the aggregation of subelements (meso-particles) whose relative
rotations cannot be disregarded. An illustrative example is that of scandium
fluoride (ScF3) whose microstructure, shown in Figure 1(a), is represented by
octahedral-shaped meso-particles. These can relatively rotate when heating
is provided [12], causing a reduction of volume according to the mechanism
of Figure 1(b), responsible of a negative thermal-expansion coefficient. For
such a material the basic mesoscopic element cannot be point, but a member
with geometric shape, whose configuration is defined by its rotation.

In order to account for “rotational” effects and, specifically, torsional vi-
brations of the lattice members, it is common to conceive mass-spring models
where additional eccentric springs connect the body of two adjacent meso-
constituents, with anchoring points different from their centroids [2]. This
approach is followed for the representation of chiral metamaterials, when the
connectors are not symmetrically placed [13, 14]. Another class is represented
by lattice solid models [15], consisting of non-pointwise particles linked by
bond of various nature. This “discrete element modeling” of matter can
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interpret macroscopic mechanical properties of structured materials [16].
Here, we present a new conceptual structure for two- and three-dimensional

lattices with non-chiral structure. These will be referred to as flextegrity lat-
tices1, because they represent the extension to the spatial case of flexural
tensegrity. This is a structural principle first proposed in [19] for beams
composed as a chain of pierced segments in unilateral contact, tied together
by a tensioned (prestressing) cable providing integrity and flexural capacity.

The key property is that the contact surfaces between adjacent segments
are curved in such a way that each contact joint opens up as a consequence
of the relative segmental rotation, making the tendon elongate. The shape of
the contact profiles and the stiffness and pre-tension of the tendon determine
the strain energy of the system. The original one-dimensional concept of
flexural tensegrity has been declined in many ways. Different contact shapes
provide diverse constitutive properties [19]. The continuum limit, when the
number of segments goes to infinity and their length to zero, is a particular
type of Euler’s elastica [20], with nonlinear and nonlocal bending stiffness.
Enlarging the cavities of the segments modifies the energy landscape, making
it non-convex in type [21], and possibly permitting the activation of sequen-
tial snap-through instabilities in response to localized perturbations [22].

When passing to spatial lattices, the major difficulty certainly consists in
the design of the contact joints. Here, we detail the simplest case in which
the kinematics of the segments mimics that of balls of radius R in pure rolling
contact (no-sliding), with their centers at the points of a simple cubic lattice
of size 2R. The segments are held together by straight tendons, following
the direction of the primitive vectors of the lattice. The skeletal structure
constrains the kinematics; the energy of the system results from the straining
of the tendons consequent to the relative rotation of the segments.

Flextegrity lattices could define mesoscopic models for crystals. Re-
markable are the similarities with the nanostructure of fullerite, composed
of fullerene balls as indicated in Figure 2(a). The spherical structure of
fullerene, with a diameter of 0.714 nm [2], is shown in Figure 2(b) with ref-
erence to Buckminsterfullerene C60 [23] with 60 carbon atoms. It recalls

1We decided to shorten “flexural-tensegrity lattice” to “flextegrity lattice” because we
have experienced that the term “tensegrity” is too reminiscent of the word coined by
Füller [17, 18] as a portmanteau of tensile integrity, to denote assemblies of ties tensioned
against a few floating struts. This has caused some terminological confusion, because
classical tensegrities have no relevance to the flexural properties analyzed here.
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(a) (b) (c)

Figure 2: Fullerite and fullerene crystalline structure. (a) Basic unit of fullerite lattice at
room temperature, composed of members of (b) Buckminsterfullerene (type of fullerene
with formula C60). (c) Face-centered cubic (FCC) lattice for fullerite at room temperature,
and simple cubic (SC) lattice for fullerite at lower temperature.

the same tessellation (hexagons and pentagons) of soccerballs, as well as the
geometric structure of the geodesic domes theorized by Buckminster Füller
(hence, the name Fullerene). The fullerite crystal at room temperature [24]
is a face-centered cubic (FCC) lattice with parameter a “ 1.417 nm (Figure
2(c)), whose points are the centers of fullerene balls. At 260K a phase tran-
sition begins, in which the mesoscopic arrangement is transformed from FCC
to simple cubic (SC) lattice (Figure 2(c)). At room temperature fullerenes
are free to rotate [24] independently one another at high frequency, but at
lower temperature (SC lattice, below 200K) the mobility is restrained: the
orientation of the rotation axis is always the same and the molecules per-
form torsional vibrations, relatively rotating with jump-like movement [2]
only when a certain energy barrier is occasionally overcome.

The analogy with crystalline lattices is kinematical, because flextegrity
assemblies are characterized by the relative rotation of the segments as main
deformation mechanism. Although the model accounts for relative rotations
of sub-constituents with finite amplitude, not for their spin, it appears suit-
able for those materials in which torsional vibrations play a major role. The
flextegrity lattice can also inspire metamaterial with tailor properties, de-
pending on the shape of the contact surface and the mutual spatial placement
of segments. Anyway, this study is a field of research per se, as it represents
the nontrivial spatial extension of the structural principle introduced in [19].
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2. The model

After recalling the concept of flextegrity for one-dimensional beams, its
extension to three-dimensional geometries is presented.

2.1. Contact joints in flextegrity segmental beams

The primitive concept of “flexural tensegrity” [19], here shortened in
“flextegrity”, refers to segmental beams. The segments are pierced in the
centroidal axis and they are held together by a pre-tensioned cable (tendon)
passing through the holes and anchored at the end sections. Figure 3(a) is
a schematic representation of the contact joint between any two consecutive
segments; the contact surfaces are shaped according to toothed profiles, as
in gears, to prevent sliding. The corresponding pitch lines are arcs of circle,
which are drawn in red in Figure 3(a), while the passing-through tendon is
represented by the green line. Under tensile forces, when the prestress in-
duced by the tendon is overcome, the segments detach as indicated in Figure
3(b), so that the axial stiffness is due to the elasticity of the tendon. When
subjected to shear loading, as in Figure 3(c), the deformation depends on
the elastic compliance of the teeth. Under compression, the contact surfaces
flatten due to Hertzian contact, as per Figure 3(d). The response to pure
bending is led by the relative rotation of the segments along the design pitch
lines, as shown in Figure 3(e): the tendon is strained due to the opening of
the joint, while the segments are subjected to localized compressions at the
contact point.

If the tendon is compliant, as in most practical applications, the bulk
deformation of the segments can be neglected. In this case, the joint is almost

(a) (b) (c) (d) (e)

Figure 3: Schematics of a flextegrity joint for beam-like structures, with toothed contact
profiles corresponding to circular pitch lines. (a) Reference state, with indication of the
cable (green line) and the pitch lines (in red); (b) detachment of segments under tensile
forces; (c) deformation of teeth and segments under shear forces; (d) deformation of seg-
ments under compression loading; (e) relative rotation of segments under bending.
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rigid under shear and compression (Figures 3(c) and 3(d)). The deformation
due to tensile actions (Figure 3(b)) depends on the cable prestress and its
axial stiffness. Under bending (Figure 3(e)), the response is governed by the
straining of the cable, which is forced to elongate by the relative rotation of
the segments, while the segments remain practically undeformed.

To detail the response under bending, Figure 4(a) illustrates the paradig-
matic case of circular pitch lines of radius R. Let N0 denote the initial
prestress of the cable and K its effective axial stiffness. When the consec-
utive segments i and i ` 1 are relatively rotated by the quantity ∆φi , the
segments follow pure rolling along the pitch lines. The pitch point moves
from the cable exit point to the position Pi , while the cable elongates of the
quantity Λi . The distance between the portion of the cable that becomes
exposed (of length Λi , between the two exit points from the segments) and
the pitch point Pi , indicated as ai in Figure 4(a), is the internal lever arm.
Hence, the internal bending moment Mi at the joint, computed with respect
to the pitch point, can be written as Mi “ N ai , where N is the tension
force in the cable. If the cable can frictionless slide inside the holes and it is
anchored at the end-segments only, its elongation is the sum of all the joint
elongations Λi . For a segmental beam composed of n segments and n ´ 1
contact joints, the total elongation of the cable is Λ “

řn´1
i“1 Λi , while the

axial force in the cable passes from the initial pre-tension N0 at rest, to the
value N “ N0 ` K Λ after bending.

The amount of cable elongation Λi under bending and the internal lever
arm ai , are only dictated by the shape of the pitch profiles and the amount
of relative rotation. For the case of circular pitch profiles, one has

Λi “ 2R
´

1 ´ cos
∆φi

2

¯

, (2.1a)

ai “ R sin
∆φi

2
. (2.1b)

Observe that Λi and ai are correlated by pure kinematics, since it is possible
to demonstrate [19, 21], for any given convex shape of the pitch profiles, that
ai “ dΛi{d∆φi . This relationship is confirmed, for the case of circular pitch
profiles, by direct differentiation of (2.1a).

In order to analyze the mobility of the joint, one can again refer to the
case of circular pitch lines as per Figure 4(a). Assume, for simplicity, that
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2R is the segmental length along the longitudinal centroidal axis, so that the
reference point Ci`1 corresponds to the segment centroid. If the segments i
and i`1 relatively rotate of ∆φi , Ci`1 moves to the new position C 1

i`1 . With
respect to the reference frame shown in Figure 4(a), define the displacements

∆xi “ ´2R
´

1 ´ cos
∆φi

2

¯

, and ∆yi “ 2R sin
∆φi

2
, (2.2)

while the lever arm and the cable elongation are defined by (2.1). If ∆φi is
an infinitesimal quantity (small deflections and rotations), one can write

∆xi » 0 , ∆yi » R∆φi , Λi » 0 , and ai » R∆φi{2 , (2.3)

while the internal bending moment reads Mi “ N ai » N0R∆φi{2 .

(a) (b)

(c)

Figure 4: Schematics of a flextegrity joint and comparison with a pin joint. (a) Flextegrity
joint between segments i and i`1, with indication of the cable elongation Λi and the lever
arm ai : the reference point Ci`1 moves to C 1

i`1 after a relative rotation of ∆φi . (b) Pin
joint, connecting beam segments i and i` 1. (c) Equivalence between the flextegrity and
the spring-hinged joint under the hypothesis of small deflections.
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It should be observed that the kinematics is equivalent to that of a pin
hinge, indicated in Figure 4(b), only in the case of infinitesimal rotations.
In fact, for finite deformations, one would find ∆xi “ ´Rp1 ´ cos∆φiq and
∆yi “ R sin∆φi . There is therefore a substantial difference, associated with
rolling motion of the segments along the pitch profiles.

Under the hypothesis of small rotations, the flextegrity joint is equivalent
to a spring hinge with constant kφ “ N0R { 2. In this case, the flextegrity
assembly can be modeled as a chain of segments connected by 3D spring
hinges, representing the spatial extension of the 2D case of Figure 4(c). In
the limit in which the prestressing force in the cable vanishes (N0 Ñ 0`), the
flextegrity joint is equivalent to a spherical hinge. However, in this condition,
the detachment of the segments under tensile forces (Figure 3(b)), is not
prevented.

2.2. The spatial assembly

The flextegrity grid considered here mimics the kinematic skeleton of
spheres of radius R in pure rolling contact (no sliding) along their surfaces.
Figure 5(a) refers to a SC lattice, where the sphere centers are placed at the
vertices of the cubic unit cell of size 2R. The spheres are kept in contact
by three orthogonal families of straight prestressing cables (tendons) passing
through holes drilled in them, as indicated in Figure 5(b). If the cables
are compliant, one can neglect the deformation of the spheres and regard
them as rigid bodies. Clearly, the resulting assembly is incompressible under
uniformly distributed positive (inwards) pressures applied to the boundary;
under negative (outward) pressures, it will not be deformed as long as the
prestress from the tendons is not exceeded.

The spheres are supposed to be in pure rolling contact: this is a strong
kinematic constraint that limits their mobility. Consider, for example, one
layer of the assembly, indicated in Figure 5(c). If one sphere rotates in the
clockwise direction, the condition of no-sliding requires that the neighbor-
ing ones rotate counter-clockwise. Remarkably, the rotation of one sphere
affects the rotations of all the other spheres of the layer, which are forced
to rotate of the same angle (in absolute value), alternatively clockwise or
counter-clockwise. This is a nonlocal interaction that affects instantaneously
the whole layer where the sphere, which is first rotated, is placed. Another
noteworthy property is that shear-like distortion of the lattice, of the type
represented in Figure 5(d), is not allowed, because this would involve the
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(a) (b)

(c) (d)

Figure 5: Spheres in contact: (a) assembly of spheres in the SC lattice and (b) detail of one
layer with indication of the three families of prestressing tendons. The spheres are in pure
rolling contact: (c) allowed relative rotation, and (d) forbidden shear-like deformation.

reciprocal slipping of some of the surfaces in contact. Moderate shear dis-
tortion would be permitted only by the deformation of the material of which
the spheres are made.

Here, we consider a particular kinematic constraint, represented in Figure
6(a), where the relative motion between any two “rigid” spheres i and j is
fully described by the torsion angle ∆ψij , the longitude angle ∆ϑij , and the
angle ∆φij corresponding to pure rolling along the meridian. In the refer-
ence (undistorted) state, in which the tendons are straight, the center of the
spheres, Ci and Cj , and the cable exit points, E 1

ij and E2
ij , which coincides

in the same point Eij , are aligned on a straight line. Starting from this con-
figuration, the sphere j can freely rotate (without straining the tendon) with
respect to the adjacent sphere i of the angle ∆ψij around the axis passing
through Ci , Cj and Eij (the cable cannot provide any stiffness against twist).
Then, the spheres can pure roll one another along that meridian (with the
“North” pole in Eij) identified by the longitude angle ∆ϑij . The motion
takes place for an arc length equal to R∆φij { 2, so that points P 1

ij and P 2
ij
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(a)

(b) (c)

Figure 6: Kinematics of the 3D joint. (a) Degrees of freedom of the spherical contact
surfaces: torsion ∆ψij , longitude ∆ϑij , and pure rolling along the meridian achieving
the relative rotation ∆φij . (b) Reference (undistorted) state on the slicing plane passing
through points Ci , Cj , P

1
ij andP

2
ij , and (c) rotated (distorted) state on the same plane,

with indication of the cable elongation Λij and lever arm aij .

are going to coincide in Pij . This path is represented by the arcs drawn in
red and distinguished by solid dots in Figure 6(a).

Figures 6(b) and 6(c) respectively report a section of the reference undis-
torted state and the distorted state, obtained with a slicing plane passing
through points Ci , Cj , P

1
ij and P 2

ij . The motion on this plane is analogous
to that of a one-dimensional joint, discussed in Section 2.1. In particular,
the cable elongates of the quantity Λij between the spheres i and j, while the
distance aij corresponds to the lever arm of the cable axial force with respect
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to the pitch point Pij . If R is the radius of the spheres, the expressions for
Λij and aij are again defined by (2.1a) and (2.1b), respectively.

Observe that the assumed kinematics does not cover all possible config-
urations of two spheres in pure rolling contact. This is in general a strong
non-holonomic constraint: in principle, any two arbitrary points laying on
the two spherical surfaces can be brought into contact by following a proper
contact path. On the contrary, the motion indicated in Figure 6(a) requires
that the arcs of circle ŔEijP 1

ij and
ŔEijP 2

ij have the same length, a property that
is not satisfied by all rolling motions. This simplification is such that the rel-
ative position of the spheres is completely determined by the angles ∆ψij ,
∆ϑij and ∆φij , which can thus be considered as generalized coordinates to
describe the configuration of system.

The constraint just described can be directly achieved within the category
of flextegrity structures, since it represents the natural three-dimensional ex-
tension of the toothed beam joint depicted in Figure 3. The concept is illus-
trated in Figure 7. An exploded view of the disassembled joint is shown in
Figure 7(a): the portions of the spheres that remain in contact during move-
ments associated with a limit admissible value for the angle ∆φij , are grooved
according to toothed contact profiles, axially symmetrical with respect to the
axis of the prestressing tendon. The conjugate profiles are shaped in such a
way that relative rotation between the bodies achieves a pure rolling motion
along two meridians. A side view of the sections of the two bodies, obtained
by cutting them with a plane passing through the contact meridians, is rep-
resented in Figures 7(b) and 7(c) for the undistorted reference state and the
rotated state, respectively.

This joint corresponds to a pin coupling for the spinning around cable
axis (rotation ∆ψij is unconstrained). The contact meridians are defined
by the angle ∆ϑij . The elasticity of the cable and its prestress define the
stiffness of the joint against the relative rotation ∆φij .

3. Physical models

Examples of flextegrity grids, forming two-dimensional structures (plates)
and three-dimensional frames (cubes), are now analyzed. Physical prototypes
are manufactured via 3D printing to demonstrate the concept of flextegrity
lattices.
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(a)

(b) (c)

Figure 7: Physical model of the contact joint, with axial-symmetric toothed contact pro-
files, achieving the kinematic constraint schematized in Figure 6. (a) View of the disas-
sembled joint with the axial-symmetric toothed contact surfaces; longitudinal section of
the joint (cable represented by the red solid line) in (b) the reference state and (c) the
rotated configuration.

3.1. Kinematic analysis of flextegrity plates

Figure 8 shows two physical models of segmental plates, representative
of two-dimensional flextegrity lattices. The assembled basic unit, composed
of 4 segments manufactured via 3D printing, is indicated in Figure 8(a),
whereas Figure 8(b) shows the corresponding exploded view. The contact
surfaces, which correspond to spherical pitch surfaces of radius R “ 30mm,
are shaped according to toothed gears, axial symmetric with respect to axis
of the tendons, made with two couples of black-colored parallel elastic rods
visible in Figure 8(a). The size of the segments is such that the distance
between the pitch surfaces and the center of the segments, defined as the point

13



(a) (b)

(c) (d)

Figure 8: Segmental plates with flextegrity skeleton. (a) Photograph of the manufactured
basic unit composed of 4 segments, and (b) corresponding exploded view. (c) Photograph
of a larger plate with 9 segments (4 basic units) and (d) corresponding exploded view.
Tendons are black-colored elastic strings.

of intersection of two orthogonal tendons passing through them, is equal to R,
so that the system reproduces the assembly of a plane of spheres in contact.
Figures 8(c) and 8(d) are the counterpart of the previous ones for a larger
assembly, made of 4 basic units coupled together, with 9 segments in total.
The tendons are elastic strings of diameter 1.2mm, with axial stiffness equal
to K “ 0.058N/mm for the prototype of Figure 8(a) and K “ 0.029N/mm
for the case of Figure 8(c). The difference is due to the fact that the length
of the cables of the first prototype is one-half of the second one. The cables
are equally prestressed (modulo tolerances) by N0 » 1.2N.

Supposing that the angles of rotation are infinitesimal of the first order
(linearized kinematics), the contact joints can be approximated by spherical
(spring) hinges, as discussed in Section 2. The physical model of Figure 8(a)
is thus schematized as in Figure 9(a), which represents the assembly of 4
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L-shaped bars connected by hinges, numbered counterclockwise. One can
assume, as degrees of freedom, the absolute rotations of each segment αh, βh
and γh , for h “ 1 . . . 4, defined by the triad of Figure 9(a). The corner of
element 4 is clamped to rule out rigid-body displacements.

The kinematic matrix C for such a structural system can be written as

(a) (b)

(c) (d)

Figure 9: Infinitesimal mobility of the plate and states of self-stress. (a) Equivalent
chain of pinned L-shaped bars (element 4 is clamped), representative of the basic unit
of Figure 8(a), and (b) corresponding six independent mechanisms, with indication of
possible systems of external loads to achieve them. (c) Equivalent scheme with pin joints
for the larger structure of Figure 8(c), with indication of in-plane internal actions at joints
and (d) corresponding state of self-stress.

15



C “

»

—

—

—

—

—

—

–

´1 0 0 ´1 0 0 1 0 0 0 0 0
1 0 0 ´1 0 0 ´1 0 0 0 0 0
0 ´1 1 0 1 1 0 1 ´1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.1)

being the degrees of freedom ordered in the array d defined as

dT “
␣

α1 β1 γ1 α2 β2 γ2 α3 β3 γ3 α4 β4 γ4
(

. (3.2)

The kinematic matrix (3.1) is rank deficient with respect to the number
of degrees of freedom. There are 6 independent mechanisms, associated with
the non-trivial solutions of C d “ 0, which are shown in Figure 9(b). Since
the pre-tension of the cable renders the contact joints equivalent to spring
hinges, the aforementioned mechanisms can be obtained with the external
loads, reported in the same figure. Here, F “ kφ ∆φ {R, where the angle
∆φ defines the deformation. Observe that the mechanisms of Figure 9(b)
corresponds to infinitesimal mobility, but they can be achieved also with finite
rotations, with the only exception of mechanism (1). This is not allowed by
the actual geometry of the joint, as it is incompatible with the rolling motion
of the contact surfaces along meridians, as detailed in Section 2.2.

The plate of Figure 8(a) cannot accommodate any other state of self-
stress but the pre-compression introduced by the cables. This is not the case
of the larger structure of Figure 8(c). Consider the corresponding pinned-
joint assembly, composed of 4 L-shaped, 4 T-shaped and 1 X-shaped bars
connected by hinges. This is shown in Figure 9(c) together with the relevant
in-plane internal actions. The static unknowns are 36, while the rank of the
static matrix S, collecting the static equilibrium equations, is equal to 35.
This means that it is possible one state of self-stress, schematically shown
in Figure 8(d). This could be obtained, e.g., by providing to the central
X-shaped segment a positive thermal variation, causing its expansion.

In practical terms, this state of self-stress could be used to reduce the
number of prestressing cables, as the two tendons passing through the inner
segment are no longer needed to keep the segments in contact. On the other
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hand, the state of self-stress is not stable, and it can be lost by means of
out-of-plane deflections of the plate.

3.2. Kinematic analysis of flextegrity cubes

Figure 10 shows two 3D-printed prototypes of flextegrity cubes. The ba-
sic unit is displayed in Figure 10(a) and it is now composed of 8 segments,
kept together by 12 tendons. The exploded view is shown in Figure 10(b).
Figures 10(c) and 10(d) refer to a larger system of 27 segments, formed by
the assembly of 8 basic units, coupled by 27 tendons. The contact conju-
gate profiles are shaped similarly to the two-dimensional case of Section 3.1,
forming spherical pitch surfaces of radius R “ 30mm. In this way, one aims
at reproducing a set of spheres in pure rolling contact whose centers follows a
SC lattice. Each tendon is again an elastic thread of diameter 1.2mm, with
axial stiffness equal to K “ 0.058N/mm for the prototype of Figure 10(a)
and K “ 0.029N/mm for the prototype of Figure 10(c), due to the different
cable lengths. Again, the cables are equally prestressed at N0 » 1.2N.

As done in the previous Section 3.1, independent mechanisms can be
caught from the equivalence between the flextegrity assembly and an assem-
bly of hinged beams under the hypothesis of infinitesimal mobility. Figure
11(a) collects the six independent mechanisms, obtained for the basic cubic
unit of Figure 10(a). For each mechanism, a possible set of external loads
is also indicated, with F “ kφ ∆φ {R, where kφ is the stiffness of the spring
hinges, defined in Section 2.1. All these mechanisms are also allowed in large
deflections for the geometry at hand, corresponding to spherical contacts.

For the larger cube of Figure 10(c), nine states of self-stress are pos-
sible. These corresponds to the state of self-stress already found for the
two-dimensional case of Figure 8(c), which can be now achieved in each pla-
nar face and intermediate symmetry plane of the cubic assembly, as shown
in Figure 11(b). The major difference, with respect to the case of plates, is
that now each state of self-stress is stable, thanks to the confinement of the
cubic lattice, which avoid out-of-plane deformations.

The structure of Figure 10(c) may represent a mesoscopic model for a
crystalline lattice with strong asymmetry between the responses under ten-
sion and compression. Remarkably, the particular form of the eigenstress
states could provide an insight about the strategy of crystalline growth in thin
films, or the way through which the molecular skeleton could be strengthened
via thermal processes or oversized solutes. A certain freedom is maintained
for the rotations of sub-elements, which is a peculiar property of flextegrity
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(a) (b)

(c) (d)

(e)

Figure 10: Flextegrity cubes. (a) Photograph of the manufactured basic unit composed
of 8 segments and 12 tendons (black-colored elastic strings); (b) corresponding exploded
view. (c) Photograph of a larger cube with 27 segments (8 basic units) and 27 tendons;
(d) corresponding exploded view; (e) mobility of each face of the cube.
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(a)

(b)

Figure 11: Infinitesimal mobility of the segmental cube and states of self-stress. (a) The
six independent mechanisms for the cubic basic unit of Figure 10(a), with indication of
possible systems of external loads to achieve the mechanisms. (b) Equivalent scheme with
pin joints for the larger cube of Figure 10(c), with indication of one of the 9 possible states
of self-stress.

lattices. For example, the comparison of Figure 10(e) with Figure 1(b) recalls
the molecular re-organization of the scandium fluoride lattice consequent to
heating. If the segments were circumscribed by a surface different from a
sphere (e.g., an ellipsoid), a deformation of this type could also be associated
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with a thermal differential expansion of the central segments with respect to
the neighboring ones, where the rotation renders the elongation compatible.

3.3. Examples of finite deformation

The kinematic analysis under large rotations presents no conceptual dif-
ficulty, but requires a robust numerical approach. An example, instructive
for its simplicity, is represented by the out-of-plane bending of flextegrity
plates under conservative external forces, such as self-weight. Since in the
manufactured prototypes the deformation of the segments is negligible, the
strain energy is associated only with the tendons.

Let H indicate the total number of tendons, e.g., H “ 6 for the case of
Figure 8(c). Let ∆ψ, ∆ϑ and ∆φ denote the arrays respectively containing
all the rotations ∆ψij , ∆ϑij , and ∆φij , as indicated in Section 2.2. With
the notation of Figure 6, the increase of strain energy ∆U when the segments
(spheres) roll on each another, starting from the reference state with straight
tendons, can be written as

∆U “

H
ÿ

h“1

N0,h Λh `
1

2

H
ÿ

h“1

Kh Λh
2

“

H
ÿ

h“1

N0,h

´

ř

i,j Λij

¯

h
`

1

2

H
ÿ

h“1

Kh

´

ř

i,j Λij

¯2

h
.

(3.3)

Here, N0,h (h “ 1, . . . , H) represents the initial prestress of the h´th tendon,
Kh its axial stiffness, whereas Λh denotes its total elongation, which is the
sum of the contributions Λij (detailed in Figure 6(c)) due to the relative
rotation of the two spheres i and j in contact, through which the h´th cable
passes. Since Λij is a function of ∆φij , the strain energy ∆U results to be a
function of ∆φ.

The work ∆W of the external conservative loads Fs , for s “ 1, . . . , S,
applied orthogonally to the initially-planar (mid) surface of the plate at S
points, depends upon the out-of-plane displacements ws of these points, i.e.,

∆W “

S
ÿ

s“1

Fsws . (3.4)
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Observe that the displacements ws depend on the position of the segments
(spheres) in the distorted state, which is defined by the rotations ∆ψij , ∆ϑij ,
and ∆φij . Hence, ∆W is a function of the vectors ∆ψ, ∆ϑ and ∆φ.

The equilibrium condition is defined by

∆U ´ ∆W “ ∆Up∆φq ´ ∆W p∆ψ,∆ϑ,∆φq “ min , (3.5)

under the constraints introduced, besides the boundary conditions, by the
kinematic skeleton. The latter correspond to the kinematic conditions that
each ring of the grid, following the path of segments in contact, must be a
closed loop: starting from one segment, one shall recover the same position
after the composition of displacements dictated by rotations ∆ψij , ∆ϑij ,
and ∆φij at each pair of consecutive segments.

The 3D-printed plate first considered consists in the assembly of 2 basic
units (6 segments), of the type indicated in Figure 8(a), now coupled in series.
The kinematic skeleton is that of 6 spheres of radius R “ 30mm in mutual
contact, arranged as in Figure 12(a). The tendons parallel to the short sides
are characterized by axial stiffness equal to Kh “ 0.058N/mm and they have
been pre-tensioned at N0,h » 1.7N (h “ 1, 2, 3), while for those following the
long sides one has Kh “ 0.029N/mm and N0,h » 1.4N (h “ 4, 5).

The test of Figure 12 was preliminary carried out. As indicated in Figure
12(a), the structure is clamped at one of the short sides and it is subjected
to the forces F1 “ F2 “ 0.1N, applied at the opposite sides. The tested plate
is placed vertically, in such a way that the planar face of the undeformed
plate is parallel to the gravity field, acting along the direction of the short
sides: this allows to disregard the action of the self-weight. The symmetry
of the problem is such that the structure deform as a one-dimensional beam,
for which an analytic solution can be found [19]. This served to validate
the numerical computations, which used the Nelder-Mead algorithm [25],
implemented in Mathematica® for energy minimization. Figures 12(b) and
12(d) show different views of the deformation of the prototype, which are
juxtaposed to the deformed shapes obtained via calculation, reproduced with
a CAD tool and reported in Figures 12(c) and 12(e), respectively.

Analytical and numerical solutions qualitatively coincide. A quantitative
comparison is reported in Table 1, in terms of the out-of-plane displacement
wA of the reference point A indicated in Figure 12. It should be mentioned
that there are potential sources of inaccuracy: precision of measurement with
a dynamometer and ruler, 3D printing tolerances, parasitic frictional forces
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(a)

(b) (c)

(d) (e)

Figure 12: Flextegrity plate composed of 6 segments (two basic units of Figure 8(a)) under
symmetric external loads. (a) Schematics of the spherical contact profiles with indication
of the constraints, the points of application of the loads, and the reference point A; (b)
and (d) are views of the deformed shape for the manufactured prototype, while (c) and
(e) are the corresponding views of shapes calculated from the model.
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(a)

(b) (c)

(d) (e)

Figure 13: Flextegrity plate composed of 6 segments (two basic units of Figure 8(a)) under
eccentric external load. (a) Schematic of the spherical contact profiles with indication of
the constraints, the point of application of the load, and the reference points A and B. (b)
and (d) are different views of the deformed shape for the manufactured prototype, while
(c) and (e) are the corresponding views of shapes calculated from the model.
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Table 1: Comparison between the deflection of the physical prototypes and that predicted
by the model, in terms of the out-of-plane displacements wA and wB of the reference points
A and B, indicated in Figures 12, 13 and 14.

Load case Figure Point Experiment Model

symmetric forces 12 A 44 ˘ 2mm 37 ˘ 5mm

eccentric force 13
A 27 ˘ 2mm 23 ˘ 5mm
B 63 ˘ 2mm 64 ˘ 5mm

self-weight 14 A 26 ˘ 2mm 25 ˘ 5mm

at the joints. In particular, the uncertainty results from the measurement
errors that affect the initial data of the problem, specifically for what concerns
N0,h , Kh and F1 “ F2, which can affect the theoretical calculations. That
said, the agreement between theory and experiment is reputed good.

The same physical model was tested under the eccentric force F “ 0.4N
indicated Figure 13(a). Figures 13(b)-13(d) and Figures 13(c)-13(e) again
compare the observed deflection with that obtained via numerical calcu-
lations. The flexural-torsional deformation is correctly reproduced by the
model. The quantitative comparison of the out-of-plane deflections wA and
wB of the reference points A and B, indicated in Figure 13, is again reported
in Table 1. Taking into account the potential sources of error, the model
provides accurate results with respect to the measured displacements of the
prototype.

The last test regards the square 3D-printed plate of Figure 8(c), placed
horizontally in the (vertical) gravity field. This is composed of 9 segments (4
basic units), and it is supported at the mid central segment and subjected to
self-weight. The pitch surface radius is again R “ 30mm, and the tendons,
whose axial stiffness is Kh “ 0.029N/mm for h “ 1, . . . , 6, are pre-tensioned
by N0,h “ 1.2N. The loads Fs » 0.1N represent the self-weight of each
segment. Figure 14 collects two different views for the plate in the deformed
state, and compares them with the corresponding shapes, obtained via calcu-
lations. The deformation recalls the shape of a hyperbolic paraboloid, which
is perfectly caught by the model. The vertical displacement wA of the refer-
ence point A, indicated in Figure 14(c), which corresponds to the center of
the corner sphere, is again reported in Table 1 to compare experiment and
theory. The agreement, in this case, is excellent.
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(a) (b)

(c) (d)

Figure 14: Deformation of a flextegrity plate composed of 9 segments (4 basic units),
under self-weight and supported at the middle. (a),(c) Different views of the deformed
shape for the manufactured prototype, with indication of the reference point A, and (b),(d)
corresponding views for the shape obtained via computation.

In conclusion, taking into account the uncertainties in the physical model,
in terms of measured tensile force and stiffness of the tendons, effects of par-
asitic friction at the contact joints and with the cables, possible inaccuracy in
the application of external loads, and 3D-printing tolerances, the agreement
between theory and experiments is considered more than satisfactory, both
qualitatively and quantitatively.

4. Discussion

Flextegrity lattices, mimicking an assembly of rolling spheres, can rep-
resent the basis for mesoscopic models of crystalline microstructures, where
the molecular rotations are non-negligible degrees of freedom. Similarly, the
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mesoscopic model can represent the actual microstructure of metamaterials,
with mechanical properties dictated by the kinematic skeleton. However, the
conceptual model can be declined in many other forms. In fact, by varying
the tendon stiffness/prestress, as well as the shape of the pitch surfaces of
the contact joints, with geometries departing from the spherical paradigm
(paraboloids, ellipsoids or more complex surfaces), a wide range of different
in-type responses could be attained. As discussed in [19, 20] for beam-like
structures, the stiffness and prestress of the tendons affects the equivalent
elasticity of the lattice; on the other hand, the shape of the pitch surfaces
dictates the cable elongation Λij and the lever arm aij at each joint, thus
modifying the form of constitutive relations.

The assemblies so far considered are, in practice, SC lattices of spheres
with the same radius R in pure rolling contact, but this is just one particular
category. Figure 15(a) reports a plan view of a lattice made with spheres
of two different sizes, connected by tendons represented in magenta color.
Figure 15(b) indicates that the system permits the relative rotation of the
spheres, with a motion similar to that already observed in Figure 5(c). Note,
however, that also a shear-like deformation, following the scheme of Figure
15(c), can be achieved with such a new arrangement. On the contrary, a
motion of this type is prevented in the assembly of equal spheres by the
constraint of pure rolling contact, as discussed in Figure 5(d).

Spherical segments of equal size could also be arranged in the form of
(nano-)tube lattices. Figure 16(a) schematically represents a tube formed

(a) (b) (c)

Figure 15: Lattices made with spherical segments with diverse radius. (a) Schematics of
the arrangement (tendons represented by magenta lines), which allows for both (b) relative
rotations and (c) shear-like deformation between the sub-particles.
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(a) (b)

Figure 16: Two possible arrangements for (nano-)tube lattices. Arrangement with (a)
parallel rings and (b) helically wound chains.

by parallel rings of spheres. In this case the integrity is granted by straight
longitudinal tendons, as well as by circular tendons that hoop the rings. An-
other possible configuration follows the helical arrangement of Figure 16(b).
Apart from straight tendons parallel to the axis of the tube, here the seg-
ments are kept in contact by tendons that follow the helix defined by the
sphere centers.

In a recent article [21], the authors have shown that the contact joints of a
segmental beam can achieve multiple equilibrium states (non-convex energy)
when the mobility of the tendon is increased by enlarging the segmental cav-
ities. The possible extension of this concept to flextegrity lattices is shown
in Figure 17. The multi-stable behavior is obtained by shaping the internal
cavity hollowed inside the segments, as indicated in Figure 17(a), so that the
pivot point of the cable (exit point from the tubular sheath) is set back with
respect to the pitch profile. This is formed, as discussed in [21] for the one-
dimensional case, by three smoothly-connected arcs of circle with radii R and
2R. The joint is multi-stable, because the are more than one configurations
associated with the minimal length of the tendon. Two-dimensional struc-
tures can be obtained by assembling cross-shaped segments according to the
scheme of Figure 17(b): this “straight” configuration depicts a non-chiral lat-
tice. There are, however, other two “rotated” equilibrium states, as per Fig-
ures 17(c) and 17(d), that provide a chiral micro-arrangement, stable under
null external actions. This is an example of how a homogeneous assemblage
of non-chiral objects can have chirality. The concept could also be extended
to three-dimensional multi-stable flextegrity lattices, although the design of
joints with a complex 3D mobility certainly requires additional investigation.
The possibility of manufacturing a 3D snapping coupling between the seg-
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(a) (b) (c) (d)

Figure 17: Other types of flextegrity lattices, with multi-stable contact joints. (a) Schemat-
ics of the segmental cavity (blank region), which increases the mobility of the cable inside
the segment, and pitch lines consisting of 3 smoothly-connected arcs of circle, as suggested
in [21], with radii R and 2R. Equilibrium configurations under null external actions: (b)
“straight” (non-chiral) state and (c),(d) “rotated” (chiral) states.

ments, leveraging the recently proposed variant [22, 26] of flextegrity beams,
is yet to be fully investigated.

In all the aforementioned cases, rolling motions rely on the hypothesis that
all the segments remain in contact along the pitch surfaces but, in general,
some components may detach under tension. Moreover, the hypothesis of
rigid segments should be relaxed when the segmental contact is achieved by
very stiff and highly pre-tensioned tendons. In this case, the change of shape
of the pitch profiles under contact forces will produce a modification of the
constitutive equations.

5. Conclusions

Flextegrity lattices composed of segments in a simple cubic arrangement,
mimicking a compact assembly of spheres in pure rolling contact, have been
proposed, theoretically analyzed, prototyped in physical models and tested.
Geometric compatibility provides a kinematic skeleton which constrains the
energetic landscape, enforcing constitutive properties that are dictated, be-
side the stiffness and pretension of the tie tendons, by the shape of the pitch
surface of the contact joints. The lattice could represent a mesoscopic model
for the homogeneous microstructure of a crystal with interacting molecules,
whose qualities as a whole depend upon the orientation of the molecules and
the mutual forces acting between them. Metamaterials built upon flextegrity
frames enjoy particular bulk properties and are amenable of (molecular) vi-
brations, which suggests their use as resonators.
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The static-kinematic analysis has also demonstrated that the lattice can
undergo self-equilibrated stress states (eigenstress). This finding could be
related to possible strategies for the growth of the crystal by the addition of
layer after layers, suggest a way by which contact forces can be increased by
inserting molecules with different size into the lattice, or motivate the change
in the microstructural orientation in response to the thermal expansions of
the molecules. The particular kinematic, supplemented by the consideration
of electric charges on the segments, could also represent a mesoscopic model
for piezoelectric effects.

The cases analyzed here represent the simplest flextegrity lattices. One
can imagine three-dimensional grids composed of segments with diverse ge-
ometry, different contact surfaces, possibly amenable of multiple equilibrium
states, representing a transition from chiral to non-chiral phases as a conse-
quence of thermal or mechanical stimuli. An improved model could account
for the different response of the assembly under tension, compression and
bending, by considering the detachment of segments. The dynamics of the
lattice, for what concerns either the global response of the whole, or the
local vibrations at the segmental (molecular) level, possibly complicated by
the fact that multi-stable contact joints may snap in response to localized
perturbations, still need to be analyzed. We postpone all these issues to
forthcoming works.
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