

### **Perspective**

## Photocatalytic generation of ligated boryl radicals from tertiary amine-borane complexes: An emerging tool in organic synthesis

Luca Capaldo,<sup>[1](#page-1-0)</sup> Timothy Noël,<sup>1</sup> and Davide Ravelli<sup>[2,](#page-1-1)[\\*](#page-1-2)</sup>

#### **SUMMARY**

Photocatalysis has recently given impetus to the use of ligated boryl radicals (LBRs) in synthesis, thanks to the mild conditions required for their generation based on the use of visible light. LBRs are B-centered radicals wherein the boron atom is coordinated with a suitable Lewis base (e.g., amine, phosphine, or N-heterocyclic carbene [NHC]) and can be conveniently accessed from the corresponding ligated boranes through the cleavage of a B-H bond. While NHC-boranes featuring a rather labile B-H bond are routinely used in photocatalytic strategies, this perspective highlights the recent adoption of more challenging tertiary amine-boranes, which unlocked unprecedented reaction manifolds. The highlighted applications include the Minisci-type borylation of azines and the implementation of polarity-reversal catalysis for the generation of electrophilic C-centered radicals via hydrogen-atom transfer (HAT). The possibility to devise an analogous strategy based on halogen-atom transfer (XAT) is also discussed.

#### INTRODUCTION

Radical species featuring an unpaired number of electrons play a key role in an impressive number of processes spanning from biology to chemistry, $<sup>1</sup>$  $<sup>1</sup>$  $<sup>1</sup>$  and their</sup> importance in synthetic endeavors has increased steadily in recent years.<sup>[2,](#page-7-1)[3](#page-7-2)</sup> Concerning the applications in preparative organic chemistry, the most-studied derivatives include carbon- and nitrogen-based radicals, as well as chalcogen-based radicals (mainly oxygen- and sulfur-centered) and halogen atoms, while boron-based congeners have long remained in the background.<sup>[4,](#page-7-3)[5](#page-7-4)</sup>

B-based closed-shell species are known for their capability to act as Lewis acids (e.g.,  $BX_3$ , X = halogen atom or organic substituent) due to the empty p orbital on the bo-ron atom.<sup>[6](#page-7-5),[7](#page-7-6)</sup> This reactivity has been widely investigated to promote an array of different transformations both in symmetric and asymmetric variants, with one prominent example being the use of oxazaborolidine derivatives in the Corey-Bakshi-Shibata reduction ([Scheme 1](#page-1-3)A).<sup>[8](#page-7-7)</sup> However, when a fourth substituent is attached to the B atom, a negatively charged molecular assembly is obtained, which can be conveniently used as a source of nucleophilic groups. A prime example of this concept can be found in the class of boron homologations (e.g., Matteson and Zweifel reactions), $^9$  $^9$  involving the migration of a group from boron to an adjacent sp $^2$ - or sp<sup>3</sup>-hybridized carbon ([Scheme 1A](#page-1-3)). Other examples pertain to the chemistry of alkali borohydrides (NaBH<sub>4</sub> and LiBH<sub>4</sub>), which are routinely used for hydride transfer to carbonyl compounds (hydridic reduction), or organotrifluoroborates (RBF<sub>3</sub>K), which can be employed as a source of nucleophilic alkyl groups in different synthetic trans-formations, including cross-coupling reactions.<sup>[10](#page-7-9)</sup>

#### The bigger picture

Challenges and opportunities

- Photocatalysis is nowadays considered the elective tool for organoradicals generation in synthetic endeavors. Nevertheless, B-centered radicals have been adopted only sparsely, in stark contrast to their congeners of the 14-17<sup>th</sup> groups.
- NHC-boranes are typically exploited as a source of ligated boryl radicals (LBRs); however, their use is mainly restricted to radical additions onto unsaturated compounds (arenes, alkenes, and imines). Recently, the adoption of tertiary amine-borane complexes in the same role has unlocked new transformations.
- Two recent reports have capitalized on the peculiar features of LBRs generated from tertiary amine-borane complexes for the borylation of azines and as catalysts to trigger a hydrogen-atom transfer from a protic C–H bond.





### **Chem Catalysis Perspective**

<span id="page-1-3"></span>

Scheme 1. Boron species and their chemical reactivities

(A) Classical trivalent and tetravalent boron species and their polar reactivity.

- (B) Open-shell boron species: boryl radicals (BRs) and ligated boryl radicals (LBRs).
- (C) Taxonomy of LBRs.
- (D) Typical reactivity of LBRs.
- L<sub>B</sub>, Lewis base.

#### (LIGATED) BORYL RADICALS

Despite this firmly established knowledge in polar chemistry of boron compounds, the use of boron-based open-shell species is currently underdeveloped.<sup>[4,](#page-7-3)[5](#page-7-4)</sup> Conceptually, a neutral boron-centered radical can be accessed through homolytic cleavage of a bond-at-boron in a trivalent boron derivative (with a general formula  $R_3B$ ). This would lead to the formation of a highly electron-deficient and unstable intermediate  $(R_2B^*)$ , wherein the boron atom features only 5 electrons in its external valence shell ([Scheme 1B](#page-1-3)). Things change dramatically, however, if the B center is coordinated with a suitable Lewis base (L<sub>B</sub>). This leads to the so-called ligated boryl radicals (LBRs)<sup>[11–20](#page-7-10)</sup> (general formula:  $L_B^+$  - R<sub>2</sub>B  $\dot{\,}$  ), wherein the boron atom shares 7 electrons in its valence shell, showing a comparable behavior with respect to well-known C-, N- and O-/Scentered radicals and halogen atoms ([Scheme 1B](#page-1-3)). (Overall, LBRs are neutral species; however, we explicitly indicate the presence of  $+/-$  formal charges on  $L_B$  and B, respectively. As a matter of fact, the  $L_B$ -B interaction involves a coordination (dative) bond, showing ''significant polarity, lesser strength, and greater length'' compared with covalent bonds, according to the IUPAC Gold Book $^{21}$  $^{21}$  $^{21}$ . On the other hand, some authors prefer to indicate this kind of interaction with a dative bond, with no charge separation.) Indeed, LBRs are characterized by a superior stability with respect to the corresponding non-ligated derivatives and have been detected by spectroscopic means, $11-14,18-20$  while their properties have been the subject of extensive computational studies.<sup>[19,](#page-8-2)[22](#page-8-3)</sup> Notably, according to the nature of the L<sub>B</sub> interacting with the boron atom, two different classes of LBRs can be described. First, when the  $L_B$  is a tertiary amine, a  $\sigma$ -type LBR results, with the spin density mainly local-ized at the boron center, which exhibits a pyramidal geometry.<sup>[11,](#page-7-10)[13](#page-8-4)</sup> However, when a primary or secondary amine functions as  $L_B$ , an aminyl-borane radical is ultimately formed as a result of its superior stability with respect to the LBR (the isomeric

<span id="page-1-0"></span><sup>1</sup>Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands

<span id="page-1-1"></span><sup>2</sup>PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy

<span id="page-1-2"></span><sup>\*</sup>Correspondence: [davide.ravelli@unipv.it](mailto:davide.ravelli@unipv.it) <https://doi.org/10.1016/j.checat.2022.03.005>

**Perspective** 

amine-boryl).<sup>[23,](#page-8-5)[24](#page-8-6)</sup> Second, when N-heterocyclic carbenes (NHCs)<sup>[17](#page-8-7)[,19,](#page-8-2)[25](#page-8-8)</sup> (or phos-

phines<sup>[12](#page-7-11)</sup> or sulfides<sup>[26](#page-8-9)</sup>) are employed as  $L_B$ , the spin density is delocalized over the entire carbene ligand, and a  $\pi$ -type radical results, wherein the boron atom assumes a trigonal planar geometry ([Scheme 1](#page-1-3)C). Notably, depending on their steric and electronic properties, the substituents at boron (e.g., aromatic rings) can likewise have a role in this  $\pi$  delocalization.<sup>[27](#page-8-10)</sup>

#### The chemistry of LBRs

Apart from a notable exception,<sup>[28](#page-8-11)</sup> LBRs are nucleophilic radicals, and this feature heavily affects their reactivity.<sup>[29](#page-8-12)</sup> Indeed, they show a chameleonic reactivity, de-pending on the reaction partners, as demonstrated by extensive kinetic studies.<sup>[30](#page-8-13)</sup> They are prone to add to multiple C–C bonds (e.g., in alkenes, alkynes, and carbonyls), $31$  as well as to nitriles and isocyanides,  $13,32$  $13,32$  leading to the formation of a new B–C bond. Alternatively, LBRs can also trigger halogen-atom transfer (XAT) from alkyl halides,  $33$  enabling access to the corresponding alkyl radicals.<sup>[12](#page-7-11)[,34](#page-8-17)</sup> Finally, LBRs can act as hydrogen abstractors, thus triggering a hydrogen-atom transfer (HAT) from protic positions (e.g.,  $\alpha$  to a carbonyl/carboxyl moiety), owing to their nucleophilic character.<sup>35-40</sup> The capacity of LBRs to abstract a hydrogen atom is largely dictated by the strength of the B–H bond formed, which in turn depends on the type of  $L_B$  interacting with the boron center. Thus, tertiary amine-boranes share a strong B–H bond, and the corresponding LBRs behave as potent H abstractors, while NHC- and phosphine-ligated boranes possess a more labile B–H bond, making the corresponding LBRs less suitable for this role. $41,42$  $41,42$ 

#### LBRs UNDER A NEW LIGHT

In terms of synthetic applications, LBRs have been mainly exploited in thermally initi-ated radical borylations adopting NHC-boranes as substrates.<sup>[31,](#page-8-14)[43,](#page-8-21)[44](#page-8-22)</sup> In addition, ligated boranes have been sparsely used as reducing agents in radical chain processes, $18,25,45,46$  $18,25,45,46$  $18,25,45,46$  $18,25,45,46$  $18,25,45,46$  as valid substitutes for classic Sn-/Si-based derivatives, $47$  or as promoters for radical polymerizations.<sup>[48–50](#page-8-26)</sup>

Quite recently, the generation of LBRs in synthetic endeavors has been experiencing a renewed interest from the chemical community, which can be mainly attributed to the rising interest in photocatalysis. Photocatalysis has provided synthesis practitioners with a robust and versatile toolbox for the generation of organoradicals under extremely mild conditions (i.e., room temperature catalysis, visible light). This powerful methodology is based on the use of a catalyst (termed ''photocatalyst'' [PC]) deputed for light absorption and for the ensuing activation of the target sub-strate, mostly via a single-electron transfer (SET)<sup>[51,](#page-8-27)[52](#page-8-28)</sup> or a  $HAT<sup>53,54</sup>$  $HAT<sup>53,54</sup>$  $HAT<sup>53,54</sup>$  $HAT<sup>53,54</sup>$  step. Routinely employed PCs include Ru- and Ir-based polypyridyl complexes, whose redox properties can be finely tuned by judicious choice of the ligands around the metal center and their electronic properties. Alternatively, a cheaper and more eco-friendly alter-native to metal-based PCs is represented by photoorganocatalysts<sup>[55](#page-8-31)[,56](#page-8-32)</sup> and hetero-geneous semiconductor-based PCs.<sup>[57](#page-9-0)[,58](#page-9-1)</sup>

Despite that activation of stable boron species with visible light through photocatal-ysis has been long known,<sup>[59](#page-9-2)</sup> the photocatalytic generation of LBRs has undergone an impressive development in the last 5 years. This has provided a number of elegant synthetic contributions based on the use of easily activatable NHC-boranes. As recently reviewed,[15](#page-8-33),[31](#page-8-14),[43](#page-8-21)[,60](#page-9-3)[,61](#page-9-4) alkenes, imines, and substituted (hetero)aromatics are competent reaction partners and have been conveniently adopted toward the formation B–C(sp<sup>3</sup>/sp<sup>2</sup>) bonds via LBRs.







#### SYNTHETIC APPLICATIONS OF LBRs FROM TERTIARY AMINE-BORANES

In stark contrast to NHC-boryl radicals, tertiary amine-boryl radicals have been under the spotlight only very recently. As mentioned, they show a more pronounced nucleophilicity<sup>[29](#page-8-12)</sup> compared with NHC-boryl radicals as well as a stronger B-H bond.<sup>[41,](#page-8-19)[42](#page-8-20)</sup> Thanks to these features, two new reactivity modes could be unlocked: (1) a Minisci-type borylation of heteroaromatics and (2) polarity-reversal catalysis for the activation of electrophilic C-H bonds via HAT. In this perspective, we aim to highlight such recent breakthroughs.

#### Minisci-type borylation of azines

Traditionally, (protonated) azines have been reported to work as competent radical traps for C-centered radicals generated via either thermal or photocatalytic methods according to a Minisci-type transformation.<sup>[62](#page-9-5)</sup> Due to their intrinsic electron-poor properties, these heterocyclic derivatives are ideal substrates to trap nucleophilic LBRs. Thus, the radical borylation of azines with tertiary amine-borane complexes has been reported ([Scheme 2\)](#page-4-0).  $63,64$  $63,64$  It is important to stress that the authors attempted the same reaction with other LBR precursors such as  $Ph_3P^+ - BH_3^-$  and  $NHC^+$ –BH<sub>3</sub> $\tilde{ }$ ; however, the product was not formed in either case. To explain this result, the authors invoked the importance of the Me<sub>3</sub>N group to confer a highly nucleophilic character to the  $\sigma$ -boryl radical.

When a  $CH_3CN/H_2O$  solution of lepidine (2.1) and borane trimethylamine complex (2.2, 4 equiv) was irradiated in the presence of 4CzIPN (2,4,5,6-Tetrakis(9H-carbazol-9-yl)isophthalonitrile; 2 mol %) as a PC and ammonium persulfate as a sacrificial oxidant, the desired borylation occurred smoothly at the 2 position of 2.1 to afford 2.3 in 88% yield on a 0.05 mmol scale. Notably, the reaction could be performed on a gram scale and afforded 1.65 g of 2.3, corresponding to a 77% yield of the isolated product. In some cases, the reaction performed well (65% nuclear magnetic resonance [NMR] yield) in the absence of the PC due to a radical chain process triggered by photodecomposition of persulfate. However, the addition of a PC gave the most reliable reaction performance across a wide variety of substrates.

Concerning the mechanism, the reaction initiated with the oxidative quenching of the excited state of 4CzIPN (generated upon blue light irradiation;  $E_{1/2}$ [4CzIPN<sup>++</sup>/  $4CzIPN*$ ] = -1.18 V versus saturated calomel electrode  $[SCE]$ <sup>[65](#page-9-8)</sup> by the persulfate anion to form a sulfate radical anion (SO<sub>4</sub>\*) upon decomposition (the redox potential of the S<sub>2</sub>O<sub>8</sub><sup>2</sup>-/SO4<sup>+-</sup> redox couple has been estimated to be  $\leq$ 0.35 V versus SCE in aqueous solution).<sup>[66](#page-9-9)</sup> Next, SO<sub>4</sub><sup>--</sup> was in turn responsible for the cleavage of the strong B-H bond ( $\sim$ 101 kcal mol<sup>-1</sup>) in 2.2 via a HAT step, affording the corresponding LBR 2.4<sup>\*</sup>. Finally, the latter intermediate was trapped by protonated lepidine (2.1-H<sup>+</sup>), and the resulting adduct closed the photocatalytic cycle to recover 4CzIPN and also yielded (protonated) 2.3 [\(Scheme 2\)](#page-4-0). This methodology could also be used to enable the radical borylation of biologically relevant compounds, such as Voriconazole, Cinchonidine, and Famciclovir. (Ru(bpy)<sub>3</sub>(PF<sub>6</sub>)<sub>2</sub> was used as the PC for the first two compounds (bpy, 2,2'-bipyridine). It is important to mention that the obtained borylated products are bench-stable compounds and that the B–C(sp<sup>2</sup>) bond can be readily converted to C–O via oxidation or to C-C/C-heteroatom bonds via transition-metal-catalyzed transformations, such as Suzuki-Miyaura or Chan-Lam coupling reactions (see, e.g., the conversion of 2.6 to 2.7 in [Scheme 2](#page-4-0)).<sup>[63](#page-9-6)</sup>

**Chem Catalysis Perspective** 



<span id="page-4-0"></span>

Scheme 2. Photocatalyzed radical borylation of azines

Numbers in orange are the redox potentials (versus SCE) of the relevant redox couples.

#### Functionalization of protic C-H bonds

Very recently, LBRs have been adopted to address a long-standing challenge in the field of photocatalytic HAT,  $53$  namely the cleavage of protic C-H bonds. In the conventional approach, light is exploited by the PC to cleave a C-H bond, either directly or indirectly,<sup>[67](#page-9-10)</sup> and ultimately forms a C-centered radical. Despite the variety of methodologies reported so far based on this manifold, the polarity of the crucial HAT step remains limited by the fact that most common H-abstracting species are



**Chem Catalysis Perspective** 

electrophilic in nature and abstract preferentially hydridic hydrogens, in turn deliv-ering nucleophilic organoradicals.<sup>[53,](#page-8-29)[68](#page-9-11)</sup> On the contrary, the activation of protic C-H bonds (for the generation of electrophilic radicals) is polarity mismatched and, thus, kinetically disfavored. This has limited the potential of HAT over the years with respect, for example, to photoredox catalytic manifolds, wherein electrophilic radicals can be readily generated via SET.<sup>[69](#page-9-12)</sup>

Back in the 90s, Roberts introduced the concept of polarity-reversal catalysis (PRC), $35,70$  $35,70$  wherein the selective abstraction of a hydrogen atom from protic C-H bonds by an electrophilic radical was demonstrated, owing to the use of ligated boranes as catalysts. In other words, it was shown that the latter compounds could be used as co-catalysts to tweak the intrinsic philicity of HAT, [68,](#page-9-11)[70](#page-9-13) although only a handful of preparative examples have been reported. $71-73$ 

Very recently, this concept was exploited to enable a photocatalytic PRC strategy for the hydroalkylation of unactivated olefins ([Scheme 3](#page-6-0)).<sup>[74](#page-9-15)</sup> Thus, the irradiation with blue light of dimethyl malonate 3.1 (4 equiv) and olefin 3.2 (0.2 mmol) in the presence of an Ir-based PC (1 mol %), 2,4,6-triisopropylbenzene disulfide (TRIPS)<sub>2</sub>, and the quinuclidine borane complex 3.4 led to the desired reactivity (91% yield of the isolated 3.3). Interestingly, when 2,4,6-triisopropylbenzene thiol TRIPSH (10 mol %) was used as a terminal H donor and an NHC-borane as co-catalyst, only thiol-ene reaction byproducts were observed.

As for the proposed mechanism, light absorption by  $(TRIPS)_2$  led to the production of a couple of thiyl radicals that were responsible for the oxidative quenching of the excited state of the PC  $(E_{1/2}[Ir^{IV}/Ir^{III}*] = -0.92$  V versus SCE in MeCN; for comparison, E[PhS $\bullet$ /PhS<sup>-</sup>] = +0.16 V versus SCE). Next, the highly oxidizing Ir<sup>IV</sup> species  $(E_{1/2}[Ir^{IV}/Ir^{III}] = +1.51$  V versus SCE) delivered a nucleophilic LBR (3.5<sup>t</sup>) from 3.4 either via an electron transfer/proton transfer (ET/PT) sequence  $(E_{D/2})$  $(3.4) = +1.27$  V versus SCE) or a proton-coupled ET (PCET) process. At this stage, LBR  $3.5^{\circ}$  cleaved the protic C-H bond in  $3.1$  to afford the corresponding electrophilic alkyl radical 3.6', which was in turn trapped by 3.2. The resulting radical adduct 3.7' was finally quenched by TRIPSH generated during the reaction ([Scheme 3](#page-6-0)). Remarkably, the authors tested several tertiary amine-boranes similar to 3.4, but all of them gave lower yields. From NMR titration and density functional theory (DFT) calculations, they were able to prove that 3.1 and 3.4 interact via H bonding, which results in the formation of the expected LBR via an oxidative PCET pathway with  $Ir^{IV}$ , where the ester group of the malonate is acting as the base. Furthermore, such H bonding favors the key HAT event, confirming the importance of the hydroxyl moiety in 3.4 (see inset in [Scheme 3](#page-6-0)). Finally, it is also important to stress that the reaction occurred under very mild conditions, and a wide variety of functional groups was tolerated, as shown in the case of Indo-methacin (NSAID) and Febuxostat (drug for the treatment of gout).<sup>[74](#page-9-15)</sup>

#### CONCLUSIONS AND OUTLOOK

As shown in the present contribution, tertiary amine-borane complexes have enabled to significantly push the boundaries of synthetic applications of photocatalytically generated LBRs ([Scheme 4](#page-7-12)). In the first highlighted example, the strong nucleophilic character of said radicals was used to unlock a Minisci-type radical borylation of azines, which allowed for the direct installation of highly versatile boronbased handles for late-stage diversification campaigns. $63$  In the second example, the authors took advantage of the high bond dissociation energy (BDE) of the



<span id="page-6-0"></span>Perspective



Scheme 3. Hydroalkylation of unactivated olefins via polarity-reversal catalysis (PRC) Numbers in orange are the redox potentials (versus SCE) of the relevant redox couples.

B-H bond in tertiary amine-borane complexes to eventually reach a long-standing goal in photocatalysis via HAT: the cleavage of protic, aliphatic C(sp<sup>3</sup>)–H bonds.<sup>[74](#page-9-15)</sup> Another intriguing opportunity offered by LBRs deriving from amine-borane complexes is the possibility to devise tailor-made HAT catalysts by simply choosing a suitable, commercially available amine to be reacted with the appropriate boronbased reagent. Moreover, as shown in the hydroalkylation of unactivated olefins ([Scheme 3\)](#page-6-0), weak interactions can play a decisive role in establishing this chemistry: indeed, one can imagine exploiting these forces to reach high levels of selectivity in the designed synthetic application.

Remarkably, as mentioned in the introduction, LBRs can also be used as XAT agents.<sup>[12](#page-7-11)[,34,](#page-8-17)[45](#page-8-23)</sup> Accordingly, it is foreseen that, thanks to the operationally simple conditions offered by photocatalysis and the recent surge of interest in this



#### **Reactivity modes of LBRs**

<span id="page-7-12"></span>

Scheme 4. Synthetic applications of LBRs in photocatalytic manifolds

methodology,<sup>[33](#page-8-16)</sup> synthetic applications based on amine-boryl radical-mediated XAT are expected to emerge in the near future.

The successful merger of the photocatalytic activation manifold with the chemistry of boryl radicals is yet another demonstration of the versatility of photocatalysis as a radical generation methodology<sup>[2](#page-7-1),[75](#page-9-16)</sup> that offers unparalleled mild conditions and enables the full exploitation of the chemistry of the generated intermediates, further fostering the importance of radical-based methodologies in synthetic endeavors.

#### ACKNOWLEDGMENTS

L.C. acknowledges European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 101023615 (project name: HAT-TRICK).

#### AUTHOR CONTRIBUTIONS

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

#### DECLARATION OF INTERESTS

The authors declare no competing interests.

#### REFERENCES

- <span id="page-7-0"></span>1. [C. Chatgilialoglu, and A. Studer, eds. \(2012\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref1) [Encyclopedia of Radicals in](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref1) [Chemistry, Biology and Materials \(John Wiley](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref1) [& Sons, Ltd\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref1)
- <span id="page-7-1"></span>2. [Galliher, M.S., Roldan, B.J., and Stephenson,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref2) [C.R.J. \(2021\). Evolution towards green radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref2) [generation in total synthesis. Chem. Soc. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref2) 50[, 10044–10057](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref2).
- <span id="page-7-2"></span>3. [Yan, M., Lo, J.C., Edwards, J.T., and Baran, P.S.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref3) [\(2016\). Radicals: reactive intermediates with](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref3) [translational potential. J. Am. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref3) 138, [12692–12714.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref3)
- <span id="page-7-3"></span>4. [Renaud, P. \(2012\). Boron in radical chemistry. In](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref4) [Encyclopedia of Radicals in Chemistry, Biology](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref4) [and Materials, C. Chatgilialoglu and A. Studer,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref4) [eds. \(John Wiley & Sons, Ltd\)](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref4).
- <span id="page-7-4"></span>5. [Su, Y., and Kinjo, R. \(2017\). Boron-containing](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref5) [radical species. Coord. Chem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref5) 352, [346–378](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref5).
- <span id="page-7-5"></span>6. [Lawson, J.R., and Melen, R.L. \(2017\). Recent](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref6) [developments and applications of Lewis acidic](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref6) [boron reagents. In Organometallic Chemistry,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref6) vol 41[Organometallic Chemistry \(The Royal](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref6) [Society of Chemistry\), pp. 1–27.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref6)
- <span id="page-7-6"></span>7. [Sivaev, I.B., and Bregadze, V.I. \(2014\). Lewis](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref7) [acidity of boron compounds. Coord. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref7) Rev. [270–271](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref7), 75–88.
- <span id="page-7-7"></span>8. [Corey, E.J., Shibata, S., and Bakshi, R.K. \(1988\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref8) [An efficient and catalytically enantioselective](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref8) [route to \(S\)-\(-\)-phenyloxirane. J. Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref8) 53, [2861–2863.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref8)

<span id="page-7-8"></span>9. [Wang, H., Jing, C., Noble, A., and Aggarwal,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref9) [V.K. \(2020\). Stereospecific 1,2-migrations of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref9) [boronate complexes induced by electrophiles.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref9) [Angew. Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref9) 59, 16859–16872.

**Perspective** 

**Chem Catalysis** 

- <span id="page-7-9"></span>10. [Darses, S., and Genet, J.-P. \(2008\). Potassium](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref10) [organotrifluoroborates: new perspectives in](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref10) [organic synthesis. Chem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref10) 108, 288–325.
- <span id="page-7-10"></span>11. [Baban, J.A., and Roberts, B.P. \(1983\). An e.s.r.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref11) stu[d](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref11)y of amine-boryl radicals ( $R_3N-BH_2^{\bullet}$ [\) in](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref11) [solution. J. Chem. Soc. Chem. Commun. 1224–](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref11) [1226](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref11).
- <span id="page-7-11"></span>12. [Baban, J.A., and Roberts, B.P. \(1984\). An](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref12) [electron spin resonance study of phosphine](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref12)[boryl radicals; their structures and reactions](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref12) [with alkyl halides. J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref12) 2, [1717–1722](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref12).

**Perspective** 

- <span id="page-8-4"></span>13. [Baban, J.A., Marti, V.P.J., and Roberts, B.P.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref13) [\(1985\). Ligated boryl radicals. Part 2. Electron](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref13) [spin resonance studies of trialkylamin–boryl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref13) [radicals. J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref13) 2, 1723– [1733](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref13).
- 14. [Baban, J.A., Marti, V.P.J., and Roberts, B.P.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref14) [\(1985\). Spin-trapping of ligated boryl radicals.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref14) [Tetrahedron Lett.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref14) 26, 1349–1352.
- <span id="page-8-33"></span>15. [Taniguchi, T. \(2021\). Advances in chemistry of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref15) N[-heterocyclic carbene boryl radicals. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref15) Soc. Rev. 50[, 8995–9021](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref15).
- 16. [Martin, C.D., Soleilhavoup, M., and Bertrand,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref16) [G. \(2013\). Carbene-stabilized main group](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref16) [radicals and radical ions. Chem. Sci.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref16) 4, 3020– [3030](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref16).
- <span id="page-8-7"></span>17. [Curran, D.P., Solovyev, A., Makhlouf Brahmi,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref17) M., Fensterbank, L., Malacria, M., and Lacôte, [E. \(2011\). Synthesis and reactions of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref17) [N-heterocyclic carbene boranes. Angew.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref17) [Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref17) 50, 10294–10317.
- <span id="page-8-1"></span>18. [Ueng, S.-H., Makhlouf Brahmi, M., Derat, E.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18) Fensterbank, L., Lacô[te, E., Malacria, M., and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18)<br>[Curran, D.P. \(2008\). Complexes of borane and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18) [N-heterocyclic carbenes: a new class of radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18) [hydrogen atom donor. J. Am. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18) 130, [10082–10083.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref18)
- <span id="page-8-2"></span>19. [Ueng, S.-H., Solovyev, A., Yuan, X., Geib, S.J.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref19)<br>Fensterbank, L., Lacôte, E., Malacria, M.,<br>[Newcomb, M., Walton, J.C., and Curran, D.P.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref19) (2009). N[-heterocyclic carbene boryl radicals: a](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref19) [new class of boron-centered radical. J. Am.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref19) Chem. Soc. 131[, 11256–11262.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref19)
- 20. [Walton, J.C., Brahmi, M.M., Fensterbank, L.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) Lacô[te, E., Malacria, M., Chu, Q., Ueng, S.-H.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) [Solovyev, A., and Curran, D.P. \(2010\). EPR](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) [studies of the generation, structure, and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) reactivity of N[-heterocyclic carbene borane](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) [radicals. J. Am. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref20) 132, 2350–2358.
- <span id="page-8-0"></span>21. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997)
- <span id="page-8-3"></span>22. [Hioe, J., Karton, A., Martin, J.M.L., and Zipse,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref21) [H. \(2010\). Borane-lewis base complexes as](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref21) [homolytic hydrogen atom donors. Chem. Eur.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref21) J. 16[, 6861–6865.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref21)
- <span id="page-8-5"></span>23. [Green, I.G., and Roberts, B.P. \(1986\). Homolytic](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref22) [reactions of ligated boranes. Part 3. Electron](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref22) [spin resonance studies of radicals derived from](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref22) [dialkylamine–boranes. J. Chem. Soc. Perkin](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref22) Trans. 2[, 1597–1606](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref22).
- <span id="page-8-6"></span>24. [Kirwan, J.N., and Roberts, B.P. \(1989\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref23) [Homolytic reactions of ligated boranes. Part](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref23) [11. Electron spin resonance studies of radicals](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref23) [derived from primary amine–boranes. J. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref23) [Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref23) 2, 539–550.
- <span id="page-8-8"></span>25. [Walton, J.C. \(2009\). Linking borane with](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref24) [N-heterocyclic carbenes: effective hydrogen](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref24)[atom donors for radical reactions. Angew.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref24) [Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref24) 48, 1726–1728.
- <span id="page-8-9"></span>26. [Baban, J.A., and Roberts, B.P. \(1987\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref25) [Homolytic reactions of ligated boranes. Part 6.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref25) [Electron spin resonance studies of dialkyl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref25) [sulphide-boryl radicals. J. Chem. Soc. Perkin](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref25) Trans. 2[, 497–505](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref25).
- <span id="page-8-10"></span>27. [Paul, V., and Roberts, B.P. \(1988\). Homolytic](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref26) [reactions of ligated boranes. Part 10. Electron](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref26)

[spin resonance studies of radicals derived from](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref26) [ligated arylboranes. J. Chem. Soc. Perkin](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref26) Trans. 2[, 1895–1901](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref26).

- <span id="page-8-11"></span>28. [Subervie, D., Graff, B., Nerkar, S., Curran, D.P.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27) Lalevée, J., and Lacô[te, E. \(2018\). Difluorination](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27) [at boron leads to the first electrophilic ligated](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27) boryl ra[d](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27)ical (NHC-BF<sub>2</sub><sup>•</sup>[\). Angew. Chem. Int.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27) Ed. 57[, 10251–10256.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref27)
- <span id="page-8-12"></span>29. [Wu, C., Hou, X., Zheng, Y., Li, P., and Lu, D.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref28) [\(2017\). Electrophilicity and nucleophilicity of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref28) [boryl radicals. J. Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref28) 82, 2898–2905.
- <span id="page-8-13"></span>30. [Sheeller, B., and Ingold, K.U. \(2001\). Absolute](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref29) [rate constants for some reactions of the](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref29) [triethylamine-boryl radical and the borane](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref29) [radical anion. J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref29) 2, [480–486.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref29)
- <span id="page-8-14"></span>31. [Taniguchi, T. \(2019\). Boryl radical addition to](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref30) [multiple bonds in organic synthesis. Eur. J.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref30) [Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref30) 2019, 6308–6319.
- <span id="page-8-15"></span>32. [Diart, V., and Roberts, B.P. \(1992\). EPR studies](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref31) [of the additon of 1,1-bis\(alkoxycarbonyl\)alkyl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref31) [radicals and tris\(ethoxycarbonyl\)methyl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref31) [radicals to alkenes and to alkyl isocyanides.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref31) [J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref31) 2, 1761–1768.
- <span id="page-8-16"></span>33. Juliá[, F., Constantin, T., and Leonori, D. \(2022\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref32) [Applications of halogen-atom transfer \(XAT\)](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref32) [for the generation of carbon radicals in](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref32) [synthetic photochemistry and photocatalysis.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref32) Chem. Rev. 122[, 2292–2352](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref32).
- <span id="page-8-17"></span>34. [Roberts, B.P., and Steel, A.J. \(1994\). The effects](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref33) of  $\beta$ -alkoxy substituents on radical reactions [halogen-atom abstraction from alkyl chlorides.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref33) [J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref33) 2, 2411–2422.
- <span id="page-8-18"></span>35. [Paul, V., and Roberts, B.P. \(1987\). Polarity](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref34) [reversal catalysis of hydrogen atom abstraction](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref34) [reactions. J. Chem. Soc. Chem. Commun.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref34) [1322–1324](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref34).
- 36. [Paul, V., Roberts, B.P., and Willis, C.R. \(1989\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35) [Homolytic reactions of ligated boranes. Part](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35) [12. Amine–alkylboranes as polarity reversal](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35) [catalysts for hydrogen-atom abstraction by](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35) t[-butoxyl radicals. J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35) 2[, 1953–1961.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref35)
- 37. [Kaushal, P., Mok, P.L.H., and Roberts, B.P.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) [\(1990\). Homolytic reactions of ligated boranes.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) [Part 15. Comparative studies of amine–](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) [boranes as donor polarity reversal catalysts for](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) [hydrogen-atom abstraction. J. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) [Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref36) 2, 1663–1670.
- 38. [Mok, P.L.H., and Roberts, B.P. \(1991\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref37) Enantioselective a[-hydrogen-atom abstraction](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref37) [from an ester by an optically active amine-boryl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref37) [radical. J. Chem. Soc. Chem. Commun.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref37) [150–152.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref37)
- 39. [Mok, P.L.H., and Roberts, B.P. \(1992\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref38) [Enantioselective hydrogen-atom abstraction](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref38) [by optically active amine-boryl radicals: an ESR](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref38) [spectroscopic study. Tetrahedron Lett.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref38) 33, [7249–7252](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref38).
- 40. [Mok, P.L.H., Roberts, B.P., and McKetty, P.T.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) [\(1993\). Homolytic reactions of ligated boranes.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) [Part 16. Enantioselective hydrogen-atom](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) [abstraction by chiral amine-boryl radicals:](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) [catalytic kinetic resolution of esters and of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) [camphor. J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39) 2, [665–674.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref39)
- <span id="page-8-19"></span>41. [Rablen, P.R. \(1997\). Large effect on borane](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref40) [bond dissociation energies resulting from](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref40)

[coordination by Lewis bases. J. Am. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref40) Soc. 119[, 8350–8360.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref40)

- <span id="page-8-20"></span>42. [Rablen, P.R., and Hartwig, J.F. \(1996\). Accurate](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref41) [borane sequential bond dissociation energies](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref41) [by high-level ab initio computational methods.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref41) [J. Am. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref41) 118, 4648–4653.
- <span id="page-8-21"></span>43. [Jin, J., Xia, H., Zhang, F., and Wang, Y. \(2020\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref42) [Lewis-base boryl radicals enabled borylation,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref42) [radical catalysis and reduction reactions. Chin.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref42) [J. Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref42) 40, 2185–2194.
- <span id="page-8-22"></span>44. [Friese, F.W., and Studer, A. \(2019\). New](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref43) [avenues for C–B bond formation via radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref43) [intermediates. Chem. Sci.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref43) 10, 8503–8518.
- <span id="page-8-23"></span>45. [Baban, J.A., and Roberts, B.P. \(1988\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref44) [Homolytic reactions of ligated boranes. Part 9.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref44) [Overall addition of alkanes to electron](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref44)[deficient alkenes by a radical chain mechanism.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref44) [J. Chem. Soc. Perkin Trans.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref44) 2, 1195–1200.
- <span id="page-8-24"></span>46. [Barton, D.H.R., and Jacob, M. \(1998\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref45) [Phosphine-boranes as selective reagents for](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref45) [the radical deoxygenation of a hindered](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref45) [secondary alcohol. Tetrahedron Lett.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref45) 39, 1331– [1334](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref45).
- <span id="page-8-25"></span>47. [Lucarini, M., Pedulli, G.F., and Valgimigli, L.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref46) [\(1996\). Homolytic reactivity of ligated boranes](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref46) [toward alkyl, alkoxyl, and peroxyl radicals.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref46) [J. Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref46) 61, 1161–1164.
- <span id="page-8-26"></span>48. Lalevé[e, J., Tehfe, M.A., Allonas, X., and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref47) [Fouassier, J.P. \(2008\). Boryl radicals as a new](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref47) [photoinitiating species: a way to reduce the](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref47) [oxygen inhibition. Macromolecules](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref47) 41, 9057– [9062](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref47).
- 49. [Telitel, S., Schweizer, S., Morlet-Savary, F.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48) [Graff, B., Tschamber, T., Blanchard, N.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48) Fouassier, J.P., Lelli, M., Lacôte, E., and Lalevé[e, J. \(2013\). Soft photopolymerizations](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48) [initiated by dye-sensitized formation of NHC](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48)[boryl radicals under visible light.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48) [Macromolecules](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref48) 46, 43–48.
- 50. Lalevé[e, J., Telitel, S., Tehfe, M.A., Fouassier,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref49) J.P., Curran, D.P., and Lacôte, E. (2012). N[heterocyclic carbene boranes accelerate type I](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref49) [radical photopolymerizations and overcome](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref49) [oxygen inhibition. Angew. Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref49) 51, [5958–5961](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref49).
- <span id="page-8-27"></span>51. [Bell, J.D., and Murphy, J.A. \(2021\). Recent](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref50) [advances in visible light-activated radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref50) [coupling reactions triggered by \(i\) ruthenium,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref50) [\(ii\) iridium and \(iii\) organic photoredox agents.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref50) [Chem. Soc. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref50) 50, 9540–9685.
- <span id="page-8-28"></span>52. [McAtee, R.C., McClain, E.J., and Stephenson,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref51) [C.R.J. \(2019\). Illuminating photoredox catalysis.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref51) [Trends Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref51) 1, 111–125.
- <span id="page-8-29"></span>53. [Capaldo, L., Ravelli, D., and Fagnoni, M. \(2022\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref52) [Direct photocatalyzed hydrogen atom transfer](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref52) [\(HAT\) for aliphatic C–H bonds elaboration.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref52) Chem. Rev. 122[, 1875–1924](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref52).
- <span id="page-8-30"></span>54. [Cao, H., Tang, X., Tang, H., Yuan, Y., and Wu, J.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref53) [\(2021\). Photoinduced intermolecular hydrogen](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref53) [atom transfer reactions in organic synthesis.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref53) [Chem. Catal.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref53) 1, 523–598.
- <span id="page-8-31"></span>55. [Ravelli, D., Fagnoni, M., and Albini, A. \(2013\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref54) [Photoorganocatalysis. What for? Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref54) Rev. 42[, 97–113](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref54).
- <span id="page-8-32"></span>56. [Romero, N.A., and Nicewicz, D.A. \(2016\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref55) [Organic photoredox catalysis. Chem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref55) 116, [10075–10166](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref55).



### *d* CellPress

- <span id="page-9-0"></span>57. Riente, P., and Noë[l, T. \(2019\). Application of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref56) [metal oxide semiconductors in light-driven](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref56) [organic transformations. Catal. Sci. Technol.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref56) 9, [5186–5232](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref56).
- <span id="page-9-1"></span>58. Savateev, A., Ghosh, I., König, B., and<br>[Antonietti, M. \(2018\). Photoredox catalytic](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref57) [organic transformations using heterogeneous](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref57) [carbon nitrides. Angew. Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref57) 57, [15936–15947.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref57)
- <span id="page-9-2"></span>59. [Duret, G., Quinlan, R., Bisseret, P., and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref58) [Blanchard, N. \(2015\). Boron chemistry in a new](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref58) [light. Chem. Sci.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref58) 6, 5366–5382.
- <span id="page-9-3"></span>60. [Tian, Y.-M., Guo, X.-N., Braunschweig, H.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref59) [Radius, U., and Marder, T.B. \(2021\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref59) [Photoinduced borylation for the synthesis of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref59) [organoboron compounds. Chem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref59) 121, [3561–3597](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref59).
- <span id="page-9-4"></span>61. [Lai, D., Ghosh, S., and Hajra, A. \(2021\). Light](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref60)[induced borylation: developments and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref60) [mechanistic insights. Org. Biomol. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref60) 19, [4397–4428](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref60).
- <span id="page-9-5"></span>62. [Proctor, R.S.J., and Phipps, R.J. \(2019\). Recent](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref61) [advances in minisci-type reactions. Angew.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref61) [Chem. Int. Ed.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref61) 58, 13666–13699.
- <span id="page-9-6"></span>63. [Kim, J.H., Constantin, T., Simonetti, M.,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref62) [Llaveria, J., Sheikh, N.S., and Leonori, D. \(2021\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref62) [A radical approach for the selective C–H](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref62) [borylation of azines. Nature](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref62) 595, 677–683.
- <span id="page-9-7"></span>64. [Yang, S., and Ye, J. \(2021\). Borylation of azines](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref63) [via a Minisci-type reaction. Chem](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref63) 7, 1703–1705.
- <span id="page-9-8"></span>65. [Speckmeier, E., Fischer, T.G., and Zeitler, K.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) [\(2018\). A toolbox Approach to construct](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) [broadly applicable metal-free catalysts for](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) [photoredox chemistry: deliberate tuning of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) [redox potentials and importance of halogens](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) [in donor–acceptor cyanoarenes. J. Am. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64) Soc. 140[, 15353–15365](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref64).
- <span id="page-9-9"></span>66. [Memming, R. \(1969\). Mechanism of the](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref65) [electrochemical reduction of persulfates and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref65) [hydrogen peroxide. J. Electrochem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref65) 116, [785–790.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref65)
- <span id="page-9-10"></span>67. [Capaldo, L., and Ravelli, D. \(2017\). Hydrogen](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref66) [atom transfer \(HAT\): a versatile strategy](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref66) [for substrate activation in photocatalyzed](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref66) [organic synthesis. Eur. J. Org. Chem.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref66) 2017, [2056–2071](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref66).
- <span id="page-9-11"></span>68. [Parsaee, F., Senarathna, M.C., Kannangara,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref67) [P.B., Alexander, S.N., Arche, P.D.E., and Welin,](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref67) [E.R. \(2021\). Radical philicity and its role in](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref67) [selective organic transformations. Nat. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref67) Chem. 5[, 486–499.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref67)
- <span id="page-9-12"></span>69. [Lenardon, G.V.A., Nicchio, L., and Fagnoni, M.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref68) [\(2021\). Photogenerated electrophilic radicals](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref68) [for the umpolung of enolate chemistry.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref68) [J. Photochem. Photobiol. C Photochem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref68) 46[, 100387](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref68).

<span id="page-9-13"></span>70. [Roberts, B.P. \(1999\). Polarity-reversal catalysis](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref69) [of hydrogen-atom abstraction reactions:](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref69) [concepts and applications in organic](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref69) [chemistry. Chem. Soc. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref69) 28, 25–35.

**Perspective** 

**Chem Catalysis** 

- <span id="page-9-14"></span>71. [Hai-Shan, D., and Roberts, B.P. \(1992\). Amine](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref70)[boranes as polarity reversal catalysts for radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref70) [chain 2,3-epoxypropanation reactions of](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref70) [esters. Tetrahedron Lett.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref70) 33, 4621–4624.
- 72. [Hai-Shan, D., and Roberts, B.P. \(1992\). Radical](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref71) [chain addition to vinyl epoxides catalysed by](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref71) [amine-boranes: synthesis of allylic alcohols.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref71) [Tetrahedron Lett.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref71) 33, 6169–6172.
- 73. [Dang, H.-S., and Roberts, B.P. \(1993\).](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) [Homolytic reactions of ligated boranes. Part](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) [17. Amine–Boranes as polarity reversal](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) [catalysts for radical chain reactions of esters](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) [with vinylic epoxides and with allylic tert-butyl](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) [peroxides. J. Chem. Soc. Perkin Trans. 1](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72) 8, [891–898.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref72)
- <span id="page-9-15"></span>74. [Lei, G., Xu, M., Chang, R., Funes-Ardoiz, I., and](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref73) [Ye, J. \(2021\). Hydroalkylation of unactivated](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref73) [olefins via visible-light-driven dual hydrogen](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref73) [atom transfer catalysis. J. Am. Chem. Soc.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref73) 143, [11251–11261](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref73).
- <span id="page-9-16"></span>75. [Crespi, S., and Fagnoni, M. \(2020\). Generation](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref74) [of alkyl radicals: from the tyranny of tin to the](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref74) [photon democracy. Chem. Rev.](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref74) 120, [9790–9833](http://refhub.elsevier.com/S2667-1093(22)00150-6/sref74).