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A B S T R A C T   

This study presents a simulative tool designed to evaluate quantitatively the performance of the order picking 
process in a traditional warehouse with double-sided racks; performance is measured as the distance covered by 
the picker when carrying out a single task. Using the simulation tool, different warehouse configurations can be 
generated by changing both hardware (shape factor and input-output position of the picker) and software 
(routing policy, distribution of the demand of products and number of items in the picking list) input parameters. 
Then, the outcomes (distance travelled) obtained with the tool are analysed, with a particular focus on the 
relationship between the routing policy and the level of heterogeneity in the market demand for the products 
available in the warehouse, which implies changes in the product allocation. The study concludes with important 
results about the impact of the warehouse geometry itself on the performance of the routing policy. Finally, 
suggestions are offered for future studies in the field.   

1. Introduction and literature review 

Order picking is a critical process in the supply chain, and any delays 
or errors in this process can have significant consequences on the entire 
supply chain [1]. The cost of order picking is also significant, especially 
for a manual process, which requires considerable amounts of resources 
and can contribute to more than 55 % of the total warehouse cost [2]. 
Most of the cost is due to the time spent by the pickers walking through 
the aisles, searching and picking items, and finally bringing them to a 
depot for consolidation [3]. 

A key issue in manual picking, therefore, is to make the process 
efficient by decreasing the “travel time” of pickers, which is a function of 
the travel distance to be covered [4]; hence, minimising this distance has 
been suggested across the years as the main leverage for optimizing the 
total picking time [5–9]. 

Solutions for minimising the travel distance range from structural 
(“hardware”) aspects to operational (“software”) ones [10]. Hardware 
aspects reflect unchangeable features of the warehouse, such as its size, 
layout or shape factor [11,12]. As opposed to these aspects, software 

elements refer to the operating conditions of the system, e.g., the use of 
high-level vs. low-level picking [13], the picking strategy [14–17]; the 
storage assignment policy [18,19]. 

These aspects all play an important role in the optimization of the 
picking process, both as single factors and in combination. However, for 
a long time, literature has focused on the analysis of one aspect, keeping 
the remaining factors unchanged. This choice obviously makes the 
optimization easier but does not allow for capturing possible correla-
tions or combined effects of factors; this is why authors have started 
evaluating more design factors at a time [20]. 

According to both Manzini et al. [21] and [22], routing strategies 
and storage allocation policies (or routing coupled with batch picking) 
are among the factors that have been evaluated in conjunction, because 
of the relationship existing between storage and routing planning 
problems. Indeed, the length of a picking tour is expected to decrease 
when applying an allocation strategy different from the random storage, 
or when coupling a proper storage assignment with a suitable routing 
policy; in line with this, the recent review by Casella et al. [20] reports 
that the interest towards storage assignment logics has increased in time. 
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Besides the random allocation, used, e.g., by Roodbergen et al. [23], 
typical assignment criteria include turnover-based storage classes [24], 
popularity of the item over its life cycle [19] or density-turnover index 
[25]. Studies that evaluated the allocation logic coupled with the rout-
ing optimization have in general assumed class-based storage ([10], 
Table 1). 

The allocation logic and the routing strategies have also been studied 
in conjunction with some warehouse characteristics, such as the layout 
(traditional or unconventional), the location of the input/output (I/O) 
depot, the shape factor, or the presence and number of cross aisles [20]. 
One of the first studies that evaluated more design factors has been by 
Petersen [26]. The author has analysed jointly six routing policies 
(including Return and S-shaped), four warehouse shape factors, two po-
sitions of the I/O depot and five lengths of the picking list, for a total of 
240 scenarios, and determined through ANOVA, the statistical effects of 
the single factors, as well as of two-factor interactions, which were all 
found to be significant at p <-0.05. Specific outcomes indicate that the 
Return policy is generally ineffective compared to the S-shaped and that 
the central location of the I/O depot reduces the tour length. The anal-
ysis assumes random storage of items in the warehouse. The same author 
[7] has evaluated and compared various routing strategies coupled with 
random and volume-based storage. In this study, the warehouse layout 
(number of corridors, I/O depot and shape factor) is fixed; four routing 
policies (including S-shaped) are evaluated, as well as two variants of the 

volume-based storage (within the aisle and diagonal). Outcomes suggest 
that, in general, the S-shaped is not effective with short picking lists, and 
that compared to random storage, volume-based storage typically re-
sults in shorter distances, especially if used in conjunction with specific 
routing strategies. Later, Petersen and Aase [8] have developed a 
simulation model intended to investigate the effect of three picking 
logics, three storage policies (random, class-based and volume-based) 
and three routing strategies (including the S-shaped) on order picker 
travel distance in a fixed warehouse configuration. They found that both 
volume-based and class-based storage policies involve significantly less 
travel time than random storage; as far as the routing, switching from 
the S-shaped to the optimal routing offers only a moderate decrease in 
the travel distance. Dukic and Oluic [27] have evaluated the perfor-
mances of routing, storage and order-batching methods in combination, 
as a function of the specific context (layout, order size and order picker 
capacity). They found that an appropriate combination of order picking 
methods has the potential to reduce the travel distance by up to 80 %. 

The correlation between the number of aisles, picking list size and 
path length in a class-based storage environment has instead been 
examined by Rao and Adil [28] for a two-block warehouse, in which a 
Return routing policy is assumed. The goal of the study was to optimise 
the number of classes to the allocation and the number of aisles, to 
maximise the savings in travel distance compared to the random storage. 
The outcomes have shown that a number of classes between 2 and 3 
results in a good saving in the travel distance. Van Gils et al. [24] have 
made the first attempt to analyse the relationships between storage 
allocation decisions, batching, zoning, and routing; the statistical sig-
nificance of the outcomes was tested by a full factorial ANOVA. They 
have found that warehouses can significantly improve their perfor-
mance if considering storage, batching, zone picking, and routing de-
cisions simultaneously. In a subsequent publication, van Gils et al. [13] 
have embodied safety constraints, picker blocking, and high-level stor-
age locations in the design of the order picking process, again modelled 
in terms of zoning, storage, batching, and routing decisions. 

The outcomes above indicate that some studies have evaluated the 
impact of a combination of two/three factors on the order picking per-
formance, but that, at the same time, some gaps still exist. Indeed, 
storage assignment and routing appear as the pair of factors most 
frequently evaluated in conjunction, but they are both operational 
(software) aspects of the picking process, according to the previous 
definition; relationships with the remaining factors, and especially with 
hardware aspects (e.g., the warehouse layout), as well as more complex 
intersections among picking design factors, remain less explored [29]. 
Consequently, the available literature still does not fully capture the 
interrelationships between the various design decisions of the picking 
process. This is the first research gap to which this paper aims to 
contribute. 

A second consideration from the review above is that, for sure, when 
approaching the analysis of more picking design decisions simulta-
neously, the scenario becomes too complex to be solved using analytic 
methods [24], and thus simulation is typically used to reproduce and 
study the problem [30]. Decision support tools, based on simulation 
models, have indeed been proposed to the picking context, although by a 
limited number of authors only. Decision support tools for ware-
house/material handling design have been developed by Manzini et al. 
[31] and Accorsi et al. [32]; despite the general scope, these tools also 
address some challenges relating to the order picking process, by of-
fering insights on warehouse layout, product allocation, and routing. 
Bottani et al. [29] have developed a tool for fully modelling the picking 
process, taking into account the warehouse layout (shape factor and 
size) and the routing policy, while neglecting storage allocation logics 
(thus implicitly assuming random storage). Ozden et al. [33] have pre-
sented an open-source software that starts with a picking list, sets some 
parameters (e.g., cross aisle width), searches for the optimization of 
some warehouse features (e.g., shape factor), and finally applies a 
meta-heuristic algorithm to generate a wide set of warehouse designs 

Table 1 
Nomenclature of the model evaluated.  

Symbol Description Unit 

PD Picking Distance m 
APD Average Picking Distance m 
M Max APD m 
m Min APD m 
Δ Difference in APD with different routings % 
RP Routing Policy – 
RS Return Simple – 
RAD Return Advanced – 
SSS S-Shaped Simple – 
SSAD S-Shaped Advanced – 
xf Warehouse Shape Factor – 
xfT Warehouse Shape Factor Target – 
xfR Warehouse Shape Factor Real – 
LA Number of Longitudinal Aisles – 
CA Number of Cross Aisles – 
a Width of the warehouse m 
b Depth of the warehouse m 
α Width of the storage location m 
β Depth of the storage location m 
w Width of the aisles m 
I/O Input-Output position of picker – 
SCP Single Central Picking – 
SLP Single Lateral Picking – 
OLPSS Opposite Lateral Picking, Same Side – 
OCP Opposite Central Picking – 
OSP Opposite Side Picking – 
λ Parameter of the demand distribution – 
i ith item in the warehouse – 
P Pth storage location in the warehouse – 
n number of items required to satisfy 80 % of market demand – 
N Warehouse storage capacity – 
R(P) Distance taken by the picker to reach the storage location 

(Ranking) 
m 

PL Number of Items Picked up each mission – 
SMDP Simulation Model Development Process – 
PDF Probability Density Function % 
CDF Cumulative Density Function % 
CF Number of configurations – 
σAPD Standard deviation of APD m 
CL Confidence level % 
CI Confidence interval m 
t Critical value associated with the t-Student distribution – 
repl Numbers of replicates – 
k kth replicate –  
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solutions, as well as to select the one which is expected to minimize the 
travel distance. Turnover-based storage is assumed as the allocation 
policy. Other tools for the design and analysis of picking systems in 

rectangular warehouses available online include the interactive ware-
house and the warehouse optimizer [34,35]. These tools allow the layout 
of a regular warehouse to be reproduced by setting the number of aisles, 
blocks and locations per aisle side together with the depot location. 
Then, the user can generate a random picking list (of a given size) or 
directly select a set of picking locations on the warehouse layout. The 
tools include some known routing policies, while the allocation strategy 
is not taken into account; some limits also exist about the size of the 
warehouse that can be reproduced and optimized using these tools. 
Overall, the available tools for picking design are few and have some 
limitations; in this respect, a more general tool, able to capture addi-
tional design factors, could be useful to warehouse managers to evaluate 
the performance of the picking process as a function of the system set-
tings. This paper will attempt to contribute to this second point. 

Overall, this study is expected to enrich the available literature in 

Fig. 1. Trends of PDF and CDF for different λ values and N = 1200.  

Table 2 
Items required to achieve 80 % probability of meeting market demands 
(CDF), with N = 1200.  

λ n n% 

~ 0 960 80 % 
0.001 819 68 % 
0.005 320 27 % 
0.01 161 13 % 
0.02 81 7 % 
0.03 54 5 % 
0.05 32 3 %  
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two interrelated ways. First, it will evaluate the performance of the order 
picking process as a function of several types of input, both software and 
hardware. Primary, the results will refer to the application of different 
routing policies in a context in which the characteristics of the “market 
demand” of the products handled in the warehouse can vary, thus 
implying changes to the product allocation. By “market demand” it is 
meant the fact that the items can have different requests: generally, 
there can be items more frequently and less frequently requested by the 
customers. Such modelling allows for capturing various scenarios, 
ranging from random storage (in case all items have the same behaviour 
with respect to the market request, which means that the allocation 
becomes indifferent), to dedicated assignments (in case the behaviour of 
items is different, and therefore, allocation decisions become relevant), 
and thus evaluating the effects of other design factors under a wide set of 
configurations. Introducing this element in the analysis allows for 
enriching the available literature by evaluating the performance of a 
warehouse subject to an “external” disturbance factor. Among the 
hardware aspects, the effect of the I/O depot will also be explored, 
because of the obvious relationships with both the allocation and rout-
ing logics. The second contribution comes from the approach followed 
for achieving the primary aim of the paper, and in particular, from the 
development of a simulation-based design tool for the picking process. 
The simulation model takes into account almost all picking design fac-
tors, and in particular, allocates the items in the warehouse as a function 
of the I/O depot, the shape factor and, most importantly, the charac-
teristics of the market demand, whose analytic expression is embodied 
in the simulator. The analytic formulation of the market demand allows 

for the simulation of a wide range of scenarios that may be observed in 
applications. 

The remainder of the paper is organised as follows. The next section 
details the materials and methods, including the nomenclature used in 
this study, the set of input and output factors taken into account in the 
analysis, and the development of the simulation model. Then, in Section 
3 the model is used for reproducing a selected set of scenarios, resulting 
from the combination of some design factors, and related results are 
presented. Discussion and conclusions end the paper, by summarising 
the key outcomes, showing the advancement compared to the literature 
and suggesting future research directions. 

2. Materials and methods 

2.1. Nomenclature and acronyms 

The nomenclature and acronyms used in this paper are presented in 
Table 1. 

2.2. Problem definition 

The simulation model was designed according to the Simulation 
Model Development Process (SMDP) approach proposed by Manuj et al. 
[30]. 

Minimisation of the APD through the appropriate tuning of the sys-
tem parameters was identified as the objective of this study, because it 
can significantly reduce the time required to complete a picking task 
and, consequently, enhance the efficiency and productivity of the entire 
warehouse management process. 

However, the analysis did not focus on APD minimisation only. 
Indeed, an additional critical analysis was carried out to highlight that, 
in some contexts, it is preferable to choose a configuration that is not 
fully optimized in terms of APD, but can generate operational benefits, e. 
g. simplification of the picking routes and/or the warehouse layout 
itself. 

2.3. Independent variables 

For developing the simulation model, which builds upon the previ-
ous study by Montanari et al., [36], and generating the dataset required 
for the analysis, the following assumptions were made: 

Fig. 2. Scheme of the simulation model.  

Table 3 
Shape factors considered in the study.  

xfR LA a [m] b [m] 

0.14 4 22 162 
0.21 5 27.5 132 
0.29 6 33 112 
0.51 8 44 87 
0.76 10 55 72 
1.06 12 66 62 
1.59 15 82.5 52 
2.62 20 110 42 
3.57 24 132 37 
3.82 25 137.5 36  
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(1) Each location may contain one storage unit only;  
(2) Each storage location contains a different product handled in the 

warehouse. This implicitly means that the number of products 
equals the storage capacity (N);  

(3) The picker’s route around the shelves is Manhattan metric;  
(4) A manual order picking process is performed. 

The input variables used embodied in the model are presented 
below. 

2.3.1. Warehouse layout 
Defining the warehouse layout means setting the elements listed 

below.  

1) Storage capacity (N). N is set as an input parameter for defining the 
storage capacity of the warehouse, where each product has one 
ground-level storage location. By storage location, it is meant the 
generic spatial unit in a warehouse, in which something is stored, 
while a picking location is a storage location in which an item to be 
picked is located [9].  

2) Number of cross aisles (CA). The number of CAs, in addition to the 
front and back aisles, defines the number of blocks into which the 
warehouse can be divided, as shown in Fig. 2. Whenever cross aisles 
are present, the warehouse is divided into a number of blocks equal 
to the number of cross aisles plus one [9].  

3) Width of the aisles (w). This parameter allows for increasing the 
types of warehouses to be simulated, e.g., from an aisle allowing for 
the passage of a picker only, to ones that allow the passage of a 
traditional forklift or a trilateral one [37].  

4) Size (width - α, and depth - β) of the storage location. The usage of α 
and β as problem variables allows for reproducing storage locations 
of various size, ranging from a storage area for standard EPAL pallets 
or ISO containers, depending on the simulation requirements. This 
flexibility, achieved by adjusting the α and β values, makes it possible 
to move from the simulation of small objects to the modelling of 
larger entities, expanding the adaptability of the model. 

5) Shape factor (xf). The shape factor xf reflects the geometric charac-
teristic of the building in which the warehouse is located. The shape 
factor defines the ratio between the width (a) and the depth (b) of the 
building, as shown in Eq. (1): 

xf =
a
b

(1)   

2.3.2. I/O position 
By setting different I/O positions, various paths within the ware-

house can be generated. Five different I/O configurations were consid-
ered, differentiated by the position of the entry and exit points (cf. [38]): 

Fig. 3. Example of layout design of the warehouse with N = 1200, CA=3, I/O=SCP. Quotes in mm.  

Fig. 4. Graphical representation of R(P).  
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Fig. 5. 3-block warehouse layout (quotes in mm).  

Table 4 
Detail of the configuration chosen for analysis.  

N α [m] β [m] LA CA a [m] b [m] I/O w [m] PL λ RP 

1,200 1 1.25 4 2 22 162 SCP 3 10 ~ 0 RS  
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(1) Single Central Picking (SCP): single central entry and exit point;  
(2) Single Lateral Picking (SLP): single lateral entry and exit point;  
(3) Opposite Lateral Picking, Same Side (OLPSS): the entry and exit 

points are positioned laterally, on the same side of the warehouse, 
with the entrance at the beginning and the exit at the end of the 
aisles;  

(4) Opposite Central Picking (OCP): the entry and exit points are 
located at the beginning and the end of the aisles, respectively, in 
a central position;  

(5) Opposite Side Picking (OSP): the entry and exit points are located 
on opposite sides of the warehouse. 

2.3.3. Routing policy 
The RP reflects the logic followed by the picker for moving in the 

warehouse as efficiently as possible during the picking process. Four 
different RP are evaluated and listed below [38]:  

(1) Return Simple (RS): the picker enters and exits the aisles from the 
same side, collecting the items first from one side of the aisle in 
the entry phase, and picking from the opposite side in the exit 
phase. Aisles without items to be retrieved are not visited;  

(2) Return Advanced (RAD): this policy is similar to RS, except that in 
this case the picker can also move through the cross aisles;  

(3) S-Shaped Simple (SSS): Aisles with at least one item to be picked 
are entirely crossed by the picker; while traversing an aisle, the 
picker can collect items from the shelves on both sides. Aisles that 
do not contain the items on the picking list are skipped. After 
collecting the last item, the picker reaches the output point;  

(4) S-Shaped Advanced (SSAD): this policy is similar to SSS but the 
picker can also move through cross aisles. 

2.3.4. Demand distribution 
Varying the demand distribution allows for simulating different 

market types, ranging, in particular, from a “uniformly distributed 
market”, in which each reference has the same probability of being 
requested by the customer, to a fully “heterogeneous market”, including 
both high-rotating and low-rotating items. To capture this behaviour, an 
appropriate probability density function (PDF) was defined and imple-
mented in the simulation model (Eq. (2)): 

PDF(i) =
e− λi(eλ − 1)
1 − e− λN (2)  

where:  

(1) i: any product in the warehouse (1 ≤ i ≤ N);  
(2) N: warehouse storage capacity;  
(3) λ: is the parameter that allows for depicting different market 

scenarios. When λ tends to zero, all products are equally likely to 
be requested by the market, meaning that each product has the 
same rotation index. On the other hand, when λ increases, the 
demand (i.e., the market) becomes more concentrated on specific 
products, leading to different rotation indices for different 
products;  

(4) PDF(i): is the probability that product i will appear in the order 
list based on the market demand. 

In this study, seven λ values were evaluated, which move from a 
uniformly distributed market PDFλ~0, up to a strongly heterogeneous 
market PDFλ=0.05. 

The Cumulative Density Function (CDF) for product i is shown in Eq. 
(3). 

CDFλ(i) =
∑i

x=1
PDFλ(x) (3) 

Fig. 1 presents the trend of PDF and CDF for a warehouse with N =
1200 items. Each curve corresponds to one of the seven λ values ana-
lysed. Table 2 also shows the number of picking positions (n) that must 
be visited for each λ value, to meet at least 80 % of market demand 
(CDF).

2.3.5. Number of items in the picking list 
In developing the simulator, four picking lists (PLs) of different 

lengths were taken into account as representative of typical sizes of 
order lists to be completed in a single picking task [26,39]; in detail, PLs 
of 10, 20, 30 and 50 items were simulated. Short PLs were not merged to 
generate larger lists [36]. To generate the picking lists, a random 
number was extracted from a uniform distribution in the range (0; 1] for 
each item to be collected; hence, the inverse function of Eq. (3) was 
applied as the λ parameter varied. 

Fig. 6. CI% with different numbers of replications.  

Fig. 7. CI% plot with a 95 % of CL.  

Table 5 
Input data for model validation.  

N α 
[m] 

β 
[m] 

LA CA a 
[m] 

b 
[m] 

I/O w 
[m] 

PL λ 

192 1 1.25 4 2 22 36 SLP 3 10 ~ 
0  
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With reference to the CDF curves in Fig. 1, it should be noted that the 
inverse function shows a transition from a continuous domain to a 
discrete codomain (Eq. (4)). 

CDF− 1 : R+→N (4)  

2.4. Dependent variable 

In the current study, the picking distance (PD) was taken as the only 
dependent variable. In particular, for each configuration of the ware-
house (CF), several simulation replicates were performed. Each PDk 
returned by the model is a function (f) of the geometric tool (g) and the 
picking simulator (h), as shown in Eq. (5). 

PDk = f
[
g
(
xf ,CA, I

/
O,N, α, β,w

)
, h(PL,RP, λ)

]
(5) 

The final value of APD is obtained by averaging the results of the 
simulations performed for each CF, to which several random picking 
lists were matched. 

2.5. Simulation model 

A schematic representation of the simulation tool developed is pre-
sented in Fig. 2. As can be observed, the model consists of two main parts 
that communicate with each other during the simulation process. 

The steps followed by the simulation tool (and the corresponding 
outcomes) are as follows:  

(1) geometric representation of the warehouse;  
(2) ranking of the storage location based on the calculation of their 

distances to I/O positions;  

(3) definition of the product allocation according to the demand 
behaviour and the ranking of the storage location; 

(4) simulation of the order processing, under different routing pol-
icies, with APD as output. 

The product allocation and the ranking of the picking positions are 
recalculated at each simulation replicate, as they depend on both the 
geometry of the warehouse and the heterogeneity of market demand. 

2.5.1. Geometric representation 
The first part of the model, in blue, represents the geometric tool, 

programmed to generate a virtual model of the system, and capable of 
defining the storage locations of the warehouse. For reproducing the 
system’s geometry, the tool uses the following input data:  

(1) target warehouse shape factor (xfT);  
(2) number of cross aisles (CA).  
(3) position of the picker’s entrance and exit from the warehouse (I/ 

O);  
(4) warehouse storage capacity (N);  
(5) width (α) and depth (β) of the storage location;  
(6) width of the aisles (w). 

After generating the virtual model of the entire warehouse, the 
geometric tool calculates its size, real shape factor, and layout. 

Regarding the real shape factor (xfR), it is important to note that the 
system is obviously constrained, as integer numbers only can be used for 
some parameters of the warehouse. For example, it is not possible to 
consider fractions of allocations or corridors. Hence, a “target” xfT is 
initially set, reflecting the expected ratio between the width and depth of 

Fig. 8. Path with RS policy (left) and RAD policy (right).  
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the warehouse. In generating the warehouse layout, the simulation 
model takes into account xfT, but at the same time determines xfR based 
on the warehouse parameters: the xfR will be the one that most closely 
approximates xfT among all possible xf that satisfy the integer constraints 
(Eq. (6)). Small dissimilarities can obviously occur; hence, xfR is always 
returned by the model for benchmarking purposes [29]. 

xfR = f
(
N, CA, w, α, β, xfT

)
(6) 

In this study, 10 different xfR are evaluated (see Table 3); these values 
were generated by setting N = 1200, CA = 3, w = 3 m, α = 1 m and β =
1.25 m. 

For the sake of clarity, Fig. 3 shows an example of a warehouse 
layout, in which α and β are set at 1 m and 1.2 m, respectively, w is set at 

2.5 m, and xfT is set at 1.5. 
Based on these input values, the geometric tool returns:  

• the “real” warehouse shape factor (xfR) = 1.38  
• the warehouse width (a) = 73.5 m  
• the warehouse depth (b) = 53 m. 

2.5.2. Ranking of the storage locations 
Each product (i) considered in this study has its own PDF(i), therefore 

the simulator, based on the number of LA and on the I/O positions, 
performs a ranking R(P) of each storage location (P), according to its 
distance from the entry (IP) and exit (PO) points (Eq. (7)). The optimal 
allocation will be the one that minimises the distance travelled by the 
picker on a picking task. 

R(P) = IP + PO (7) 

A graphical representation of Eq. (7) is shown in Fig. 4 for an OSP I/O 
configuration. 

It should be noted that the R(P) value does not reflect the Euclidean 
distance but must account for the presence of geometric constraints, i.e., 
the presence of shelves and the position of the cross aisles. 

2.5.3. Definition of the product allocation 
The second part of the simulation tool, in black in Fig. 2, is the 

picking simulator and receives as input the following data:  

(1) picking list (PL);  
(2) routing policy (RP);  
(3) coefficient related to demand distribution (λ). 

This part of the simulator communicates with the first section, 

Fig. 9. Path with RS policy (left) and RAD policy (right).  

Table 6 
Picking distance values.  

PDRS [m] PDRAD [m] PDSSS [m] PDSSAD [m] 

233 201 172 144  

Table 7 
– Variable values assumed in the analysis to generate configurations.  

λ I/O RP LA PL 

~ 0 SCP RS 8 10 
0.001 SLP RAD 12 20 
0.005  SSS 15 30 
0.01  SSAD  50 
0.02     
0.03     
0.05      
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described above, as any variation in the market demand obviously in-
fluences the allocation of items within the warehouse. This allows for 
generating an output, in terms of APD, that takes into consideration both 
hardware and software constraints of the warehouse under examination. 

In particular, the simulator matches the items in decreasing order of 
the PDF(i) with the storage location (from the most favourable location 
to the worst one), based on the previously calculated value of R(P) Eqs. 
(8)-(10). 

R̃(P) = R(P), 1 ≤ P ≤ N|R(P+1) > R(P) (8)  

P̃DFλ(i) = PDFλ(i), 1 ≤ i ≤ N|PDFλ(i+1) < PDFλ(i) (9)  

R̃(P)→P̃DFλ(i)|P= i (10) 

Depending on the hardware configuration set, the application of the 
above formulae enables the complete mapping of all storage locations. 
Accordingly, the item with the highest probability of being requested by 
the market will be placed in the most favourable position, while the item 

with the lowest probability of being requested will be placed in the most 
unfavourable position. 

2.5.4. Simulation of the order processing 
In this analysis, a traditional warehouse layout with double-sided 

racking was modelled, with N = 1,200 storage locations. These are 
characterized by α = 1 m and β = 1.25 m, while CA and LA have w = 3 m. 
In addition to the front and rear aisles, there are also two CA in the 
warehouse, resulting in a 3-block layout (Fig. 5). Considering these as-
sumptions, a full factorial plan was used to simulate all the possible 
combinations of the independent variables, resulting in a total of 5,600 
simulated configurations, as reported in Eq. (11). 

CF = n∘RP⋅n∘xf ⋅n∘I
/
O⋅n∘PL⋅n∘PDF = 5, 600 (11)  

2.6. Statistical analysis 

To provide statistical significance to the outcomes of Eq. (5), a 

Fig. 10. Plotting Single Central Picking configuration and LA=8.  
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suitable number of replicates (repl) to be adopted was determined (Eq. 
(12)): 

APD =

∑repl
k=1PDk

repl
(12) 

In this analysis, assuming a normal distribution of the values, the 
confidence interval (CI) will be defined by the t-Student distribution. Eq. 
(13) is used to define the CI, adopting a t-value according to a 95 % 
confidence level (CL). 

CI =
σAPD
̅̅̅̅̅̅̅̅
repl

√ × t[(1− CL)/2, repl− 1] (13) 

For testing purpose, this procedure was applied to a specific 
configuration of the database under investigation, whose characteristics 
are shown in Table 4. 

In the present case, a configuration with the lowest values of both PL 
and λ was chosen to validate the analysis. Hence, Eq. (13) was applied to 
the configuration shown in Table 4 with different levels of replicates 

(from 20 to 15,000). Fig. 6 shows the different values of the resulting 
confidence intervals (CI%) as the number of replicates increases. 

The simulation model was developed by implementing VBA code 
within the Excel™ software, run on a machine with an Intel® Core™ 
i9–10885H CPU @2.40 GHz processor and a RAM of 64 GB. The 
computational time for each configuration was 6.63 × 10− 9 s. 

As can be seen from Fig. 6, with a number or replicates equal to 
10,000 and a CL of 95 %, the CI% turns out to be 0.36 %, corresponding 
to an APD value equal to 856,31 m ± 3.071 m; no tangible benefits 
emerge if further increasing the number of replicates. On the basis of this 
result, a number of 10,000 replicates was judged adequate for the scope 
of the paper. 

The CI% values of the whole dataset plotted against their APD are 
shown for completeness in Fig. 7. 

As can be seen from the graph in Fig. 7, by performing 10,000 sim-
ulations for each configuration, the confidence interval for a 95 % 
confidence level of the values is always less than 1 % of the APD. 

Fig. 11. Plotting Single Central Picking configuration and LA=12.  
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3. Results 

3.1. Model validation 

This section provides a validation of the model outlined above. This 
is shown below for a simplified warehouse configuration, whose input 
data are listed in Table 5. 

A random PL of 10 items was generated and the four different routing 
policies were applied to pick up these items from the warehouse. Each 
RP generates a different path, these picking paths (PD) are shown in 
Fig. 8 for RS and RAD policies and Fig. 9 for SSS and SSAD policies 
respectively. 

Table 6 shows the PD values with the 4 different policies described 
above. 

3.2. Investigation boundaries 

In analysing the results, particular attention was paid to a part of the 
dataset, to investigate:  

• two I/O configurations: SCP and SLP;  
• three values of LA: 8 (xfR= 0.51); 12 (xfR= 1.06); 15 (xfR= 1.59). 

The rationale for limiting the analysis to these aspects is that of using 
hardware parameters (LA and I/O values) typically observed in real 
scenarios, which increases the likelihood of investigating warehouse 
configurations suitable for practical implementation. 

The remaining input parameters were instead fully evaluated, as 
reported in Table 7. By including all λ values, several possible demand 
scenarios were analysed, from a uniformly distributed to a strongly 
sectorised demand. 

By combining the set of parameters in Table 7, the total number of 
configurations analysed turns out to be 7⋅2⋅4⋅3⋅4 = 672. 

3.3. SCP and SLP 

Figs. 10-12 and Figs. 13-15 refer to the SCP and SLP I/O configura-
tions, respectively. In each figure, corresponding to a single LA value, 
there are four plots, corresponding to the 4 PLs. In each graph, APD is 

Fig. 12. Plotting Single Central Picking configuration and LA=15.  
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represented as a function of the λ value. In addition, four curves in each 
graph depict the four RP evaluated in this study (i.e., RS, RAD, SSS, 
SSAD). 

From an initial analysis, it emerges that when applying the SSS 
policy, APD is weakly influenced by variations in the λ parameter, except 
in the case of very small PLs (10 items); in that case, a slight dependence 
on λ can be observed, albeit lower than the remaining policies. A justi-
fication for this behaviour is to be found in the functioning of the SSS 
logic itself, in which the picker, once entering an aisle to pick an item, is 
forced to travel it entirely and exit on the opposite side. Consequently, 
having a PL with a wide number of items increases the probability of 
covering the entire warehouse during picking travel. Even if λ increases, 
i.e., when considering high-rotating and low-rotating articles, no sig-
nificant improvements in the performance can be observed. Indeed, it is 
true that the items with the highest demand will be placed close to the I/ 
O point, but this also means that they will be placed as close as possible 
to the front aisles, and consequently, they will fall in different LAs; 
hence, again when using the SSS policy, no remarkable reduction in the 

APD can be observed. These outcomes reinforce the consideration that, 
in general, the S-shaped routing policy is not particularly effective [7]; 
this is also true in contexts in which the demand patterns can vary. 

An interesting result also arises from the previous plots: apart from 
the SSS policy analysed above, it can be observed that for λ≥0.01, the 
RS, RAD and SSAD policies show similar outcomes in terms of APD. This 
outcome complements the available knowledge by highlighting that in 
some contexts (although somehow difficult to observe in real scenarios 
as market demand is highly heterogeneous), these policies could be 
considered interchangeable, and the usage of any of them would not 
affect the performance of the picking process. Ultimately, this allows 
good flexibility in the choice of the RP, which can be set according to the 
specific needs and constraints of the application context. 

The APD values of the RS, RAD and SSAD routing policies with 
λ≥0.01 are summarised in Tables 8 and 9 for the two selected I/O 
configurations. The Δ value, intended as the percentage deviation be-
tween the maximum and minimum APD values (Eqs. (14)-16), has also 
been added to these two tables for a more effective comparison of the 

Fig. 13. Plotting Single Lateral Picking configuration and LA=8.  
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routing policies: 

M = max
[(

APD|RP=RS
)
,
(
APD|RP=RAD

)
,
(
APD|RP=SSAD

)]
(14)  

m = min
[(

APD|RP=RS
)
,
(
APD|RP=RAD

)
,
(
APD|RP=SSAD

)]
(15)  

Δ =
M − m

m
⋅100 (16) 

The Δ parameter allows for evaluating the range of APD values as the 
RP varies; Δ≤10 % was considered a small deviation. 

Concerning the SCP configuration, it can be seen that only 9 sce-
narios out of 144 considered were characterized by Δ>10 %, while in 
the case of SLP, 18 scenarios out of 144 had Δ>10 %. 

Among the policies analysed, RS differs from RAD and SSAD in the 
fact that it does not make use of either the CA or the corridor at the 
bottom. This is an important aspect to consider in specific operational 
contexts, where the removal of such aisles could favour an increase in 
warehouse capacity or a decrease in the area occupied. These variations 

in the layout could be implemented without compromising the neces-
sary storage capacity nor the efficiency of the picking process in terms of 
APD. Moreover, RS is a very simple policy and can be considered the 
easiest logic to be understood and implemented by a picker. Conse-
quently, when adopting this policy, it will also be easier to obtain a 
simple route for the picker to take during the order processing; the 
possibility of incorrect routing is therefore reduced, with a benefit on the 
overall process efficiency and effectiveness. 

On the other hand, looking again at Figs. 10-12 and Figs. 13-15, it is 
easy to see that for scenarios with λ < 0.01 (which are more likely to be 
observed in real environments), the best routing policy overall is the 
SSAD, as demonstrated by the APD value shown in Tables 10,11. 

One of the most interesting findings of the study, in the authors’ 
opinion, concerns the impact of the heterogeneity in the market demand 
on the choice of the optimal routing policy. Other important outcomes 
concern the difference in that impact as a function of the RP considered; 
indeed, depending on the heterogeneity of demand, different RPs can be 
identified as optimal, which ultimately, can influence the hardware 

Fig. 14. Plotting Single Lateral Picking configuration and LA=12.  
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characteristics of the warehouse. This line of reasoning is summarised 
Fig. 16. In particular, with λ ≥ 0.01 (right side of the graph), the RS 
policy turns out to be optimal; as that policy does not make use of CAs, 
their presence will not affect the performance of the picking process and, 
consequently, CAs could be removed from the warehouse. On the con-
trary, with λ < 0.01 (left side of the graph), the implementation of 
policies which instead make use of cross aisles (SSAD) increases the 
performance of the warehouse, being the best policy in all scenarios 
considered for these demands from the market. 

4. Discussion and conclusions 

In the present study, a simulation tool was created to reproduce a 
manual picking process in a traditional double-side rack warehouse. The 
ultimate objective of the study was to investigate different warehouse 
configurations, by varying both software (RP, PL, λ) and hardware (xf, 
CA, w, N, α, β, I/O) parameters of the system, exploiting the simulation 
tool, and to analyse their impact on the resulting APD. 

In line with the approach by Manuj et al. [30], the starting point for 
developing the model was the problem formulation, followed by the 
definition of the independent and dependent variables. Then, a simu-
lation campaign was carried out using the model, with results averaged 
on 10,000 replicates for each configuration considered. During each 
simulation, the picking lists were varied. 

By analysing a set of selected scenarios out of the whole set of data 
obtained through simulation, two key results relating to the RPs were 
observed. In the case of low λ values, reflecting a homogeneous demand 
of items (and implicitly, random storage), the best policy turned out to 
be SSAD. This result corroborates the findings by Bottani et al. [29], who 
reported that the SSAD policy is effective under various warehouse 
configurations. However, with high λ values, i.e., strongly heteroge-
neous demand, SSAD, RAD and RS all exhibit comparable performance. 
This outcome has various implications. First, it highlights that the het-
erogeneity in demand, as modelled in this study, affects the picker 
routing, and thus, this aspect is to be taken into account when trying to 
optimize the order picking process. As a second point, the fact that more 

Fig. 15. Plotting Single Lateral Picking configuration and LA=15.  
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policies return the same travel distance also indicates that, with a correct 
item allocation, the usage of a specific routing policy becomes indif-
ferent. Ultimately, this introduces the consideration that if products 
have markedly different behaviours, a correct item allocation is to be 
prioritized over the choice of the routing policy. This is an important 
practical aspect, as changing the allocation of items in the warehouse is a 
costly activity, which takes days of work and cannot be made frequently; 
therefore, carefully evaluating the allocation of the items and keeping it 
unchanged is critical to the efficiency of the system. Additional analyses 
are nonetheless recommended for the future to investigate this point in 
greater detail. As far as the three policies with similar behaviour, again 
from a practical perspective, it could be reasonable to privilege the 
implementation of the RS logic, which not only generates very easy 
routes for the picker but also does not require the CA. Although not 
evaluated in this study, it is known that an easier route often 

corresponds to a lower probability of human errors, which further fa-
vours the implementation of the RS policy. The SSS policy is instead an 
exception and shows an anomalous behaviour; by the way, researchers 
have already indicated that this policy is unlikely to be effective (e.g., 
[7]), as the picker is always forced to traverse the whole corridor to pick 
the items of the picking list, resulting in longer routes [29]. 

Building on this work, it is recommended to take future research 
activities focusing on the study of other I/O configurations, the 
comparative evaluation of the impact of scattered storage vs. dedicated 
storage, or, as mentioned above, the quantitative evaluation of the 
impact of human errors on the efficiency of the order picking process. 
These analyses could be effectively supported by the simulation tool 
presented in this study. 

Table 8 
APD [m] values in SCP configuration for λ≥0.01.   

LA=8 LA=12 LA=15 

PL= 10   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 180 174 171 5.3 % λ 0.01 181 167 163 11.2 % λ 0.01 184 165 160 14.9 % 
0.02 119 119 122 2.1 % 0.02 121 118 117 2.8 % 0.02 123 118 115 6.6 % 
0.03 95 95 99 3.6 % 0.03 96 95 97 1.5 % 0.03 96 95 94 2.2 % 
0.05 72 72 76 5.2 % 0.05 72 72 75 4.5 % 0.05 72 72 74 3.0 % 

PL=20   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 272 266 260 4.3 % λ 0.01 323 304 298 8.4 % λ 0.01 358 330 325 10.0 % 
0.02 201 201 208 3.6 % 0.02 270 267 269 1.4 % 0.02 307 300 301 2.5 % 
0.03 180 180 188 4.5 % 0.03 251 250 255 2.2 % 0.03 288 285 290 1.5 % 
0.05 164 164 172 5.0 % 0.05 232 231 239 3.2 % 0.05 268 268 275 2.4 % 

PL=30   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 318 315 299 6.4 % λ 0.01 380 364 345 10.1 % λ 0.01 424 395 381 11.3 % 
0.02 229 229 241 5.6 % 0.02 313 310 312 1.0 % 0.02 358 351 351 2.1 % 
0.03 202 202 217 7.3 % 0.03 288 288 297 3.3 % 0.03 333 330 337 2.1 % 
0.05 183 183 198 8.4 % 0.05 266 266 279 5.1 % 0.05 308 307 320 4.0 % 

PL=50   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 378 377 342 10.5 % λ 0.01 455 447 398 14.3 % λ 0.01 512 493 450 13.7 % 
0.02 263 263 287 9.2 % 0.02 366 365 363 1.0 % 0.02 422 418 410 2.8 % 
0.03 231 231 261 12.9 % 0.03 337 337 351 4.3 % 0.03 391 390 399 2.3 % 
0.05 210 210 240 14.5 % 0.05 313 313 338 8.2 % 0.05 364 364 386 6.2 %  

Table 9 
APD [m] values in SLP configuration for λ≥0.01.   

LA=8 LA=12 LA=15 

PL= 10   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 193 184 171 12.9 % λ 0.01 199 179 165 20.5 % λ 0.01 204 178 165 23.5 % 
0.02 125 124 121 3.4 % 0.02 129 124 115 12.3 % 0.02 132 124 114 15.3 % 
0.03 97 97 99 1.7 % 0.03 99 98 93 7.0 % 0.03 102 99 92 10.7 % 
0.05 71 71 76 6.6 % 0.05 72 72 73 1.0 % 0.05 73 73 71 3.6 % 

PL=20   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 299 291 279 7.2 % λ 0.01 389 347 332 16.9 % λ 0.01 425 370 359 18.4 % 
0.02 230 229 235 2.6 % 0.02 314 301 296 6.3 % 0.02 346 325 320 8.2 % 
0.03 206 206 215 4.4 % 0.03 285 280 280 2.0 % 0.03 312 303 302 3.4 % 
0.05 182 182 193 5.5 % 0.05 257 256 262 2.4 % 0.05 278 276 280 1.6 % 

PL=30   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 348 343 316 10.0 % λ 0.01 462 424 389 18.8 % λ 0.01 510 454 426 19.7 % 
0.02 264 264 273 3.4 % 0.02 369 358 343 7.7 % 0.02 408 388 373 9.4 % 
0.03 234 234 250 6.6 % 0.03 332 328 325 2.0 % 0.03 362 355 349 3.8 % 
0.05 208 208 225 8.6 % 0.05 298 297 307 3.3 % 0.05 320 319 324 1.9 % 

PL=50   RP   RP   RP   
RS RAD SSAD Δ   RS RAD SSAD Δ   RS RAD SSAD Δ 

λ 0.01 411 410 358 15.0 % λ 0.01 561 541 457 22.9 % λ 0.01 628 588 517 21.5 % 
0.02 305 305 318 4.4 % 0.02 442 437 396 11.5 % 0.02 494 483 441 11.8 % 
0.03 272 272 300 10.3 % 0.03 396 395 380 4.3 % 0.03 439 435 414 5.9 % 
0.05 245 245 278 13.3 % 0.05 362 362 371 2.6 % 0.05 392 392 393 0.3 %  
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Table 10 
APD [m] values in SCP configuration for λ<0.01.   

LA=8 LA=12 LA=15 

PL= 10   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 665 416 579 395 λ ~ 0 576 356 526 348 Λ ~ 0 541 343 506 339 
0.001 566 391 567 371 0.001 496 336 512 329 0.001 474 324 490 320 
0.005 286 249 519 239 0.005 272 227 439 222 0.005 273 223 396 219 

PL=20   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 940 660 724 567 λ ~ 0 859 556 718 517 λ ~ 0 817 520 711 497 
0.001 820 630 718 541 0.001 749 532 712 495 0.001 722 502 707 480 
0.005 429 392 700 350 0.005 436 376 699 358 0.005 454 383 698 372 

PL=30   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 1082 844 760 654 λ ~ 0 1030 720 802 631 λ ~ 0 999 671 816 614 
0.001 965 810 758 626 0.001 913 694 797 607 0.001 891 650 812 595 
0.005 513 488 752 403 0.005 528 472 784 427 0.005 552 478 804 448 

PL=50   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 1209 1062 780 735 λ ~ 0 1210 964 854 753 λ ~ 0 1208 912 909 768 
0.001 1111 1030 780 712 0.001 1101 938 852 730 0.001 1096 888 904 746 
0.005 626 619 780 473 0.005 651 618 849 511 0.005 686 630 888 552  

Table 11 
APD[m] values in SLP configuration for λ<0.01.   

LA=8 LA=12 LA=15 

PL= 10   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 670 423 586 402 λ ~ 0 585 368 538 361 λ ~ 0 555 358 521 354 
0.001 578 400 572 378 0.001 523 353 522 344 0.001 507 344 504 338 
0.005 304 261 485 244 0.005 304 248 396 234 0.005 309 247 363 235 

PL=20   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 945 665 730 574 λ ~ 0 866 563 726 525 λ ~ 0 827 528 721 506 
0.001 827 635 724 547 0.001 771 542 719 506 0.001 753 516 716 494 
0.005 448 406 703 363 0.005 503 415 706 392 0.005 535 428 700 413 

PL=30   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 1086 847 766 659 λ ~ 0 1035 725 808 636 λ ~ 0 1005 677 823 621 
0.001 971 814 764 633 0.001 936 705 803 618 0.001 923 662 819 606 
0.005 534 505 756 418 0.005 610 526 789 472 0.005 652 540 801 501 

PL=50   RP   RP   RP   
RS RAD SSS SSAD   RS RAD SSS SSAD   RS RAD SSS SSAD 

λ ~ 0 1213 1066 786 741 λ ~ 0 1215 968 859 758 λ ~ 0 1213 917 915 774 
0.001 1120 1035 786 719 0.001 1123 947 858 741 0.001 1129 902 909 758 
0.005 647 638 786 487 0.005 748 696 854 567 0.005 812 723 888 622  

Fig. 16. Optimal routing policy based on λ value.  
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[22] C. Theys, O. Bräysy, W. Dullaert, B. Raa, Using a TSP heuristic for routing order 
pickers in warehouses, Eur. J. Oper. Res. 200 (3) (2010) 755–763, https://doi.org/ 
10.1016/j.ejor.2009.01.036. 

[23] K.J. Roodbergen, G.P. Sharp, I.F.A. Vis, Designing the layout structure of manual 
order picking areas in warehouses, IIE Trans. 40 (11) (2008) 1032–1045, https:// 
doi.org/10.1080/07408170802167639. 

[24] T. van Gils, K. Ramaekers, K. Braekers, B. Depaire, A. Caris, Increasing order 
picking efficiency by integrating storage, batching, zone picking, and routing 
policy decisions, Int. J. Prod. Econ. 197 (2018) 243–261, https://doi.org/10.1016/ 
j.ijpe. 2017.11.021. 

[25] H. Hwang, Y.H. Oh, C.N. Cha, A stock location rule for a low level picker-to-part 
system, Eng. Optim. 35 (3) (2003) 285–295, https://doi.org/10.1080/ 
0305215031000136172. 

[26] C. Petersen, An evaluation of order picking routeing policies, Int. J. Oper. Prod. 
Manag. 17 (11) (1997) 1098–1111, https://doi.org/10.1108/ 
01443579710177860. 

[27] G. Dukic, C. Oluic, Order-picking methods: improving order-picking efficiency, Int. 
J. Logist. Syst. Manag. 3 (4) (2007) 451–460, https://doi.org/10.1504/ 
IJLSM.2007.013214. 

[28] S.S. Rao, G.K. Adil, Optimal class boundaries, number of aisles, and pick list size for 
low-level order picking systems, IIE Trans. 45 (12) (2013) 1309–1321, https://doi. 
org/10.1080/0740817X.2013.772691. 

[29] E. Bottani, R. Montanari, M. Rinaldi, Development and testing of software tool for 
warehouse design and picking optimisation, Int. J. Manag. Decis. Making 18 (2) 
(2019) 119–150, https://doi.org/10.1504/IJMDM.2019.098649. 

[30] I. Manuj, J.T. Mentzer, M.R. Bowers, Improving the rigor of discrete-event 
simulation in logistics and supply chain research, Int. J. Phys. Distrib. Logist. 
Manag. 39 (3) (2009) 172–201, https://doi.org/10.1108/09600030910951692. 

[31] R. Manzini, R. Accorsi, L. Pattitoni, A. Regattieri, A supporting decisions platform 
for the design and optimization of a storage industrial system, in: C. Jao (Ed.), 
Efficient Decision Support Systems - Practice and Challenges in Multidisciplinary 
Domains, IntechOpen, 2011, https://doi.org/10.5772/16861. 

[32] R. Accorsi, R. Manzini, F. Maranesi, A decision-support system for the design and 
management of warehousing systems, Comput. Ind. 65 (1) (2014) 175–186, 
https://doi.org/10.1016/j.compind.2013.08.007. 

[33] S.G. Ozden, A.E. Smith, K.R. Gue, A computational software system to design order 
picking warehouses, Comput. Oper. Res. 132 (105311) (2021), https://doi.org/ 
10.1016/j.cor.2021.105311 article no. 

[34] K.J. Roodbergen, Interactive Warehouse, a, 2019. Available at, http://www. 
roodbergen.com/warehouse/frames.htm. 

[35] K.J. Roodbergen, Warehouse Optimizer By Kees Jan Roodbergen, b, 2019. 
Available at, http://www.roodbergen.com/whopt/. 

[36] R. Montanari, E. Bottani, A. Volpi, F. Solari, N. Lysova, M. Bocelli, Warehouse 
Design and Management: a simulative approach to minimize the distance travelled 
by pickers, in: Proceedings of the 24thInternational Conference on Harbor, 
Maritime and Multimodal Logistics Modelling and Simulation, HMS 2022, 2022, 
https://doi.org/10.46354/i3m.2022.hms.005. 

[37] C. Suppini, A. Volpi, F. Solari, E. Bottani, L. Tebaldi, M. Bocelli, R. Montanari, 
Performance analysis of traditional and trilateral forklifts in warehouse material 
handling: a technical-economic evaluation and simulation study, in: Proceedings of 
the 25th International Conference on Harbor, Maritime and Multimodal Logistic 
Modeling & Simulation(HMS 2023), 2023, https://doi.org/10.46354/i3m.2023. 
hms.001. 

[38] R. Montanari, R. Micale, E. Bottani, A. Volpi, G. La Scalia, Evaluation of routing 
policies using an interval-valued TOPSIS approach for the allocation rules, Comput. 
Ind. Eng. 156 (2021), https://doi.org/10.1016/j.cie.2021.107256. 

[39] H. Liu, F. Wang, J. Zhao, J. Yang, C. Tan, L. Zhou, Performance analysis of picking 
path strategies in Chevron layout warehouse, Mathematics (3) (2022) 10, https:// 
doi.org/10.3390/math10030395. 

Michele Bocelli is a Ph.D. Candidate in Industrial Engineering at the University of Parma. 
He graduated in Mechanical Engineering in 2019 at the University of Parma. Before 
applying for the Ph.D. program, he worked for three years as mechanical designer of 
bottling lines for mineral water for food use. His research field mainly concerns the 
optimization of production plants and logistics systems through innovative approaches. In 
addition, he expanded his field of research through parabolic flight campaigns, which 
allow to conduct experiments under conditions of altered gravity. 

Eleonora Bottani is Full Professor of Industrial Logistics at the Department of Engineering 
for Industrial Systems and Technologies of the University of Parma since November 2019. 
She graduated (with distinction) in Industrial Engineering and Management in 2002 and 
got her Ph.D. in Industrial Engineering in 2006, both at the University of Parma. Her 
research activities concern logistics and supply chain management issues. She is author (or 
co-author) of >200 scientific papers (citations on Scopus>3600; H-index=31), referee for 
more than 60 international journals, editorial board member of five scientific journals, 
Associate Editor for various journals, and editor-in-chief of a scientific journal. 

Andrea Volpi graduated cum laude in July 2003 in Mechanical Engineering at the Uni-
versity of Parma and then he started working in ICT field, RFID and IoT since January 2006 

M. Bocelli et al.                                                                                                                                                                                                                                 

https://doi.org/10.1111/itor.12852
https://doi.org/10.1155/2021/6673079
https://doi.org/10.1155/2021/6673079
https://doi.org/10.1016/j.cor.2020.105168
http://refhub.elsevier.com/S2452-414X(24)00078-5/sbref0004
http://refhub.elsevier.com/S2452-414X(24)00078-5/sbref0004
https://doi.org/10.1080/07408179308964306
https://doi.org/10.1080/07408179108963844
https://doi.org/10.1108/01443579910287073
https://doi.org/10.1108/01443579910287073
https://doi.org/10.1016/j.ijpe.2003.09.006
https://doi.org/10.1016/j.ijpe.2003.09.006
https://doi.org/10.1080/00207540110028128
https://doi.org/10.1080/00207540110028128
https://doi.org/10.1016/j.cie.2019.106035
https://doi.org/10.1016/j.ejor.2008.12.031
https://doi.org/10.1016/j.ejor.2008.12.031
https://doi.org/10.1080/07408170500494566
https://doi.org/10.1016/j.ejor.2019.03.012
https://doi.org/10.1016/j.ejor.2019.03.012
https://doi.org/10.1080/00207543.2010.543941
https://doi.org/10.1080/00207543.2010.543941
https://doi.org/10.1016/j.ejor.2005.03.052
https://doi.org/10.1016/j.ejor.2005.03.052
https://doi.org/10.1108/01443570210433553
https://doi.org/10.1016/j.ijpe.2009.01.013
https://doi.org/10.1007/978-3-319-17906-3_25
https://doi.org/10.1016/j.ijpe.2015.06.026
https://doi.org/10.1080/21693277.2023.2191115
https://doi.org/10.1007/s00170-005-0377-2
https://doi.org/10.1016/j.ejor.2009.01.036
https://doi.org/10.1016/j.ejor.2009.01.036
https://doi.org/10.1080/07408170802167639
https://doi.org/10.1080/07408170802167639
https://doi.org/10.1016/j.ijpe. 2017.11.021
https://doi.org/10.1016/j.ijpe. 2017.11.021
https://doi.org/10.1080/0305215031000136172
https://doi.org/10.1080/0305215031000136172
https://doi.org/10.1108/01443579710177860
https://doi.org/10.1108/01443579710177860
https://doi.org/10.1504/IJLSM.2007.013214
https://doi.org/10.1504/IJLSM.2007.013214
https://doi.org/10.1080/0740817X.2013.772691
https://doi.org/10.1080/0740817X.2013.772691
https://doi.org/10.1504/IJMDM.2019.098649
https://doi.org/10.1108/09600030910951692
https://doi.org/10.5772/16861
https://doi.org/10.1016/j.compind.2013.08.007
https://doi.org/10.1016/j.cor.2021.105311
https://doi.org/10.1016/j.cor.2021.105311
http://www.roodbergen.com/warehouse/frames.htm
http://www.roodbergen.com/warehouse/frames.htm
http://www.roodbergen.com/whopt/
https://doi.org/10.46354/i3m.2022.hms.005
https://doi.org/10.46354/i3m.2023.hms.001
https://doi.org/10.46354/i3m.2023.hms.001
https://doi.org/10.1016/j.cie.2021.107256
https://doi.org/10.3390/math10030395
https://doi.org/10.3390/math10030395


Journal of Industrial Information Integration 40 (2024) 100634

19

as Ph.D. student at the Industrial Engineering Department at the same University. He 
continued his studies as Lecturer and then as Associate Professor, focusing on research 
projects carried out in RFID Lab, a forefront laboratory in the same department. Tech-
nology is investigated as a driver for research activities mainly concerned with logistics 
and supply chain management issues; in fact, skills and competences developed are mainly 
related to RFID and logistics topics which are expressed in many papers produced. 

Federico Solari is a Researcher and Lecturer at the Department of Engineering for In-
dustrial Systems and Technologies of the University of Parma since September 2021. He 
graduated (with distinction) in Engineering for the Food Industry in 2008 and got his Ph.D. 
in Industrial Engineering in 2014, both at the University of Parma. His-research activities 
concern industrial plant logistics, industrial plant analysis and design, supply chain 
management, advanced industrial plant design also using simulative techniques, Design of 
Experiment and statistical analysis to develop, test and validate virtual models and digital 
twins of industrial systems. He authored (or co-authored) more than 30 publications 
indexed on Scopus and is one of the inventor of an Italian and international patent. 

Natalya Lysova is Ph.D Candidate in Industrial Engineering at the University of Parma, in 
collaboration with FMB Eng. In. E. Srl. Her Ph.D. project is titled “Virtualisation 

approaches for industrial plants control and design”. Her main research topics include 
simulation and optimization of industrial plants with the aid of CFD simulation, and 
simulation-based investigation and optimization of inventory management policies in the 
case of perishable products and/or system constraints. In addition, during her research 
activities, she has focused on the numerical simulation of ultraviolet treatments of solid 
and liquid foods. 

Roberto Montanari is Full Professor of Industrial Plants at the Department of Engineering 
for Industrial Systems and Technologies, University of Parma. In addition, Prof. Montanari 
served as the Director of the Interdepartmental Centre for Packaging (CIPACK), and as the 
Delegate of the Rector for curricular and extracurricular internships. He is an esteemed 
member of the College of Professors in the Industrial Engineering Ph.D. program and 
actively participates in the internationalisation commission. Notably, he is responsible for 
overseeing the Double Degree program with NJIT (NJ - USA). He is author (or co-author) 
of >100 scientific papers (citations on Scopus>2000; H-index=23). Moreover, Prof. 
Montanari is the esteemed founder and partner of the academic spin-off FMB - Eng.In.E. 
SRL. 

M. Bocelli et al.                                                                                                                                                                                                                                 


	Exploring the relationship between routing policies and market demand heterogeneity: A simulation analysis with different h ...
	1 Introduction and literature review
	2 Materials and methods
	2.1 Nomenclature and acronyms
	2.2 Problem definition
	2.3 Independent variables
	2.3.1 Warehouse layout
	2.3.2 I/O position
	2.3.3 Routing policy
	2.3.4 Demand distribution
	2.3.5 Number of items in the picking list

	2.4 Dependent variable
	2.5 Simulation model
	2.5.1 Geometric representation
	2.5.2 Ranking of the storage locations
	2.5.3 Definition of the product allocation
	2.5.4 Simulation of the order processing

	2.6 Statistical analysis

	3 Results
	3.1 Model validation
	3.2 Investigation boundaries
	3.3 SCP and SLP

	4 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


