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Abstract
In recent years, Post-Keynesian analysis has been charac-
terized by a renewed interest in long-run theories of growth 
and distribution. While many authors have focused on 
the convergence of demand-led growth models to a fully 
adjusted equilibrium, relatively little attention has been 
given to the time required to reach this long-run position. In 
order to fill the gap, this paper seeks to answer the question 
of when is the long run in demand-led growth models. By 
making use of numerical integration, it analyses the time of 
adjustment from one steady-state to the other in two well-
known demand-led growth models: the Sraffian Supermul-
tiplier and the fully adjusted version of the neo-Kaleckian 
model. The results show that the adjustment period is 
generally beyond an economically meaningful time span, 
suggesting that researchers and policy makers ought to pay 
more attention to the models' predictions during the trav-
erse rather than focusing on steady-state positions.
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1  |  INTRODUCTION

This paper takes Joan Robinson seriously.1 In her famous 1980 article, Robinson claimed that “to 
construct models that cannot be applied is merely an idle amusement” (p. 223–224). Yet, the construc-
tion of any supposedly realistic model cannot abstain from the consideration that historical time – 
rather than logical time – rules reality. Accordingly, it is “a common error to confuse a comparison of 
static positions with a movement between them” (ibid., p. 228). This contribution is chiefly interested 
in the duration of the movement between steady-state positions in demand-led growth models.

Post-Keynesian analysis has been characterized by a renewed interest in long-run theories of 
growth and distribution. In recent years, academic debates about Post-Keynesian theories of growth 
and distribution have been characterized by a renewed interest in long-run modeling compared to short-
run analysis – or “chain(s) of short-period situations” (Kalecki, 1971, p. 165). While Post-Keynesian 
growth theory benefited from this shift, gaining more rigor and coherency, more fundamental ques-
tions were often overlooked; in particular, few or no academic discussions can be found as regards the 
essential question of when is the long run (Robinson, 1980, p. 226) and how we can evaluate growth 
models in historical time. In other terms, inquiries about the nature and duration of the traverse effec-
tively fell by the wayside. Bringing these issues to the front of the debate is thus of key importance to 
avoid committing Post-Keynesian growth theory to what we might call the ‘Marshallian leap’, making 
“the step from a model to reality by an act of faith” (ibid.).

Along these lines, the present contribution attempts to shed light on a dormant debate on trav-
erse analysis and the persistence of out-of-equilibrium dynamics, thus recovering and deepening 
Joan Robinson's insights on the differences between logical and historical time in economic anal-
ysis. Accordingly, the paper seeks to answer Joan Robinson's  (1980) question ‘when is the long 
run?’, evaluating in historical time the adjustment periods to the long-run position in two prominent 
demand-led models focused on the role of autonomous demand in driving economic growth, namely 
the Sraffian Supermultiplier model and the long-run version of the neo-Kaleckian model presented by 
Allain (2015) and Lavoie (2016).2 In other terms, the article describes the temporal sequence required 
to establish a new long-run position following an initial increase in the growth rate of autonomous 
expenditures. More specifically, in accordance with the line of research pioneered by Sato  (1963, 
1980), Sato (1966) and Atkinson (1969), the paper adopts the method of numerical integration to solve 
the systems of differential equations regulating the out-of-equilibrium dynamics of the two models. In 
order to do that, we calibrate both models in line with the existing theoretical and empirical literature.

The paper is organized as follows. Section 2 presents the two models under scrutiny, that is, the 
Sraffian Supermultiplier model and the long-run version of the neo-Kaleckian model presented by 

1  The incipit of the paper draws upon the opening line of one of most influential articles in the field of neoclassical growth 
models, that is, Mankiw et al. (1992).
2  Some words on the rationale behind the choice of the two models are in order. First, both models rely on the role of 
autonomous components of demand in driving economic growth. Given that “the literature on autonomous growth has itself 
been cast in terms that are intrinsically long run” (Skott, 2019, p. 238), the comparison of the two models allow to coherently 
answer the question that inspires the paper. Second, both models reach a fully adjusted position – equaling the actual and 
normal rate of capacity utilization in the long run – thus preventing the emergence of the second Harrod problem. Third, 
both models are demand-led, allowing to summarize the analytical compatibilities and divergences of Kaleckian and Sraffian 
insights on growth in a relatively simple way. More specifically, the structure of the economy is the same in both models, 
with the notable exception of investment – as discussed in Appendix A. On one hand, the Allain-Lavoie (2015) model relies 
on a neo-Kaleckian investment function whereby the accumulation rate depends on discrepancies between the actual and the 
normal utilization rates; on the other, investment is treated as fully induced in the Sraffian Supermultiplier model. As shown 
later in the article, the different investment theories adopted by the two models produce varied out-of-equilibrium trajectories.
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Allain (2015) and Lavoie (2016). Section 3 discusses the adopted parameter calibration, then present-
ing the numerical solution of the two models and our main findings. Section 4 discusses the sensi-
tivity of the models' time of adjustment following a change in the parameter space. Last, Section 5 
concludes, discussing the interpretation and implications of the results.

2  |  SRAFFIAN AND KALECKIAN LONG-RUN GROWTH MODELS

This section provides a synthetic review of the models under scrutiny. A more in-depth discussion 
of the Sraffian Supermultiplier model (Subsection 2.1) can be found in Serrano (1995 b); Serrano 
and Freitas (2017); Girardi and Pariboni (2016) and Gallo (2019). As regards the long-run version 
of the neo-Kaleckian model (Subsection 2.2) with autonomous demand and Harridan dynamics, see 
Allain (2015, 2018, 2021) and Lavoie (2016).

In order to make the Supermultiplier and neo-Kaleckian frameworks fully comparable, the two 
models are presented for an open economy with government activity. Moreover, we include a linear 
depreciation rate of physical capital.3

2.1  |  The Sraffian Supermultiplier model

Following Serrano and Freitas (2017), this Subsection presents the Sraffian Supermultiplier model 
assuming an open economy with government activity. The model can be represented as a 3-equation 
in 3 variables – autonomous demand growth 𝐴𝐴

(

𝑔𝑔𝑍𝑍
𝑡𝑡

)

 , the investment share (ht) and the rate of capacity 
utilization (ut = Yt / Y p)

𝑔𝑔𝑌𝑌𝑡𝑡 = 𝑔𝑔𝑍𝑍𝑡𝑡 +
ℎ𝑡𝑡𝛾𝛾 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)

𝑠𝑠 + 𝑚𝑚 − ℎ𝑡𝑡
� (1)

𝑔𝑔𝐾𝐾𝑡𝑡 =
ℎ𝑡𝑡𝑢𝑢𝑡𝑡

𝑣𝑣
− 𝛿𝛿� (2)

𝑔𝑔𝑍𝑍𝑡𝑡 = 𝑔𝑔𝑍𝑍� (3)

Equation (1) describes the evolution of economic activity as depending on autonomous demand 
growth 𝐴𝐴

(

𝑔𝑔𝑍𝑍
𝑡𝑡

)

 plus an additional proportional rate of growth of output resulting from the supermultiplier 
when capacity utilization is not at its normal degree (un), that is, the second term of the equation. More-
over, s indicates the “tax-adjusted marginal propensity to save” (Girardi & Pariboni, 2015, p. 526), m 
is the propensity to import, and γ represents “a parameter that measures the reaction of the growth 
rate of the marginal propensity to invest to the deviation of the actual degree of capacity utilization” 
(Serrano & Freitas, 2017, p. 74). Assuming a constant capital-capacity ratio (v = Kt/Y p), the evolution 
of capital accumulation is given by the rate of growth of capacity output minus the depreciation rate 
(δ), as in equation (2).4 Lastly, equation (3) constitutes the closure of the model for an exogenously 

given rate of growth of autonomous demand 𝐴𝐴

(

𝑔𝑔𝑍𝑍
)

 .

3  For the derivation of variables from levels to growth rates, see Appendix A. The list of variables used in the paper is 
reported in Appendix B, while a list and description of parameters can be found in Table 1 below.
4  Under the assumption of fully induced investment, it ought to be noted that this is a mere accounting identity, as showed in 
Appendix A.
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The model settles in its long-run steady state when the fully adjusted position (Vianello, 1985) is 
reached, that is, ut = un and actual output and capital grow at the same pace, that is, 𝐴𝐴 𝐴𝐴𝑌𝑌

𝑡𝑡
= 𝑔𝑔𝐾𝐾

𝑡𝑡
 . There-

fore, the long-run equilibrium position of the model is characterized by:

ℎ∗ =
𝑣𝑣

𝑢𝑢𝑛𝑛

(

𝑔𝑔𝑍𝑍 + 𝛿𝛿

)

� (4)

𝑢𝑢∗ = 𝑢𝑢𝑛𝑛� (5)

𝑔𝑔𝑍𝑍∗ = 𝑔𝑔𝑍𝑍� (6)

Accordingly, in the long run all growth rates ought to equal the exogenous expansion of autono-
mous components of demand, that is, 𝐴𝐴 𝐴𝐴∗ = 𝑔𝑔𝐾𝐾∗ = 𝑔𝑔𝑌𝑌 ∗ = 𝑔𝑔𝑍𝑍  .

Let us now analyze more-in-depth the process of economic growth and out-of-equilibrium dynam-
ics. The adjustment to the long-run equilibrium is carried out by the two endogenous variables of the 
system, that is, the rate of capacity utilization ut and the investment share ht. In line with Serrano and 
Freitas (2017), the two adjustment mechanisms5 are modeled as follows:

𝑢̇𝑢 = 𝑢𝑢𝑡𝑡
(

𝑔𝑔𝑌𝑌𝑡𝑡 − 𝑔𝑔𝐾𝐾𝑡𝑡

)

� (7)

ℎ̇ = ℎ𝑡𝑡𝛾𝛾 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)� (8)

Substituting equation (1 and 2) into equation (7), we obtain the system of two first-order non-lin-
ear differential equations that will be solved numerically in Section (3):

⎧

⎪

⎨

⎪

⎩

𝑢̇𝑢 = 𝑢𝑢𝑡𝑡

[

𝑔𝑔𝑍𝑍
𝑡𝑡
+

ℎ𝑡𝑡𝛾𝛾 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)

𝑠𝑠 + 𝑚𝑚 − ℎ𝑡𝑡
−

ℎ𝑡𝑡

𝑣𝑣
𝑢𝑢𝑡𝑡 + 𝛿𝛿

]

ℎ̇ = ℎ𝑡𝑡𝛾𝛾 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)

� (9)

Summarizing, discrepancies between actual and normal degrees of capacity utilization 
can only be of transient nature, producing growth effects in the short but not in the long run, in 

5  Henceforth, changes of a variable over time will be denoted with the dot symbol, for example, 𝐴𝐴 𝐴𝐴𝐴 = 𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 .
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Par. Description Value Source

δ Depreciation rate (annual) 0.084 Fazzari et al. (2020)

un Normal rate of capacity utilization 0.8242 Setterfield and Budd (2011)

v Capital-capacity ratio (annual) 0.9890 Author's calculation, based on Fazzari et al. (2020)

s Propensity to save 0.5 Fazzari et al. (2020)

m Propensity to import 0.17 Gallo (2021), Girardi and Pariboni (2016)

𝛾𝛾 Sensitivity of the investment share to ut − un 0.15 Nomaler et al. (2021)

𝛽𝛽 Sensitivity of the investment rate to ut − un 0.25 Allain (2021)

𝜇𝜇 Sensitivity of animal spirits to ut − un 0.18 Author's calculation, based on Allain (2021)

Source: author's calculation, various sources.

T A B L E  1   Parameter values



which the fully adjusted position is reached.6 More specifically, during the adjustment process 
when ��⋛ ��, it follows that ℎ̇⋛0 , and whenever ��� ⋛ ��� , then �̇⋛0 . The rest of the paper will focus 
on evaluating in historical time the transiency of these effects.

2.2  |  The long-run neo-Kaleckian model with autonomous expenditures and 
a Harrodian mechanism

The Allain-Lavoie long-run version of the neo-Kaleckian model can be presented as the following 
3-equations system in 3 variables – autonomous demand growth 𝐴𝐴

(

𝑔𝑔𝑍𝑍
𝑡𝑡

)

 , animal spirits (αt) and the 
autonomous demand-capital ratio (zt):

𝑔𝑔𝐼𝐼𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)� (10)

𝑔𝑔𝑆𝑆𝑡𝑡 =
(𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑡𝑡

𝑣𝑣
− 𝑧𝑧𝑡𝑡� (11)

𝑔𝑔𝑍𝑍𝑡𝑡 = 𝑔𝑔𝑍𝑍� (12)

Equation (10) constitutes the conventional version of the neo-Kaleckian investment function with 
a normal rate of capacity utilization.7 The term αt captures animal spirits, which along with zt, vary 
in the long run to prevent the emergence of the second Harrod problem, as we will see later.8 Equa-
tion (11) represents the saving function proposed by Lavoie (2016) in line with Serrano (1995 a,b); 
it incorporates in the neo-Kaleckian model a “non-proportional saving function with a constant term 
that in the long run grows at an exogenously given rate” (Lavoie, 2016, p. 173).

In the short run, animal spirits and the autonomous demand-capital ratio are assumed to be 
constant. Accordingly the ex-post equality of the growth rates of investment and saving yields the 
following short-run equilibrium rate of growth of investment and saving:

𝑔𝑔𝐼𝐼∗𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑆𝑆∗𝑠𝑠𝑠𝑠 = 𝛼𝛼 + 𝛽𝛽
(

𝑢𝑢∗𝑠𝑠𝑠𝑠 − 𝑢𝑢𝑛𝑛
)

� (13)

Solving for the short-run goods market equilibrium of 𝐴𝐴 𝐴𝐴𝑆𝑆
𝑡𝑡
= 𝑔𝑔𝐼𝐼

𝑡𝑡
 , it follows that the short-run rate 

of capacity utilization is equal to:

𝑢𝑢∗𝑠𝑠𝑠𝑠 =
(𝛼𝛼 + 𝑧𝑧 − 𝛽𝛽𝛽𝛽𝑛𝑛) 𝑣𝑣

𝑠𝑠 + 𝑚𝑚 − 𝛽𝛽𝛽𝛽
� (14)

If not by a fluke, the short-run rate of capacity utilization 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 – that brings about the goods market 
equilibrium – will diverge from its long-run value un. More specifically, short-run discrepancies 
between the actual and normal rates of capacity utilization are given by:

6  For a discussion of the stability of the system, see Appendix A.
7  It is worth stressing that 𝐴𝐴 𝐴𝐴𝐼𝐼

𝑡𝑡
 denotes the accumulation rate, that is, It/Kt, not the growth rate of investment. For further 

discussion, see equation (A17) in Appendix A.
8  Amadeo (1986) was the first author to associate the constant term in the investment function with animal spirits, and 
the paper maintains his terminology. However, as acknowledged by Lavoie (2016), αt could be interpreted as capturing all 
determinants of investment unexplained by the model, “such as technological change, the profit rate or the profit share, credit 
or monetary conditions, the leverage ratio of firms, radical uncertainty and so on” (ibid., p. 177).
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𝑢𝑢∗𝑠𝑠𝑠𝑠 − 𝑢𝑢𝑛𝑛 =
(𝛼𝛼 + 𝑧𝑧)𝑣𝑣 − (𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑠𝑠 + 𝑚𝑚 − 𝛽𝛽𝛽𝛽
� (15)

Consequently, the equilibrium accumulation rate in the short run is given by:

𝑔𝑔𝐾𝐾∗
𝑠𝑠𝑠𝑠 = 𝑔𝑔𝐼𝐼∗𝑠𝑠𝑠𝑠 − 𝛿𝛿 = 𝛼𝛼 + 𝛽𝛽

(

𝑢𝑢∗𝑠𝑠𝑠𝑠 − 𝑢𝑢𝑛𝑛
)

− 𝛿𝛿� (16)

where 𝐴𝐴 𝐴𝐴𝐾𝐾∗
𝑠𝑠𝑠𝑠  is the growth rate of the capital stock corresponding to the goods market equilibrium.9

However, during the traverse towards the long-run steady state, animal spirits α and the z ratio 
will vary, ensuring the long-run convergence of economic growth to autonomous demand growth 

𝐴𝐴

(

𝑔𝑔∗ = 𝑔𝑔𝐾𝐾∗ = 𝑔𝑔𝑌𝑌 ∗ = 𝑔𝑔𝑍𝑍
)

 and of the actual rate of capacity utilization towards its normal degree 
(u = un). Therefore, the long-run equilibrium position of the model is characterized by:

𝑧𝑧∗ =
(𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑣𝑣
− 𝑔𝑔𝑍𝑍 − 𝛿𝛿� (17)

𝛼𝛼∗ = 𝑔𝑔𝑍𝑍 + 𝛿𝛿� (18)

𝑢𝑢∗ = 𝑢𝑢𝑛𝑛� (19)

𝑔𝑔𝑍𝑍∗ = 𝑔𝑔𝑍𝑍� (20)

As mentioned above, the long-run adjustment process is carried out through changes in animal 
spirits and in the autonomous demand-capital ratio. More specifically, animal spirits react to discrep-
ancies between the short-run equilibrium of the capacity utilization rate – that is, the one that ensures 
the ex-post adjustment of saving to investment – and the normal degree. Furthermore, the z ratio 
adjusts to discrepancies between the exogenous growth rate of autonomous demand and the short-run 
equilibrium rate of economic growth.10

𝛼̇𝛼 = 𝜇𝜇
(

𝑔𝑔𝐼𝐼∗𝑠𝑠𝑠𝑠 − 𝛼𝛼𝑡𝑡
)

= 𝛽𝛽𝛽𝛽
(

𝑢𝑢∗𝑠𝑠𝑠𝑠 − 𝑢𝑢𝑛𝑛
)

� (21)

𝑧̇𝑧 = 𝑧𝑧𝑡𝑡

(

𝑔𝑔𝑍𝑍 − 𝑔𝑔𝐾𝐾∗
𝑠𝑠𝑠𝑠

)

� (22)

9  In order to make the Allain-Lavoie model fully comparable with the Supermultiplier, a small amendment is introduced, 
including a linear depreciation rate of the capital stock. The novelty does not alter significantly the long-run equilibrium 
results, as showed in Appendix A.
10  For the discussion of the derivation and the economic rationale of the two adjustments, see Allain (2015, 2018), 
Lavoie (2016) and Skott (2017). Regarding the animal spirits adjustment, the paper adopts the specification suggested by 
Allain (2015, 2018) rather than the one put forward by Lavoie (2016), who expresses the adjustment in terms of the growth 
rate of α. However, as noted by Skott (2017, p. 188) “There is no reason […] to assume that the rate of change should be 
proportional to the level of γ [α in the notation of this paper] for any given discrepancy”, as would result from Lavoie's 
specification 𝐴𝐴

(

𝛼̂𝛼 = 𝜇𝜇
(

𝑔𝑔𝐼𝐼∗
𝑠𝑠𝑠𝑠 − 𝛼𝛼𝑡𝑡

)

⇒𝛼̇𝛼 = 𝛼𝛼𝑡𝑡𝜇𝜇
(

𝑔𝑔𝐼𝐼∗
𝑠𝑠𝑠𝑠 − 𝛼𝛼𝑡𝑡

))

 .
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Substituting equations (15) and (16) into the above equations, we obtain the system of two first-or-
der non-linear differential equations describing out-of-equilibrium dynamics in the long-run neo-Ka-
leckian model:

⎧

⎪

⎨

⎪

⎩

𝛼̇𝛼 = 𝛽𝛽𝛽𝛽

[

(𝛼𝛼𝑡𝑡 + 𝑧𝑧) 𝑣𝑣 − (𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑠𝑠 + 𝑚𝑚 − 𝛽𝛽𝛽𝛽

]

𝑧̇𝑧 = 𝑧𝑧𝑡𝑡

[

𝑔𝑔𝑍𝑍 − 𝛼𝛼𝑡𝑡 − 𝛽𝛽

(

(𝛼𝛼𝑡𝑡 + 𝑧𝑧) 𝑣𝑣 − (𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑠𝑠 + 𝑚𝑚 − 𝛽𝛽𝛽𝛽

)

+ 𝛿𝛿

]� (23)

As discussed by Lavoie (2016, p. 185–186), the system is dynamically stable “when there is short-
run Keynesian stability as long as the effect of Harridan instability is not overly strong”. As showed in 
Appendix A, this implies that the system converges towards its long-run equilibrium when s + m − βv 
> 0 and 𝐴𝐴 𝐴𝐴 𝐴

(𝑠𝑠+𝑚𝑚)𝑢𝑢𝑛𝑛

𝑣𝑣
− 𝑔𝑔𝑍𝑍 − 𝛿𝛿 . Moreover, it is worth stressing that – similarly to the Supermultiplier 

model - “the growth rate of autonomous expenditures cannot be too large, for otherwise the share of 
autonomous consumption expenditures would need to be negative” (Lavoie,  2016, p.  193). In our 
framework:

𝑧𝑧∗ > 0 ⇒ 𝑔𝑔𝑍𝑍 <
(𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑣𝑣
− 𝛿𝛿� (24)

3  |  NUMERICAL SOLUTION

Since an analytical solution in terms of the time of adjustment for both systems of differential equa-
tions cannot be found, the method of numerical integration is adopted.

Before moving to parameter calibration in Subsection (3.1), an important consideration is in order. 
When adopting numerical integration methods, one must be careful about the interpretation of the 
time dimension, which stems from the time frequency of the calibration. Since the analysis focuses on 
long-run growth models, an annual calibration appears to be the most sensible. Therefore, by setting 
parameter values and initial conditions so as to ensure that all relevant variables and growth rates are 
compatible with yearly processes (e.g. autonomous demand growth is around 2.5% per year), the time 
unit could be consistently taken as equal to one calendar year. More specifically, under the assumption 
that the long-run adjustment of capacity to demand does not occur faster than the unit period consid-
ered (Gandolfo,  2012), the yearly calibration allows to coherently interpret the out-of-equilibrium 
trajectories in calendar time with dt = 1 year, as more extensively discussed by Gallo (2021).

3.1  |  Parameter calibration and initial values

Parameter values are set in accordance with the empirical evidences for the US economy in the post-
war period, as well as in line with previous model calibrations.

The values assigned to the parameters are summarized in Table 1.
The value of the annual depreciation rate (δ) is taken from Fazzari et al. (2020). As discussed by 

the authors in their Supplementary Appendix, the value is consistent with the empirical evidences 
for the US economy. The normal rate of capacity utilization (un = 82.42%) is set in accordance to 
Setterfield and Budd (2011). As regards un, it is worth mentioning that the value matches the empir-
ical evidences for other advanced capitalist economies, for example, it is relatively close to the value 
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(0.8104) calculated by Gallo  (2019).11 The capital-capacity ratio (v) is also obtained from Fazzari 
et  al.  (2020). By using BEA data both on non-residential investment and non-residential capital 
stock, the authors estimate a long-run capital-output ratio in the US equal to 1.2. Therefore, given 
un = 82.42%, the capital-capacity ratio will be equal to 𝐴𝐴 𝐴𝐴 =

𝐾𝐾

𝑌𝑌𝑝𝑝
=

𝐾𝐾

𝑌𝑌𝑛𝑛

𝑌𝑌𝑛𝑛

𝑌𝑌𝑝𝑝
= 1.2 × 0.8242 = 0.9890 . The 

benchmark values of the propensities to save and to import are set in accordance to the empirical 
evidence in the US economy as discussed by Girardi and Pariboni (2016), Fazzari et al. (2020) and 
Gallo (2021).12

Last, the supermultiplier-specific parameter γ – which measures the reaction of the invest-
ment share to changes in the utilization rate – is taken from Nomaler et al. (2021). The remaining 
parameters β and μ (specific to the neo-Kaleckian model) are both taken from Allain  (2021).13 
Since these sensitivities greatly influence the numerical solution of the two systems of differen-
tial equations under scrutiny, more attention should be given to them. Therefore, the next section 
will assess how changing the value of these parameters affects the time of adjustment in the two 
models.

A discussion of the choice of the initial conditions is now in order (Table 2). First, we ought 
to recall that the main goal of the exercise conducted in this Section is to show the persistence of 
out-of-equilibrium dynamics following an increase in autonomous-demand growth. Accordingly, let 
us suppose that prior to the shock the economy was in its fully adjusted position u0 = un = 82.42%, 
growing at an exogenously given annual growth rate of autonomous demand of 2.5%.14 Accordingly, 
from equation (4) and (5) and on the basis of the parameter calibration discussed above, it follows that 
the initial value of the investment share (h0) in the Supermultiplier model is equal to 13.08% – in line 
with the empirical evidences for the US economy (Fazzari et al., 2020; Gallo, 2021; Girardi & Parib-
oni, 2016). Similarly, equations (17) and (18) imply that z0 = 43.93% and α0 = 10.9% in the amended 
neo-Kaleckian model.

At time t  =  0, the annual growth rate of autonomous demand permanently increases from 
2.5% to 3.5% (e.g. as a consequence of an increase in government spending), thus affecting the 
long-run growth path of both models and giving rise to the long-run traverse discussed in the next 
subsection.

11  Consistent with the models presented in Section 2, treating the normal degree of capacity as parametric implies that it is 
not affected by temporary changes in demand. For a more detailed critical discussion of the notion of normal capacity, the 
interested reader may refer to Ciccone (1986); Kurz (1986). For an empirical support of the idea that normal utilization is 
exogenous to the level of demand, see Haluska, Summa, and Serrano (2021) and Haluska, Braga, and Summa (2021).
12  The value of s might seem greater than expected compared to estimates and calibration that use personal consumption 
expenditure to derive the propensity to save. However, as discussed by Cynamon and Fazzari (2017) and Fazzari et al. 
(2020, Supplementary Appendix), the most appropriate way to calculate s in models with autonomous expenditures is by 
using the adjusted household demand approach, which yields a point estimate of about 0.5 for the US (Fazzari et al., 2020, 
Supplementary Appendix, p. 2).
13  It ought to be noted that the value of μ in the present calibration exercise is slightly above the one in Allain (2021), who 
sets its value equal to μ = 0.4z*. Accordingly, since in this paper the derived equilibrium autonomous demand-capital ratio 
(z*) is higher, μ will be higher as well.
14  The value of the year-on-year growth rate of autonomous demand is taken from Fazzari et al. (2020). It is worth noting 
that this is consistent with the empirical evidences for the US economy; according to the definition of autonomous demand 
used by Girardi and Pariboni (2016), the average annual growth rate of the variable in the US for the period 1979–2013 is just 
slightly higher (2.54%).
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3.2  |  How long is the long run?

This subsection shows by means of numerical integration the behavior of the two models following a 
permanent increase in the growth rate of autonomous demand, relying on the calibration summarized 
in Tables 1 and 2.

3.2.1  |  The long-run convergence in the supermultiplier model

As discussed in Subsection (2.1), the two adjusting variables of the Sraffian Supermultiplier model 
are the rate of capacity utilization and the investment share. In the long-run steady-state, they should 
come back, respectively, to the normal rate of capacity utilization (un) and to the equilibrium invest-
ment share (h*) given by equation (4).

Figure 1 shows the behavior of the two adjusting variables in the long run, following an increase 
in the growth rate of autonomous demand at time 0, from 2.5% to 3.5%.15

Following the permanent autonomous demand shock at time 0, output will increase as well, and 
hence entrepreneurs will push more on the utilization of productive capacity. More specifically, in 
the first phase of the long-run traverse, the output growth rate will be greater than the accumulation 
rate, that is, 𝐴𝐴 𝐴𝐴𝑌𝑌

𝑡𝑡
> 𝑔𝑔𝐾𝐾

𝑡𝑡
 . Following the demand shock, entrepreneurs will thus increase their utilization 

of productive capacity 𝐴𝐴 (𝑢̇𝑢 𝑢 0) through equation (7). In this first phase, the economy will be charac-
terized by a situation of above-normal utilization (ut > un), triggering the investment share adjustment 

𝐴𝐴
(

ℎ̇ > 0

)

 , as per equation (8). The gap between the accumulation rate and output growth is closed only 
after a period of about 10 years, after which the actual rate of capacity utilization starts to decrease 
again towards the normal rate 𝐴𝐴 (𝑢̇𝑢 𝑢 0) . However, as long as the gap between ut and un remains posi-
tive, the investment share will keep rising. The investment share peak is reached only after more than 
25 years, corresponding to a temporary situation of normal utilization. However, as long as the actual 
rate of utilization keeps decreasing 𝐴𝐴 (𝑢̇𝑢 𝑢 0) , the economy will enter a period of under-utilization of 
productive capacity, which leads in turn to an investment share adjustment of reverse sign.

The economy proceeds through damped oscillations following the pattern described above, 
converging towards its long-run equilibrium position. Only after about 50 years do the dynamics of 
the rate of capacity utilization and the investment share begin to stabilize around their steady-state 

15  It is worth noting that Freitas and Serrano (2013, p. 41) report a graph that is very similar to the ones below. However, they 
express time as logical indexes (t0, t1, …) instead of historical time (months, quarters, years, etc.).
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Variable Description Value

𝐴𝐴 𝐴𝐴𝑍𝑍
0

  Autonomous demand (annual) growth rate 0.035

u0 Capacity utilization rate 0.8242

α0 Animal spirits 0.109

z0 Autonomous demand-capital ratio 0.4493

h0 Investment share 0.1308

Source: Author's calculation.

T A B L E  2   Initial conditions
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F I G U R E  1   The long run in the supermultiplier model

(A)

(B)



values.16 Generally speaking, the simulation postulates that it takes a very long period of time for the 
model to settle down in the fully adjusted equilibrium.

3.2.2  |  The long-run convergence in the amended neo-Kaleckian model

In the model presented in Subsection (2.2), the two adjusting variables are the autonomous 
demand-capital ratio (zt) and the animal spirits proxy variable (αt). In the steady state, their values 
are given by equations  (17 and 18). Figure 2 shows the behavior of the two adjusting variables 
in the long run, following the same increase in the growth rate of autonomous demand described 
above.

An increase in the growth rate of autonomous expenditures above the accumulation rate 
will generate an increase in the value of the autonomous demand-capital ratio, that is, 𝐴𝐴 𝐴𝐴𝐴 𝐴 0 via 
equation (22). Entrepreneurs will hence absorb the demand boom by pressing additional capital 
resources into productive use, resulting in an increase in the short-run rate of capacity utilization 

𝐴𝐴
(

𝑢𝑢∗𝑠𝑠𝑠𝑠
)

 . As 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 rises above the normal rate of capacity utilization, the Harrodian mechanism (equa-
tion 21) will be activated, resulting in an increase in animal spirits 𝐴𝐴 𝐴𝐴𝐴 𝐴 0 . At the same time, the 
increase in 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 will compensate the effect of the higher autonomous demand growth rate, gradually 
closing the gap between 𝐴𝐴 𝑔𝑔𝑍𝑍  and 𝐴𝐴 𝐴𝐴𝐾𝐾𝑠𝑠𝑠𝑠 . When the latter exceeds the former after about 5 years, the 
z ratio will begin its descent towards its long-run position. In this time span, α will keep rising 
until the discrepancy between the short-run utilization rate and the normal rate remains positive; 
however, as 𝐴𝐴 𝐴𝐴𝐴 is now negative, the gap between 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 and un is shrinking. Under the parameter 
constellation discussed above, it takes about 20 years for this gap to be closed after an initial 1% 
increase in 𝐴𝐴 𝐴𝐴𝑍𝑍

𝑡𝑡
 . After the actual rate of capacity utilization has fallen short of the normal rate, the 

Harridan mechanism will work in the opposite direction, that is, 𝐴𝐴 𝐴𝐴𝐴 𝐴 0 . The process will go on 
until both αt and zt stabilize around their long-run steady-state values at which point the traverse 
will end.

Even though the long-run traverse is somewhat shorter than that of the supermultiplier model, 
vicinity of the new equilibrium is reached after a period of more than 30 years.17 In other terms, when 
evaluated in historical time, both the supermultiplier and the amended neo-Kaleckian model share 
a very slow pace of adjustment. The asymptotic convergence to the fully adjusted equilibrium is a 
sluggish one.

16  It is worth noting that the simulation results are partly consistent with the empirical evidences presented by Girardi 
and Pariboni (2020). Using panel data on 20 OECD countries, the authors show that a permanent one percent increase in 
autonomous-demand growth has long-lasting effects (more than 40 years) on the business investment share. While the timing 
of the adjustment is consistent with the simulation results presented above, its precise dynamics is not: in analytical terms, the 
calibration of the model gives rise to a spiral sink, implying that the investment share converges to its new long-run position 
through damped oscillations. Conversely, the instrumental-variables estimation of Girardi and Pariboni (2020) provides 
empirical support to the idea of stable convergence (real sink).
17  While the exercise has relied on numerical methods only, it is possible to infer on the analytical level that differences in the 
times of adjustment largely depend on the structure of the investment theories of the two models as well as on their varied 
dynamic adjustments.
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F I G U R E  2   The long run in the amended neo-Kaleckian model

(A)

(B)



4  |  SENSITIVITY ANALYSIS

As noted earlier in the paper, the existing literature has already extensively discussed issues related to 
the stability of the long-run equilibria of the two models.18 Therefore, this section will confine itself 
to assess the sensitivity of the models' speed of adjustment when the parameter space is modified.

In order to assess the speed of convergence of a system of differential equation, there exist known 
analytical methods based on eigenvalue computation. For instance, Gabaix et al. (2016) use the domi-
nant eigenvalue, that is, the largest in absolute value, to provide a convenient description of the speed 
of the dynamic adjustment. However, this method is not available for the models under scrutiny. As 
showed in Appendix A, the eigenvalues for both models are complex with nonzero imaginary parts 
and hence cannot be ordered.

Therefore, the sensitivity analysis would need to rely on numerical methods only. In order to do 
that, a convenient visualization tool is provided in the Online Appendix C of this paper. With the aid 
of a web app, the interested reader could easily perform a re-parametrization of the two models, within 
the broad ranges reported in Table 3.

While all parameters influence – to different degrees – the magnitude of the dynamic adjustments and 
the stability of the long-run equilibria, one could easily verify that the two reaction coefficients γ and β are 
the only ones that sensibly influence the speed of adjustment of the Supermultiplier and of the amended 
neo-Kaleckian model, respectively. Unfortunately, these two parameters are exactly the ones for which 
we do not have sufficient empirical support. Whilst the existing literature provides a sufficiently solid 
ground to justify the baseline values for most parameters, these foundations become more shaky when it 
comes to the reaction coefficients, as also noted by Nomaler et al. (2021) for the Supermultiplier model.

Solving numerically the system for bigger and smaller values of γ and β would allow to assess how 
the two parameters affect the speed of the dynamic adjustment in the Supermultiplier and the amended 
neo-Kaleckian model, respectively.

Let us start with the Supermultiplier (Figure 3). A reduction of γ from a baseline value of 0.15 
to 0.05 stabilizes the system, making the adjustment slower but less persistent.19 In the first phase 
of the long-run traverse, the increase of the rate of capacity utilization is bigger with γ = 0.05; 

18  See Appendix A for the derivation of the stability conditions of both models.
19  For sufficiently small values of γ, the eigenvalues becomes real and distinct, and the system could converge monotonically 
towards the long-run equilibrium. See Appendix A for further discussion.
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Par. Description Min.Value Max.Value

g Z Autonomous demand growth 0.01 0.12

δ Depreciation rate (annual) 0.01 0.2

un Normal rate of capacity utilization 0.5 1

v Capital-capacity ratio (annual) 0.7 3

s Propensity to save 0.2 0.6

m Propensity to import 0 0.3

γ Sensitivity of the investment share to ut − un 0 1

β Sensitivity of capital formation to ut − un 0 1

Source: Author's calculation, see Appendix C.

T A B L E  3   Parameters and exogenous variables - minimum and maximum values

13



after a 1% increase in the growth rate of autonomous demand, ut peaks only after a period of 
about 15 years. Following that, the model slowly converges towards the fully adjusted position. 
Moreover, this case provides a good occasion to stress another important point in traverse analysis 
of demand-led growth models (and hence valid both for the Supermultiplier and for the amended 
neo-Kaleckian model). As it can be seen, a reduction of γ (or similarly of s and m or an increase of 
un, u0, 𝐴𝐴 𝑔𝑔𝑍𝑍  , v or δ) has the effect of increasing the maximum value reached by the rate of capacity 
utilization during the adjustment. At and near the peak, ut may become bigger than one, which 
would be logically inconsistent (an economy cannot at any time achieve an income level higher 
than the maximum one determined by its potential). In this sense, as noted by Lavoie and Ramírez-
Gastón  (1997,  p.  162): “to look at the requirements of the steady state is insufficient to assess 
whether or not the new steady state is possible; the rate of capacity utilization must also remain 
below unity at all times during the traverse”. Let us now assess what happens in the opposite case, 
looking at the traverse trajectory corresponding to an increase in γ to a value of 0.25. In this case, 
the time required to approach the long-run equilibrium position after the initial shock decreases, 
while making the model less stable, with the dumped fluctuations being not completely absorbed 
after a period of more than 70 years.

Let us now discuss what happens in the Allain-Lavoie model if the sensitivity of accumulation to 
the discrepancy between the actual and the normal utilization rates (β) changes (Figure 4). In particu-
lar, if β increases from the baseline value of 0.25–0.35, the time of adjustment is reduced and the 
model stabilizes faster, approaching the long-run equilibrium in less than 30 years. Conversely, with 
a lower β of 0.15, the model becomes less stable and takes more time to converge. Similar to what 
has been discussed in the previous paragraph, with a lower β one must be careful about whether the 
traverse path ensures that the rate of capacity utilization remains below unity during the entire process. 
As all time steps over the long-run traverse correspond to a situation of short-run equilibrium in the 
goods market, this condition could be easily verified by computing the value of the rate of capacity 
utilization via equation  (14). Besides β, the other parameters that determine the value of 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 also 
ensure whether or not the rate stays below unity at all times. In particular, 𝐴𝐴 𝐴𝐴∗𝑠𝑠𝑠𝑠 may rise above 1 with a 
lower s, m and un or with a higher α0, z0, v and δ.

In both cases, a change of ±0.1 in both γ and β does not alter the general conclusion in Section 3 
regarding the relative speeds of adjustment of the two models. Regardless, further econometric analy-
sis would be needed to assess the size of these reaction parameters (provided the empirical soundness 
of the assumed adjustments), allowing to determine both whether the two models predict stability of 
the long-run equilibrium and to have reliable point estimates of the predicted adjustment to the fully 
adjusted position.

5  |  CONCLUDING REMARKS

The paper has attempted to answer Joan Robinson's (1980) question ‘when is the long run?’, evaluat-
ing in historical time the long-run traverse in two prominent demand-led growth models, namely the 
Supermultiplier model and the long-run neo-Kaleckian model. In doing so, it provided a description 
of the temporal sequence needed to achieve a new long-run position after an initial increase in the 
growth rate of autonomous demand. After presenting the two models, the paper discussed a reasona-
ble calibration in line with the existing theoretical and empirical literature. The calibration allowed to 
provide a numerical solution of the systems of differential equations that regulate out-of-equilibrium 
dynamics in both models. The simulation exercise showed that the convergence to the fully adjusted 
equilibrium is sluggish, with adjustment periods of about 50 and 30 years for the Supermultiplier and 
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F I G U R E  3   The long-run traverse in the supermultiplier model with changing γ

(A)

(B)
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F I G U R E  4   The long-run traverse in the amended neo-Kaleckian model with changing β

(A)

(B)



the neo-Kaleckian model, respectively. Furthermore, the analysis assessed how changes in the param-
eter space affect the adjustment periods in both models. More specifically, it showed that the reac-
tion coefficients of the investment share (for the Supermultiplier) and of the investment rate (for the 
neo-Kaleckian model) affect sensibly the duration of the long-run traverse, leaving scope for further 
empirical research to derive point estimates of these coefficients.

A conclusion as tempting as naive that could be drew from the exercise is that – if interpreted as a 
length of time – the long run may be longer than expected. As the simulations presented in the previ-
ous sections have shown, the two models under scrutiny share a very slow pace of adjustment. In other 
terms, in historical time the adjustment period to a new steady-state position may be long enough to 
be economically meaningless.

The long run, however, is not a length of time, but a process. Accordingly, as Robinson (1965, p. 17) 
notes, “it is absurd, though unfortunately common, to talk as though ‘in the long run’ we shall reach 
a date at which the equilibrium corresponding to today's conditions will have been realized”. In the 
length of time spanning from a change in today's conditions to the realization of a new equilibrium, 
further changes are likely to affect the growth process: history has a pervasive influence on the deter-
mination of economic outcomes and growth processes (Setterfield, 1995, 1997). Rather than focusing, 
as the existing literature sometimes does, on the mere comparison between two equilibrium posi-
tions, researchers should pay more attention to the properties that characterize the models' trajectories 
during the traverse, for example, by discussing out-of-equilibrium growth effects, path dependency 
and so on (Morlin et al., 2021). The examination of the models' timescale and adjustment period is a 
fundamental piece of information and a key factor for understanding the relation between the theoret-
ical framework and the real world. Very rarely this information is exploited for economic analysis and 
policy recommendations, with researchers and policy makers finding themselves more at ease with 
thinking in logical rather than historical time.

Lastly, it is worth stressing that the goal of this exercise has not been to quantify the actual duration 
of the traverse, but first and foremost to shed light on issues and methods that have not received the 
deserved attention by growth theorists. On the methodological side, the results presented in the paper 
have been derived by making use of numerical methods of analysis to solve two systems of differential 
equations that cannot be solved analytically. The mathematical tool is well known by economists and 
growth theorists, but neglected for the analysis of the traverse and out-of-equilibrium dynamics. Using 
more thoroughly these methods may result in a significant gain of explanatory power of the models 
used for the analysis of real-world economies.
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APPENDIX A:  DERIVATION OF THE MODELS, 
STABILITY AND EQUILIBRIUM

Open Economy with Government Activity
Let us start from the output equation of an open economy with government activity:

𝑌𝑌𝑡𝑡 = 𝐶𝐶𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝐺𝐺𝑡𝑡 + (𝑋𝑋𝑡𝑡 −𝑀𝑀𝑡𝑡)� (A1)

where the current level of aggregate output (Yt) is defined as the sum of aggregate consumption (Ct), 
private investment (It), public expenditures (Gt) and net exports (Xt − Mt). Consumption, government 
spending, exports and imports can be modeled as follows:

𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑌𝑌 𝑌𝑌 + 𝐶𝐶0𝑡𝑡 = 𝑐𝑐(1 − 𝑡𝑡)𝑌𝑌𝑡𝑡 + 𝐶𝐶0𝑡𝑡� (A2)
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𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡� (A3)

𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡� (A4)

𝑀𝑀𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑡𝑡� (A5)

Equation (A2) assumes that aggregate consumption is partly induced - via the tax-adjusted propen-
sity to consume c (1 − t) - and partly autonomous from the current level of income (�0�) . Autono-
mous consumption can be understood as ‘that part of aggregate consumption financed by credit and, 
therefore, unrelated to the current level of output resulting from firms’ production decisions' (Freitas 
& Serrano,  2015,  p.  4). Government spending (equation  A3) and exports (equation  A4) are both 
treated as autonomous, the first because public consumption and investment depend on the arbitrary 
decisions of the general government, the second because exports does not depend on the level of 
national income, but on that of the rest on the world. For the sake of simplicity, imports of goods and 
services are assumed to be linearly dependent of the level of income, via the propensity to import m 
(equation A5).

The modeling choice regarding aggregate investment is what effectively constitutes the main 
difference between the Sraffian Supermultiplier and the Neo-Kaleckian model, as showed below.

Sraffian Supermultiplier Model
According to the baseline Supermultiplier model, private investment is treated as fully induced (equa-
tion A6), reflecting the simple idea that at the aggregate level firms will invest only as long as there is 
demand for their products. Therefore, It can be model sic et simpliciter as the product of the investment 
share (ht) times national income.

𝐼𝐼𝑡𝑡 = ℎ𝑡𝑡𝑌𝑌𝑡𝑡� (A6)

Since 𝐴𝐴 𝐾̇𝐾𝑡𝑡 = 𝐼𝐼𝑡𝑡 − 𝛿𝛿𝛿𝛿𝑡𝑡 , the accumulation rate can be derived as follows:

𝑔𝑔𝐾𝐾𝑡𝑡 =
𝐾̇𝐾𝑡𝑡

𝐾𝐾𝑡𝑡
− 𝛿𝛿 =

𝐼𝐼𝑡𝑡

𝐾𝐾𝑡𝑡
− 𝛿𝛿 =

ℎ𝑡𝑡𝑌𝑌𝑡𝑡

𝐾𝐾𝑡𝑡
− 𝛿𝛿 = ℎ𝑡𝑡

𝑌𝑌𝑡𝑡

𝑌𝑌 𝑝𝑝

𝑌𝑌 𝑝𝑝

𝐾𝐾𝑡𝑡
− 𝛿𝛿 =

ℎ𝑡𝑡𝑢𝑢𝑡𝑡

𝑣𝑣
− 𝛿𝛿� (A7)

where Y p is full-capacity output. Let us now solve for the level of output, substituting equations (A2-A6) 
in equation (A5):

𝑌𝑌𝑡𝑡 =

(

1

𝑠𝑠 + 𝑚𝑚 − ℎ𝑡𝑡

)

(

𝐶𝐶0𝑡𝑡 + 𝐺𝐺𝑡𝑡 +𝑋𝑋𝑡𝑡

)

=

(

1

𝑠𝑠 + 𝑚𝑚 − ℎ𝑡𝑡

)

𝑍𝑍𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑡𝑡𝑍𝑍𝑡𝑡� (A8)

where s denotes the tax-adjusted propensity to save, that is, s = 1 − c (1 − t). The term SMt denotes 
the supermultiplier, that is, 1/(s + m − ht).

Differentiating equation (A8), we obtain the growth rate of output as the sum of the growth rate 
of autonomous demand and of the supermultiplier, under the assumption that the investment share 
behaves in line with equation (8):

𝑔𝑔𝑌𝑌𝑡𝑡 = 𝑔𝑔𝑍𝑍𝑡𝑡 +
ℎ𝑡𝑡𝛾𝛾 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)

𝑠𝑠 + 𝑚𝑚 − ℎ𝑡𝑡
� (A9)
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Lastly, the model closure is given by the assumption of an exogenously given growth rate of auton-
omous demand:

𝑔𝑔𝑍𝑍𝑡𝑡 = 𝑔𝑔𝑍𝑍� (A10)

Let us now analyze the stability of the fully adjusted equilibrium, whose necessary and sufficient 
condition is that the determinant of the Jacobian's matrix evaluated at the equilibrium point with 

u* = un and 𝐴𝐴 𝐴∗ =
𝑣𝑣

𝑢𝑢𝑛𝑛

(

𝑔𝑔𝑍𝑍 + 𝛿𝛿

)

 is positive and its trace is negative:
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det J∗ = ���
(

�� + �
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� (A12)
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��

� + � − �
��

(
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⎟
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� (A13)

Since γ, un and 𝐴𝐴 𝑔𝑔𝑍𝑍  are assumed to be positive, the determinant is necessarily positive. Similarly to 
Freitas and Serrano (2015), the stability condition boils down to the sign of the Tr J*, which is ensured 
by the following condition:

1 − 𝑠𝑠 + 𝑚𝑚 + 𝛾𝛾𝛾𝛾 +
𝑣𝑣

𝑢𝑢𝑛𝑛

(

𝑔𝑔𝑍𝑍 + 𝛿𝛿

)

< 1� (A14)

where 1 − s + m may also be interpreted as the tax and imports-adjusted propensity to spend. 
Equation (A14) implies three conditions:

1.	 �The value of the reaction parameter γ should be sufficiently low, implying that induced invest-
ment ought not to adjust capacity to demand too fast outside the fully adjusted position (Freitas 
& Serrano, 2015). In other terms, the effect of Harridan instability needs not to be overly strong;

2.	 �The growth rate of autonomous demand 𝐴𝐴 𝑔𝑔𝑍𝑍  cannot be too large;
3.	 �The tax and imports-adjusted propensity to spend (1 − s + m) needs not to be too large and it must 

be smaller than unity in the entire adjustment process.

If the condition in equation (A14) is fulfilled, then the system converges to its long-run equilib-
rium. The trajectory of the system depends on the discriminant of its eigenvalues:

�1,2 =
�� J∗ −

√

Δ
2

with Δ =
(

�� J∗
)2 − 4det J∗� (A15)

Therefore, if trJ*, Δ < 0 and det J* > 0, the eigenvalues will be complex with nonzero imaginary part; 
ut and ht will converge via damped oscillation (spiral sink). Conversely, if trJ* < 0 and det J*, Δ > 0, 
both eigenvalues will be real and distinct; the system will converge monotonically towards the fully 
adjusted position (real sink). Relying on the parameter calibration discussed in Section 3, the first case 
applies. Figure A1 shows the resulting phase plane.
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F I G U R E  A 1   Phase plane of the amended Supermultiplier model. Source: authors' representation

Long-run Neo-Kaleckian Model
Neo-Kaleckian models treat capital formation as dependent on the rate of capacity utilization. More 
specifically, adopting the formulation proposed for the first time by Amadeo (1986), the investment 
rate will depend on the secular growth rate of sales (αt) plus discrepancies between the actual and the 
normal or ‘planned’ (Steindl, 1952) utilization rates, via the parameter β:

𝐼𝐼𝑡𝑡 = [𝛼𝛼𝑡𝑡 + 𝛽𝛽 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛)]𝐾𝐾𝑡𝑡� (A16)

which - under the assumption of a linear depreciation coefficient - implies that the accumulation rate 
will be equal to:

𝑔𝑔𝐾𝐾𝑡𝑡 = 𝑔𝑔𝐼𝐼𝑡𝑡 − 𝛿𝛿 =
𝐼𝐼𝑡𝑡

𝐾𝐾𝑡𝑡
− 𝛿𝛿 = 𝛼𝛼𝑡𝑡 + 𝛽𝛽 (𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑛𝑛) − 𝛿𝛿� (A17)

The saving equation in levels is then given by:

𝑆𝑆𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝐶𝐶𝑡𝑡 − 𝐺𝐺𝑡𝑡 − (𝑋𝑋𝑡𝑡 −𝑀𝑀𝑡𝑡) = [1 − 𝑐𝑐(1 − 𝑡𝑡) + 𝑚𝑚]𝑌𝑌𝑡𝑡 −

(

𝐶𝐶0𝑡𝑡 + 𝐺𝐺𝑡𝑡 +𝑋𝑋𝑡𝑡

)

= (𝑠𝑠 + 𝑚𝑚)𝑌𝑌𝑡𝑡 −𝑍𝑍𝑡𝑡� (A18)

Dividing everything by the capital stock and multiplying/dividing the first term on the right-hand 
side by full-capacity output, it follows that:

𝑔𝑔𝑆𝑆𝑡𝑡 =
𝑆𝑆𝑡𝑡

𝐾𝐾𝑡𝑡
= (𝑠𝑠 + 𝑚𝑚)

𝑌𝑌𝑡𝑡

𝑌𝑌 𝑝𝑝

𝑌𝑌 𝑝𝑝

𝐾𝐾𝑡𝑡
−

𝑍𝑍𝑡𝑡

𝐾𝐾𝑡𝑡
=

(𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑡𝑡

𝑣𝑣
− 𝑧𝑧𝑡𝑡� (A19)
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Same as for the Supermultiplier model, the model is closed by the assumption of an exogenously 
given growth rate of autonomous demand - Equation (A10) above.

Let us now evaluate the Jacobian matrix in the long-run fully adjusted equilibrium 𝐴𝐴 𝐴𝐴∗ = 𝑔𝑔𝑍𝑍
𝑡𝑡
+ 𝛿𝛿 

and �∗ = (�+�)��
� − �� − � :
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� (A20)

det J∗ =
���
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(

(� + �)��
�

− �� − �
)

� (A21)

�� J∗ =
��

� + � − ��

[

� −
(� + �)��

�
+ �� + �

]

� (A22)

Given that β and v are assumed to be positive, the determinant is positive whenever the Keynesian 
stability condition holds (β < (s + m)/v) and the equilibrium autonomous demand-capital ratio z* is 
positive, that is, whenever 𝐴𝐴 𝑔𝑔𝑍𝑍 < (𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛∕𝑣𝑣 − 𝛿𝛿 . If the Keynesian stability condition holds, then it 
can be shown that the trace is negative whenever:

𝜇𝜇 𝜇
(𝑠𝑠 + 𝑚𝑚)𝑢𝑢𝑛𝑛

𝑣𝑣
− 𝑔𝑔𝑍𝑍 − 𝛿𝛿⇒𝜇𝜇 𝜇 𝜇𝜇∗� (A23)

Taken together, the stability conditions of the long-run neo-Kaleckian model imply that:

1.	 �The value of the reaction parameter β should be sufficiently low, implying that the reaction of 
capital formation to discrepancies in utilization rates is not too strong;

2.	 �The growth rate of autonomous demand 𝐴𝐴 𝑔𝑔𝑍𝑍  cannot be too large;
3.	 �Similarly to the Supermultiplier model, capacity ought to adjust fairly slowly to demand, that is, the 

Harridan mechanism need not to be overly strong (Equation A23);

As discussed above, the discriminant of the system's eigenvalues will determine its trajectory. 
Similar to the Supermultiplier model, the calibration of the model suggests that – at least in the base-
line parametrization – the eigenvalues are complex (Δ < 0). Therefore, the systems converges through 
damped oscillations towards the fully adjusted position (spiral sink).

Figure A2 shows the 2D phase space plot of the Allain-Lavoie system.
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F I G U R E  A 2   Phase plane of the amended neo-Kaleckian model. Source: authors' representation.

APPENDIX B:  VARIABLES

αt Animal spirits (also, expected growth rate of sales)

ht Investment share (also, marginal propensity to invest)

𝐴𝐴 𝐴𝐴𝐼𝐼
𝑡𝑡
  Investment rate

𝐴𝐴 𝐴𝐴𝐾𝐾
𝑡𝑡

  Growth rate of the capital stock

𝐴𝐴 𝐴𝐴𝑆𝑆
𝑡𝑡

  Saving rate

𝐴𝐴 𝐴𝐴𝑌𝑌
𝑡𝑡

  Growth rate of output

𝐴𝐴 𝐴𝐴𝑍𝑍
𝑡𝑡

  Growth rate of autonomous demand

ut Capacity utilization rate

zt Autonomous demand-capital ratio

APPENDIX C:  SENSITIVITY ANALYSIS
The interested reader could easily perform a re-parametrization of the two models through the following 
interactive Web App – created with Shiny R: http://ettoregallo.shinyapps.io/When_is_the_long_run.
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