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Photocatalytic generation of ligated boryl
radicals from tertiary amine-borane
complexes: An emerging tool in organic synthesis
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The bigger picture

Challenges and opportunities

� Photocatalysis is nowadays

considered the elective tool for

organoradicals generation in

synthetic endeavors.

Nevertheless, B-centered radi-

cals have been adopted only

sparsely, in stark contrast to

their congeners of the 14–17th

groups.

� NHC-boranes are typically

exploited as a source of ligated

boryl radicals (LBRs); however,

their use is mainly restricted to
SUMMARY

Photocatalysis has recently given impetus to the use of ligated boryl
radicals (LBRs) in synthesis, thanks to the mild conditions required for
their generation based on the use of visible light. LBRs are B-centered
radicals wherein the boron atom is coordinated with a suitable Lewis
base (e.g., amine, phosphine, or N-heterocyclic carbene [NHC]) and
can be conveniently accessed from the corresponding ligated boranes
through the cleavage of a B�H bond. While NHC-boranes featuring a
rather labile B�H bond are routinely used in photocatalytic strategies,
this perspectivehighlights the recent adoptionofmore challenging ter-
tiary amine-boranes, which unlocked unprecedented reaction mani-
folds. The highlighted applications include the Minisci-type borylation
of azines and the implementation of polarity-reversal catalysis for the
generation of electrophilic C-centered radicals via hydrogen-atom
transfer (HAT). The possibility to devise an analogous strategy based
on halogen-atom transfer (XAT) is also discussed.
radical additions onto

unsaturated compounds

(arenes, alkenes, and imines).

Recently, the adoption of

tertiary amine-borane

complexes in the same role has

unlocked new transformations.

� Two recent reports have

capitalized on the peculiar

features of LBRs generated from

tertiary amine-borane

complexes for the borylation of

azines and as catalysts to trigger

a hydrogen-atom transfer from

a protic C–H bond.
INTRODUCTION

Radical species featuring an unpaired number of electrons play a key role in an

impressive number of processes spanning from biology to chemistry,1 and their

importance in synthetic endeavors has increased steadily in recent years.2,3 Con-

cerning the applications in preparative organic chemistry, the most-studied deriva-

tives include carbon- and nitrogen-based radicals, as well as chalcogen-based

radicals (mainly oxygen- and sulfur-centered) and halogen atoms, while boron-

based congeners have long remained in the background.4,5

B-based closed-shell species are known for their capability to act as Lewis acids (e.g.,

BX3, X = halogen atom or organic substituent) due to the empty p orbital on the bo-

ron atom.6,7 This reactivity has been widely investigated to promote an array of

different transformations both in symmetric and asymmetric variants, with one prom-

inent example being the use of oxazaborolidine derivatives in the Corey-Bakshi-

Shibata reduction (Scheme 1A).8 However, when a fourth substituent is attached

to the B atom, a negatively charged molecular assembly is obtained, which can be

conveniently used as a source of nucleophilic groups. A prime example of this

concept can be found in the class of boron homologations (e.g., Matteson and Zwei-

fel reactions),9 involving the migration of a group from boron to an adjacent sp2- or

sp3-hybridized carbon (Scheme 1A). Other examples pertain to the chemistry of al-

kali borohydrides (NaBH4 and LiBH4), which are routinely used for hydride transfer to

carbonyl compounds (hydridic reduction), or organotrifluoroborates (RBF3K), which

can be employed as a source of nucleophilic alkyl groups in different synthetic trans-

formations, including cross-coupling reactions.10
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Scheme 1. Boron species and their chemical reactivities

(A) Classical trivalent and tetravalent boron species and their polar reactivity.

(B) Open-shell boron species: boryl radicals (BRs) and ligated boryl radicals (LBRs).

(C) Taxonomy of LBRs.

(D) Typical reactivity of LBRs.

LB, Lewis base.
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(LIGATED) BORYL RADICALS

Despite this firmly established knowledge in polar chemistry of boron compounds,

the use of boron-based open-shell species is currently underdeveloped.4,5 Concep-

tually, a neutral boron-centered radical can be accessed through homolytic cleavage

of a bond-at-boron in a trivalent boron derivative (with a general formula R3B). This

would lead to the formation of a highly electron-deficient and unstable intermediate

(R2B
,), wherein the boron atom features only 5 electrons in its external valence shell

(Scheme1B). Things changedramatically, however, if the B center is coordinatedwith

a suitable Lewis base (LB). This leads to the so-called ligated boryl radicals (LBRs)11–20

(general formula: LB
+ - R2B

,-), wherein the boron atom shares 7 electrons in its valence

shell, showing a comparable behavior with respect to well-known C-, N- and O-/S-

centered radicals and halogen atoms (Scheme 1B). (Overall, LBRs are neutral species;

however, we explicitly indicate the presence of +/- formal charges on LB and B,

respectively. As a matter of fact, the LB-B interaction involves a coordination (dative)

bond, showing ‘‘significant polarity, lesser strength, and greater length’’ compared

with covalent bonds, according to the IUPAC Gold Book21 . On the other hand,

some authors prefer to indicate this kind of interaction with a dative bond, with no

charge separation.) Indeed, LBRs are characterized by a superior stability with

respect to the corresponding non-ligated derivatives and have been detected by

spectroscopic means,11–14,18–20 while their properties have been the subject of

extensive computational studies.19,22 Notably, according to the nature of the LB in-

teracting with the boron atom, two different classes of LBRs can be described. First,

when the LB is a tertiary amine, as-type LBR results, with the spin densitymainly local-

ized at the boron center, which exhibits a pyramidal geometry.11,13 However, when a

primary or secondary amine functions as LB, an aminyl-borane radical is ultimately

formed as a result of its superior stability with respect to the LBR (the isomeric
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amine-boryl).23,24 Second, when N-heterocyclic carbenes (NHCs)17,19,25 (or phos-

phines12 or sulfides26) are employed as LB, the spin density is delocalized over the

entire carbene ligand, and a p-type radical results, wherein the boron atom assumes

a trigonal planar geometry (Scheme1C). Notably, depending on their steric and elec-

tronic properties, the substituents at boron (e.g., aromatic rings) can likewise have a

role in this p delocalization.27
The chemistry of LBRs

Apart from a notable exception,28 LBRs are nucleophilic radicals, and this feature

heavily affects their reactivity.29 Indeed, they show a chameleonic reactivity, de-

pending on the reaction partners, as demonstrated by extensive kinetic studies.30

They are prone to add to multiple C–C bonds (e.g., in alkenes, alkynes, and

carbonyls),31 as well as to nitriles and isocyanides,13,32 leading to the formation of

a new B–C bond. Alternatively, LBRs can also trigger halogen-atom transfer (XAT)

from alkyl halides,33 enabling access to the corresponding alkyl radicals.12,34 Finally,

LBRs can act as hydrogen abstractors, thus triggering a hydrogen-atom transfer

(HAT) from protic positions (e.g., a to a carbonyl/carboxyl moiety), owing to their

nucleophilic character.35–40 The capacity of LBRs to abstract a hydrogen atom is

largely dictated by the strength of the B–H bond formed, which in turn depends

on the type of LB interacting with the boron center. Thus, tertiary amine-boranes

share a strong B–H bond, and the corresponding LBRs behave as potent H abstrac-

tors, while NHC- and phosphine-ligated boranes possess a more labile B–H bond,

making the corresponding LBRs less suitable for this role.41,42
LBRs UNDER A NEW LIGHT

In terms of synthetic applications, LBRs have been mainly exploited in thermally initi-

ated radical borylations adopting NHC-boranes as substrates.31,43,44 In addition,

ligated boranes have been sparsely used as reducing agents in radical chain

processes,18,25,45,46 as valid substitutes for classic Sn-/Si-based derivatives,47 or as

promoters for radical polymerizations.48–50

Quite recently, the generation of LBRs in synthetic endeavors has been experiencing

a renewed interest from the chemical community, which can be mainly attributed to

the rising interest in photocatalysis. Photocatalysis has provided synthesis practi-

tioners with a robust and versatile toolbox for the generation of organoradicals un-

der extremely mild conditions (i.e., room temperature catalysis, visible light). This

powerful methodology is based on the use of a catalyst (termed ‘‘photocatalyst’’

[PC]) deputed for light absorption and for the ensuing activation of the target sub-

strate, mostly via a single-electron transfer (SET)51,52 or a HAT53,54 step. Routinely

employed PCs include Ru- and Ir-based polypyridyl complexes, whose redox prop-

erties can be finely tuned by judicious choice of the ligands around the metal center

and their electronic properties. Alternatively, a cheaper and more eco-friendly alter-

native to metal-based PCs is represented by photoorganocatalysts55,56 and hetero-

geneous semiconductor-based PCs.57,58

Despite that activation of stable boron species with visible light through photocatal-

ysis has been long known,59 the photocatalytic generation of LBRs has undergone an

impressive development in the last 5 years. This has provided a number of elegant

synthetic contributions based on the use of easily activatable NHC-boranes. As

recently reviewed,15,31,43,60,61 alkenes, imines, and substituted (hetero)aromatics

are competent reaction partners and have been conveniently adopted toward the

formation B–C(sp3/sp2) bonds via LBRs.
Chem Catalysis 2, 957–966, May 19, 2022 959
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SYNTHETIC APPLICATIONS OF LBRs FROM TERTIARY
AMINE-BORANES

In stark contrast to NHC-boryl radicals, tertiary amine-boryl radicals have been under

the spotlight only very recently. As mentioned, they show a more pronounced

nucleophilicity29 compared with NHC-boryl radicals as well as a stronger B�H

bond.41,42 Thanks to these features, two new reactivity modes could be unlocked:

(1) a Minisci-type borylation of heteroaromatics and (2) polarity-reversal catalysis

for the activation of electrophilic C�H bonds via HAT. In this perspective, we aim

to highlight such recent breakthroughs.
Minisci-type borylation of azines

Traditionally, (protonated) azines have been reported to work as competent radical

traps for C-centered radicals generated via either thermal or photocatalytic methods

according to a Minisci-type transformation.62 Due to their intrinsic electron-poor

properties, these heterocyclic derivatives are ideal substrates to trap nucleophilic

LBRs. Thus, the radical borylation of azines with tertiary amine-borane complexes

has been reported (Scheme 2).63,64 It is important to stress that the authors attemp-

ted the same reaction with other LBR precursors such as Ph3P
+�BH3

- and

NHC+�BH3
-; however, the product was not formed in either case. To explain this

result, the authors invoked the importance of the Me3N group to confer a highly

nucleophilic character to the s-boryl radical.

When a CH3CN/H2O solution of lepidine (2.1) and borane trimethylamine complex

(2.2, 4 equiv) was irradiated in the presence of 4CzIPN (2,4,5,6-Tetrakis(9H-carba-

zol-9-yl)isophthalonitrile; 2 mol %) as a PC and ammonium persulfate as a sacrificial

oxidant, the desired borylation occurred smoothly at the 2 position of 2.1 to afford

2.3 in 88% yield on a 0.05 mmol scale. Notably, the reaction could be performed

on a gram scale and afforded 1.65 g of 2.3, corresponding to a 77% yield of the

isolated product. In some cases, the reaction performed well (65% nuclear mag-

netic resonance [NMR] yield) in the absence of the PC due to a radical chain pro-

cess triggered by photodecomposition of persulfate. However, the addition of a

PC gave the most reliable reaction performance across a wide variety of

substrates.

Concerning the mechanism, the reaction initiated with the oxidative quenching of

the excited state of 4CzIPN (generated upon blue light irradiation; E1/2[4CzIPN
,+/

4CzIPN*] = -1.18 V versus saturated calomel electrode [SCE])65 by the persulfate

anion to form a sulfate radical anion (SO4
,-) upon decomposition (the redox poten-

tial of the S2O8
2-/SO4,- redox couple has been estimated to be %0.35 V versus

SCE in aqueous solution).66 Next, SO4
,- was in turn responsible for the cleavage

of the strong B�H bond (�101 kcal mol-1) in 2.2 via a HAT step, affording the cor-

responding LBR 2.4,. Finally, the latter intermediate was trapped by protonated

lepidine (2.1-H+), and the resulting adduct closed the photocatalytic cycle to

recover 4CzIPN and also yielded (protonated) 2.3 (Scheme 2). This methodology

could also be used to enable the radical borylation of biologically relevant com-

pounds, such as Voriconazole, Cinchonidine, and Famciclovir. (Ru(bpy)3(PF6)2
was used as the PC for the first two compounds (bpy, 2,20-bipyridine). It is impor-

tant to mention that the obtained borylated products are bench-stable compounds

and that the B�C(sp2) bond can be readily converted to C�O via oxidation or to

C�C/C–heteroatom bonds via transition-metal-catalyzed transformations, such as

Suzuki-Miyaura or Chan-Lam coupling reactions (see, e.g., the conversion of 2.6 to

2.7 in Scheme 2).63
960 Chem Catalysis 2, 957–966, May 19, 2022



Scheme 2. Photocatalyzed radical borylation of azines

Numbers in orange are the redox potentials (versus SCE) of the relevant redox couples.
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Functionalization of protic C�H bonds

Very recently, LBRs have been adopted to address a long-standing challenge in the

field of photocatalytic HAT,53 namely the cleavage of protic C�H bonds. In the con-

ventional approach, light is exploited by the PC to cleave a C�H bond, either

directly or indirectly,67 and ultimately forms a C-centered radical. Despite the variety

of methodologies reported so far based on this manifold, the polarity of the crucial

HAT step remains limited by the fact that most common H-abstracting species are
Chem Catalysis 2, 957–966, May 19, 2022 961
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electrophilic in nature and abstract preferentially hydridic hydrogens, in turn deliv-

ering nucleophilic organoradicals.53,68 On the contrary, the activation of protic

C�H bonds (for the generation of electrophilic radicals) is polarity mismatched

and, thus, kinetically disfavored. This has limited the potential of HAT over the years

with respect, for example, to photoredox catalytic manifolds, wherein electrophilic

radicals can be readily generated via SET.69

Back in the 90s, Roberts introduced the concept of polarity-reversal catalysis

(PRC),35,70 wherein the selective abstraction of a hydrogen atom from protic C�H

bonds by an electrophilic radical was demonstrated, owing to the use of ligated bo-

ranes as catalysts. In other words, it was shown that the latter compounds could be

used as co-catalysts to tweak the intrinsic philicity of HAT,68,70 although only a hand-

ful of preparative examples have been reported.71–73

Very recently, this concept was exploited to enable a photocatalytic PRC strategy for

the hydroalkylation of unactivated olefins (Scheme 3).74 Thus, the irradiation with

blue light of dimethyl malonate 3.1 (4 equiv) and olefin 3.2 (0.2 mmol) in the pres-

ence of an Ir-based PC (1 mol %), 2,4,6-triisopropylbenzene disulfide (TRIPS)2, and

the quinuclidine borane complex 3.4 led to the desired reactivity (91% yield of the

isolated 3.3). Interestingly, when 2,4,6-triisopropylbenzene thiol TRIPSH (10

mol %) was used as a terminal H donor and an NHC-borane as co-catalyst, only

thiol-ene reaction byproducts were observed.

As for the proposed mechanism, light absorption by (TRIPS)2 led to the production

of a couple of thiyl radicals that were responsible for the oxidative quenching of

the excited state of the PC (E1/2[Ir
IV/IrIII*] = -0.92 V versus SCE in MeCN; for com-

parison, E[PhSd/PhS-] = +0.16 V versus SCE). Next, the highly oxidizing IrIV species

(E1/2[Ir
IV/IrIII] = +1.51 V versus SCE) delivered a nucleophilic LBR (3.5,) from 3.4

either via an electron transfer/proton transfer (ET/PT) sequence (Ep/2

(3.4) = +1.27 V versus SCE) or a proton-coupled ET (PCET) process. At this stage,

LBR 3.5, cleaved the protic C�H bond in 3.1 to afford the corresponding electro-

philic alkyl radical 3.6,, which was in turn trapped by 3.2. The resulting radical

adduct 3.7, was finally quenched by TRIPSH generated during the reaction

(Scheme 3). Remarkably, the authors tested several tertiary amine-boranes similar

to 3.4, but all of them gave lower yields. From NMR titration and density functional

theory (DFT) calculations, they were able to prove that 3.1 and 3.4 interact via H

bonding, which results in the formation of the expected LBR via an oxidative

PCET pathway with IrIV, where the ester group of the malonate is acting as the

base. Furthermore, such H bonding favors the key HAT event, confirming the

importance of the hydroxyl moiety in 3.4 (see inset in Scheme 3). Finally, it is

also important to stress that the reaction occurred under very mild conditions,

and a wide variety of functional groups was tolerated, as shown in the case of Indo-

methacin (NSAID) and Febuxostat (drug for the treatment of gout).74
CONCLUSIONS AND OUTLOOK

As shown in the present contribution, tertiary amine-borane complexes have

enabled to significantly push the boundaries of synthetic applications of photocata-

lytically generated LBRs (Scheme 4). In the first highlighted example, the strong

nucleophilic character of said radicals was used to unlock a Minisci-type radical bor-

ylation of azines, which allowed for the direct installation of highly versatile boron-

based handles for late-stage diversification campaigns.63 In the second example,

the authors took advantage of the high bond dissociation energy (BDE) of the
962 Chem Catalysis 2, 957–966, May 19, 2022



Scheme 3. Hydroalkylation of unactivated olefins via polarity-reversal catalysis (PRC)

Numbers in orange are the redox potentials (versus SCE) of the relevant redox couples.
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B�H bond in tertiary amine-borane complexes to eventually reach a long-standing

goal in photocatalysis via HAT: the cleavage of protic, aliphatic C(sp3)�H bonds.74

Another intriguing opportunity offered by LBRs deriving from amine-borane com-

plexes is the possibility to devise tailor-made HAT catalysts by simply choosing a

suitable, commercially available amine to be reacted with the appropriate boron-

based reagent. Moreover, as shown in the hydroalkylation of unactivated olefins

(Scheme 3), weak interactions can play a decisive role in establishing this chemistry:

indeed, one can imagine exploiting these forces to reach high levels of selectivity in

the designed synthetic application.

Remarkably, as mentioned in the introduction, LBRs can also be used as XAT

agents.12,34,45 Accordingly, it is foreseen that, thanks to the operationally simple

conditions offered by photocatalysis and the recent surge of interest in this
Chem Catalysis 2, 957–966, May 19, 2022 963



Scheme 4. Synthetic applications of LBRs in photocatalytic manifolds
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methodology,33 synthetic applications based on amine-boryl radical-mediated

XAT are expected to emerge in the near future.

The successful merger of the photocatalytic activationmanifold with the chemistry of

boryl radicals is yet another demonstration of the versatility of photocatalysis as a

radical generation methodology2,75 that offers unparalleled mild conditions and en-

ables the full exploitation of the chemistry of the generated intermediates, further

fostering the importance of radical-based methodologies in synthetic endeavors.
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