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There are many classical results, related to the Denjoy–Wolff 
theorem, concerning the relationship between orbits of inte-
rior points and orbits of boundary points under iterates of 
holomorphic self-maps of the unit disc. Here, we address such 
questions in the very general setting of sequences (Fn) of holo-
morphic maps between simply connected domains. We show 
that, while some classical results can be generalised, with an 
interesting dependence on the geometry of the domains, a 
much richer variety of behaviours is possible. One of our main 
results is new even in the classical setting.
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Denjoy–Wolff theorem
Wandering domains

Our methods apply in particular to non-autonomous dynam-
ical systems, when (Fn) are forward compositions of holo-
morphic maps, and to the study of wandering domains in 
holomorphic dynamics.
The proofs use techniques from geometric function theory, 
measure theory and ergodic theory, and the construction of 
examples involves a ‘weak independence’ version of the second 
Borel–Cantelli lemma and the concept from ergodic theory of 
‘shrinking targets’.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

We consider sequences of holomorphic maps Fn : U → Un, n ∈ N, between proper, 
simply connected subdomains of the complex plane C, and prove results concerning the 
relationship between sequences (Fn(z)), where z is an interior point of U and (Fn(ζ)), 
where ζ lies in the boundary of U . In general, the maps Fn are not defined on the boundary 
of U but we shall introduce a ‘radial extension’ of Fn which in many cases exists at almost 
all boundary points, with respect to harmonic measure – in this situation we say that 
Fn has a ‘full radial extension’ to ∂U ; see Section 2 for the details. For simplicity, we 
use the notation Fn to refer also to the extension of our original map at these boundary 
points.

To our knowledge, the type of ergodicity questions that we are investigating in this 
paper have not been investigated before in such generality. In this general setting, we 
describe the sequence of images (Fn(z)), where z ∈ U or z ∈ ∂U , as an orbit. There are 
several natural questions about such orbits: does the behaviour of interior orbits deter-
mine the behaviour of boundary orbits (and vice-versa)? If all interior orbits approach 
the boundary, then do they approach the orbit of a particular boundary point and, if so, 
how large is the set of boundary points with similar limiting behaviour?

An important case of our general setting is a non-autonomous dynamical system in 
which Fn = fn ◦ · · · ◦ f1 is a forward composition of holomorphic maps fn : Un−1 →
Un, n ∈ N, where U0 = U . Systems of forward compositions of holomorphic maps 
have been studied extensively in recent years in a variety of contexts; see, for example, 
[27,18,53,49,35].

A particularly well-studied special case is when U is a simply connected wandering 
domain of an entire or meromorphic map f and Fn = fn is the n-th iterate of f ; see, 
for example, [9,52,10,41,25,6,40,24] for many results on such wandering domains. In fact, 
obtaining a better understanding of the orbits of boundary points of wandering domains 
was the original motivation for this work.

Another important special case is the following result, where Fn are the iterates fn

of a holomorphic self-map f of the unit disc D; see [15, page 79], and also [3] for many 
references to this classical result.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Theorem 1.1 (Denjoy–Wolff Theorem). Let f : D → D be holomorphic. Provided f is 
not a rotation about a point in D, there exists a unique point p ∈ D (the Denjoy–Wolff 
point) such that fn(z) → p as n → ∞ for all z ∈ D.

In this unit disc setting, there is a remarkable dichotomy concerning orbits of boundary 
points, which originates in the work of Neuwirth [42], Aaronson [1], and Doering and 
Mañé [22]. It concerns the iterates of an inner function f ; that is, a holomorphic self-map 
of the unit disc D whose radial extension maps ∂D to ∂D, apart from a set of measure 
zero. Our statement is a modification of the original dichotomy given in [1] and [22], 
more suited to our present purposes.

Theorem 1.2 (ADM dichotomy). Let f : D → D be an inner function with a Denjoy–
Wolff point p ∈ D.

(a) If 
∑

n≥0(1 − |fn(z)|) < ∞ for some z ∈ D, then p ∈ ∂D and limn→∞ fn(ζ) = p for 
almost every ζ ∈ ∂D.

(b) If 
∑

n≥0(1 −|fn(z)|) = ∞ for some z ∈ D, then the iterates fn(ζ), n ∈ N, are dense 
in ∂D for almost every ζ ∈ ∂D.

Thus in this setting if interior orbits tend towards the boundary sufficiently quickly, 
then almost all boundary orbits tend to the Denjoy–Wolff point, whereas almost no 
boundary orbits do this if interior orbits tend towards the boundary more slowly. This 
dichotomy is our main inspiration for obtaining results in the general setting of holo-
morphic sequences and non-autonomous dynamical systems, with many applications, 
including to boundary orbits of simply connected wandering domains.

Theorem 1.2, part (a) is in [1, Section 3] and [22, Theorem 4.1], and it was generalised 
to iterates of holomorphic self-maps of D in [12, Theorem 4.2]. The proof of Theorem 1.2, 
part (b) uses various results from ergodic theory; see Subsection 8.3.

Before discussing generalisations of Theorem 1.2, we point out that in our general set-
ting orbits of interior points need not have common limiting behaviour; see Example 7.3. 
However, if the orbit of one interior point converges to the boundary (in any manner), 
with respect to the Euclidean distance, dist(., .), then the orbits of all interior points 
converge to the boundary and, moreover, they all have a common limiting behaviour.

Theorem A. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps between simply 
connected domains. If there exists z0 ∈ U such that

dist(Fn(z0), ∂Un) → 0 as n → ∞,

then, for all z ∈ U ,

|Fn(z) − Fn(z0)| → 0 as n → ∞.
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In Section 3, we classify all the possible types of behaviour of interior orbits in relation 
to convergence to the boundary, and we prove Theorem A.

In view of Theorem A, we can make the following definition.

Definition 1.3. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps be-
tween simply connected domains, for which interior orbits converge to the boundary. 
The Denjoy–Wolff set of (Fn) consists of those ζ ∈ ∂U such that, for all z ∈ U ,

|Fn(ζ) − Fn(z)| → 0 as n → ∞.

Remarks.

1. In our general setting the orbits of points ζ ∈ ∂U need not lie on the boundaries of 
the sets Un; they need only satisfy Fn(ζ) ∈ Un, for n ∈ N.

2. In the case of iterates of an inner function f , if the Denjoy–Wolff point p of f is on 
∂D, then f is defined at p via its radial limit, and p is a fixed point of f which belongs 
to the Denjoy–Wolff set. Theorem 1.2 shows that in this situation the Denjoy–Wolff 
set has either full measure or measure zero.

All our results about the boundary orbits of a sequence of holomorphic maps between 
simply connected domains are stated in terms of the size of the Denjoy–Wolff set.

In Section 4, we show that part (a) of Theorem 1.2 does indeed have an analogue in 
our general setting. Interestingly, the result that we obtain depends on the geometry of 
the boundaries of the domains (Un). In the case that all the domains are the unit disc, 
we obtain a direct generalisation of the result for iterates of inner functions.

Theorem B. Let Fn, n ∈ N, be a sequence of holomorphic self-maps of D and suppose 
that there exists z0 ∈ D such that

∞∑
n=0

(1 − |Fn(z0)|) < ∞. (1.1)

Then almost all points in ∂D belong to the Denjoy–Wolff set of (Fn).

In the setting of general simply connected domains U and Un instead of the unit disc, 
an analogue of the condition in Theorem B would be that

∞∑
n=0

dist(Fn(z0), ∂Un) < ∞. (1.2)

However, the less smooth the boundaries of the domains Un are, the stronger the 
hypothesis we need. Without any smoothness assumptions, we can prove the following.
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Theorem C. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps between simply 
connected domains, each with a full radial extension to ∂U , and suppose that there exists 
z0 ∈ U such that

∞∑
n=0

dist(Fn(z0), ∂Un)1/2 < ∞. (1.3)

Then almost all points in ∂U belong to the Denjoy–Wolff set of (Fn).

Remarks.

1. Condition (1.3) in Theorem C is sharp. Indeed, an example in Section 4 shows that 
the power 1/2 in (1.3) cannot be increased.

2. A special case of Theorem C is when (Un) is an orbit of simply connected wandering 
domains of a transcendental entire or meromorphic function f . In this case Fn = fn

always has a continuous extension to the boundary, except perhaps at ∞.

Despite this successful generalisation of the first part of the ADM dichotomy (The-
orem 1.2, part (a)), the second part of the dichotomy fails in the general setting of 
sequences of functions, and even in the setting of non-autonomous dynamical systems; 
indeed, under the same assumption that interior orbits converge to the boundary slowly, 
very different types of behaviour can occur on the boundary itself; we illustrate this with 
examples in Section 8.

We also give an example (Theorem D below) which shows, perhaps surprisingly, that 
it is possible for the orbits of all interior points to converge to the boundary with the 
same limiting behaviour and yet the Denjoy–Wolff set is empty. (This cannot occur in 
the classical case since the Denjoy–Wolff point always belongs to the Denjoy–Wolff set.)

Theorem D (Empty Denjoy–Wolff set). Let (an) be an increasing sequence in [0, 1) such 
that a0 = 0 and limn→∞ an = 1, and let (λn) be any sequence in ∂D. Consider the maps 
Fn(z) := λnz+an

1+λnanz
. Then

Fn(z) → 1 as n → ∞, for all z ∈ D.

If, in addition, 
∑

n≥0(1 − Fn(0)) =
∑

n≥0(1 − an) = ∞, then there exists (λn) in ∂D
such that no point of ∂D (even the point 1) has an orbit under Fn that converges to 1; 
in other words, the Denjoy–Wolff set of (Fn) is empty.

Remarks.

1. If 
∑

n≥0(1 − an) < ∞ in Theorem D, then it follows from Theorem B that almost 
all points in ∂D are in the Denjoy–Wolff set of (Fn).



6 A.M. Benini et al. / Advances in Mathematics 446 (2024) 109673
2. Each of the functions Fn in Theorem D can in fact be written as a forward composi-
tion of Möbius maps fn with Fn = fn ◦ Fn−1, so this is a non-autonomous example. 
It remains an open question as to whether this behaviour can occur for wandering 
domains.

So far, we have considered the effect of the behaviour of interior orbits on the behaviour 
of boundary orbits. In Section 6, we consider the converse problem. There we prove 
Theorem E, which shows that if a sufficiently large set of boundary points have orbits 
with common long-term behaviour then this set must be in the Denjoy–Wolff set; that 
is, the orbits of all interior points must have the same limiting behaviour as the orbits 
of this set of boundary points. This result is new even for iterates of inner functions.

Theorem E. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps between 
simply connected domains, each with a full radial extension, and suppose that there exists 
ζ0 ∈ ∂U such that dist(Fn(ζ0), ∂Un) → 0 as n → ∞. If

L0 := {ζ ∈ ∂U : |Fn(ζ) − Fn(ζ0)| → 0 as n → ∞}

has positive harmonic measure with respect to U , then for all z ∈ U we have

|Fn(z) − Fn(ζ0)| → 0 as n → ∞.

In particular, L0 is in the Denjoy–Wolff set of (Fn).

It follows that at most one such set of positive harmonic measure can exist.
For the later sections of the paper we restrict ourselves to the setting of non-

autonomous dynamical systems, where each map Fn is the forward composition of 
holomorphic maps fn : Un−1 → Un between simply connected domains. In this setting, 
we give a classification of possible internal dynamics in terms of the limiting behaviour of 
the hyperbolic distance between orbits of pairs of points, which extends our classification 
of wandering domains in [6]. This classification is in Section 7, together with an example 
which shows that the classification does not hold in general for sequences of holomorphic 
maps. One of the three possibilities in our classification is that the maps are contracting, 
defined as follows. Here we use the notation distU to denote the hyperbolic distance in a 
simply connected domain U .

Definition 1.4. A sequence of maps Fn : U → Un, n ∈ N, is contracting if

distUn
(Fn(z), Fn(z′)) → 0 as n → ∞, for all z, z′ ∈ U.

For contracting forward compositions of holomorphic maps which preserve boundaries, 
we prove the strong result that the Denjoy–Wolff set has either full or zero measure.
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Theorem F. Let fn : Un−1 → Un, n ∈ N, be a sequence of holomorphic maps between 
simply connected domains, each with a full radial extension, and let Fn : U0 → Un be 
defined by

Fn = fn ◦ · · · ◦ f1, for n ∈ N,

with the additional assumption that

fn(ζ) ∈ ∂Un, for almost all ζ ∈ ∂Un−1. (1.4)

If (Fn) is contracting and interior orbits converge to the boundary, then the Denjoy–Wolff 
set has either full or zero harmonic measure with respect to U0.

Remarks.

1. In Section 2, we show that the composition of functions with full radial extensions 
also has a full radial extension; this is the case, for example, when U0 is a wandering 
domain of an entire function f with Fn = fn for n ∈ N or when all the functions 
fn, n ∈ N, are inner functions.

2. Several results in this paper, including Theorem F, can be applied when the domains 
(Un) are multiply connected and we are concerned with orbits converging to the 
‘outer boundary’; that is, the boundary of the topological hull of Un. This approach 
was used by Ferreira to give a result analogous to Theorem A in the setting of 
dynamical behaviour near the outer boundaries of multiply connected wandering 
domains of meromorphic functions; see [26, Theorem 1.4] for details.

In Section 7, we prove a general result, Theorem 7.4, that has Theorem F as a corollary. 
Our proof of Theorem 7.4 uses an ergodic theory result of Pommerenke and generalises 
one aspect of it. We also give an example to show that Theorem F does not hold in 
general if the forward compositions are not contracting.

In Section 8, we give a number of examples of forward compositions of self-maps 
of the unit disc, related to part (b) of the ADM-dichotomy. Whether the interior and 
boundary dynamics demonstrated in these examples can be replicated by examples of 
simply connected wandering domains is an open question, and will be the subject of 
further investigation. Our final example, Example 8.3, is a contracting sequence; for this 
example, we are able to show that the Denjoy–Wolff set has measure zero and, in fact, 
that orbits of almost all boundary points are dense in ∂D. This raises the question of 
whether an analogue of part (b) of the ADM dichotomy may exist in the setting of 
contracting forward compositions. We discuss this in Subsection 8.3 and also in the final 
section of the paper on open questions.

In Section 9, we discuss briefly the extent to which our results hold if we replace the 
Euclidean metric as a measure of proximity by the spherical metric; the latter metric has 
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the advantage of including those points whose orbits tend to ∞ but at the same time we 
potentially lose control of some of the more subtle behaviour amongst those orbits that 
do tend to ∞.

The proofs of Theorems A to F and of our examples use a variety of techniques from 
geometric function theory, harmonic analysis and measure theory including contraction 
of the hyperbolic metric, Löwner’s lemma, the Milloux–Schmidt inequality, the Severini–
Egorov theorem, and a version of the second Borel–Cantelli lemma associated with the 
ergodic theory concept of ‘shrinking targets’.

2. Preliminary results

In this section we record a number of properties of certain boundary extensions of holo-
morphic maps between simply connected domains and the relationship of these boundary 
extensions to the harmonic measure of sets on the boundaries of these domains. In doing 
so, we use a number of classical results on the boundary behaviour of holomorphic maps, 
which can mostly be found in [48].

In this section only, we denote such boundary extensions of a holomorphic map f

by f∗ for clarity; elsewhere in the paper we drop the * notation for simplicity.

2.1. Boundary extensions

Recall that our general setting is that of sequences of holomorphic maps

Fn : U −→ Un, n ∈ N,

where U and Un, n ∈ N, are simply connected domains, always assumed to be proper 
subsets of C and not necessarily distinct, and that in some cases the functions Fn are 
defined by forward composition as Fn = fn ◦ · · · ◦ f1, where each fn : Un−1 → Un is 
holomorphic and U0 = U .

In the wandering domains context, where Fn = fn with f entire, and f : Un−1 → Un, 
the maps are naturally defined and continuous on the whole of ∂U0 (except maybe at the 
point at infinity). In the inner functions context, however, where Un = D, for n ≥ 0, each 
Fn extends in the sense of radial limits and even nontangential limits to a full measure 
subset of ∂D by theorems of Fatou and Lindelöf; see [17, p. 19], for example. We now 
consider whether such boundary extensions exist in the general setting of this paper.

We shall suppose quite generally that U and V are simply connected proper subdo-
mains of C and f : U → V is holomorphic. We wish to define the concept of a ‘radial 
extension’ of f to boundary points of U , wherever this extension makes sense.

A simple case is obtained when U = D, that is, f : D → V is a holomorphic map (not 
necessarily conformal). If V is bounded, then the radial limit at ζ ∈ ∂D exists if and only 
if the non-tangential limit at ζ exists and this occurs whenever the limit exists along any 
curve in D ending at ζ, by the theorem of Lindelöf mentioned above; moreover, all these 
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limits coincide. In the general case, since the complement of V contains an unbounded 
continuum, the function

g(z) =
√

f(z) − w0,

where w0 /∈ V and a suitable branch of the square root is taken, is holomorphic in D and 
g(D) omits a disc, with centre w1 say; thus the function z �→ (g(z) −w1)−1 is holomorphic 
and bounded in D, so we see that the relationship between radial limits, nontangential 
limits and limits along curves remains true for such f . Therefore it makes sense to define 
the radial extension of such an f to be the map

f∗(ζ) = lim
r→1

f(rζ), for ζ ∈ Rad(f),

where Rad(f) denotes the subset of ∂D at which f has a finite radial limit. The function 
f∗ assigns to each point of ∂D its radial limit, whenever it exists, and takes values in 
the closure of f(D). Note that even when f has a nontangential limit at ζ ∈ ∂D, the 
function f may fail to converge to that limit along curves in D ending at ζ that are not 
nontangential.

Moving to the case where f : U → V , with U and V being proper simply connected 
domains, we introduce a Riemann map ϕ : D → U . By the discussion above, ϕ has radial 
(and equal nontangential) limits almost everywhere on ∂D and in fact ∂D \Rad(ϕ) has 
capacity zero by a theorem of Beurling [48, Theorem 9.19].

A point p ∈ ∂U is called accessible from U if there exists an arc γ : [0, 1) → U such 
that γ(t) → p as t → 1. We denote the set of accessible boundary points of U by AP(U)
(there seems to be no standard notation for this set). Every homotopy class of curves 
γ ⊂ U with their endpoints fixed and one endpoint at an accessible boundary point p

is called an access to p from U . It follows from another theorem of Lindelöf [15, page 8]
that there is a bijection between the set Rad(ϕ) and the set of accesses to boundary 
points of U , induced by ϕ; see [7, Correspondence Theorem], for example.

In defining the concept of a radial extension of f : U → V , our aim is that the 
extension at almost all accessible boundary points of U is consistent with the limiting 
behaviour of f along curves to ∂U through all possible accesses to such points.

Definition 2.1 (Radial extensions). Let f : U → V be a holomorphic map between simply 
connected domains, let p ∈ AP(U), and let ϕ : D → U be a Riemann map. Then we say 
that

(a) a curve in U approaches p radially if it is the image under ϕ of a curve in D that 
approaches a point of ∂D nontangentially;

(b) f has a radial extension to p with value f∗(p) if for every arc γ(t), t ∈ [0, 1), in U

such that γ(t) → p radially as t → 1, the image curve f(γ(t)) → f∗(p) as t → 1;
(c) f has a full radial extension (to ∂U) if the domain of f∗ includes a subset of AP(U)

of full harmonic measure with respect to U .
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We make some remarks about Definition 2.1.

Remarks.

1. We focus on the limiting behaviour of f only on curves in U that approach a boundary 
point p radially in order to be consistent with the definition of radial extension of a 
holomorphic map f : D → V in terms of nontangential limits, given above.

2. The existence of a full radial extension of f implies that (up to a set of harmonic 
measure zero) f maps accesses to a point p ∈ ∂U to accesses to f∗(p) ∈ ∂V , unless 
f∗(p) belongs to V , which is a priori also possible.

3. We recall the definition and basic properties of harmonic measure in Subsection 2.2.

In general, the radial extension of a conformal map ϕ : D → U is not an injective 
map, since boundary points of U can have several (possibly uncountably many) accesses 
from U . Nevertheless (ϕ∗)−1(p) is always a set of measure zero, by the F. and M. Riesz 
theorem [23]. Boundary points with a single access from U are called uniquely accessible
and domains for which all their accessible boundary points are uniquely accessible are 
said to satisfy the unique accessibility property. In this case the radial extension of ϕ is 
injective (and therefore bijective).

There are some situations in which full radial extensions exist in a trivial way; in 
particular, this is the case when U and V are Fatou components of a holomorphic map 
or when f is an inner function, since U = V = D in this case. More generally, we have 
the following.

Proposition 2.2 (Simple cases). Let f : U → V be a holomorphic map between simply 
connected domains. If

(a) f has a continuous extension to ∂U , or
(b) U has the unique accessibility property,

then f admits a full radial extension f∗. In case (a), we have f∗ := f |∂U .

It is interesting to ask whether if f : U → V is a holomorphic map between simply 
connected domains and f has a full radial extension to ∂U , then this implies that at 
almost all ζ ∈ ∂U , with respect to harmonic measure, at least one of the following holds: 
f has a continuous extension to ζ or the point ζ is uniquely accessible from within U . 
The identity map on the cut disc D \ [0, 1) shows that both types of boundary behaviour 
can occur in the same or different sets of positive harmonic measure.

Proof of Proposition 2.2. If f is continuous in U , then the conclusion that f has a full 
radial extension is trivial.
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For case (b) let ϕU , ϕV be Riemann maps from D to U, V respectively and let 
g : D → D be defined as g := ϕ−1

V ◦ f ◦ ϕU .
If U has the unique accessibility property, then ϕ∗

U is injective, so its inverse is well 
defined on ϕ∗(∂D), which has full harmonic measure in U because ϕU is the Riemann 
map. Hence we can define

f∗ := (ϕV ◦ g)∗ ◦ (ϕ∗
U )−1

on the set E = AP(U) ∩ ϕ∗
U (Rad(ϕV ◦ g)), which is of full harmonic measure in U since 

it is the intersection of two sets of full harmonic measure. With this definition, if γ(t)
in U converges radially to p ∈ E, then ϕ−1

U (γ(t)) converges nontangentially to a point 
ζ ∈ Rad(ϕU ) ∩ Rad(ϕV ◦ g). Hence f has a full radial extension. �

We now point out to what extent the radial extension property is preserved under 
forward composition. To do this we need a useful result from the theory of cluster sets; 
see [48, Corollary 2.20]. Let f : D → C be any function and Γ be a path in D with 
endpoint ζ ∈ ∂D. The cluster set CΓ(f, ζ) of f along Γ is the set of ω ∈ Ĉ such that 
there exists zn ∈ Γ with limn→∞ zn = ζ and limn→∞ f(zn) = ω. We say that ζ ∈ ∂D is 
an ambiguous point of f if there exist two paths Γ1 and Γ2 in D ending at ζ such that 
CΓ1(f, ζ) 
= CΓ2(f, ζ).

Theorem 2.3 (Bagemihl’s ambigous point theorem). Let f : D → C be any function. 
Then f has at most countably many ambiguous points.

Here is our result about composing radial extensions.

Proposition 2.4. Let f1 : U0 → U1 and f2 : U1 → U2 be holomorphic maps between simply 
connected domains, with radial extensions f∗

1 to E0 ⊂ AP(U0) and f∗
2 to E1 ⊂ AP(U1), 

respectively.
Then f2 ◦ f1 : U0 → U2 has a radial extension to almost all points of the set 

E0 \ (f∗
1 )−1(∂U1 \ E1).

Proof. For ζ0 ∈ E0\(f∗
1 )−1(∂U1\E1), let γ0(t), 0 ≤ t < 1, be a path in U0 that converges 

radially to ζ0. Then, by our assumption about ζ0, we have γ1(t) := f1(γ0(t)) → ζ1 :=
f∗
1 (ζ0) as t → 1; if ζ1 ∈ U1 we are done, otherwise ζ1 ∈ E1. Note that γ1(t) may or 

may not converge radially to ζ1, but γ1(t) does define an access to ζ1 from U1 which 
corresponds to a unique point of Rad(ϕ1), where ϕ1 is any Riemann map from D onto 
U1; see the discussion just before Definition 2.1.

Now let γ̂1(t), 0 ≤ t < 1, be a path in U1 that does converge radially to ζ1 and is 
homotopic in U1 to γ1(t). Then f2(γ̂1(t)) → ζ̂2 := f∗

2 (ζ1) as t → 1. Suppose, if possible, 
that f2(γ1(t)) = f2(f1(γ0(t))) � ζ̂2 as t → 1. Since γ0(t) converges to ζ0 radially, we 
know that apart from a subset of E0 of harmonic measure zero f2(f1(γ0(t))) converges to 
a point, ζ2 ∈ U2 say. By Bagemihl’s ambiguous point theorem, applied to f2 ◦ϕ1, we can 
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have ζ2 
= ζ̂2 for at most countably many ζ0 ∈ E0. Therefore, for all ζ0 ∈ E0∩(f∗
1 )−1(E1)

apart from a set of harmonic measure zero, we have f2(γ1(t)) = f2(f1(γ0(t))) → ζ̂2, and 
so f2 ◦ f1 has a radial extension to ζ0, as required. �
2.2. Properties of harmonic measure

In order to work with our definition of a radial extension, which involves the harmonic 
measure of boundary sets of simply connected domains, we first recall certain topological 
properties of boundary sets, and the behaviour of their images and pre-images under 
holomorphic mappings. Theorem 2.5, part (a) is given in [48, Proposition 6.5] and part (b) 
is due to Cantón, Granados and Pommerenke [16, Theorem 1].

Theorem 2.5 (Borel sets on the boundary). Let f : D → Ĉ be continuous.

(a) The set Rad(f) is a Borel set and, for any Borel set B ⊂ Ĉ,

(f∗)−1(B) = {ζ ∈ Rad(f) : f∗(ζ) ∈ B} is a Borel set.

(b) Moreover, if f is a conformal map and A ⊂ Rad(f) is a Borel set, then

f∗(A) = {f∗(ζ) : ζ ∈ A} is a Borel set.

In particular, it follows from Theorem 2.5 that the set of accessible points of ∂U is a 
Borel set, since AP(U) is the image under a Riemann map of the Borel set Rad(f) ⊂ ∂D

(of full measure).
Note that every Borel set is a Souslin set (see [48, page 132]) and hence universally 

measurable, and in particular measurable with respect to Lebesgue measure on ∂D and 
with respect to harmonic measure, which we discuss next.

We now briefly recall the definition of harmonic measure and some properties of it 
that we need. Good references for harmonic measure are [19, Chapter 2], [28], [48] and 
[5].

A standard definition of harmonic measure in the unit disc is in terms of the Poisson 
integral

ω(z,A,D) = 1
2π

∫
A

1 − |z|2
|ζ − z|2 |dζ|, z ∈ D,

where A ⊂ ∂D is measurable. The real function ω is harmonic in D with 0 ≤ ω(z, A, D) ≤
1 there, and has radial limit 1 (and indeed nontangential limit 1) at almost every point 
in A and radial limit 0 at almost every point in ∂D \A.

It follows that for any such set A we have ω(0, A, D) = λ(A), where λ is normalised 
Lebesgue measure on ∂D, and more generally ω(z, A, D) = λ(M(A)), where M is a 
Möbius map of D onto D taking z to 0; see [48, page 85].
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We now define harmonic measure in a general simply connected domain U in terms 
of the pullback under a Riemann map of the normalized Lebesgue measure on the unit 
circle, following the approach in [5, Chapter 7].

Definition 2.6 (Harmonic measure in a simply connected domain). Let U 
= C be a 
simply connected domain, z ∈ U , and let ϕ : D → U be a conformal map such that 
ϕ(0) = z. The harmonic measure of a Borel set A ⊂ ∂U is defined as

ω(z,A, U) = λ((ϕ∗)−1(A)).

(Note that (ϕ∗)−1(A) is a Borel set in ∂D by Theorem 2.5, part (a).)

Since λ is invariant under rotation, this definition is independent of the choice of ϕ
provided it satisfies ϕ(0) = z. Although the harmonic measure depends on the choice of 
the point z, the measures obtained with different choices of z are absolutely continuous 
with respect to each other; in particular, the concept of a set in ∂U having full or zero 
measure does not depend on the choice of z.

The harmonic measure ω(z, A, U) can also be interpreted as the probability of hitting 
the boundary at a point in A while following a Brownian path in U starting at the 
point z; see [39, Section 3.4] and [28, Chapter III], for example.

By the theorem of Beurling mentioned earlier, the set AP(U) has full harmonic mea-
sure with respect to U . Also, for any Borel set A ⊂ ∂U , the function ω(z, A, U) is 
harmonic in U and takes values in the interval [0, 1]. Moreover, for almost all points 
ζ ∈ AP(U) there is a path γ(t) ⊂ U, 0 ≤ t < 1, the image of a radius in D, such that 
γ(t) → ζ and ω(γ(t), A, U) → 1A(ζ) as t → 1−. In this sense, the function ω(z, A, U) is 
the solution of the Dirichlet problem in U with boundary values ω(ζ, A, D) = 1A(ζ).

2.3. Radial extensions expand harmonic measure

In this section we show that the radial extension of a holomorphic map as defined in 
Section 2.1 expands the harmonic measure of sets in the boundary. Our result depends 
on the following version of Löwner’s lemma, which can be found in [48, Proposition 4.15]
and [5, Theorem 7.1.8 and Proposition 7.1.4 part (4)].

Theorem 2.7 (Löwner’s lemma). Let f be a holomorphic self-map of D, f∗ be its radial 
extension, and let S ⊂ ∂D be a Borel set. Then

ω(z, (f∗)−1(S),D) ≤ ω(f(z), S,D), for z ∈ D. (2.1)

Remark. If f is a Möbius map of D onto D, or even an inner function, then equality 
holds in (2.1) throughout D; see [22, Corollary 1.5(b)].

In our proofs we use the following extension of Theorem 2.7 to simply connected 
domains.
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Theorem 2.8 (Expansion on the boundary of simply connected domains). Let f : U → V

be a holomorphic map between simply connected domains with full radial extension f∗

and let S ⊂ ∂V be a Borel set. Then (f∗)−1(S) is a Borel set and, for z ∈ U ,

ω(z, (f∗)−1(S), U) ≤ ω(f(z), S, V ). (2.2)

In particular, if (f∗)−1(S) has positive (respectively, full) harmonic measure with respect 
to U , then S has positive (respectively, full) harmonic measure with respect to V .

Proof. First, let ϕU and ϕV be Riemann maps from D to U and V , respectively. Then 
(f∗)−1(S) is a Borel set because it is the image under ϕ∗

U of the preimage under (f ◦ϕU )∗
of S, apart from a possible set of harmonic measure 0. This follows from our definition 
of radial extensions and by applying both parts of Theorem 2.5.

Now define

g(w) = ϕ−1
V ◦ f ◦ ϕU (w), for w ∈ D,

so g is a self-map of D. Then (ϕ∗
V )−1(S) is a Borel set, by Theorem 2.5 (a). Also, by our 

definition of radial extension, and also the bijection between accesses and non-tangential 
limits of Riemann maps, mentioned earlier, it is straightforward to check that apart from 
a set of harmonic measure zero on ∂D, we have

((f ◦ ϕU )∗)−1(S) ⊂ (g∗)−1((ϕ∗
V )−1(S)).

Therefore, by Theorem 2.7, we know that, for w ∈ D,

ω(w, ((f ◦ ϕU )∗)−1(S),D) ≤ ω(w, (g∗)−1((ϕ∗
V )−1(S)),D) ≤ ω(g(w), (ϕ∗

V )−1(S),D).
(2.3)

Finally, we take z ∈ U and assume that the Riemann maps have been chosen so that

ϕU (0) = z and ϕV (0) = f(z).

Then g(0) = 0 and we have, by the definition of harmonic measure,

ω(0, ((f ◦ϕU )∗)−1(S),D) = ω(z, (f∗)−1(S), U) and ω(0, (ϕ∗
V )−1(S),D) = ω(f(z), S, V ),

so the inequality (2.2) follows by applying (2.3) with w = 0. �
Combining Theorem 2.8 with Proposition 2.4, we obtain a key result about composing 

full radial extensions.

Corollary 2.9. Let f1 : U0 → U1 and f2 : U1 → U2 be holomorphic maps between simply 
connected domains, with full radial extensions f∗

1 and f∗
2 , respectively.

Then f2 ◦ f1 : U0 → U2 has a full radial extension given by f∗
2 ◦ f∗

1 .
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Proof. By hypothesis the sets E0 and E1 specified in Proposition 2.4 have full harmonic 
measure with respect to U0 and U1, respectively, and we can deduce that (f∗

1 )−1(∂U1\E1)
must have zero harmonic measure with respect to U0 by Theorem 2.8. It follows that 
E0 \ (f∗

1 )−1(∂U1 \ E1) has full harmonic measure with respect to U0, as required. �
3. Boundary convergence and proof of Theorem A

Before proving Theorem A, we give a classification of sequences Fn : U → Un, n ∈ N, 
of holomorphic maps between simply connected domains in terms of whether orbits 
Fn(z) of interior points z ∈ U converge towards the boundary or not. We gave such a 
classification in the special case that U is a wandering domain of a holomorphic map f
in [6, Theorem C]. A similar proof holds in our general setting and the techniques used 
also lead to a proof of Theorem A.

Theorem 3.1 (Boundary convergence classification). Let Fn : U → Un be a sequence of 
holomorphic maps between simply connected domains. Then exactly one of the following 
holds:

(a) lim infn→∞ dist(Fn(z), ∂Un) > 0 for all z ∈ U , that is, all orbits stay away from the 
boundary;

(b) there exists a subsequence nk → ∞ for which limk→∞ dist(Fnk
(z), ∂Unk

) = 0 for all 
z ∈ U , while for a different subsequence mk → ∞ we have

lim inf
k→∞

dist(Fmk
(z), ∂Umk

) > 0, for z ∈ U ;

(c) limn→∞ dist(Fn(z), ∂Un) = 0 for all z ∈ U , that is, all orbits converge to the bound-
ary.

For the reader’s convenience we include the proof of Theorem 3.1. This proof depends 
on the following lemma [6, Lemma 4.1], which will also be used in the proof of Theorem A.

Given a hyperbolic domain U ⊂ C we denote by ρU the density of the hyperbolic 
metric on U , normalized so that it has constant curvature −1, and by distU (z, z′) the 
hyperbolic distance in U between two points z, z′ ∈ U .

Lemma 3.2 (Estimate of hyperbolic quantities). Let U ⊂ C be a simply connected domain. 
Then, for all z, z′ ∈ U ,

exp(−2 distU (z, z′)) ≤ ρU (z′)
ρU (z) ≤ exp(2 distU (z, z′)).

Proof of Theorem 3.1. First note that if Fn : U → Un is a sequence of holomorphic 
maps between simply connected domains, then by standard estimates [15, page 13] we 
have, for all z ∈ U ,
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dist(Fn(z), ∂Un) → 0 as n → ∞ ⇐⇒ ρUn
(Fn(z)) → ∞ as n → ∞.

Therefore the proof follows from the following two statements.

(a) If there is a subsequence nk → ∞ and a point z ∈ U such that ρUnk
(Fnk

(z)) → ∞, 
then the same is true for all other points in U .
To prove this statement, suppose that ρUnk

(Fnk
(z)) → ∞ as k → ∞ and let z′ ∈ U

with z′ 
= z. By the contraction property of the hyperbolic metric,

distUn
(Fn(z), Fn(z′)) ≤ distU (z, z′) =: C, for n ∈ N.

Thus, by Lemma 3.2, ρUn
(Fn(z′)) ≥ e−2CρUn

(Fn(z)), for n ∈ N. Hence

ρUnk
(Fnk

(z′)) ≥ e−2CρUnk
(Fnk

(z)) → ∞ as k → ∞.

(b) If there is a subsequence mk → ∞ and a point z ∈ U such that ρUmk
(Fmk

(z)) is 
bounded, then the same is true for all other points in U .
To prove this statement, suppose that ρUmk

(Fmk
(z)) ≤ M , for k ∈ N, and let z′ ∈ U

with z′ 
= z. Again, by the contraction property of the hyperbolic metric,

distUmk
(Fmk

(z), Fmk
(z′)) ≤ distU (z, z′) =: C, for k ∈ N.

Thus, by Lemma 3.2,

ρUmk
(Fmk

(z′)) ≤ e2CρUmk
(Fmk

(z)),

which implies that

ρUmk
(Fmk

(z′)) ≤ e2CρUmk
(Fmk

(z)) ≤ Me2C ,

so ρUmk
(Fmk

(z′)) is bounded, for k ∈ N. �
We now prove the following precise version of Theorem A. Note that Theorem A

strengthens part (c) of the boundary convergence classification by showing that all orbits 
converge to the boundary with the same limiting behaviour.

Theorem 3.3. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps between 
simply connected domains and let z, z0 ∈ U with d = distU (z, z0). Then

|Fn(z) − Fn(z0)| ≤ 2de2d dist(Fn(z0), ∂Un), for n ∈ N. (3.1)

Therefore, if we also have

dist(Fn(z0), ∂Un) → 0 as n → ∞,



A.M. Benini et al. / Advances in Mathematics 446 (2024) 109673 17
then, for all z ∈ U ,

|Fn(z) − Fn(z0)| → 0 as n → ∞.

Proof. Let z, z0 and d be as in the statement and let

δn := dist(Fn(z0), ∂Un), for n ∈ N.

By the standard estimates of the hyperbolic density on simply connected domains (see 
[15, page 13] or [11, Theorem 8.6]),

ρUn
(Fn(z0)) ≥

1
2 dist(Fn(z0), ∂Un) = 1

2δn
, for n ∈ N.

Hence, by Lemma 3.2, for the hyperbolic disc Δn of radius d centred at Fn(z0) we have

ρUn
(w) ≥ e−2d

2δn
, for w ∈ Δn, n ∈ N. (3.2)

By the contracting property of the hyperbolic metric, we have Fn(z) ∈ Δn for n ∈ N.
Now let γ be the hyperbolic geodesic joining Fn(z) to Fn(z0); then the Euclidean dis-

tance apart of these two points is bounded from above by the Euclidean length �Eucl(γ). 
Since γ is a hyperbolic geodesic, γ ⊂ Δn and we deduce from (3.2) that

d ≥ �Un
(γ) =

∫
γ

ρUn
(z) |dz| ≥ e−2d

2δn
�Eucl(γ),

so

|Fn(z) − Fn(z0)| ≤ �Eucl(γ) ≤ 2δnde2d, for n ∈ N,

which gives (3.1) and completes the proof. �
Remark. The matter of convergence to the boundary is somewhat delicate in that it is 
closely related to the shape of the domains Un, and there may be situations where it 
is more appropriate to use an alternative definition. For example, if the domains shrink 
with Euclidean diameters tending to 0, then the Denjoy–Wolff set is automatically the 
whole of ∂U . This geometric problem was discussed briefly in [6], where the following 
observation was made.

Recall that the Euclidean distance of a point z from the boundary of a hyperbolic 
domain U is closely related to the hyperbolic density at the point in the domain. Indeed, 
when Un are simply connected domains, then (as in the proof of Theorem 3.1),

dist(Fn(z), ∂Un) → 0 as n → ∞ ⇐⇒ ρUn
(Fn(z)) → ∞ as n → ∞.
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The proof of the boundary convergence classification and of Theorem 3.3 use the hy-
perbolic densities ρUn

(Fn(z)) and, as in [6, Section 4], we point out that these results 
remain true if we replace ρUn

(Fn(z)) by anρUn
(Fn(z)), where the positive sequence (an)

is chosen in some way depending on the geometry of the domains Un, and the Eu-
clidean distances within Un are also scaled appropriately. For example, if the domains 
Un are shrinking, then it may make sense to say that Fn(z) converges to the boundary 
if anρUn

(Fn(z)) → ∞ as n → ∞ where

an = sup
D

{diamD : D is a disc contained in Un}.

4. Fast convergence to the boundary

In this section we prove a general result, Theorem 4.1, of which Theorem B and 
Theorem C are special cases. This result shows that if orbits of points converge sufficiently 
quickly to the boundary, then the Denjoy–Wolff set has full measure, thus generalising 
the ADM dichotomy Theorem 1.2, part (a).

Theorem 4.1. Let Fn : U → Un, n ∈ N, be a sequence of holomorphic maps between 
simply connected domains, each with a full radial extension, and suppose that the domains 
Un, n ∈ N, all satisfy an α-harmonic measure condition for some 1

2 ≤ α ≤ 1 and some 
C(r), r > 0, independent of n.

Suppose that there exists z0 ∈ U such that

∞∑
n=0

dist(Fn(z0), ∂Un)α < ∞. (4.1)

Then, for almost every ζ ∈ ∂U ,

|Fn(ζ) − Fn(z0)| → 0 as n → ∞, (4.2)

and hence, in view of Theorem A, the Denjoy–Wolff set has full measure in ∂U .

Remarks.

1. The estimate (3.1) in the statement of Theorem 3.3 shows that condition (4.1) is 
independent of the choice of z0 ∈ U .

2. If we replaced (4.1) by the hypothesis that dist(Fn(z0), ∂Un) → 0 as n → ∞, then we 
would obtain the same result for any subsequence (Fnk

) for which the corresponding 
series in (4.1) is convergent.

We give a formal definition of the α-harmonic measure condition at the beginning of 
Subsection 4.1. This is a geometric condition on the boundaries of the domains which 
determines the rate of convergence required in (4.1).
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We shall see that a simply connected domain with C2 boundary, such as the unit disc, 
satisfies the α-harmonic measure condition with α = 1. On the other hand, a general 
simply connected domain U , under no assumptions on the regularity of its boundary, 
satisfies an α-harmonic measure condition with α = 1/2. Hence

(a) Theorem 1.2, part (a) is a special case of Theorem 4.1, with U = Un = D and 
Fn = fn, where f is an inner function, for n ∈ N;

(b) Theorem B is a special case of Theorem 4.1, with Un = D and Fn : D → D

holomorphic self-maps of the disc, for n ∈ N;
(c) Theorem C follows from Theorem 4.1 if we make no assumptions on the geometric 

nature of the boundaries of the simply connected domains and take α = 1
2 in (4.1).

In Subsection 4.3 we give an example which shows that, in one sense, Theorem 4.1
is best possible. For this example, where the domains are all cardioids, the conclusion 
holds if we take α = 1/2 in (4.1), but does not hold for any larger value of α.

4.1. Domains with the α-harmonic measure condition

We begin with a formal definition and discussion of our geometric condition.

Definition 4.2. Let 1
2 ≤ α ≤ 1. A simply connected domain U satisfies an α-harmonic 

measure condition if there exists a function C(r) > 0, r > 0, such that, for every ζ ∈ ∂U

and r > 0, we have that

ω(z, ∂V ∩ U, V ) ≤ C(r)|z − ζ|α, for z ∈ V , (4.3)

where V is the component of U ∩D(ζ, r) that contains z.

Note that if A, B are simply connected domains in C, then every connected component 
of A ∩ B is simply connected. Indeed, if A ∩B contained a non-contractible loop in C, 
then its bounded complementary component would contain a point not in A or not in B, 
making the loop non-contractible in A or in B. Alternatively, it follows from the facts that 
a domain in C is simply connected if and only if its complement in the Riemann sphere 
is connected and that every complementary component of a continuum in the sphere is 
simply connected; see [43, pp. 143–144]. In particular, the set V in Definition 4.2 is simply 
connected and the harmonic measure in V can be defined as described in Subsection 2.2.

Remark. Observe that the left-hand side of (4.3) can be interpreted as the probability 
of a Brownian path in V starting at the point z first exiting V through ∂V ∩ U , which 
tends to be larger or smaller according to the relative size of ∂V ∩ U in ∂V . As shown 
by our Example 4.6, the largest case for ω(z, ∂V ∩ U, V ) occurs when the boundary has 
an inward pointing cusp at ζ.
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The following geometric criteria for satisfying the α-harmonic measure condition are 
well known and we give only a brief indication of where proofs can be found.

Lemma 4.3. Assuming the notation of Definition 4.2:

(a) for any simply connected domain U and ζ ∈ ∂U , we have

ω(z, ∂V ∩ U, V ) ≤ C(r)|z − ζ| 12 , for z ∈ V,

so we can take α = 1
2 ;

(b) if every ζ ∈ ∂U is the vertex of a sector of angle β, 0 < β ≤ π, and side-length s > 0, 
contained in C \ U , then

ω(z, ∂V ∩ U, V ) ≤ C(r)|z − ζ|π/(2π−β), for z ∈ V,

where C(r) also depends on β and s, so we can take α = π/(2π − β);
(c) if every ζ ∈ ∂U lies on the boundary of some disc of radius s > 0 contained in C \U , 

then

ω(z, ∂V ∩ U, V ) ≤ C(r)|z − ζ|, for z ∈ V,

where C(r) also depends on s, so we can take α = 1.

Property (a) can be proved by applying the Milloux–Schmidt inequality [29, page 289]
to the subharmonic function

u(z) :=
{
ω(z + ζ, ∂V ∩ U, V ), z + ζ ∈ V,

0, z + ζ ∈ D(ζ, r) \ V.

We state a version of the Milloux–Schmidt inequality here, since we will use it again in 
Section 6.

Lemma 4.4 (Milloux–Schmidt inequality). Suppose that u is subharmonic and continuous 
in {z : |z| ≤ r} and that

min
|z|=ρ

u(z) = 0, for 0 < ρ < r. (4.4)

Then

u(z) ≤ 4
π

max
|z|=r

u(z) tan−1(|z|/r)1/2, for 0 < |z| < r.

Lemma 4.4 shows that in Lemma 4.3 part (a) we can take C(r) = 4/(πr1/2).
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Parts (b) and (c) of Lemma 4.3 can be proved by applying standard techniques such as 
conformal mappings and the maximum principle or Ahlfors’ distortion theorem. In fact, 
using Ahlfors’ distortion theorem the values of α stated in (b) and (c) can be obtained 
with slightly smaller exterior domains than sectors and discs, respectively, expressed in 
terms of a so-called Dini condition; more details can be found in [48, Section 3.4] and [4, 
Chapter 3-3, p. 41].

Remark. Using results from [13], it is possible to construct individual wandering domains 
which satisfy (sharply) any of the geometries described in Lemma 4.3.

4.2. Proof of Theorem 4.1

We now prove our main result, Theorem 4.1. To do this we need a useful result from 
a theory of boundary behaviour developed by G. MacLane [36].

Let f : D → C be any function. We say that f has asymptotic value ω ∈ Ĉ at a point 
ζ ∈ ∂D if there is a path Γ in D with one endpoint at ζ such that

f(z) → ω as z → ζ, z ∈ Γ.

In particular, if f has a radial limit at ζ ∈ D, then this limit is an asymptotic value of f
at ζ.

The main result of MacLane’s theory [36, Theorem 1] relates the existence of these 
‘point’ asymptotic values to the behaviour of the level sets of the function, that is, those 
sets of the form {z ∈ D : |f(z)| = λ}, where λ ≥ 0.

Theorem 4.5 (MacLane). Let f : D → C be holomorphic and non-constant. Then f has 
an asymptotic value at points of a dense subset of ∂D if and only if no level set of f
accumulates at a subset of ∂D that is not a singleton.

The first part of the proof of Theorem 4.1 has its origins in the proof of [52, Theo-
rem 1.1] but the very general context here, with maps not being surjective, introduces 
significant new challenges; see also [44, Lemma 4.1] for a related generalisation of [52, 
Theorem 1.1].

Proof of Theorem 4.1. We claim that we need only prove the result in the case that 
U = D and z0 = 0. Indeed, if we know that the result holds for a sequence of the form 
F̂n = Fn ◦ ϕU : D → Un, where ϕU is a Riemann map from D onto U with ϕU (0) = z0, 
then the result holds for Fn : U → Un since almost every ξ ∈ ∂D has the properties 
that the radial limit ζ := ϕU (ξ) exists and the full radial extension Fn(ζ) exists (by 
hypothesis and the invariance of harmonic measure under a conformal map), so

Fn(ζ) − Fn(z0) = F̂n(ξ) − F̂n(0) → 0 as n → ∞,
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for almost every ξ ∈ ∂D and hence for almost every ζ ∈ ∂U , with respect to harmonic 
measure.

So, from now on we assume that U = D and z0 = 0. We have to show that for almost 
all ζ ∈ ∂D we have Fn(ζ) − Fn(0) → 0 as n → ∞. For each n ∈ N, let ζn be a point in 
∂Un that satisfies

|Fn(0) − ζn| = dist(Fn(0), ∂Un).

By hypothesis, Fn(0) − ζn → 0 as n → ∞.
For every r > 0, we define the sequence of open sets Sn(r) = Un∩D(ζn, r), for n ∈ N. 

We then define the set E(r) of points ζ ∈ ∂D such that Fn(ζ) eventually lies in Sn(r), 
that is,

E(r) =
⋃
N≥0

⋂
n≥N

(
F−1
n

(
Sn(r)

)
∩ ∂D

)
.

Notice that by the definition of Sn(r) we have

|Fn(ζ) − ζn| → 0 as n → ∞, for ζ ∈
⋂
r>0

E(r), (4.5)

and, since E(r) ⊆ E(r′) for all r ≤ r′, given any sequence of radii rk → 0 as k → 0 we 
have 

⋂
r>0 E(r) =

⋂
k≥1 E(rk). To prove our result it is sufficient to show that the latter 

set has full harmonic measure in ∂D.
First note that Un \ Sn(r) ⊂ Un \ Sn(r), so

∂D \ E(r) ⊂
⋂
N≥0

⋃
n≥N

(F−1
n (Un \ Sn(r)) ∩ ∂D). (4.6)

We shall use (4.6) to show that

ω(0, ∂D \ E(r),D) = 0, for r > 0. (4.7)

To prove this, we take N(r) ∈ N so large that Fn(0) ∈ Sn(r) for all n ≥ N(r), and 
then for all n ≥ N(r) we define the following sets, shown in Fig. 1:

• Vn(r) is the component of Sn(r) = Un ∩D(ζn, r) that contains Fn(0),
• Wn(r) is the component of F−1

n (Vn(r)) ∩D that contains 0, and
• Γn(r) := ∂Vn(r) ∩ Un.

Note that Vn(r) is simply connected (see comment after Definition 4.2). Hence so is 
Wn(r) by the maximum principle. Also Γn(r) consists of arcs of ∂D(ζn, r). Moreover, 
Wn(r) is a Jordan domain since the preimage of Γn(r) in D consists of at most countably 
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Fig. 1. Illustration of the proof of Theorem 4.1. The set Vn(r) and the connected component Wn(r) of its 
preimage which contains 0 are shaded (seagreen online). The arcs Γn(r) and some of their preimages are 
drawn thicker (pink online). Notice that there may also be preimages of Γn(r) in ∂D, since the orbit of a 
point in ∂D may land in the interior of Un. Points in D \Wn(r), which are shown in white, may be mapped 
under Fn to either Un \ Vn(r) or Vn(r), since the preimage of Vn(r) under Fn may have more than one 
connected component. Finally, recall that the points (ζn)n∈N do not form an orbit. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

many curves that accumulate at no point of D, and the ends of each such preimage curve 
consist of single points of ∂D.

The latter property follows from Theorem 4.5, applied to the function z �→ Fn(z) −ζn, 
which has finite radial limits almost everywhere on ∂D and in particular at points of a 
dense subset of ∂D.

In particular, Wn(r) has the unique accessibility property and so the restricted map 
Fn : Wn(r) → Vn(r) has full radial extension; see Proposition 2.2.

We now apply Theorem 2.8 to the map Fn : Wn(r) → Vn(r) to deduce that

ω(0, F−1
n (Γn(r)) ∩ ∂Wn(r),Wn(r)) ≤ ω(Fn(0),Γn(r), Vn(r)). (4.8)

Next we deduce from the fact that Vn(r) ⊂ Sn(r) that, for all z ∈ D,

ω(z, F−1
n (Un \ Sn(r)) ∩ ∂D,D) ≤ ω(z, F−1

n (Un \ Vn(r)) ∩ ∂D,D). (4.9)

Using the interpretation of harmonic measure as the exit distribution of Brownian mo-
tion, it is clear that, for all z ∈ Wn(r), we have

ω(z, F−1
n (Un \ Vn(r)) ∩ ∂D,D) ≤ ω(z, F−1

n (Γn(r)) ∩ ∂Wn(r),Wn(r)), (4.10)

since any Brownian path in D originating at 0 can only exit D at a point of 
F−1
n (Un \ Vn(r)) ∩ ∂D by first exiting Wn(r) at a point of F−1

n (Γn(r)) ∩ ∂Wn(r).
Alternatively, we can apply the maximum principle in the Jordan domain Wn(r) to 

justify (4.10), by arguing that this inequality holds everywhere on ∂Wn(r), apart from 
at most countably many points. Indeed, apart from the endpoints of the preimage curves 
of Γn(r), these two bounded positive harmonic functions in Wn(r) have the same radial 
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boundary extensions everywhere on ∂Wn(r) ∩∂D and the positive harmonic function on 
the right takes the value 1 everywhere on F−1

n (Γn(r)) ∩ ∂Wn(r) = ∂Wn(r) ∩D.
Using the inequalities (4.6), (4.9), (4.10) and (4.8), in this order, and the definition of 

N(r) after (4.7), we deduce that

ω(0, ∂D \ E(r),D) ≤ inf
N≥N(r)

∑
n≥N

ω(0, F−1
n

(
Un \ Sn(r)

)
∩ ∂D,D)

≤ inf
N≥N(r)

∑
n≥N

ω(0, F−1
n

(
Un \ Vn(r)

)
∩ ∂D,D)

≤ inf
N≥N(r)

∑
n≥N

ω(0, F−1
n (Γn(r)) ∩ ∂Wn(r),Wn(r))

≤ inf
N≥N(r)

∑
n≥N

ω(Fn(0),Γn(r), Vn(r)). (4.11)

Since the domains Un are all assumed to satisfy the α-harmonic measure condition, 
we deduce from (4.3) that

ω(Fn(0),Γn(r), Vn(r)) ≤ C(r)|Fn(0) − ζn|α,

for some positive function C(r), r > 0. Hence, by (4.1), the right-hand side of (4.11) is 
equal to 0 for every r > 0 and (4.7) follows.

Since a countable union of sets of zero measure has zero measure, we deduce from 
(4.7) that for any sequence of radii rk → 0 as k → ∞

ω(0,
⋃
k≥1

(∂D \ E(rk)),D) = 0.

Therefore, by (4.5), we have |Fn(ζ) − ζn| → 0 as n → ∞ for ζ in a subset of ∂D of full 
harmonic measure, namely, 

⋂
k≥1 E(rk).

Since |ζn − Fn(0)| → 0 by assumption, this implies that

|Fn(ζ) − Fn(0)| ≤ |Fn(ζ) − ζn| + |ζn − Fn(0)| → 0 as n → ∞,

for ζ in a set of full harmonic measure, as claimed. �
Remark. It can be seen from the proof of Theorem 4.1 that if the domains Un satisfy an 
α-harmonic measure condition, 1/2 ≤ α ≤ 1, but the orbit (Fn(0)) actually approaches 
parts of the boundaries of the Un that satisfy a β-harmonic measure condition, where 
β > α, then the convergence condition (4.1) can be weakened to replace the exponent α
by β.
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4.3. Example of self-maps of a cardioid-shaped domain

We give an example which has the property that in Theorem 4.1 the exponent in 
condition (4.1) cannot be taken to be greater than 1

2 . This example uses properties of a 
sequence of self-maps of D given in Example 8.3 transferred to a cardioid-shaped domain.

We consider holomorphic self-maps of the domain

U = ϕ(D), where ϕ(z) = (z − 1)2,

which is the conformal image of D under ϕ, meeting the real axis in the interval 
ϕ((−1, 1)) = (0, 4), with ∂U a cardioid having its inward pointing cusp at ϕ(1) = 0.

By part (a) of Lemma 4.3 the domain U satisfies an α-harmonic measure condition 
for α = 1

2 . On the other hand, U does not satisfy such a condition for any α > 1
2 . Indeed, 

we can check that the harmonic measure ω(z, ∂V ∩U, V ), where V = U ∩D(0, r), r > 0, 
satisfies

ω(x, ∂V ∩ U, V ) ∼ C(r)x1/2 as x → 0+,

for some constant C(r) > 0, by using ϕ−1 to map this harmonic measure to a boundary 
neighbourhood of 1 in D within which the corresponding harmonic measure behaves 
near 1 like a multiple of the distance to ∂D.

Example 4.6. There exists a sequence of holomorphic maps Fn : U → U such that

(a) Fn(1) → 0 ∈ ∂U as n → ∞ (note that 1 = ϕ(0) ∈ U);

(b)
∑

dist(Fn(1), ∂U)α
{
< ∞, for α > 1/2,
= ∞, for α = 1/2;

(c) {ζ ∈ ∂U : Fn(ζ) → 0 as n → ∞} has measure 0; that is, the Denjoy–Wolff set has 
measure zero.

Proof. Let Bn be the sequence of Blaschke products defined as Bn(z) = Mn(z2n), with 
Mn(z) = z+1−1/n

1+(1−1/n)z . We then have that

Bn(0) = 1 − 1
n
→ 1 as n → ∞, (4.12)

and

Bn(ζ) � 1 as n → ∞, for almost every ζ ∈ ∂D. (4.13)

Here (4.13) follows by applying Example 8.3 with an = 1 − 1/n, n ∈ N, according to 
which the orbit under Bn of almost every point ζ ∈ ∂D is dense in ∂D.
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Now define the self-maps Fn : U → U as

Fn = ϕ ◦Bn ◦ ϕ−1.

Then, by (4.12) and the fact that ϕ(0) = 1, we have

Fn(1) = ϕ(Bn(0)) = ϕ(1 − 1/n) = 1/n2 → 0 as n → ∞, (4.14)

which gives property (a) and also property (b), since dist(Fn(1), ∂U) = 1/n2 for n ∈ N. 
Finally, property (c) holds since Fn(ζ) � 0 as n → ∞ for almost all ζ ∈ ∂U , by 
(4.13). �

Note that we can write the maps Fn : U → U as a forward composition Fn =
fn ◦ · · · ◦ f1, where fn = ϕ ◦ bn ◦ ϕ−1 and bn are the maps given in Example 8.3 such 
that Bn = bn ◦ · · · ◦ b1.

5. Empty Denjoy–Wolff sets – the proof of Theorem D

In this section we prove Theorem D. In the proof we need the following basic estimate 
for the mapping properties of Möbius transformations, which is also used in Section 8.

Lemma 5.1 (Preimages under Möbius maps). Consider a Möbius map of the form

Ma(z) = z + a

1 + az
, 0 < a < 1, a = 1 − ε,

and let T ⊂ ∂D be an arc (eiθ, eiϕ), with 0 < θ < ϕ < 2π. Then there exists c(θ, ϕ) > 0
such that

lim
ε→0

|M−1
a (T )|/ε = c(θ, ϕ). (5.1)

Proof. The proof is a direct computation. For z, w ∈ ∂D we have that

M−1
a (z) −M−1

a (w) = z − a

1 − az
− w − a

1 − aw
= (1 − a2)(z − w)

(1 − az)(1 − aw) ,

so

|M−1
a (eiϕ) −M−1

a (eiθ)| = (1 − a2)|eiϕ − eiθ|
|(1 − aeiϕ)(1 − aeiθ)|

= ε(2 − ε)|eiϕ − eiθ|
(|1 − eiϕ| + O(ε))(|1 − eiθ| + O(ε))

=
(

2|eiϕ − eiθ|
|(1 − eiϕ)(1 − eiθ)|

)
ε + O(ε2) as ε → 0.
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Since |M−1
a (eiϕ) −M−1

a (eiθ)|/|M−1
a (T )| → 1 as ε → 0, the claim follows. �

Proof of Theorem D. Recall that

Fn(z) = λnz + an
1 + λnanz

, for n ∈ N,

where (an) is an increasing sequence in [0, 1), with a0 = 0 and an → 1 as n → ∞, and 
(λn) is a sequence in ∂D to be chosen. It is clear that Fn(0) = an for n ∈ N, whatever 
choice is made of λn, so

Fn(z) → 1 as n → ∞, for all z ∈ D,

by Theorem A.
We now put εn = 1 − an for n ∈ N, and assume that

∞∑
n=1

(1 − an) =
∞∑

n=1
εn = ∞. (5.2)

Then we write

Fn(z) = Bn(λnz), where Bn(z) = z + an
1 + anz

, for n ∈ N.

Let S = (e−iθ, eiθ) be any arc, where 0 < θ < π/4, and let Sc be its complement in ∂D. 
We show how to choose (λn) so that no ζ ∈ ∂D has an orbit that eventually lies in S. 
We have that B−1

n (Sc) is an arc in ∂D with centre −1 and it follows by Lemma 5.1 that

|B−1
n (Sc)|/εn → c(S) as n → ∞. (5.3)

For any choice of (λn), the preimage F−1
n (Sc) = λ−1

n B−1
n (Sc) is an arc with midpoint 

−λ−1
n such that |F−1

n (Sc)| = |B−1
n (Sc)|.

We now introduce intervals In = [θn, θn+1], n = 0, 1, . . . , such that θ0 = 0 and

θn+1 − θn = |F−1
n (Sc)| = |B−1

n (Sc)|, so
∞⋃

n=0
In = [0,∞), (5.4)

by (5.2) and (5.3).
Now, we choose λn ∈ ∂D such that

−λ−1
n = ei(θn+θn+1)/2,

so −λ−1
n is the midpoint of the arc (eiθn , eiθn+1) which is F−1

n (Sc), by (5.4). With this 
choice we know that if θn ≤ θ ≤ θn+1, then
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eiθ ∈ F−1
n (Sc), so λne

iθ ∈ B−1
n (Sc),

and hence Bn(λne
iθ) ∈ Sc. But any ζ ∈ ∂D (including ζ = 1) is of the form ζ = eiϕn , 

where ϕn ∈ In for infinitely many n, so

Fn(ζ) = Bn(λne
iϕn) ∈ Sc, for such n.

Hence with this choice of λn we have Fn(ζ) � 1 as n → ∞, as required. �
Remark. A small modification to the example in Theorem D gives a sequence of degree p

Blaschke products, where p ≥ 2, of the form

Fn(z) = λnz
p + an

1 + λnanzp
, n ∈ N,

such that Fn(z) → 1 as n → ∞ for all z ∈ D, but the Denjoy–Wolff set of (Fn) is empty. 
However, note that, as opposed to the Möbius example of Theorem D, this sequence 
(Fn) cannot be written as a forward composition sequence Fn = fn ◦ · · · ◦ f1 where the 
fn are self-maps of the unit disc.

6. Proof of Theorem E

In this section we prove Theorem E. The first part of the proof involves similar tech-
niques to that of Theorem 4.1, so we omit some of the details here.

First, we can assume that ζ0 ∈ ∂U is accessible since L0 has positive harmonic mea-
sure. We claim we can also assume that U = D. To see this, let L′

0 = ϕ−1
0 (L0), where 

ϕ0 : D → U is a Riemann map. Then L′
0 ⊂ ∂D has positive measure and the sequence 

F̂n = Fn ◦ ϕ0 : D → Un, n ∈ N, satisfies F̂n(ξ) − Fn(ζ0) → 0 as n → ∞ for all ξ ∈ L′
0. 

Thus if the result holds for F̂n : D → Un, that is, F̂n(z) − Fn(ζ0) → 0 as n → ∞
for all z ∈ D or equivalently Fn(ϕ0(z)) − Fn(ζ0) → 0 as n → ∞ for all z ∈ D, then 
Fn(z) − Fn(ζ0) → 0 as n → ∞ for all z ∈ U , as required.

So, from now on we assume that U = D and L0 ⊂ ∂D has positive measure. Let 
ζn := Fn(ζ0) for n ∈ N, so by hypothesis dist(ζn, ∂Un) → 0 as n → ∞ (possibly, 
dist(ζn, ∂Un) = 0 for all n ∈ N if ζn ∈ ∂Un for all n ∈ N). Then take any z0 ∈ D and 
put zn = Fn(z0) ∈ Un, for n ∈ N. To obtain our result it is sufficient, by Theorem A, to 
prove that

|zn − ζn| → 0 as n → ∞. (6.1)

By the Severini–Egorov theorem (see [50, Chapter 3] or [54, Theorem 1.3.26 and 
Exercise 1.4.31], for example), there is a compact set E0 ⊂ L0 ⊂ ∂D such that

ω(z0, E0,D) ≥ 1
2ω(z0, L0,D) and |Fn(ζ) − ζn| → 0 as n → ∞, uniformly for ζ ∈ E0.

(6.2)
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Hence there exists a positive sequence rn → 0 as n → ∞ such that

Fn(E0) ⊂ D(ζn, rn) and D(ζn, rn) ∩ ∂Un 
= ∅, for n ∈ N. (6.3)

We prove (6.1) by showing that, for some positive absolute constant C > 1 we have

zn ∈ D(ζn, Crn), for n ∈ N. (6.4)

It is sufficient to consider only those values of n for which zn /∈ D(ζn, rn).
For such n, we let Vn denote the component of Un \D(ζn, rn) that contains zn, Wn

denote the component of F−1
n (Vn) ⊂ D that contains z0, and put Γn = ∂Vn ∩ Un. 

Note that Vn and Wn are both simply connected domains, by the maximum principle. 
Moreover, as in the proof of Theorem 4.1, Wn is a Jordan domain since the part of the 
preimage of Γn that lies in D consists of at most countably many curves that accumulate 
at no point of D, and the ends of each such preimage curve consist of single points of 
∂D.

We can now apply Theorem 2.8 to Fn in Wn to deduce that

ω(z0, F
−1
n (Γn) ∩ ∂Wn,Wn) ≤ ω(zn,Γn, Vn). (6.5)

Next observe that E0 lies in ∂D \ ∂Wn, by the definitions of L0, Vn and Wn. Therefore, 
since any Brownian path in Wn originating at z ∈ Wn can only exit D at a point of E0
by first exiting Wn at a point of ∂Wn ∩D, we have

ω(z, E0,D) ≤ ω(z, F−1
n (Γn) ∩ ∂Wn,Wn), for z ∈ Wn, n ∈ N. (6.6)

Alternatively, we can prove (6.6) by using the maximum principle, because the harmonic 
measure on the left has radial boundary extension 0 almost everywhere on ∂D ∩ ∂Wn

(since E0 ⊂ ∂D \ ∂Wn) and the harmonic measure on the right takes the value 1 almost 
everywhere on D ∩ ∂Wn.

Now we estimate the right-hand side of (6.5) from above. To do this we choose 
an unbounded closed connected set Kn which lies in C \ Un and contains a point in 
D(ζn, rn) ∩ ∂Un. If Un is bounded, then we can take Kn = C \Un itself; in general such 
a set Kn exists since Un is a simply connected proper subset of C. Then let Ωn denote 
the component of the complement of Kn ∪D(ζn, rn) that contains zn, which is a simply 
connected domain such that Vn ⊂ Ωn and Γn ⊂ ∂Ωn. Then, by the maximum principle 
again, this time applied first in Vn and second in Ωn, we have

ω(z,Γn, Vn) ≤ ω(z,Γn,Ωn) ≤ ω(z, ∂Ωn ∩ Un,Ωn), for z ∈ Vn, n ∈ N. (6.7)

In particular, (6.7) holds for z = zn.
Now the right-hand function in (6.7) can be estimated from above by first mapping 

Ωn to a bounded domain using w = ψn(z) := 1/(z− ζn) and then applying the Milloux-
Schmidt inequality to the harmonic function
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u(w) = ω(ψ−1
n (w), ∂Ωn ∩ Un,Ωn), w ∈ ψn(Ωn), n ∈ N.

Note that the domain ψn(Ωn) lies in D(0, Rn), where Rn := r−1
n , and u vanishes on 

the part of the boundary of ψn(Ωn) that lies in D(0, Rn). After extending u to be 0 
throughout D(0, Rn) \ψn(Ωn) and hence subharmonic in D(0, Rn), we deduce from the 
Milloux–Schmidt inequality, Lemma 4.4, that for n ∈ N, we have

u(w) ≤ 4
π

tan−1
(
|w|
Rn

) 1
2

≤ 4
π

(
|w|
Rn

) 1
2

, for w ∈ ψn(Ωn),

and in particular, taking w = ψn(zn), that

ω(zn, ∂Ωn ∩ Un,Ωn) = u(ψn(zn)) ≤ 4
π

(
1

Rn|zn − ζn|

) 1
2

= 4
π

(
rn

|zn − ζn|

) 1
2

.

Combining this estimate with (6.2), (6.5), (6.6) and (6.7), we deduce that, for n ∈ N,

ω(z0, L0,D) ≤ 2ω(z0, E0,D) ≤ 8
π

(
rn

|zn − ζn|

) 1
2

, so |zn − ζn| ≤
64rn

(πω(z0, L0,D))2 .

Since rn → 0 as n → ∞ and ω(z0, L0, D) > 0 by hypothesis, this proves (6.4), as required.

7. Classifying forward compositions and proof of Theorem F

In this section we focus on forward compositions of holomorphic maps between simply 
connected domains. We first classify such sequences in terms of hyperbolic distances, 
extending the classification of wandering domains given in [6]. We then prove a general 
result concerning contracting sequences which implies Theorem F. At the end of the 
section we give an example which shows that the conclusion of Theorem F does not hold 
if the hypothesis of contracting is omitted.

7.1. Hyperbolic classification

In [6, Theorem A], we classified simply connected wandering domains into three dis-
tinct types: contracting, semi-contracting or eventually isometric, according to whether 
hyperbolic distances between orbits of points, for almost all points, tend to 0, decrease 
but do not tend to 0, or are eventually constant, respectively. In Section 1 of this paper 
we extended the definition of ‘contracting’ to the more general context of sequences of 
holomorphic maps Fn : U → Un between simply connected domains; see Definition 1.4.

In this section, we extend the concepts of ‘semi-contracting’ and ‘eventually isometric’ 
from wandering domains to sequences of holomorphic maps that can be expressed as 
forward compositions of holomorphic maps between simply connected domains; that is, 
sequences of the form Fn = fn ◦ · · · ◦ f1, where fn : Un−1 → Un are holomorphic maps.
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We also give a criterion to discriminate between the three types of forward composi-
tions based on the concept of hyperbolic distortion [11, Sect. 5,11].

Definition 7.1 (Hyperbolic distortion). If f : U → V is a holomorphic map between two 
hyperbolic domains U and V , then the hyperbolic distortion of f at z is the modulus of 
its derivative at z taken with respect to the hyperbolic metrics on U, V ; in formulae,

‖Df(z)‖VU := lim
z′→z

distV (f(z′), f(z))
distU (z′, z) = ρV (f(z))|f ′(z)|

ρU (z) ,

where ρU (z) denotes the hyperbolic density at z ∈ U .

Note that in the following result the holomorphic maps need not be surjections.

Theorem 7.2 (Hyperbolic classification theorem). Let Un, n ≥ 0 be a sequence of simply 
connected domains (not necessarily distinct or disjoint) and fn : Un−1 → Un, n ∈ N be a 
sequence of holomorphic maps. Define the forward compositions Fn = fn◦· · ·◦f1, n ∈ N, 
F0 = Id, and the set

E = {(z, z′) ∈ U0 × U0 : Fn(z) = Fn(z′) for some n ∈ N}.

For n ∈ N, let λn(z) denote the hyperbolic distortion ‖Dfn(Fn−1(z))‖Un

Un−1
.

Then exactly one of the following holds:

(1) distUn
(Fn(z), Fn(z′)) −→

n→∞
c(z, z′) = 0 for all z, z′ ∈ U0, that is, the sequence (Fn)

is contracting on U0; this case occurs if and only if 
∑∞

n=1(1 − λn(z)) = ∞.
(2) distUn

(Fn(z), Fn(z′)) −→
n→∞

c(z, z′) > 0 and distUn
(Fn(z), Fn(z′)) 
= c(z, z′) for all 

(z, z′) ∈ (U0 × U0) \ E, n ∈ N, in which case we say that the sequence (Fn) is
semi-contracting on U0.

(3) There exists N > 0 such that for all n ≥ N , distUn
(Fn(z), Fn(z′)) = c(z, z′) > 0 for 

all (z, z′) ∈ (U0 ×U0) \E, in which case we say that the sequence (Fn) is eventually 
isometric on U0; this case occurs if and only if λn(z) = 1, for n sufficiently large.

By the Schwarz-Pick Lemma, the eventually isometric case occurs if and only if fn :
Un−1 → Un is univalent for all sufficiently large n.

The proof of Theorem 7.2 is essentially identical to that of the corresponding result 
for simply connected wandering domains, [6, Theorem A], depending as it does on using 
Riemann maps to reduce the situation to classifying non-autonomous systems of for-
ward compositions of self-maps of the unit disc that fix the point 0, as discussed in [6, 
Section 2].

The hyperbolic classification theorem does not hold in general for sequences of holo-
morphic maps between simply connected domains that are not defined by forward 
composition, as the following example shows.
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Example 7.3. Consider the sequence (Fn) of degree 2 Blaschke products defined as fol-
lows. For z ∈ D and n ∈ N,

Fn(z) := zϕ2/n(ϕ1/2(z)), where ϕa(z) := z − a

1 − az
, a ∈ D.

Then, distD(Fn(1/2), Fn(0)) → 0 as n → ∞, but

distD(Fn(z), Fn(z′)) � 0 as n → ∞, for all z, z′ ∈ D, (z, z′) 
= (0, 1/2). (7.1)

Proof. For n ∈ N, Fn(0) = 0, Fn(1/2) = −1/n, so distD(Fn(1/2), Fn(0)) → 0 as n → ∞, 
and

Fn(z) = z
ϕ1/2(z) − 2/n

1 − (2/n)ϕ1/2(z)
→ zϕ1/2(z) as n → ∞, for all z ∈ D,

from which the property (7.1) readily follows. �
The form of the functions in Example 7.3 was suggested by work of P. Mercer ([37]).

7.2. Proof of Theorem F

Theorem F is a special case of part (b) of the following result, obtained by including 
the assumption that the interior orbits converge to the boundary.

Theorem 7.4. Let Fn : U0 → Un, n ∈ N, be a sequence of holomorphic maps between sim-
ply connected domains, each having a full radial extension, with the additional hypothesis 
that

Fn(ζ) ∈ ∂Un, for almost all ζ ∈ ∂U0. (7.2)

Also, suppose that (Fn) is contracting in U0.

(a) If there are measurable subsets L ⊂ ∂U0 and Ln ⊂ ∂Un, n ∈ N, such that L =
F−1
n (Ln), for n ∈ N, up to a set of harmonic measure 0, then L has either full or 

zero harmonic measure with respect to U0.
(b) If in addition Fn = fn ◦ · · · ◦ f1, where fn : Un−1 → Un, n ∈ N, are holomorphic 

maps between simply connected domains, each with a full radial extension, then for 
any ζ0 ∈ ∂U0 the set

{ζ ∈ ∂U0 : |Fn(ζ) − Fn(ζ0)| → 0 as n → ∞} (7.3)

has either full or zero harmonic measure with respect to U0.
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Fig. 2. Illustration of the proof of Theorem 7.4. The sets En and Ln are represented as arcs for simplicity 
but are in fact just measurable.

For the proof of Theorem 7.4 we need the following ‘strong mixing’ result due to 
Pommerenke [47, Theorem 1]. For any A ⊂ ∂D, let |A| denote its Lebesgue measure.

Lemma 7.5 (Pommerenke). Let (Gn)n≥1 be a sequence of inner functions such that

Gn(0) = 0 and Gn(z) → 0 as n → ∞, for all z ∈ D,

and suppose there are measurable subsets E and En, n ∈ N, of ∂D such that E =
G−1

n (En), for n ∈ N, up to a set of measure 0. Then, for all arcs A ⊂ ∂D, we have

|A ∩ E| = 1
2π |A|.|E|. (7.4)

It follows that the set E has either full or zero Lebesgue measure.

Remark. The statement of Lemma 7.5 is different from that of [47, Theorem 1] in several 
respects. First, for simplicity, we have normalised the inner functions to fix 0. Second, 
the proof of the identity (7.4) is obtained by following the proof of [47, Theorem 1] while 
exchanging the roles of the sets En and E in that proof. Third, the final statement of 
Lemma 7.5 follows by applying (7.4) to a nested sequence of arcs converging to a point 
of density of E, when such a point exists.

Proof of Theorem 7.4. Let z0 be an arbitrary point in U0 and let hn be a univalent 
map from Un onto U0 with hn(Fn(z0)) = z0. Then the map hn ◦ Fn is a self-map of 
U0 fixing z0; see Fig. 2. Now let ϕ : D → U0 be a Riemann map such that ϕ(0) = z0. 
Accessible boundary points of U0 correspond to points of ∂D where ϕ has radial limits 
(see Subsection 2.1).

For n ≥ 1 we define the map Gn : D → D as

Gn = ϕ−1 ◦ hn ◦ Fn ◦ ϕ,

and note that Gn(0) = 0 for n ∈ N. Since the sequence (Fn) is contracting we have that 
distUn

(Fn(z), Fn(z0)) → 0 as n → ∞ for all z ∈ U0. Also, since ϕ−1 ◦ hn : Un → D is a 
conformal map, we have, for every w ∈ D,
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distD(Gn(w), Gn(0)) = distD(ϕ−1 ◦ hn ◦ Fn ◦ ϕ(w), ϕ−1 ◦ hn ◦ Fn(z0))

= distUn
(Fn(ϕ(w)), Fn(z0)) → 0 as n → ∞,

which means that (Gn) is also contracting.
Next define the sets En ⊂ ∂D as

E = ϕ−1(L) and En = ϕ−1(hn(Ln)), for n ∈ N. (7.5)

By (7.2) and (7.5) we have, for n ∈ N, up to a set of measure zero (by an argument 
similar to the one used in the proof of Proposition 2.4), that

G−1
n (En) = ϕ−1(F−1

n (h−1
n (ϕ(En))))

= ϕ−1(F−1
n (h−1

n (hn(Ln))))

= ϕ−1(L) = E.

Suppose now that L has positive harmonic measure in U0, so E has positive Lebesgue 
measure in D. Since Fn maps ∂U0 to ∂Un, Gn is an inner function for every n. We can 
now apply Lemma 7.5 to the sequence (Gn) and deduce that |E| = 2π, and so L ⊂ ∂U0
has full harmonic measure in U0.

For part (b), let L be the set in (7.3), and assume that for some ζ0 ∈ ∂U0 the set L
has positive harmonic measure in U0. Then define the set Ln ⊂ ∂Un, for n ∈ N, as

Ln := {ζ ∈ ∂Un : |fn+m ◦ · · · ◦ fn+1(ζ) − Fm+n(ζ0)| → 0 as m → ∞}. (7.6)

By definition,

L = {ζ ∈ ∂U0 : |Fn(ζ) − Fn(ζ0)| → 0 as n → ∞} = F−1
n (Ln), for n ∈ N, (7.7)

up to a set of harmonic measure 0, so we can apply part (a) of the theorem to deduce 
that L has full harmonic measure in U0. �
7.3. An example related to Theorem F

The following example shows that Theorem F and Theorem 7.4 fail without the hy-
pothesis which requires the sequence of maps to be contracting. The example consists of 
a sequence of Möbius self-maps Mn of D, and hence it can also be viewed as a forward 
composition Mn = mn ◦ · · · ◦m1 of Möbius self-maps by defining mn = Mn ◦M−1

n−1.

Example 7.6. There exists a sequence (Mn) of Möbius self-maps of D such that Mn(1) = 1
for all n, and

(a) Mn(z) → 1 as n → ∞, for all z ∈ D;
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(b) Mn(ζ) → 1 as n → ∞, for all ζ = eiθ, |θ| < π/2; but
(c) Mn(ζ) 
→ 1 as n → ∞, for all ζ = eiθ, π/2 ≤ |θ| ≤ π.

Proof. We define the maps first on the right half-plane H = {z : Re z > 0}. For points 
ζ ∈ ∂H and a > 1 we shall consider affine self-maps of H of the form

M̂(z; ζ, a) = a(z − ζ) + ζ.

Clearly, the point ∞ is an attracting fixed point of M̂ , while ζ is a repelling fixed point.
For j = 1, 2, . . . we divide the segment [−i, i] in the imaginary axis into j segments 

Ij,k, k = 0, . . . , j − 1, each of length 2/j, that is

Ij,k =
[
−1 + 2k

j
,−1 + 2(k + 1)

j

]
i, k = 0, . . . , j − 1,

with midpoint ζj,k =
(
−1 + 2k+1

j

)
i. Hence, for all k = 0, . . . , j − 1,

|Ij,k| = 2
j

and
j−1⋃
k=0

Ij,k = [−i, i].

Now, for all k = 0, . . . , j − 1, we define the maps

M̂j,k(z) = M̂(z; ζj,k, j) = j(z − ζj,k) + ζj,k, z ∈ H.

Then, on the one hand, for ζ ∈ Ij,k we have

|M̂j,k(ζ)| ≤ j|ζ − ζj,k| + 1 ≤ j(1/j) + 1 = 2, (7.8)

and on the other hand, for all |z| > 1 and since |ζj,k| < 1,

|M̂j,k(z)| ≥ j|z − ζj,k| − 1 ≥ j(|z| − 1) − 1, 0 ≤ k ≤ j − 1, j = 1, 2 . . . . (7.9)

Now we arrange the maps M̂j,k into a single sequence M̂n = M̂j,k, where n = 1
2j(j+1) +k, 

0 ≤ k ≤ j − 1, j = 1, 2 . . ., and observe that for all z ∈ H with |z| > 1 we have that 
M̂n(z) → ∞ as n → ∞, by (7.9). On the other hand, every z ∈ [−i, i] belongs to an 
infinite number of segments Ij,k, so there exists an infinite number of distinct values of 
n for which |M̂n(z)| < 2 by (7.8) and therefore M̂n(z) 
→ ∞ as n → ∞.

Finally, we define the corresponding maps on the closed unit disc by Mn(z) = β−1 ◦
M̂n ◦ β(z), where β : D → H is the Möbius map such that β(1) = ∞, β(−1) = 0 and 
β(±i) = ±i. By the discussion above, properties (b) and (c) are immediate. Property (a) 
follows immediately from Theorem A, for example. �
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8. Examples related to the ADM dichotomy

In this section we give three examples related to Theorem 1.2, part (b). Recall that 
this states that for an inner function f : D → D with a Denjoy–Wolff point and such 
that 

∑
n∈N(1 − |fn(z)|) = ∞, for some z ∈ D, almost all boundary orbits of f are dense 

in ∂D. Here we show that this result fails to hold in general if iterates of inner functions 
are replaced by forward compositions of inner functions.

In Subsection 8.1, we give two examples which show this failure: the first consists of 
forward compositions of Möbius self-maps of D and is therefore an isometric sequence in 
the sense of Theorem 7.2, and the second consists of forward compositions of Blaschke 
products of degree 2, which turns out to be a semi-contracting sequence. Then, in Sub-
section 8.2 we give an example of a forward composition of distinct Blaschke products of 
degree 2 which is contracting and for which the conclusion of Theorem 1.2, part (b) does 
hold – the techniques used in the proof of this example have some independent interest.

These examples raise the question of whether part (b) of the ADM dichotomy holds 
for contracting forward compositions of inner functions (or indeed for more general con-
tracting sequences), which we discuss at the end of this section.

8.1. Forward compositions for which Theorem 1.2, part (b) fails

Our first example is a sequence of Möbius self-maps of D.

Example 8.1. Let (an) be an increasing sequence on [0, 1) such that a0 = 0 and 
limn→∞ an = 1, let mn, n ∈ N, be the Möbius map such that mn(±1) = ±1 and 
mn(an−1) = an, and define Mn = mn ◦ · · · ◦m1, that is,

Mn(z) = z + an
1 + anz

, for n ≥ 1.

Then, every point ζ ∈ ∂D \{−1} satisfies that limn→∞ Mn(z) = 1, regardless of whether ∑
n≥0(1 − an) converges or not.

Proof. We consider the cross-ratio

(z1 − z3)(z4 − z2)
(z3 − z2)(z1 − z4)

,

which is invariant under Möbius transformations. Take z1 = 1, z2 = −1, z3 = 0, z4 = ζ ∈
∂D \ {±1}. Then the invariance under Mn gives

0 
= (1 − 0)(ζ + 1)
(0 + 1)(1 − ζ) = (1 − an)(Mn(ζ) + 1)

(an + 1)(1 −Mn(ζ)) .

Since an → 1 we have 1−an → 0 as n → ∞, so
an+1
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1 −Mn(ζ)
Mn(ζ) + 1 → 0 as n → ∞,

as required. �
As announced, a similar effect to that in Example 8.1 can be achieved with a forward 

composition of Blaschke products (bn) of degree two. In this example, Bn = bn◦· · ·◦b1 →
1 as n → ∞ in D and the summability condition of Theorem 1.2, part (b) fails, and yet 
Bn → 1 as n → ∞ on a whole arc of ∂D with centre 1.

Example 8.2. There exists a sequence of degree two Blaschke products (bn) of the form

bn(z) =
(

z + μn

1 + μnz

)2

, (8.1)

where (μn) is a decreasing sequence such that μn → 1/3 as n → ∞, such that

(a) Bn := bn ◦ · · · ◦ b1 satisfies 
∑∞

n=1(1 −Bn(0)) = ∞,
(b) limn→∞ Bn(z) = 1, for z ∈ D ∪ {ζ ∈ ∂D : |ζ − 1| < ρ}, for some ρ > 0.

Proof. First note that the map z �→
(

z+μ
1+μz

)2
has an attracting fixed point at 1 for 

μ ∈ (1/3, 1) and a parabolic fixed point at 1 for μ = 1/3. It is convenient to construct the 
sequence (μn) by making a change of variables to the right half-plane H = {z : Re z > 0}
via the map α(z) = 1+z

1−z , z ∈ D.
Now z �→ z+μn

1+μnz
is conjugated by α to z �→ λnz in H, where λn = 1+μn

1−μn
; to see this 

observe that α(−1) = 0, α(0) = 1, α(μn) = λn and α(1) = ∞. So we require (λn) to be 
a decreasing sequence tending to 2 as n → ∞.

Next, z �→ z2 in D is conjugated by α to

z �→ α
(
(α−1(z))2

)
=

(
z−1
1+z

)2
+ 1(

z−1
1+z

)2
− 1

= 1
2 (z + 1/z)

in H. Hence bn in D is conjugated by α to z �→ 1
2 (λnz + 1

λnz
) in H, which we denote by 

b̂n. We also write B̂n = b̂n ◦ · · · ◦ b̂1 in H, so B̂n = α ◦Bn ◦α−1 for n ≥ 1. Therefore, the 
sum in statement (a) now becomes

∞∑
n=1

∣∣∣1 − α−1(B̂n(1))
∣∣∣ =

∞∑
n=1

2
B̂n(1) + 1

,

which diverges if and only if 
∑∞

n=1 1/B̂n(1) diverges.
We choose (λn) in such a way that B̂n(1) = n + 1, for n ∈ N, so that the divergence 

of the above series is assured. To achieve this we need
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B̂n(1) = b̂n(n) = 1
2

(
λnn + 1

λnn

)
= n + 1, (8.2)

so we define

λn := n + 1 +
√
n2 + 2n

n
= 1 + 1

n
+

(
1 + 2

n

)1/2

= 2
(

1 + 1
n

)
+ O(1/n2) as n → ∞.

(8.3)
We have B̂n(z) → ∞ for all z in H, by Theorem A, since this property holds for z = 1. 

So to prove part (b) we need to show that, for all sufficiently large |y|:

B̂n(iy) → ∞ as n → ∞. (8.4)

Now

b̂n(iy) = 1
2

(
λniy + 1

λniy

)
= 1

2

(
λniy −

i

λny

)
=: iβn(y), (8.5)

say. By symmetry we need only consider y > 0. It is easy to check that the maps 
y �→ βn(y) have a unique positive fixed point y∗n = 1

2
√
n + o(1) and, if y > y∗n then 

βn(y) > y. Hence we choose to check that if yn > n
3
4 , for some n ≥ N , say, then 

yn+1 = βn(yn) > (n + 1) 3
4 also.

We have

yn+1 = βn(yn) = 1
2

(
λnn

3/4 − 1
λnn3/4

)
= 1

2

(
(2(1 + 1/n) + O(1/n2))n3/4 − 1

(2(1 + 1/n) + O(1/n2))n3/4

)
= n + 1

n1/4 + O(1/n5/4) − n1/4

4(n + 1 + O(1/n)) as n → ∞.

We claim that for n large enough, yn+1 > (n + 1)3/4. This holds since

n + 1
n1/4 − (n + 1)3/4 >

n1/4

4(n + 1 + O(1/n)) + O(1/n5/4),

that is,

(
n + 1
n

)1/4

− 1 >
n1/4

4(n + 1)3/4(n + 1 + O(1/n))
+ O

(
1/n2) ,

which follows from

1
>

n1/4

7/4 1/4 + O

(
1
2

)
,
4n 4(n + 1) + O(1/n ) n
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true for n large enough. Hence there exists N ∈ N such that yN > N3/4 implies that 
yn > n3/4, for n ≥ N . We deduce from this and from (8.5) that, for all y > N3/4,

b̂n ◦ · · · ◦ b̂N (iy) → ∞ as n → ∞

and so (8.4) holds if we relabel the b̂n starting with b̂N . �
Remark. In Example 8.2 it is natural to ask how large is the subset of ∂D of points 
such that Bn → 1 as n → ∞. It is plausible that this set is dense in ∂D. However, the 
sequence of Blaschke products in Example 8.2 is semi-contracting, as we now show, so 
we cannot use Theorem 7.4 to deduce that limn→∞ Bn(ζ) = 1 for almost all ζ ∈ ∂D. 
Indeed, if we use Definition 7.1 and (8.3) to compute

‖D b̂n(B̂n−1(1))‖HH = ρH(n + 1)
ρH(n) b̂′n(n) = 1/(n + 1)

1/n
1
2

(
λn − 1

λnn2

)
= n

n + 1
(
1 + 1/n + O(1/n2)

)
= 1 + O(1/n2) as n → ∞,

we see that

∞∑
n=1

(
1 − ‖D b̂n(B̂n−1(1))‖HH

)
< ∞,

which by Theorem 7.2 implies that the sequence (B̂n) is semi-contracting.

8.2. Forward compositions for which Theorem 1.2, part (b) holds

In contrast to the two previous examples, where we saw that the second part of the 
ADM dichotomy does not hold in general, we now show that this second part of the 
dichotomy does hold for certain types of forward compositions that form contracting 
sequences. Note that the following example is the basis of Example 4.6.

Example 8.3. Let (an) be any increasing sequence on [0, 1) such that a0 = 0 and 
limn→∞ an = 1, and for n ≥ 0 let Mn(z) = z+an

1+anz
. For n ∈ N we define the Blaschke 

products

bn(z) := Mn

(
(M−1

n−1(z))2
)
,

and

Bn(z) := bn ◦ · · · ◦ b1(z) = Mn(z2n

) = z2n + an
2n . (8.6)
1 + anz
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Then, Bn(z) → 1 for all z ∈ D. If, in addition,∑
n≥0

(1 −Bn(0)) =
∑
n≥0

(1 − an) = ∞, (8.7)

then the orbit of almost every point of ∂D under (Bn) is dense in ∂D.

We need some preliminaries before we can prove Example 8.3. We first state a ‘weak 
independence’ version of the second Borel–Cantelli lemma which (in the setting of for-
ward compositions, rather than iterates) acts as a substitute for techniques from the 
proof of the Poincaré recurrence theorem, used by Doering and Mañé to prove Theo-
rem 1.2, part (b). Recall that for E ⊂ [0, 1] or E ⊂ ∂D, we denote by |E| its Lebesgue 
measure.

Lemma 8.4 (Borel–Cantelli). If En are measurable subsets of [0, 1] such that 
∑

|En| = ∞
and

|Em ∩ En| ≤ C|Em|.|En|, for n > m ≥ L,

where C ≥ 1 and L ∈ N, then

| lim sup
n→∞

En| = |{x ∈ [0, 1] : x ∈ En infinitely often}| =

∣∣∣∣∣∣
⋂
N≥0

⋃
n≥N

En

∣∣∣∣∣∣ > 0.

Lemma 8.4 is due to Ciesielski and Taylor [21] and independently to Lamperti [34], 
whose proof is admirably short. Another version is due to Petrov [45], which has the same 
hypotheses but the stronger conclusion that | lim supn→∞ En| ≥ 1/C. Closely related 
results of this type are due Kochen and Stone [33], and Yan [55].

We use Lemma 8.4 to prove a ‘shrinking target’ result. This description of a result 
that concerns the size of the set of points where a dynamical system visits infinitely often 
a sequence of balls whose size shrinks to 0 with n seems to originate with Hill and Velani 
[32] in the context of metric Diophantine approximation.

Lemma 8.5 (Shrinking target). Let g(z) = z2 and let (εn) be any positive decreasing 
sequence in (0, 1] such that 

∑∞
n=1 εn = ∞. Further assume that the arcs In ⊂ {eiθ :

|θ + π| ≤ 1
2εn} satisfy |In| ≥ c εn for n ∈ N, where c > 0 is independent of n. Then

|{ζ ∈ ∂D : gn(ζ) ∈ In infinitely often}| > 0. (8.8)

Lemma 8.5 can also be deduced from a more general and more precise result due 
to Philipp [46, Theorem 2A], which is based on another version of the second Borel–
Cantelli lemma [46, Theorem 3]. Since the details of the proof in [46] are involved and 
we do not need the extra precision here, we include a proof of Lemma 8.5 based solely 
on Lemma 8.4.
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Fig. 3. The sets An.

Proof of Lemma 8.5. First, g−n({eiθ : |θ+π| ≤ 1
2εn}) consists of 2n arcs, each of length 

εn/2n and centred at the 2n-th roots of −1. Let An denote the union of these 2n arcs; 
see Fig. 3.

Then

|An| = 2n. εn2n = εn, n ≥ 1. (8.9)

We will now find an upper bound for the length |Am ∩ An| whenever n > m ≥ 1. 
We consider two cases. First, take n = m + p, where p ∈ N is so small that 1

2p+1 ≥
εm. The centre points of the arcs of Am are the 2m-th roots of −1, which are of the 
form exp(2πiθk,m), where θk,m = k/2m+1 and k ∈ {1, . . . , 2m+1 − 1} is odd. Therefore 
the centre points of the arcs of Am+p that are closest to the arc of Am with centre 
exp(2πiθk,m), where k ∈ {1, . . . , 2m+1 − 1} is odd, are

exp(2πi((2pk ± 1)/2m+p+1) = exp(2πi(θk,m ± 1/2m+p+1)).

Since 1
2p+1 ≥ εm and the sequence (εn) is decreasing, we deduce that

1
2 .

εm
2m + 1

2 .
εm+p

2m+p
<

εm
2m ≤ 1

2m+p+1 ,

so the arcs of Am+p closest to exp(2πiθk,m) do not meet the arc of Am centred at that 
point. Hence, for this range of values of n we have Am ∩An = ∅.

Now we consider the case where n = m + p, p ∈ N and 1
2p+1 < εm. Recall that each 

of the 2m arcs of Am has length εm/2m and the angle between the centres of the arcs 
Am+p is 2π/2m+p. Hence the number of arcs of Am+p that can meet each arc of Am is 
at most

εm/2m

2π/2m+p
+ 1 = 2pεm

2π + 1,

we deduce in this case, and hence in all cases, that
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|Am ∩An| = |Am ∩Am+p|

≤ 2m
(

2pεm
2π + 1

)
εm+p

2m+p

= εmεm+p

(
1
2π + 1

2pεm

)
≤ 3|Am|.|An|. (8.10)

We now map the sets Am by z �→ arg z/(2π) and apply Lemma 8.4 to the resulting 
subsets, Em say, of [0, 1]. Since

|Em ∩ En| ≤ 6π|Em|.|En|, for n > m ≥ 1,

we deduce by (8.9) and Lemma 8.4 that

| lim sup
n→∞

En| > 0,

and hence (8.8) holds in the case when In = {eiθ : |θ + π| ≤ 1
2εn}, for n ∈ N.

In the general case that In ⊂ {eiθ : |θ + π| ≤ 1
2εn}, for n ∈ N, let A′

n = g−n(In). 
Then A′

n consists of 2n arcs, each one contained in a different arc of An. Note that the 
arcs in A′

n have length at least c|An| = c εn/2n, so |A′
n| ≥ cεn. Then, by (8.10), we have 

for all n ∈ N

|A′
m ∩A′

n| ≤ |Am ∩An|
≤ 3|Am|.|An|
≤ (3/c2)|A′

m|.|A′
n|.

Therefore, we can once again apply Lemma 8.4 to deduce that (8.8) holds in general. �
To complete the proof of Example 8.3 we need the following property of the sequence 

(Bn) defined in (8.6).

Lemma 8.6. The sequence of maps Bn : D → D, n ≥ 1, is contracting.

Proof. We evaluate the hyperbolic distortion along the orbit of 0 under Bn. By (8.6), 
for each n ∈ N:

‖DBn(0)‖DD = lim
z→0

distD(Bn(z), Bn(0))
distD(z, 0)

= lim
z→0

distD(z2n

, 0)
distD(z, 0)

= lim log 1 + |z|2n

2n

/
log 1 + |z| = 0.
z→0 1 − |z| 1 − |z|
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It follows that

∞∑
n=1

(1 − ‖DBn(0)‖DD) = ∞,

and so (Bn) is indeed contracting, by Theorem 7.2. �
Proof of Example 8.3. Since Bn(0) = an → 1 as n → ∞, it is clear that Bn(x) → 1 for 
all x ∈ (0, 1), so this convergence holds throughout D by Theorem A.

Next we assume that (8.7) holds. To complete the proof it is sufficient to show that 
if T is any non-trivial closed arc of ∂D \ {1}, then almost every point of ∂D has an 
orbit under (Bn) that visits T infinitely often. To do this we choose an arc S ⊂ ∂D with 
centre 1 so that T ⊂ Sc. It follows from Lemma 5.1 that there are constants cS > cT > 0
such that, for all n ≥ 1 large enough, the preimage M−1

n (Sc) contains an arc of ∂D
centred at −1 of length εn := cS(1 − an), say, and the preimage M−1

n (T ) contains an 
arc In ⊂ {eiθ : |π + θ| ≤ 1

2εn} of length at least cT (1 − an) = (cT /cS)εn. By hypothesis, ∑∞
n=1 εn = ∞, and also (εn) is decreasing since (an) is increasing.
Now, since Mn(In) ⊂ T and Bn(z) = Mn(gn(z)), where g(z) = z2,

lim sup
n→∞

B−1
n (T ) = {ζ ∈ ∂D : Bn(ζ) ∈ T infinitely often}

⊃ {ζ ∈ ∂D : gn(ζ) ∈ In infinitely often},

so, by Lemma 8.5,

| lim sup
n→∞

B−1
n (T )| > 0. (8.11)

We now use Lemma 8.6 and Theorem 7.4, part (a) to deduce from (8.11) that 
lim supn→∞ B−1

n (T ) actually has full measure with respect to ∂D, which implies that 
Bn(ζ) ∈ T infinitely often for almost every ζ ∈ ∂D, as required.

To do this we define, for n ≥ 0,

Ln := lim sup
m→∞

(bn+m ◦ · · · ◦ bn+1)−1(T ), (8.12)

that is, the set of ζ ∈ ∂D whose orbit under the sequence of maps bn+m, m ≥ 1, visits T
infinitely often; in particular,

L0 := lim sup
m→∞

B−1
n (T ).

By construction we have L0 = B−1
n (Ln), for n ≥ 0, and so the set lim supn→∞ B−1

n (T )
has full measure, by (8.11), Lemma 8.6 and Theorem 7.4, part (a), as required. �
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Remark. Example 8.3 can be generalised considerably; for example, in Lemma 8.5 we 
can replace the map g(z) = z2 by g(z) = zp for any integer p ≥ 2 by applying [46, 
Theorem 2A] instead of the direct proof of the lemma given here. And it seems plausible 
that in Example 8.3 we may be able to replace the function g(z) = z2 used in the 
definition of bn by any contracting Blaschke product (or even inner function), that fixes 0, 
by using a recent result [51, Theorem 5.11] which gives a shrinking target result for inner 
functions that are ergodic on ∂D, and hence contracting by [22, Theorem 3.1].

8.3. Part (b) of the ADM dichotomy

Earlier in this section we showed that part (b) of the ADM dichotomy does not hold 
in general in the setting of forward compositions, at least in the isometric and semi-
contracting cases. This leaves open the possibility that it holds in the contracting case.

To provide some evidence that this may be the case (apart from our failure to produce 
a contracting counter-example!), we outline briefly how to prove Theorem 1.2, part (b) 
by using results of Aaronson, Doering and Mañé, and Neuwirth, most of which appear 
in the text [2]; see also [8, Section 2] for a convenient summary of the concepts from 
ergodic theory mentioned here and the relationships amongst them.

All the steps in the proof concern the behaviour of the inner function f on the bound-
ary of D. (Recall that an inner function is defined at almost all boundary points.)

• The condition that 
∑

n≥0(1 − |fn(z)|) = ∞ for some z ∈ D implies that f is conser-
vative and hence ergodic on ∂D, by [2, Propositions 6.1.7 and 6.1.8];

• since f is an inner function it is non-singular with respect to the Lebesgue measure 
on ∂D, by [2, Proposition 6.1.1];

• hence f is non-singular, conservative and ergodic on ∂D, which implies, by [2, Propo-
sition 1.2.2], that for any set E of positive measure in ∂D, the iterates fn(ζ) visit E
infinitely often for almost every ζ ∈ ∂D, a strong recurrence property which implies 
the density of orbits property stated in Theorem 1.2, part (b).

The reader may wish to compare these arguments to those in the proof of [8, Theo-
rem C] which uses a slightly different path to arrive at the same conclusion.

The relevance of the proof outlined above to our question about contracting sequences 
is as follows. We see from the first step in the proof that, for an inner function f , the 
divergence condition given in Theorem 1.2, part (b) implies the ergodic property, and 
we know from [22, Theorem 3.1] that the iterates of an inner function which is ergodic 
on ∂D form a contracting sequence in the disc.

So, it is reasonable to ask whether some version of part (b) of the ADM dichotomy 
holds for any contracting composition (or indeed sequence) of holomorphic functions 
between simply connected domains. However, concepts like invariance, ergodicity, recur-
rence and density of orbits only make sense when the domains Un are all identical so 
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that boundary points can be identified. In particular, these concepts do not make sense 
for wandering domains.

We can, however, ask whether a weaker version of part (b) of the dichotomy holds, 
with a different type of proof. More precisely, suppose that Fn : U → Un is a contracting 
forward composition (or perhaps sequence) of holomorphic functions between simply 
connected domains for which interior orbits converge to the boundary sufficiently slowly 
(in some precise sense that takes the geometry of the domains into account). Then it is 
plausible that the Denjoy–Wolff set has measure zero.

To prove such a result, possible tools include versions of the second Borel–Cantelli 
lemma (such as the one used to prove Example 8.3) and Löwner’s lemma (the case of 
equality, mentioned in the remark following Lemma 2.7), together with Pommerenke’s 
strong boundary mixing result [47, Theorem 1] in the case of forward compositions. Such 
an approach would complement our proof of the generalisation of part (a) of the ADM 
dichotomy, where we used the Löwner’s lemma inequality, together with an argument 
similar to that used to prove the first Borel–Cantelli lemma. The Borel–Cantelli lemmas 
have a dichotomy similar to Theorem 1.2, in which convergent and divergent series lead 
to sets of zero measure or positive measure, respectively, and in that sense they are a 
natural tool to attack this problem.

9. Versions of results with the spherical metric

It is natural to ask to what extent our results hold when the Euclidean metric for 
measuring distances to the boundary of a domain is replaced by the spherical metric. 
Using the spherical metric has the advantage that sequences tending to ∞ are included 
but the disadvantage that points may be close together in the spherical metric but far 
apart in the Euclidean metric. As an illustration, consider the sequence

Fn(z) = Mn(z) + n, z ∈ D, n = 1, 2, . . . ,

where (Mn) is the sequence of Möbius self-maps of D in Example 7.6. In this case, the 
spherical distances between all pairs of points of Fn(D) tend to 0 as n → ∞, but the 
subtle behaviour of Fn on ∂D is only seen when using the Euclidean metric.

Also, our hypotheses on the functions Fn : U → Un are so general that Theorem A
does not hold when expressed in terms of the spherical metric. For example, sequences 
of the form

Fn(z) = CnB(z) + z, z ∈ D, n = 1, 2, . . . , (9.1)

where B is a Blaschke product, Cn → ∞ as n → ∞, U = D and Un = {z : |z| < |Cn| +1}, 
and ones of the form

Fn(z) = (2z)pn , z ∈ D, n = 1, 2, . . . , (9.2)
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where pn ∈ N and pn → ∞ as n → ∞, U = D and Un = {z : |z| < 2pn}, show that we 
can have Fn(z) → ∞ as n → ∞ for some z ∈ D but not all. However, it follows easily 
from the Euclidean version of Theorem A that with the extra hypothesis of normality 
we have the following spherical version; here we denote spherical distance by χ.

Theorem 9.1. Let Fn : U → Un be a sequence of holomorphic maps between simply 
connected domains and suppose that (Fn) is normal in U . If there exists z0 ∈ U such 
that

χ(Fn(z0), ∂Un) → 0 as n → ∞,

then, for all z ∈ U ,

χ(Fn(z), Fn(z0)) → 0 as n → ∞.

The role of the normality hypothesis in Theorem 9.1 is to ensure that if χ(Fnk
(z0), ∞)

→ 0 as k → ∞ for any subsequence (Fnk
), then χ(Fnk

(z), ∞) → 0 as k → ∞ for all 
z ∈ U .

Next we state a spherical version of Theorem C in which the assumption of normality 
is not required.

Theorem 9.2. Let Fn : U → Un be a sequence of holomorphic maps between simply 
connected domains, each with a full radial extension to ∂U , and suppose that there exists 
z0 ∈ U such that

∞∑
n=0

distχ(Fn(z0), ∂Un)1/2 < ∞. (9.3)

Then for almost all points ζ ∈ ∂U we have

χ(Fn(ζ), Fn(z0)) → 0 as n → ∞.

Remarks.

1. Examples of the form (9.1), with Cn = n3 for instance, show that in the spherical 
setting the hypothesis (9.3) is not independent of z0 ∈ U , in contrast to the inde-
pendence of condition (1.3) in Theorem C; see the first remark after Theorem 4.1.

2. A special case of Theorem 9.2 can be found in [52, remark after Theorem 1.1], where 
it is observed that if U is a Baker domain of an entire function f such that for some 
z0 ∈ U and all sufficiently large n we have

|fn+1(z0)| ≥ k|fn(z0)|, where k > 1, (9.4)



A.M. Benini et al. / Advances in Mathematics 446 (2024) 109673 47
then, for almost all ζ ∈ ∂U , we have

fn(ζ) → ∞ as n → ∞.

Indeed, since for a point z ∈ C we have that distχ(z, ∞) ∼ 1/|z|, the assumption 
(9.4) implies that the series in (9.3) is convergent by comparing it to a geometric 
series. Similarly, by observing for example that the p-series 

∑∞
n=0

1
np < ∞ for p > 1, 

we obtain that the claim of Theorem 9.2 holds whenever for some z0 ∈ U and all 
sufficiently large n we have |fn(z0)| ≥ n2p for p > 1, or analogously,

|fn+1(z0)| ≥
(

1 + 1
n

)2p

|fn(z0)|, where p > 1. (9.5)

There is also a spherical version of Theorem E in which we again need an extra 
hypothesis, one that implies normality.

Theorem 9.3. Let Fn : U → Un be a sequence of holomorphic maps between simply 
connected domains, each with a full radial extension, and suppose that there exists R > 0
such that

(Ĉ \ Un) ∩ {z : |z| = R} 
= ∅, for n ∈ N. (9.6)

If there exists ζ0 ∈ ∂U such that χ(Fn(ζ0), ∂Un) → 0 as n → ∞ and

L0 := {ζ ∈ ∂U : χ(Fn(ζ), Fn(ζ0)) → 0 as n → ∞}

has positive harmonic measure with respect to U , then, for all z ∈ U , we have

χ(Fn(z), Fn(ζ0)) → 0 as n → ∞.

The extra hypothesis (9.6) ensures that each point of ∂Un, n ∈ N, lies in a continuum 
that is exterior to Un and contains a point of {z : |z| ≤ R}. This continuum is required 
because replacing the Euclidean metric by the spherical metric means that the spherical 
discs needed in the proof sometimes contain ∞, and in this circumstance the condition 
(9.6) enables us to replace the continuum to ∞ by a continuum to {z : |z| = R} in the 
final stage of the proof where we apply the Milloux–Schmidt inequality; we omit the 
details.

Note that the condition (9.6) implies that (Fn) forms a normal family by using a form 
of Montel’s theorem due to Carathéodory and Landau; see [14, p. 202].

Finally, Theorem F holds with no modifications when the Euclidean metric is replaced 
by the spherical metric, since the deduction of part (b) of Theorem 7.4 from part (a) is 
essentially unchanged in the spherical setting.
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Remark. As this paper was being completed we learnt of very interesting recent work 
by Martí-Pete, Rempe and Waterman in [40]. Of relevance to our current paper, [40, 
Theorem 1.10] concerns the dynamical behaviour of boundary points of a wandering 
domain U of an entire function. They prove that the set of points z ∈ ∂U such that 
lim supn→∞ χ(fn(z), fn(z0)) > 0, where z0 ∈ U , which they call maverick points, forms 
a set of harmonic measure zero. In the setting of wandering domains and the spherical 
metric, their result is stronger than the results given in this section, though the results 
in this section hold in our more general setting. Our results in earlier sections capture 
the different possible behaviours of orbits of boundary points tending to infinity.

10. Open questions

In this final section we discuss several interesting questions, which arise in connection 
with our new results. The first relates to a possible generalisation of the ADM dichotomy, 
part (b), discussed in Subsection 8.3. Recall that the Denjoy–Wolff set is only defined if 
interior orbits converge to the boundary, and that it follows from Theorem A that, in 
this case, all interior orbits have the same limiting behaviour. For simplicity, the question 
is stated for inner functions; in a more general version, the geometry of the domain’s 
boundary would play a role.

Question 10.1.

(a) Must the Denjoy–Wolff set have zero measure for any contracting forward composi-
tion of inner functions Fn = fn ◦ · · · ◦ f1, n ∈ N, such that interior orbits converge 
to the boundary sufficiently slowly that 

∑
n∈N(1 − |Fn(0)|) is divergent?

(b) More generally, we can ask this question for contracting sequences (Fn) of inner 
functions such that interior orbits converge to the boundary sufficiently slowly that 
this series is divergent.

Including the contracting hypothesis in Question 10.1 is in some sense natural since 
for iteration of a single inner function the divergence condition implies the contracting 
property; see the discussion in Subsection 8.3.

If the answer to Question 10.1, part (b) does turn out to be ‘yes’, this would imply 
that a version of Theorem F holds for sequences of inner functions, not just forward 
compositions of them, since if the sum is convergent we can apply Theorem B, which 
gives full measure for the Denjoy–Wolff set.

Next we have a couple of questions relating specifically to our examples. In connection 
with Theorem D, concerning a sequence of Möbius self-maps of D with empty Denjoy–
Wolff set, the following question arises.

Question 10.2. Does there exist an example of a forward composition of non-Möbius self-
maps of D for which interior orbits converge to the boundary and the Denjoy–Wolff set is 
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empty? Similarly, does there exist an orbit of wandering domains, univalent or not, for 
which the interior orbits converge to the boundary and the Denjoy–Wolff set is empty?

Another of our examples suggests a further question.

Question 10.3. In Example 8.2, in which an entire boundary neighbourhood of 1 converges 
to 1, can we deduce that the set of boundary points which converge to 1 is dense in ∂D
or even has full measure there?

Finally, we learnt the following related and interesting question from Marco Abate: 
it is known that there is no straightforward generalisation of the Denjoy–Wolff theorem 
from D to a general simply connected domain U ; see [38, Problem 5-a] for an example of 
a comb domain with non-locally connected boundary within which orbits of a univalent 
self-map accumulate at a continuum in the boundary.

Question 10.4. Let f be a holomorphic self-map of a simply connected domain U . What 
non-trivial conditions on f and U are sufficient to ensure that a Denjoy–Wolff point 
exists in U for f?

First note that our Theorem A implies that if f is a holomorphic self-map of a simply 
connected domain U and one orbit converges to a point p ∈ ∂U , then all others must do 
the same and hence p is the unique Denjoy–Wolff point.

A trivial sufficient condition for Question 10.4 is that U is a Jordan domain, and 
one might conjecture that if f has a full radial extension to ∂U , possibly mapping ∂U
to itself almost everywhere, then this property would also be sufficient. However, it is 
straightforward to modify the example in [38, Problem 5-a], replacing the teeth of the 
comb by thin triangles, to ensure that the univalent self-map has a full radial extension. 
Moreover, the univalent self-map of such a domain U can be replaced by a self-map of the 
domain that is conjugate via a Riemann map to a degree 2 hyperbolic Blaschke product 
with an attracting fixed point on the boundary, and within U orbits under this self-map 
also accumulate at a continuum.

Remark. There are versions of the Denjoy–Wolff theorem for self-maps of hyperbolic 
Riemann surfaces in which the boundary limit set is in general a single point or a 
continuum; see [30] and [31]. See also [20] for results concerning the stability of the 
Denjoy–Wolff theorem under small perturbations of a holomorphic self-map of D and [3]
for generalisations of such results to self-maps of hyperbolic Riemann surfaces.
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