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A Probabilistic Next Best View Planner for Depth Cameras based on
Deep Learning

Riccardo Monica1 and Jacopo Aleotti1

Abstract— In this work we present a novel method to plan
the next best view of a depth camera by leveraging on a
Convolutional Neural Network (CNN), and on a probabilistic
occupancy map of the environment for ray casting operations.
In particular, a hybrid approach is introduced that exploits the
convolutional encoder-decoder to perform object completion,
and an algorithm based on ray casting to evaluate the infor-
mation gain of possible sensor view poses. Automatic object
completion consists of inferring the occupancy probability of
the regions of space that have not been observed. A comparison
against several methods, including City-CNN, was carried out
in 2D and 3D environments on publicly available datasets. In
particular, to enable comparison, the original City-CNN algo-
rithm was modified to work with depth cameras. Experiments
indicate that the proposed method achieves the best results in
terms of exploration accuracy. Results on a real robot are also
presented.

I. INTRODUCTION

A Next Best View (NBV) algorithm predicts the best
pose where a sensor should be placed to gather the most
possible information about the environment. By applying
a NBV algorithm iteratively and by moving the sensor to
the planned view poses, it is possible to perform robot
exploration tasks. This paper presents a novel method to
plan the NBV for a depth camera. The method relies on a
volumetric representation of the environment. In particular,
we operate on ternary occupancy values, where each cell
(voxel) may be empty, occupied or unknown. The proposed
NBV algorithm maximizes an information gain that estimates
the amount of unknown cells that would turn into occupied
or empty if observed from the planned viewpoint. Next
best view algorithms are usually computationally expensive,
as they need to simulate sensor measurements from many
candidate view poses. Moreover, traditional NBV approaches
make simple assumptions about the environment, and lack a
high-level understanding of the scene being observed. Hence,
only simple hypotheses are made about the distribution of
occupied space in the currently unknown region.

To address these issues, recent work has proposed the
use of deep learning to determine the NBV. Deep learning
methods provide the following advantages. First, they are
more efficient than traditional NBV algorithms, as sensor
simulation is not required. Second, deep learning methods
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can learn priors about the environment and, therefore, they
can predict the NBV by considering the occupancy likelihood
of unknown voxels.

However, despite the above advantages, deep learning
based view pose prediction does not guarantee that the
selected viewpoint has enough information gain for the
iterative NBV algorithm to converge. Hence, deep learning
methods may not explore the whole environment, but may
get stuck in a local optimum. As remarked by Gallos et al.
[1] application of CNNs to active vision should focus on
modeling uncertainty of predictions over successive steps,
instead of looking for where to place the sensor.

Therefore, we propose a hybrid approach, which exploits
both prediction of environment priors, thanks to deep learn-
ing, as well as a probabilistic NBV planner to compute the
optimal sensor pose. In particular, we present a convolutional
neural network that generates, at each iteration, a probabilis-
tic occupancy map of the environment, based on the current
partially complete environment representation. In the gener-
ated probabilistic volumetric map, cells with unknown values
are replaced by an occupancy probability value based on the
output of the CNN. Then, at each iteration, a probabilistic
NBV approach is applied to determine the view pose.

A comparison against several other methods was also
carried out, including approaches based on City-CNN [2],
and a probabilistic NBV planner [3]. City-CNN is a fully-
convolutional approach designed for omni-directional sen-
sors that operates on a volumetric representation, and that
does not require the possible sensor viewpoints to be known
at training time.

Hence, as further contribution, in order to enable compar-
ison the original City-CNN algorithm was modified to work
with depth cameras. In particular, three variants of City-
CNN that output not only the sensor position, but also its
orientation, were developed and evaluated.

Experimental evaluation was conducted in simulation in
2D environments, on the publicly available Inria Aerial
Image Labeling dataset [4], in 3D environments generated
from the YCB benchmark [5], and on a real robot. Results
indicate that the proposed method outperforms City-CNN
based approaches, as well as the standard probabilistic NBV
planner, because the proposed method exploits the benefits of
the two worlds, i.e. it leverages environment priors prediction
and it guarantees full exploration of the environment.

The paper is organized as follows. Section II provides an
overview of the state of the art. Section III illustrates the
proposed NBV method. Experimental results are reported in
Section IV. Finally, Section V concludes the paper.



II. RELATED WORK

Common approaches for robot next best view planning are
volumetric algorithms based on 3D occupancy maps and ray
casting. An occupancy map approximates the workspace as a
regular grid of cubic cells (voxels), or by using hierarchical
structures like octrees. Occupancy values can be evaluated
either using probabilistic or non-probabilistic methods.

Probabilistic approaches for NBV planning store a value
in each occupancy map cell that represents the probability
of occupancy [3], [6], [7], [8], [9], [10]. Daudelin et al.
[3] proposed a probabilistic next best view framework for
a mobile robot to perform incremental reconstruction of
the 3D shape of an object. The approach in [3] is similar
to the probabilistic NBV planner that we adopted in our
hybrid solution. Probabilistic cost functions on 3D occu-
pancy grids were also investigated for NBV planning in
tabletop environments [6], [7]. Palomeras et al. [8] presented
a probabilistic next best view planner for exploration of
underwater environments. In [9] a probabilistic method was
introduced for in-hand reconstruction of objects, which did
not consider the contribution of other unknown volumes in
the environment to compute the information gain.

Non probabilistic approaches were also described in sev-
eral works [11], [12], [13], [14], [15], [16], [17]. Quin
et al. [12] investigated a NBV planner that favors view
poses that are close to the current robot configuration. In
[13], [14] sampling-based NBV methods were considered.
In particular, a receding horizon NBV planner was proposed
by Bircher et al. [13] for aerial robotic platforms, and a
mixed local and global planner was presented by Selin et
al. [14]. In [15] a method was developed to explore objects
based on saliency of point cloud segments, while in [16]
a NBV planner was introduced to explore regions of the
space where changes are more likely to have occurred, due
to user manipulation actions. In [17] a NBV planner was
proposed for a humanoid robot that exploits body movements
primitives to reach favorable points of view.

During the last years, few research studies have investi-
gated deep learning approaches for next best view planning
[18]. In [19] a reinforcement learning based CNN approach
was used to predict the NBV of a depth camera. However,
the approach selected the NBV among a discrete action
space of pre-sampled viewpoints which must be known
at training time. Similarly, a supervised learning method
was investigated by Mendoza et al. [20], where a fixed set
of viewpoints was defined at training time, and the NBV
problem was solved as a classification problem.

In [21] a NBV system for plant phenotyping was proposed,
which adopted a CNN to auto-complete point clouds of
plants in order to produce compelling predictions about
unobserved parts. However, point clouds included only infor-
mation about occupied space, and the NBV system did not
exploit unknown voxels. Instead, in our approach we do not
discard information about unknown space at training time.

The work in [22] performed object recognition using a
Convolutional Deep Belief Network to auto-complete a par-

Fig. 1. Proposed CNN architecture. Conv blocks and deconv blocks are
represented by green and red arrows, respectively, and they are numbered
from 1 to Nconv. Skip connections are displayed in blue. The final convo-
lution layer is displayed in orange.

tial volumetric representation of the object. A NBV planning
approach was also proposed, aimed at selecting the optimal
viewpoint for discriminating the object category. Object
recognition experiments were carried out in environments
comprising a single object, and quantitative evaluation of
the NBV algorithm was limited to few views.

Ly et al. developed City-CNN [2], a fully-convolutional
deep learning method that operates on a volumetric represen-
tation of the environment. However, as shown in this paper,
end-to-end approaches are unable to guarantee a positive
information gain at each NBV.

Deep learning approaches have also been considered for
robot navigation and exploration tasks [23][24]. In [23],
deep learning was exploited to predict the best action for
a mobile robot to explore a 2D environment by selecting a
movement from a fixed number of possible actions. In [24],
deep learning techniques were adopted to predict the best
direction in which a robot manipulator must move a sensor
to maximize information gain. Another CNN-based method
for object auto-completion was proposed in [25], but this
work was aimed at robotic grasping instead of computing a
next best view.

III. METHOD

The NBV exploration approach maintains a partially
known representation C of the (2D or 3D) environment as a
uniform grid of cells cv with three possible values: occupied ,
empty , and unknown . The depth camera is modeled as a
standard pinhole model with a maximum range Rmax and
horizontal field of view HFOV (and vertical field of view
VFOV in 3D environments). Given the camera pose, the
sensor may observe any cell cv within its field of view, if
no other occupied cell is between cv and the sensor origin,
and if the distance between cv and the origin is lower than
the maximum range. When a new observation occurs, any
unknown cell which is observed by the sensor is set to
occupied or empty .

The proposed method is composed of three main steps.
In the prediction step, the partially known representation C
of the environment is fed to an encoder-decoder CNN, to
obtain a probabilistic map P where each cell pv contains a
real value in [0, 1], denoting the cell occupancy probability.
The encoder-decoder network architecture is described in



Section III-A. Then, in the second step, multiple candidate
sensor view poses with different orientations are sampled,
originating in each empty cell in C. In the final step a
probabilistic ray-casting method is used to determine the
corresponding information gain.

In order to compute the information gain for a large
number of view poses in an efficient way, we take advantage
of the fact that frustum volumes originating from the same
cell may partially overlap. The candidate sensor view poses
evaluation step is split into two sub-steps. First, in the ray
casting sub-step, omnidirectional ray casting is performed for
each cell by traversing a set of uniformly distributed rays,
originating from the center of the cell. An information gain
is then computed for each ray according to a probabilistic
method illustrated in Section III-B. Hence, a directional
gain map Gr is defined, where each gain value Gr (v, h)
is indexed by one cell index v, and a ray index h.

Finally, in the view evaluation sub-step, for each cell v,
Nviews camera view poses, originating in v, are sampled at
several orientations. The information gain of each camera
view pose is computed by accumulating gains Gr (v, h) of
the rays h that are in the view pose field of view, as illustrated
in Section III-C. The view pose with the highest gain is
selected as the next best view.

A. CNN architecture

The CNN network architecture (Fig. 1) is based on an
encoder-decoder inspired by City-CNN [2]. The encoder-
decoder receives as input a 2D (or 3D) grid which encodes
ternary values (occupied , empty or unknown) for each
cell. In particular, the CNN input consists of two separate
channels. Elements ev of the first channel E (empty) are
equal to 1 if cv is empty , and 0 otherwise. Elements ov
of the second channel O (occupied) are equal to 1 if cell
cv is occupied , and 0 otherwise. In the training phase, a
ground truth representation of the environment DT={dv}
is provided for the output of the decoder, where dv=1 in
occupied cells, and dv=0 in empty cells. Hence, the network
learns to predict the complete environment given a partially
known environment representation.

The encoder-decoder is organized as Nconv conv blocks
followed by the same number Nconv of deconv blocks. Each
conv block is composed of a first convolution layer with
stride 1, leaky ReLU activation, a second convolution layer
with stride 2, and leaky ReLU activation. Kernel size is 3 for
both layers. A 2D convolution is used for 2D environments,
and a 3D convolution is used for 3D environments. Due to
the value of the second stride (i.e. 2), each conv block halves
the grid dimensions. The first conv block outputs 8 channels
(for 2D) and 16 channels (for 3D), each subsequent conv
block doubles the number of channels. Each deconv block is
composed of a single transposed convolution (deconvolution)
layer, symmetric to the second convolution layer of the
conv block, with leaky ReLU activation. Each deconv block
doubles the grid dimensions and halves the number of
channels. Skip connections are added between the input of
each conv block and the output of the corresponding deconv

Fig. 2. Left: 2D example rays originating in cell v, with Nrays = 4 rays
for each square edge. Right: example probabilistic occupancy map in a 2D
case, with empty cells (white), occupied cells (red) and unknown cells (from
black to blue, with increasing occupancy probability pv). A ray used by the
probabilistic NBV planner is displayed in green, originating in the blue dot.

block. A single-channel convolution layer with kernel size
1 is used as the final layer of the network, followed by the
sigmoid activation function.

The output of the encoder-decoder is a single-channel (2D
or 3D) grid P ′, with the same size as the input, and cell
values p′v in the [0, 1] interval. As the status of occupied
and empty cells is known, the algorithm focuses only on the
prediction of the occupancy probability of unknown cells.
Hence, the output is multiplied by a binary mask U whose
values uv are set to 1 if and only if cv = unknown , i.e.
cells where cv ̸= unknown are forced to zero. The mask
values are computed from the input masks E and O as uv =
1 − ev − ov . Also, an occupancy probability equal to 1 is
forced in cells where ov = 1. That is, elements pv of the
probabilistic map P are computed as:

pv = uv p
′
v + ov (1)

During training against the ground truth DT={dv}, equation
(1) effectively sets to zero backpropagated gradients in the
already observed empty and occupied regions, so that the
encoder-decoder can focus on the predictions in the unknown
regions.

B. Probabilistic NBV approach
For each empty cell v in C, a set Hr of rays originating

from the center of the cell is generated at regular intervals,
where each ray has an index h (an illustration for the 2D
case is shown in Fig. 2, left). Along each ray samples are
taken at 1-voxel intervals, from t = 0 to t = N , where
N = Rmax is the maximum range. The samples occur in
an ordered sequence of N cells vt ∈ {v0 . . . vN}, i.e. for
a ray h (originating in v) vt = ⌊v + t bh⌉, where bh is the
unit vector of ray h. If the ray goes out of the boundaries
of environment C, the sampled cells vt are considered as
already explored and occupied, so that they do not contribute
to the information gain.

A ray with origin in v0 can reach a cell vt, 0<t≤N , only
if all cells in segment v0vt are empty, with the possible
exception of vt. Hence, probability P (rt), where rt is the
event that cell vt is observed by the ray, is given by:

P (rt) =

t−1∏
i=0

(1− P (oi)) (2)



where P (oi) = pvi is the occupancy probability of cell vi in
the probabilistic map P computed in Section III-A. Equation
(2) can be computed incrementally for each t during ray
traversal.

The information gain is defined as the number of currently
unknown cells in C that turn into occupied or empty after
observation. In principle, the expected number of unknown
cells observed by a single ray can be estimated by the sum
of the unknown traversed cells weighted by the probability
that a cell is observed by the ray:

N∑
t=0

uvtP (rt) (3)

where uvt = 1 if cell vt is unknown in C, and 0 otherwise.
However, cells near the origin are traversed by multiple rays,
so they are over-represented in (3). Ray density decreases
with the distance from the origin as 1/tν , where ν=1 in a 2D
grid and ν=2 in a 3D grid. Hence, from (3) the normalized
number of unknown cells observed by the ray is:

H (v, h) =

N∑
t=0

uvt P (rt) t
ν (4)

Conversely, the normalized expected number of cells tra-
versed by a ray that do not turn either into occupied or empty
is given by the number of traversed occupied cells, the empty
cells, and the unknown cells with probability (1− P (rt)):

M (v, h) =

N∑
t=0

(evt + ovt + uvt (1−P (rt))) t
ν (5)

therefore, the normalized gain Gr (v, h) of ray h originating
in cell v is defined as:

Gr (v, h) =
H (v, h)

H (v, h) +M (v, h)
(6)

which is always included in the interval [0, 1].

C. View evaluation

For each empty cell, Nviews camera viewpoints Wj are
generated (with j ∈ 1, . . . , Nviews) originating at the center
of the cell and oriented outwards. In 2D, viewpoints are
sampled at regular intervals around the axis perpendicular
to the image plane. In 3D, viewpoints are sampled at regular
increments of azimuth, elevation and rotation around the
sensor axis. For each viewpoint Wj , the set of rays H (Wj) ⊂
Hr which are in Wj field of view are determined. Then, gain
GW (v,Wj) of view Wj in cell v is computed by summing
all gain values Gr (v, h) of the rays in H (Wj), i.e.:

GW (v,Wj) =
∑

h∈H(Wj)

Gr (v, h) (7)

and the next best view W ⋆ is given by:

(v⋆,W ⋆) = argmax
(v,W )

GW (v,Wj) (8)

where v⋆ is the cell where the NBV is located.

Fig. 3. An example of directional gain grid Gg (µ), with unknown cells
(dark grey), occupied cells (red) and empty composite cells. On the border
of composite cells, a deeper blue color means a higher predicted gain in
that direction. The center of composite cells is black as it does not contain
a useful value. Three composite cells are displayed on the right. The ray
direction corresponding to the highest gain is displayed in orange.

D. Directional City-CNN

In order to compare the proposed approach with City-CNN
[2], the original City-CNN algorithm (that was designed for
omnidirectional sensors) was modified to work with depth
cameras. In particular, a Directional City-CNN algorithm (D-
City-CNN) was developed which predicts the information
gain Gr(v, h) of a ray from the current (partially known)
3D environment state. As in [2], the input of D-City-CNN
is a two-channel grid of cells. The first channel E (empty)
contains elements ev which are equal to 1 if cv is empty ,
and 0 otherwise. Elements fv of the second channel F are
equal to 1 on the frontier (also called shadow boundary) of
the unknown volume, i.e. if cell cv is unknown , and if there
is at least an empty adjacent cell.

Since fully-convolutional encoder-decoder CNNs are most
effective when working with data organized into grids, the
output of the CNN is defined as a (2D or 3D) grid named
directional gain grid Gg (µ). As the rays h ∈ Hr (Fig. 2,
left) are sampled at regular intervals on the square edges
(or cube faces), each cell v is considered as a composite
cell. The composite cell is itself a square (or a cube) made
of sub-cells, with resolution Nrays along each edge. Each
ray h ∈ Hr is associated to a sub-cell on the border of the
composite cell. Resolution of Gg (µ) is Nrays times the voxel
resolution of Gr (v, h), i.e. v = ⌊µ/Nrays⌋. Each composite
cell corresponds to a possible ray origin, and each Nrays ×
Nrays (×Nrays in 3D) sub-cell on the edge corresponds to a
ray direction (Fig. 3). The total number of rays cast from a
composite cell is equal to the total number of rays cast from
a single cell in the proposed hybrid approach (Section III-A).

The convolutional neural network proposed in Section III-
A was changed to predict the directional gain grid Gg(µ),
containing a real value in [0, 1] in each sub-cell. In particular,
log2 (Nrays) additional deconv blocks were added at the end
of the network in place of the final layer, to get the required
resolution. The central sub-cells of the composite cells are
not used, as they are not associated with any ray. Hence, a
final layer of the network multiplies the network output by
a binary mask which is 0 in the central sub-cells of each
composite cell and 1 otherwise. The network output is also



Fig. 4. Left: sample image from the 2D dataset after the simulation of
random view poses. Ground truth occupied cells in DT are displayed in
red, empty cells in C are in white, and frontiers in C are in blue. Center:
sample ground truth voxel grid from the unstructured 3DU dataset. Right:
sample ground truth voxel grid from the tabletop 3DT dataset (cell color
changes along the vertical axis).

multiplied by a binary mask E whose values eµ = 1 if
and only if the corresponding cell cv = empty , so that the
network generates the next best view only in empty space.
As there is a correspondence between each ray h ∈ Hr in
a cell v and a sub-cell, grid Gg(µ) is easily converted into
Gr (v, h). Then, D-City-CNN proceeds as in Section III-C.

IV. EVALUATION

The proposed hybrid CNN-probabilistic (CNN Prob.)
method was evaluated in 2D and 3D environments against
eight other approaches for next best view planning, which
are briefly described hereafter.

1) Random. This approach randomly selects the next best
view with a camera pose located in the empty space
of the current environment representation.

2) Flat City-CNN. This method naively extends City-
CNN to work with a depth camera. It provides as
output a grid of cells. Each cell v contains a channel
(value) for each view Wj sampled in the cell, which
represents the predicted information gain for that view
GW (v,Wj). The next best view is selected as the one
with the highest channel value.

3) B-City-CNN. This method extends City-CNN to output
the best camera direction for each cell, in addition to
the predicted gain. In particular, the output Q (v) is a 2-
channel grid (in 2D), or a 4-channel grid (in 3D). Each
channel vector qv in each cell has values in [−1, 1]. The
norm ∥qv∥ is the predicted gain and the normalized
vector qv/ ∥qv∥ is the view direction (in 2D), or the
view orientation quaternion (in 3D).

4) D-City-CNN. It uses the Directional City-CNN ap-
proach (Section III-D) to predict information gain
Gr (v, h) for Nrays rays in each cell. Then, standard
view evaluation is carried out as in Section III-C.

5) Information Gain. This approach is a standard non-
probabilistic next best view planner [11] that does
not exploit a CNN. Rays stop at the first non-empty
cell, and the information gain is equal to the number
of unknown cells between the sensor minimum and
maximum range.

6) Probabilistic Information Gain (Prob. IG). This
method is a pure probabilistic next best view planner
(Section III-B) that does not exploit a CNN to predict

TABLE I
PARAMETERS

Symbol Value (2D/3DU/3DT) Description
HFOV 60◦/60◦/60◦ Horizontal field of view
VFOV - /46◦/46◦ Vertical field of view
Rmax 128/24/128 Sensor maximum range (cells)
Nrays 16/4/4 Square/cube side for ray sampling
Nviews 60/52/52 Sampled views
P0 0.15/0.15/0.15 Fixed probability for Prob. IG

Nconv 6/3/4 No. of conv blocks

TABLE II
APPROXIMATE TRAINING TIME (HOURS)

Method 2D 3DU 3DT
CNN Prob. 2.5 0.5 0.5

B-City-CNN 2.5 1 2
D-City-CNN 13 12.5 2.5

Flat City-CNN 8 16 2

the occupancy probability of unknown cells. Probabil-
ity pv=P0 is constant for all cells.

7) CNN Prob. Downsampled (CNN Prob. D). A faster
variant of CNN Prob. where viewpoints are sampled
only in a fixed number of empty cells (2000 in 2D
and 500 in 3D), chosen at random.

8) Omniscient (oracle). The ground truth NBV given an
a priori knowledge about the occupancy state of the
environment. It is computed by setting the probabilistic
map P equal to the ground truth DT . This method is
not realistic, but it provides an upper bound for the
information gain.

All methods were tested in multiple 2D and 3D environ-
ments. At the beginning of each experiment all the cells of
C are set to unknown . Each experiment completed after the
computation of 100 next best views. Since a NBV can be
generated only in empty cells, the first view pose is randomly
generated where the ground truth DT is empty (dv = 0). The
occupancy values of grid C are updated according to the
pinhole sensor model. After initialization, grid C contains at
least one empty cell. Then, the NBV method being tested
is executed iteratively. At each iteration a next best view is
determined and the occupancy values of C are updated by
simulating the sensor observation, and unknown voxels are
set empty or occupied according to the sensor model.

The deep learning methods were implemented in Python
using Tensorflow. Probabilistic and non-probabilistic NBV
methods were implemented in C++, with GPU-accelerated
ray casting using OpenCL. Communication between C++
and Python code was achieved using the ROS (Robot Operat-
ing System) framework. The software ran on an Intel i7-6700
@ 3.40GHz, 32 GB RAM, with a GeForce GTX 980 Ti, 6
GB RAM. Source code is available at http://rimlab.ce.
unipr.it/Software.html, under nbv 3d prob cnn.
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Fig. 5. Percentage of unknown cells at each iteration for each method, averaged over 40 trials, in 2D environments (left), unstructured 3D environments
(3DU dataset, center), and tabletop 3D environments (3DT dataset, right).
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Fig. 6. Computation time for each iteration with respect to the percentage of explored (occupied or free) cells, averaged over 40 trials, in 2D environments
(left), unstructured 3D environments (3DU dataset, center), and tabletop 3D environments (3DT dataset, right).

A. Dataset and training

In 2D environments (Fig. 4, left), similarly to City-CNN
[2], the dataset was taken from ground truth images of
the Inria Aerial Image Labeling dataset [4]. The dataset
contains 180 black-and-white aerial images of cities, where
buildings are labeled in white. Images were downsampled
from the original resolution 5000 × 5000 to 1250 × 1250.
Tests were carried out on two different synthetic 3D datasets,
an “unstructured” dataset (3DU), and a “tabletop” dataset
(3DT). The 3DU dataset is composed of 180 volumetric grids
with resolution 64 × 64 × 64. The environments of 3DU
were generated by placing a random number of objects from
the YCB benchmark [5] at random position and orientation
in the grid (Fig. 4, center). Conversely, the 3DT dataset is
composed of 180 volumetric grids with resolution 128 ×
128× 96, representing tabletop scenarios. The environments
of 3DT were generated by randomly placing objects from
the dataset [26] (named RD) on a planar surface represented
by a point cloud with noise (Fig. 4, right). Cell size is
about 1.2 cm. Data augmentation was achieved by rotating
each environment in steps of 90 degrees. All four possible
rotations were used in 2D, for a total of 720 samples. Four
rotations around the vertical axis were also used in the 3DT
dataset. In the 3DU dataset, only eight rotations around the
coordinate axes were selected among the possible ones, for
a total of 1440 samples.

For training, empty grid E, occupied grid O and frontier
grid F were generated for each environment by simulating

random view poses (Fig. 4, left). For each environment, a
different random number of view poses was selected between
200 and 400 in 2D, between 10 and 15 in 3DU, and between
30 and 40 in 3DT, to prevent overfitting on the number
of poses. Ground truth DT for the CNN Prob. and CNN
Prob. D methods was the volumetric representation of the
environment itself. To train the other CNNs (Flat City-
CNN, D-City-CNN and B-City-CNN), ground truth for grids
GW (v,W ), Gg (µ) and Q (v) was computed by simulating
each view or ray, and by computing the amount of unknown
cells which would be observed. Only 2/3 of the dataset was
used as training set, and the remaining as test set. Training
used the Adam optimizer with learning rate 0.001. All CNNs
were trained for up to 120 epochs. Training was stopped after
20 epochs for the 3DU and 3DT version of CNN Prob. and B-
City-CNN, as further training would lead to over-fitting. All
networks use the Mean Square Error (MSE) loss function.

Relevant parameters are reported in Table I. For D-City-
CNN, Nrays was reduced to 4 to fit into available video RAM.
For the same reason, in the larger 3DT environments the
output was downsampled to 1/8 resolution in D-City-CNN,
B-City-CNN, and Flat-City-CNN, and three deconv blocks
were removed accordingly. Hence, for consistency, on the
3DT dataset other methods (CNN Prob., Information Gain,
Prob. IG and Omniscient) sampled viewpoints only in 1/83

of the empty cells and a reduction of computation time was
obtained to less than 2 seconds, which may be realistic for
robotic applications.



Fig. 7. A 2D execution of a next best view planning task for CNN Prob. (top row) and D-City-CNN (bottom row). Images show the explored environment
after 3, 10, 25, 50, and 100 views (from left to right). Observed empty cells (grid C) are displayed in white, while ground truth occupied cells are
displayed in red. The position of the current NBV is displayed as a blue circle (including a segment pointing towards the camera forward direction). All
previous next best views are displayed as gray circles. The two green rectangles (top right image) highlight narrow regions that have been successfully
explored by the proposed CNN Prob. method. The two yellow rectangles (bottom right image) highlight regions where D-City-CNN got stuck.

Fig. 8. Experimental setup (left). Environment representation at the
beginning of the experiment (center column, top) and after the 5th NBV
(center column, bottom). The corresponding probabilistic maps predicted
by the encoder-decoder CNN of the proposed CNN Prob. method (right
column). Unknown cells are displayed in black. Predicted occupied cells are
displayed in grayscale with brightness proportional to occupancy probability.

Training time for all CNN methods, for 2D, 3DU and 3DT,
is reported in Table II. Training is significantly faster for the
proposed CNN Prob. method and for B-City-CNN, which
have a simpler final layer. Also, Flat City-CNN and D-City-
CNN have to be re-trained in case of changes to the number
of sampled view poses Nviews or rays Nrays, respectively.

B. NBV evaluation

All methods were evaluated in 40 simulated environments
for each of the three datasets. The environments were
randomly extracted from the test set. Test images of 2D
environments were cropped from their original resolution
(1250 × 1250) to 400 × 400 at random coordinates. Each
NBV method was executed for 100 iterations, or until the
NBV method predicted a null information gain for all the
view poses. The percentage of unknown cells in C at each
iteration, averaged over the 40 trials, is shown in Fig. 5. The
proposed hybrid approach CNN Prob. shows the best result.

Indeed, CNN Prob. achieves the highest amount of explored
region, i.e. the lowest amount of unknown cells left after
iteration 100, compared to the CNN-based approaches (D-
City-CNN, B-City-CNN, Flat City-CNN), and to the standard
NBV approaches that are not based on CNNs (Information
Gain, Prob. IG). It can be observed that results for CNN
Prob. D are slightly worse than CNN Prob., due to the
lower number of viewpoints. In some cases, particularly
in 2D environments, the number of unknown cells left
for City-CNN-based approaches (D-City-CNN, B-City-CNN,
Flat City-CNN) decreases rapidly at the beginning of each
experiment, in a similar way to the proposed CNN Prob.
approach. However, the information gain in all City-CNN-
based approaches degrades as the exploration progresses, and
eventually the next best view predicted by these methods is
worse. Among the three City-CNN-based approaches D-City-
CNN shows the best results, while Flat City-CNN gives the
worst. This behavior may be explained by recalling that in
D-City-CNN rays are organized into a grid of composite cells
and, therefore, D-City-CNN is able to learn neighboring in-
formation. As expected, all curves are above the Omniscient
method, which provides an upper bound for information gain.

Computation time for each iteration is reported in Fig. 6,
as a function of the percentage of unknown cells. It can
be noticed that the computation time of Information Gain,
IG Prob. and CNN Prob. always increases linearly as the
experiment progresses, and the environment is explored.
Efficiency decreases since the number of evaluated view-
points is proportional to the number of empty cells. A
linear computation time increase is also noticeable for the
D-City-CNN method. This trend is mostly noticeable in 3DU
environments as in 2D the view evaluation step in D-City-
CNN (from Gr (v, h) in Section III-C) is computationally



trivial. In general, results indicate that D-City-CNN, B-City-
CNN and Flat City-CNN have a lower computation time than
the proposed CNN Prob. approach. The computation time of
CNN Prob. D is also lower than the CNN Prob. method.

An example execution of the CNN Prob. and D-City-CNN
algorithms in a 2D environment from the test set is reported
in Fig. 7. At the beginning of the task, D-City-CNN is able
to select slightly better poses and it rapidly explores the
large diagonal empty region (second column). However, after
100 next best views the proposed hybrid CNN Prob. method
managed to explore several narrow regions, while D-City-
CNN algorithm got stuck several times, as highlighted in the
fifth column.

To demonstrate the applicability of the proposed CNN
Prob. method in a real-world scenario, an experiment was
carried out using a COMAU Smart Six robot manipula-
tor equipped with an eye-in-hand depth camera (ORBBEC
Astra-S). KinectFusion was used for 3D reconstruction. The
robot was tasked to explore a region of space in a tabletop
scenario (Fig. 8) containing a few objects of the RD dataset.
The CNN Prob. network, trained on the 3DT dataset, was
used to predict occupancy probability values. The experiment
is shown in the accompanying video.

V. CONCLUSION

This work presented an hybrid approach for depth camera
next best view planning that exploits a convolutional neural
network to predict environment priors, and a probabilistic
volumetric map of the environment to compute the optimal
sensor pose. The proposed method was compared against
several other approaches in both 2D and 3D environments
using publicly available datasets. In particular, three variants
of the City-CNN algorithm were developed to work for depth
cameras. The proposed hybrid approach showed better results
in terms of exploration accuracy. As future work, we will
explore a more realistic model of the depth camera, taking
into account possible missing measurements. Moreover, in
the current approach the environment size is limited by
the memory occupancy of the input grid. Future work may
investigate a local approach, as a cell occupancy prediction
depends only on the input in a neighborhood of the cell.
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