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A B S T R A C T

Current state-of-the-art two-stage models on instance segmentation task suffer from

several types of imbalances. In this paper, we address the Intersection over the Union

(IoU) distribution imbalance of positive input Regions of Interest (RoIs) during the

training of the second stage. Our Self-Balanced R-CNN (SBR-CNN), an evolved ver-

sion of the Hybrid Task Cascade (HTC) model, brings brand new loop mechanisms

of bounding box and mask refinements. With an improved Generic RoI Extraction

(GRoIE), we also address the feature-level imbalance at the Feature Pyramid Net-

work (FPN) level, originated by a non-uniform integration between low- and high-

level features from the backbone layers. In addition, the redesign of the architec-

ture heads toward a fully convolutional approach with FCC further reduces the num-

ber of parameters and obtains more clues to the connection between the task to solve

and the layers used. Moreover, our SBR-CNN model shows the same or even bet-

ter improvements if adopted in conjunction with other state-of-the-art models. In fact,

with a lightweight ResNet-50 as backbone, evaluated on COCO minival 2017 dataset,

our model reaches 45.3% and 41.5% AP for object detection and instance segmen-

tation, with 12 epochs and without extra tricks. The code is available at https:

//github.com/IMPLabUniPr/mmdetection/tree/sbr_cnn.

© 2022 Elsevier B. V. All rights reserved.

∗Corresponding author
e-mail: leonardo.rossi@unipr.it (Leonardo Rossi), akbar.karimi@unipr.it (Akbar Karimi), andrea.prati@unipr.it (Andrea Prati)

Preprint submitted to Journal of Visual Communication and Image Representation May 16, 2022

Manuscript Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.sciencedirect.com
http://www.elsevier.com/locate/jvci
https://github.com/IMPLabUniPr/mmdetection/tree/sbr_cnn
https://github.com/IMPLabUniPr/mmdetection/tree/sbr_cnn
https://www.editorialmanager.com/jvci/viewRCResults.aspx?pdf=1&docID=24423&rev=1&fileID=450713&msid=14d77de8-9f7e-46f4-be72-8a172ab0007d
https://www.editorialmanager.com/jvci/viewRCResults.aspx?pdf=1&docID=24423&rev=1&fileID=450713&msid=14d77de8-9f7e-46f4-be72-8a172ab0007d


2 / Journal of Visual Communication and Image Representation (2022)

1. Introduction1

Nowadays, instance segmentation is one of the most studied topics in the computer vision community, because it reflects one of2

the key problems for many of the existing applications where we have to deal with many heterogeneous objectives inside an image.3

It offers, as output, the localization and segmentation of a number of instances not defined a priori, each of them belonging to a list4

of classes. This task is important for several applications, including medical diagnostics [1], autonomous driving [2], alarm systems5

[3], agriculture optimization [4], visual product search [5], and many others.6

Most of the recent models descend from the two-stage architecture called Mask R-CNN [6]. The first stage is devoted to the7

search of interesting regions independently from the class, while the second is used to perform classification, localization and8

segmentation on each of them. This divide-and-conquer approach was first introduced in the ancestor network called Region-based9

CNN (R-CNN) [7], which has evolved in several successive architectures. Although it achieved excellent results, several studies10

[8], [9], [10] have recently discovered some of its critical issues which can limit its potentiality. These issues have not been solved11

yet and several blocks of these architectures are still under-explored and far from optimized and well understood.12

This paper approaches mainly two of the imbalance problems mentioned in [8]. The first problem, called IoU Distribution13

Imbalance (IDI), arises when the positive Regions of Interest (RoIs) proposals provided by the RPN during the training of the14

detection and segmentation heads have an imbalanced distribution. Due to some intrinsic problems of the anchor system, the15

number of available RoIs decreases exponentially with the increase of the IoU threshold, which leads the network to easily overfit16

to low quality proposals. Our work extends the analysis on R3-CNN, first introduced in [11], to understand architectural limits and17

proposes advanced configurations in between and an architectural improvement for the segmentation head.18

The second problem, called Feature Level Imbalance (FLI), arises when the features are selected from the Feature Pyramid19

Network (FPN) for their localization and segmentation. As highlighted in [8], the hierarchical structure of FPN (originally designed20

to provide multi-scale features) does not provide a good integration between low- and high-level features among different layers.21

To address this problem, the classical approach is to balance the information before the FPN. On the contrary, our work enhances22

the GRoIE [12] architecture and puts forward a more effective solution, fusing information from all the FPN layers.23

In addition, we address the common problem of the explosion of the number of parameters, due to the introduction of new24

components or expansion of existing ones (e.g. [13]). The increased complexity leads to an increase in the search space for25

optimization during the training, and, in turn, negatively impacts the generalization capability of the network. Moreover, our26
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empirical results support the intuition made by [14] about the connection between the task to solve and the utilized layers, extending27

their work toward a fully convolutional solution.28

To summarize, this paper has the following main contributions:29

• An extensive analysis of the IDI problem in the RPN generated proposals, which we treat with a single- and double-head loop30

architecture (R3-CNN) between the detection head and the RoI extractor, and a brand-new internal loop for the segmentation31

head itself.32

• Redesign of the model heads (FCC) toward a fully convolutional approach, with empirical analysis that supports some33

architectural preferences depending on the task.34

• A better performing GRoIE model is proposed for extraction of RoIs in a two-stage instance segmentation and object detection35

architecture.36

• An exhaustive ablation study on all the components.37

• The proposal of SBR-CNN, a new architecture composed of R3-CNN, FCC and GRoIE, which maintains its qualities if38

plugged into major state-of-the-art models.39

The paper is organized as follows: in Section 2, state of the art related to the relevant topics is reported; Section 3 details each40

contribution of which the proposed SBR-CNN is composed; Section 4, reports the extensive evaluation of the different architectural41

enhancements introduced, by conducting several ablation studies and a final experiment comparing SBR-CNN with some state-42

of-the-art models; finally, Section 5 draws final conclusions about the proposed work and envisions possible future directions of43

research.44

2. Related Works45

Multi-stage Detection/Instance Segmentation. Single-stage and two-stage architectures for object detection have been researched46

for several years. For instance, YOLO network proposed in [15] optimizes localization and classification in one step and [16]47

proposes a single-shot network which uses bounding box regression. Since the single-stage architectures do not always provide48

acceptable performance and require a lot of memory in applications with thousands of classes, a region-based recognition method49

was proposed [7], where first part processes input images, while the second part processes bounding boxes found by the previous50
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one. This approach has been used in the Mask R-CNN architecture [6], obtained by adding a segmentation branch to the Faster51

R-CNN [17]. This idea has been refined by several studies. For instance, [18] provides a composite backbone network in a cascade52

fashion. The Cascade R-CNN architecture [13] puts forward the utilization of multiple bounding box heads, which are sequentially53

connected, refining predictions at each stage. In [19, 20, 21], they introduced a similar cascade concept but applied to the RPN54

network. In addition, the Hybrid Task Cascade (HTC) network [22], by which this work is inspired, applies cascade operation on55

the mask head as well. Our work pushes in the same direction but changes the paradigm from cascade to loop, where the single56

neural network block is trained to perform more than one function by applying different conditioning in the input.57

IoU distribution imbalance. A two-stage network uses the first stage to produce a set of bounding box proposals for the following58

stage, filtering positive ones through a threshold applied to the IoU between them and the ground truth. The IoU distribution59

imbalance problem is described as a skewed IoU distribution [8] that is seen in bounding boxes which are utilized in training60

and evaluation. In [23], the authors propose a hard example mining algorithm to select the most significant RoIs to deal with61

background/foreground imbalance. Their work differs from ours because our primary goal is to balance the RoIs across the positive62

spectrum of the IoU. In [24], the authors propose an IoU-balanced sampling method which mines the hard examples. The proposed63

sampling is performed on the results of the RPN which is not very optimized in producing high-quality RoIs as we will see. On the64

other hand, we apply the resampling on the detector itself, which increases the probability of returning more significant RoIs.65

After analyzing the sources of false positives and to reduce them, [25] introduces an extra independent classification head to be66

attached to the original architecture. In [26], the authors propose a new IoU prediction branch which supports classification and67

localization. Instead of utilizing RPN for localization and IoU prediction branches in the training phase, they propose manually68

generating samples around ground truth.69

In [13, 22, 27], they address the exponentially vanishing positive samples problem, utilizing three sequentially connected de-70

tectors to improve the hypothesis quality progressively, by resampling the ground truth. It differs from our approach since we deal71

with the problem using a single detector and a segmentation head. Authors of [28] give an interpretation about the fact that IoU72

imbalance negatively impacts the performance which is similar to ours. However, differently from us, they designed an algorithm73

to systematically generate the RoIs with required quality, where we base our work on the capabilities of the detector itself.74

Feature-level imbalance. A two-stage network deals with images containing objects of any size with the help of an FPN attached to75

the backbone. How the RoI extraction layer combines the information provided by the FPN is of paramount importance to embody76

the highest amount of useful information. This layer has been used by many derivative models such as Mask R-CNN, Grid [29],77
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Cascade R-CNN [30], HTC [22] and GC-net [31]. In [32], the authors apply an RoI pooling to a single and heuristically chosen FPN78

output layer. However, as underlined by [8], this method is defective due to a problem related to untapped information. Authors79

of [33] propose to separately extract mask proposals from each scale and rescale them while including the results in a unique and80

multi-scale ranked list, selecting only the best ones. In [34], the authors use a backbone for each image scale, merging them with a81

max function. On the contrary, we use an FPN which simplifies the network and avoids doubling the network parameters for each82

scale.83

In SharpMask model [35], after making a coarse mask prediction, authors fuse feature layers back in a top-down fashion in84

order to reach the same size of the input image. Authors of PANet [36] point out that the information is not strictly connected with a85

single layer of the FPN. By propagating low-level features, they build another structure similar to FPN, coupled with it, combining86

the images pooled by the RoIs. While our proposed GRoIE layer is inspired by this approach, it differs from that in its size. We87

propose a novel way to aggregate data from the features pooled by RoIs making the network more lightweight without extra stacks88

coupled with FPN.89

Auto-FPN [37] applies Neural Architecture Search (NAS) to the FPN. PANet has been extended by AugFPN [38]. The module90

with which we compare our module is called the Soft RoI Selector [38], which includes an RoI pooling layer on each FPN layer to91

concatenate the results. Then, they are combined using the Adaptive Spatial Fusion in order to build a weight map that is fed into92

1x1 and 3x3 convolutions sequentially. In our work, we first carry out a distinct convolution operation on each output layer of the93

FPN network. After that, instead of concatenating, we sum the results since it is potentially more helpful for the network. In the94

end, we apply an attention layer whose job is to further filter the multi-scale context.95

Authors of Multi-Scale Subnet [39] propose an alternative technique to RoI Align which employs cropped and resized branches96

for RoI extraction at different scales. In order to maintain the same number of outputs for each branch, they utilize convolutions97

with 1x1 kernel size, performing an average pooling to diminish them to the same size before summing them up. Finally, they use98

a convolutional layer with 3x3 kernel size as the post-processing stage. In our ablation study, we show that these convolutional99

configurations to carry out pre- and post-processing are not the optimal ones that can lead to better performance.100

The IONet model [40] proposes doing away with any FPN network and, instead, using re-scaled, concatenated, and condensed101

(dimension-wise) features directly from the backbone before doing classification and regression. Finally, Hypercolumn [41] utilizes102

a hypercolumn representation to classify a pixel, with 1x1 convolutions and up-sampling the results to a common size so that they103

can be summed. Here, the absence of an optimized RoI pooling solution and an FPN layer and the simple processing of columns of104
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pixels that have been taken from various stages of the backbone can be a limitation. In fact, we show in our ablation study that the105

adjacent pixels are necessary for optimal information extraction.106

In [42] they avoid to select the FPN layer and then RoI crop the features, attaching a convolutional branch on top of the last107

FPN layer and conditioning on the instance. In our case, we avoid the risk to loose information in intermediate FPN layers, leaving108

to the network the job of conditionally merging them for each instance.109

3. Self-Balanced R-CNN model110

In this section, we will describe our new architecture called Self-Balanced R-CNN (SBR-CNN), formed by three main contri-111

butions: a R3-CNN [11] enhanced version (subsection 3.1), the new FCC head architecture (subsection 3.2) and the new GRoIE112

[12] more performing version (subsection 3.3). Each of these contributions will be treated in detail individually.113

3.1. Recursively Refined R-CNN (R3-CNN)114

Fig. 1. Percentage of times in which, during the RPN training, there does not exist an anchor with a certain value of IoU w.r.t. the ground-truth bounding
boxes.

In a typical two-stage network for instance segmentation, to obtain a good training of the network, we need as good candidates as115

possible from the RPN. We could highlight at least two problems which are parts of so called IoU Distribution Imbalance (IDI) that116

afflict the training. The first one, shown in Fig. 1, is related to the anchor system. It is called Exponential Vanishing Ground-Truth117
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(EVGT) problem, where the higher the IoU threshold to label positive anchors is, the exponentially higher the percentage of missed118

ground-truth bounding boxes (gt-bboxes) can be. For instance, more than 80% of the gt-bboxes do not have a corresponding anchor119

with an IoU (w.r.t. the gt-bbox) between 0.85 and 0.9. Since, for every image, the anchors’ maximum IoU varies from one gt-bbox120

to another, if we choose a too high IoU threshold, some of the objects could be completely ignored during the training, reducing the121

number of truly used annotations. For example, if the gt-bbox is in an unfortunate place where the maximum IoU between that and122

all available anchors is 0.55 and we choose a minimum threshold of 0.6, then no anchors will be associated with that object and it123

will be seen as part of the background during the training. That is why we are usually obliged to use a very low threshold (typically124

0.3 as a limit), since otherwise we could run into a case where a consistent part of the ground-truth is ignored. The second, called125

Exponentially Vanishing Positive Samples (EVPS) problem [13], is partially connected with the first one because training the RPN126

with a too low threshold will reflect the low quality issue on its proposals. Even in the best case, where each gt-bbox has the number127

of positive anchors greater than zero, the number of proposals from the RPN still diminishes exponentially with the increase of the128

required IoU threshold (see Fig. 3(a)).129

RoI Head (loop 3x)

F

RPN

Pool

   Proposals

B1
Features

Proposals Segmentation

M1

RoI Head 3x

F

RPN

Pool B1

Features

Pool B2 Pool B3

M2M1 M3

   Proposals Features      Proposals Features      Proposals

Segmentation Segmentation                       Segmentation

(a) HTC (b) R3-CNN

           Proposals

Fig. 2. Network design. (a) HTC: a multi-stage network which trains each head in a cascade fashion. (b) R3-CNN: our architecture which introduces two
loop mechanisms to self-train the heads.

Fig. 2(a) shows the Hybrid Task Cascade (HTC) model [22], greatly inspired by Cascade R-CNN network [13], which trains130

multiple regressors connected sequentially, each of which is specialized in a predetermined and growing IoU minimum threshold.131

This architecture offers a boost in performance at the cost of the duplicate heads, three times the ones used in Mask R-CNN.132

In order to reduce the complexity, we designed a lighter architecture called Recursively Refined R-CNN (R3-CNN) (see Fig.133

2(b)) to address the IDI problem by having single detection and mask heads trained uniformly on all the IoU levels. In [13], it134

has been pointed out that the cost-sensitive learning problem [43, 44], connected with the optimization of multiple IoU thresholds,135

needs multiple loss functions. This encouraged us to look for a multiple selective training to address the problem. The IoU threshold136

is used to distinguish between positive (an object) and negative (background) proposals. Usually, because the Mask R-CNN-like137

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 / Journal of Visual Communication and Image Representation (2022)

(a) Mask R-CNN trained 36 epochs (b) R3-CNN

Fig. 3. The IoU distribution of training samples for Mask R-CNN with a 3x schedule (36 epochs) (a), and R3-CNN where at each loop it uses a different IoU
threshold [0.5, 0.6, 0.7] (b). Better seen in color.

architectures suffer from the EVGT and EVPS problems, the IoU threshold is set to 0.5, in order to have a good compromise138

between having enough samples to train the RoI head and to not degrading excessively the quality of the samples. Because the139

maximum value for IoU is 1.0, we use a different and uniformly chosen IoU threshold in the range between 0.5 and 0.9 for each140

loop. In this way, we sample a proposal list to feed the detector itself each time with a different IoU quality distribution. We rely141

directly on RPN only in the initial loop. Furthermore, this new list of proposals is used to feed the segmentation head M1, which142

incorporates an internal loop to refine the mask.143

In order to show the rebalancing, during the training we collected the information of IoU of the proposals with the gt-bboxes.144

To make the comparison fairer, we trained the Mask R-CNN three times the number of epochs. In Fig. 3(a), we can see that the145

distribution of IoUs in Mask R-CNN maintains its exponentially decreasing trend.146

Shown in Fig. 3(b), R3-CNN presents a well-defined IoU distribution for each loop. With two loops, we already have a more147

balanced trend and, by summing the third, the slope starts to invert. The same trend can be observed in Cascade R-CNN, where the148

IoU histogram of the nth stage of Cascade R-CNN (as shown in [13] - Fig. 4) can be compared with the nth loop of R3-CNN.149

Let us now define how the detection head loss (see Fig. 2(b)) is composed, followed by the definition of the loss of the mask150

head. For a given loop t, let us define B1 as the detection head, composed of h as the classifier and f as the regressor, which are151

trained for a selected IoU threshold ut, with ut > ut−1. Let xt represent the extracted features from the input features x using the152

proposals bt. In the first loop, the initial set of proposals (b0) comes from the RPN. For the rest of the loops, in loop t, we have a153

set of NP proposals bt =
{
bt

1, b
t
2, . . . , b

t
NP

}
obtained by the regressor f using the extracted features xt−1 and the set of proposals bt−1

154
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from the previous loop.155

A given proposal bt
i ∈ bt is compared with all the NGT gt-bboxes g =

{
g1, g2, . . . , gNGT

}
by computing their overlap through

the IoU. If none of these comparisons results in an IoU greater than the selected threshold ut for the current loop, the label yt
i = 0

corresponding to the class ”background” is assigned to bt
i. Otherwise, the label lx corresponding to the class of the gt-bbox gx with

the maximum IoU is assigned to yt
i:

lx = arg max
lx̄

IoU
(
bt

i, gx̄

)
∀gx̄ ∈ g|IoU

(
bt

i, gx̄

)
> ut (1)

where lx̄ is the label assigned to gx̄. The detection head loss for the loop t can be computed similarly as in Cascade R-CNN [13]:156

Lt
bbox

(
xt, g

)
=


Lcls

(
h
(
xt

)
, yt

)
∀bt

i | y
t
i = 0

Lcls

(
h
(
xt

)
, yt

)
+ λLloc

(
f
(
xt,bt

)
, g

)
otherwise

(2)

where yt is the set of labels assigned to the proposals bt and λ is a positive coefficient. The classification loss Lcls is a multi-class157

cross entropy loss. If yt
i is not zero, the localization loss Lloc is also used, which is computed with a smooth L1 loss.158

Regarding the segmentation branch performed by the M1 mask head, a separate RoI extraction module is employed to obtain

the features xt for the proposals bt provided by the B1 detection head. Similar to HTC, but with a single mask head, R3-CNN uses

an internal loop of j iterations, with j = t, meaning that in the first loop of R3-CNN, a single iteration ( j = 1) is performed, then

two iterations in the second loop, and so forth. At each internal iteration, the mask head receives as input the features xt summed

with the result of a 1 × 1 convolution C1 applied to the output of the previous internal iteration:

m0 = M1
(
xt + C1(0)

)
m1 = M1

(
xt + C1(m0)

)
...

mj−1 = M1
(
xt + C1(mj−2)

)
(3)

where C1 is applied to a null tensor 0 at the first loop, and to the output of the previous iteration for the subsequent. With this159

mechanism, the network iteratively refines its segmentation output.160

The final output mj−1 of the internal loop is then upsampled with U to reshape its size from 14 × 14 to 28 × 28. Finally, another
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1 × 1 convolution C2 is applied in order to reduce the number of channels to the number of classes:

mj = C2

(
U

(
mj−1

))
(4)

The loss function for the segmentation Lt
mask is computed over mj as follows:

Lt
mask = BCE

(
mj, m̂

)
(5)

where m̂ represents the segmentation of the ground-truth object and BCE is the binary cross entropy loss function.161

In the end, the total loss for loop t is composed as the sum of previous losses:

Lt = αt

(
Lt

bbox + Lt
mask

)
(6)

where αt represents a hyper-parameter defined statically in order to weight the different contributions of each loop.162

We maintain the loop mechanism also at inference time and, at the end, we merge all the predictions, computing the average of163

the classification predictions.164

3.2. Fully Connected Channels (FCC)165

In order to further reduce the network size, we propose to replace fully connected (FC) layers with convolutions. In R3-CNN166

model, they are included in two modules: in the detection head and in the Mask IoU branch [45], which learns a quality score for167

each mask.168

In the detection head, the first two FC layers are shared between the localization and the classification tasks, followed by one169

smaller FC layer for each branch (see Fig. 4(a)). Our goal is to replace the first two shared FC layers, which contain most of the170

weights, with convolutional layers, in order to obtain a lighter network (see Fig. 4(b)). With the term L2C we will refer, hereinafter,171

to these two convolutional layers together. The input feature map has the shape of n×channels×7×7 (n is the number of proposals),172

characterized by a very small width and height. A similar problem, addressed by [12], demonstrates how performance improves as173

the kernel size increases, covering almost the entire features shape. We chose a large kernel size of 7 × 7 with padding 3 in order to174

maintain the input shape, halving the number of channels in input. So, the first layer has 256 channels in input and 128 in output,175

while the second one reduces channels from 128 to 64.176

Fig. 4(c) shows an alternative version which substitutes each convolution with two of them but with a small kernel (7 × 3 with177
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Fig. 4. (a) Original HTC detector head. (b) Our lighter detector using convolutions with 7 × 7 kernels. (c) Evolution of (b) with rectangular convolutions.
(d) Evolution of (b) with non-local pre-processing block. (e) Evolution of (c) with non-local pre-processing block.
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Name # Params Description
FC 1 12,846,080 256×7×7×1024 (W) + 1024 (b)
L2C (conv1) 1,605,760 256×7×7×128 (W) + 128 (b)
L2C (conv1a) 1,376,512 256×7×3×256 (W) + 256 (b)
L2C (conv1b) 688,256 256×3×7×128 (W) + 128 (b)
FC 2 1,049,600 1024×1024 (W) + 1024 (b)
L2C (conv2) 401,472 128×7×7×64 (W) + 64 (b)
L2C (conv2a) 344,192 128×7×3×128 (W) + 128 (b)
L2C (conv2b) 172,096 128×3×7×64 (W) + 64 (b)

Table 1. Parameter count for FC & L2C with 7 × 7 and rectangular kernels. W: weights; b: bias.

padding 3, and 3 × 7 with padding 1), with the aim of increasing the average precision and execution time. Table 1 shows the sharp178

reduction obtained by the introduction of both L2C versions.179

A heavier version of FCC includes also one non-local layer before the convolutions (see Fig. 4(d) and (e)). Our non-local layer,180

differently from the original one [46], increases the kernels of internal convolutions from 1× 1 to 7× 7, in order to better exploit the181

information that is flowing inside the features in input. The disadvantage of increased execution time could be alleviated in future182

versions, for instance, by using depth-wise convolutions [47] or similar mechanisms.183

In terms of number of parameters, FCC architectures reduces them from 14M to 2.2M, 2.8M, 8.6M, and 9.2M if we use versions184

b, c, d, and e, respectively.185

These changes in the architecture have been considered also for the Mask IoU module, which is composed of four convolutional186

layers followed by three FC layers. Also in this case, the first two FC layers have been replaced, achieving the following weight187

reduction: from 16.3M to 4.6M, 5.1M, 10.6M and 11.1M with version b, c, d and e, respectively.188

As previously noticed by [14], the architecture is influenced by the task that it tries to solve. In our case, we observed that189

convolutions can successfully substitute FC layers in all cases. But, if the task involves a classification, a mechanism to preserve190

spatial sensitivity information is needed (with an enhanced non-local module). Conversely, when the network learns a regression191

task, as for the Mask IoU branch, an attention module is not needed.192

3.3. Generic RoI Extraction Layer (GRoIE)193

The FPN is a commonly used architecture for extracting features from different image resolutions without separately elaborating194

each scale. In a two-stage detection framework similar to one mentioned in this paper, the output layer of an FPN network is chosen195

heuristically as a unique source of sequential RoI pooling. However, while the formula has been designed very well, it is obvious196

that the layer is selected arbitrarily. Furthermore, the mere combination of the layers that are provided by the backbone can result197

in a non-uniform distribution of low- and high-level information in the FPN layers [8]. This phenomenon necessitates finding a198
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Fig. 5. GRoIE framework. (1) RoI Pooler. (2) Pre-processing phase. (3) Aggregation function. (4) Post-processing phase.

way to avoid losing information by selecting only one of them as well as correctly combining them in order to obtain a re-balanced199

distribution. The enhancement obtained from the GRoIE [12] suggests that if all the layers are aggregated appropriately through200

some extra convolutional filters, it is more likely to produce higher quality features. The goal is to solve the feature imbalance201

problem of FPN by considering all the layers, leaving the task of learning the best way of aggregating them to the network.202

The original RoI Extraction Layer architecture is composed only by a RoI Pooler and a mathematical function to select the203

FPN layer on which apply the RoI Pooler to extract the features. In Figure 5, the GRoIE four-stage architecture is shown. Given204

a proposed region, a fixed-size RoI is pooled from each FPN layer (stage 1). Then, the n resulting feature maps, one for each205

FPN layer, are pre-processed separately (stage 2) and summed together (stage 3) to form a single feature map. In the end, after a206

post-processing stage (stage 4), global information is extracted. The pre- and post-processing stages are composed of a single or207

multiple layers, depending on the configuration which provides the best performance (see experimental section for details). These208

could be formed by a simple convolutional layer or a more advanced attention layer like Non-local block [46].209

The GRoIE architecture guarantees an equal contribution of all scales, benefiting from the embodied information in all FPN210

layers and overcoming the limitations of choosing an arbitrary FPN layer. This procedure can be applied to both object detection211

and instance segmentation. Our work focused on even improving the GRoIE model and evaluating new building blocks for the pre-212

and the post-processing stages. In particular, as we did for the FCC, we tested bigger and rectangular kernels for the convolutional213

layers, to better exploit the close correlation between neighboring features. The advantage to involve near features is even more214

evident when applied to a more sophisticated non-local module, which includes an attention mechanism. However, as we will see215

in the ablation study, it is extremely important to do it in the right point of the chain.216
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4. Experiments217

This section reports the extensive experiments carried out to demonstrate the effectiveness of the proposed architecture. After218

introducing the dataset, the evaluation metrics, the implementation details and the table legend, the following subsections report219

the results on the three main novelties of the architecture, namely the Recursively Refined R-CNN (R3-CNN), the Fully Connected220

Channels (FCC) and the Generic RoI Extraction layer (GRoIE). Finally, the last subsection shows how all these novelties together221

can bring performance benefits to several state-of-the-art instance segmentation architectures.222

4.1. Dataset and Evaluation Metrics223

Dataset. As the majority of recent literature on instance segmentation, we perform our tests on the MS COCO 2017 dataset [48].224

The training dataset consists of more than 117,000 images and 80 different classes of objects.225

Evaluation Metrics. We used the same evaluation functions offered by the python pycocotools software package, performed on226

the COCO minival 2017 validation dataset, which contains 5000 images.227

We report the mean Average Precision (AP) for both bounding box (BAP) and segmentation (S AP) tasks. The primary metric AP228

is computed as average over results with IoU thresholds from 0.5 to 0.95. Other metrics include AP50 and AP75 with 0.5 and 0.75229

minimum IoU thresholds, respectively. Separate metrics are calculated for small (APs), medium (APm) and large (APl) objects.230

4.2. Implementation Details231

In order to perform a fair comparison, we use same the hardware and software configuration to carry out the experiments.232

When available, the original code released by the authors was used. Otherwise, we used the corresponding implementations in233

MMDetection [49] framework. In the case of HTC, we do not consider the semantic segmentation branch.234

Unless mentioned otherwise, the following configuration has been used. We performed a distributed training on 2 servers, each235

one equipped with 2x16 IBM POWER9 cores and 256 GB of memory plus 4 x NVIDIA Volta V100 GPUs with Nvlink 2.0 and236

16GB of memory. Each training consists of 12 epochs with Stochastic Gradient Descent (SGD) optimization algorithm, batch size237

2 for each GPU, an initial learning rate of 0.02, a weight decay of 0.0001, and a momentum of 0.9. The steps to decay the learning238

rate was set at epochs 8 and 11. Regarding the images, we fixed the long edge and short edge of the images to 1333 and 800,239

maintaining the aspect ratio. ResNet50 [50] was used as the backbone.240
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# Model # Params Lt H BAP S AP Mem Model Speed
1 Mask (1x) 44,170 K 1 1 38.2 34.7 4.4G 339M 11.6
2 Mask (3x) 44,170 K 1 1 39.2 35.5 4.4G 339M 11.6
3 HTC 77,230 K 3 3 41.7 36.9 6.8G 591M 3.3
4 R3-CNN (naive) 43,912 K 3 1 40.9 37.2 6.7G 337M 3.4
5 R3-CNN (deeper) 60,604 K 3 2 41.8 37.5 7.0G 464M 3.4

Table 2. Comparison between R3-CNN, Mask R-CNN, and HTC. Column Model contains the number of parameters (millions). 3x means training with 36
epochs.

4.3. Table Legend241

To ease the understanding of the following tables, we shortly introduce the notation used. Since R3-CNN has the loop both in242

training and evaluation phase, we denote the number of training and evaluation loops as Lt and Le, respectively. Whenever only Lt243

is reported, Le is intended to have the same value of Lt. In the case of HTC, Lt corresponds to the number of stages.244

The column H (heads) specify how many pairs of detection (B) and mask (M) heads are included. In the case of multiple pairs245

(H > 1), the column Alt. (alternation) gives information about which one is used for each loop. For example, in row #3 of Table 5,246

the model is using three loops for training and evaluation, and two pairs of B and M. The column Alt reports ”abb”, meaning that247

B1 and M1 are used only in the first loop, while B2 and M2 are used for the second and third loops.248

The columns MIoU , L2C, NLb, NLa are flags indicating the presence of the Mask IoU branch with the associated loss, the249

substitution of the FC layers with convolutions (L2C), inside the detection head (in Table 6) or Mask IoU branch (in Table 7), and250

finally, the introduction of our non-local blocks with kernels 7× 7 before (NLb) and after (NLa) the L2C convolutions. The column251

Speed refers to the number of processed images per second on evaluation phase with batch size equal to one and one GPU.252

4.4. Results for Recursively Refined R-CNN (R3-CNN)253

4.4.1. Preliminary analysis of R3-CNN254

Description. We compared Mask R-CNN and HTC with two R3-CNN models: naive (one pair of bounding box B and mask M)255

and deeper (two pairs, with the alternation aab). To carry out a fair comparison, the Mask R-CNN was trained with 36 epochs256

instead of 12, and the optimal configuration for the HTC network was used.257

Results. The naive version has the biggest reduction in terms of the number of parameters, loosing 0.8 in BAP but gaining 0.3 in258

S AP compared to HTC. Regarding the deeper version, it matches the HTC in BAP and further increases the gap in S AP, while still259

saving a considerable number of parameters. Both of them require the same amount of memory, as well as the inference time as260

HTC. This is due to the fact that the training procedure and the utilized components are very similar to those of HTC.261
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Compared to Mask R-CNN, our R3-CNN (in both versions) outperforms it, even when Mask R-CNN is trained for a triple262

number of epochs (row #2). This can be explained by the very different way of training the network, helping to achieve a higher263

quality of the bounding boxes during the training. Moreover, the training phase for R3-CNN is faster than Mask R-CNN (about 25264

hours versus 35 hours), although R3-CNN has the disadvantage of requiring the loop mechanism also in the evaluation phase.265

4.4.2. Ablation study on the training phase266

Description. In these experiments, the network is trained with a number of loops varying from 1 to 4. The number of loops for the267

evaluation changes accordingly. The basic architecture for all the tests in these experiments is the naive R3-CNN with single pair of268

detection and mask heads. It means that all the R3-CNN models have the same number of parameters but they are trained more if269

the number of loop increases.270

271

Results. The results are reported in Table 3. Using a single loop (row #2) not only produces a similar IoU distribution to Mask272

R-CNN as mentioned in Section 3.1, but also leads to a similar performance. With two loops (row #3), we can reach almost the273

peak performance of R3-CNN thanks to the rebalancing of IoU, surpassing the performance of Mask R-CNN. In the case of three274

loops, the network provides more high-quality proposals, reaching even better performance on both tasks. Adding four loops for275

training does not improve object detection task but still improves segmentation.276

4.4.3. Ablation study on the evaluation phase277

Description. In this experiment we focus on how the results are affected by the number of loops in the evaluation phase. We278

consider the naive architecture mentioned above as the pre-trained model and we vary the number of evaluation loops.279

280

Results. From Table 4, we observe that we can not avoid to use the loop in the evaluation phase, because it plays the role to provide281

high quality RoIs to the network. Though, already with two loops the AP values are significantly better (row #3). From four loops282

onward, the performance tends to remain almost stable in both detection and segmentation tasks.283

# Model Lt H BAP S AP

1 Mask 1 1 38.2 34.7
2

R3-CNN

1 1 37.6 34.6
3 2 1 40.4 36.7
4 3 1 40.9 37.2
5 4 1 40.9 37.4

Table 3. Impact of the number of training loops in a R3-CNN. Row #4 is the naive R3-CNN in Table 2.
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4.4.4. Ablation study on a two-heads-per-type model284

Description. In this experiment, we evaluate the performance on changing the number of loops and the alternation between the285

pairs of heads in the architecture. It is worth emphasizing that increasing the number of loops does not change the number of286

weights.287

288

Results. Table 5 reports the results. In case of two loops (row #2), the model shows good precision, but still worse than HTC. With289

three loops and aab alternation (row #4), R3-CNN surpasses HTC in both task.290

With four loops (rows #6 and #7), the performances are all higher than HTC, especially for aabb alternation (row #6). Finally,291

with five (row #8) loops the performance is not increasing anymore.292

4.5. Results for Fully Connected Channels (FCC)293

4.5.1. Ablation study on the Detection Head294

Description. In this section, we evaluate the effect of the head redesign toward a fully convolutional approach. We tested both L2C295

versions (see Fig. 4 (b-d) and Fig. 4(c-e) in orange) and the introduction of the non-local layer with larger kernels before (column296

NLb) the L2C convolutions (see Figure 4(d) and (e)) and, to have a more complete ablation study, also after them (column NLa). In297

order to provide a more comprehensive analysis, the case of two heads per type (column H) and four loops during training (column298

Lt) were also considered.299

Results. Table 6 summarizes the results. As expected, the presence of only L2C (see Fig. 4(b)) has an impact on performance (see300

row #2 vs #3). Rectangular convolutions (row #4 and Fig. 4(c) and (e)) help to almost completely mitigate this loss, approaching301

the original performance (row #2), but with the advantage of lowering the number of parameters and speeding up the execution302

compared to row #3.303

The non-local block before L2C (row #5) boosts the performance, matching BAP of HTC and surpassing its S AP by a good304

# Model Lt H Le BAP S AP

1 Mask 1 1 1 38.2 34.7
2

R3-CNN

3 1 1 37.7 35.1
3 3 1 2 40.5 36.9
4 3 1 3 40.9 37.2
5 3 1 4 40.8 37.2
6 3 1 5 40.9 37.3

Table 4. Impact of evaluation loops Le in a three-loop and one-head-per-type R3-CNN model. Row #4 is the naive R3-CNN in Table 2.
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# Model Lt H Alt. BAP S AP

1 HTC 3 3 abc 41.7 36.9
2

R3-CNN

2 2 ab 40.9 36.5
3 3 2 abb 41.8 37.2
4 3 2 aab 41.8 37.5
5 3 2 aba 41.5 37.2
6 4 2 aabb 42.1 37.7
7 4 2 abab 41.9 37.6
8 5 2 aabbb 41.8 37.5

Table 5. The impact of the number of training loops and pair alternation in two-heads-per-type (two pairs B/M) in the R3-CNN.

# Model Lt H L2C NLb NLa BAP S AP Speed # Params (M)
1 HTC 3 3 41.7 36.9 3.3 77.2
2

R3-CNN

3 1 40.9 37.2 3.4 43.9
3 3 1 7 × 7 39.8 36.4 2.2 32.2
4 3 1 7 × 3→ 3 × 7 40.6 36.8 2.8 32.7
5 3 1 7 × 7 X 41.8 37.6 1.0 38.6
6 3 1 7 × 3→ 3 × 7 X 41.7 37.6 1.2 37.9
7 3 1 7 × 7 X X 41.8 37.6 0.9 39.0
8

R3-CNN

4 2 41.9 37.5 2.9 60.6
9 4 2 7 × 7 41.4 37.2 1.8 37.1

10 4 2 7 × 3→ 3 × 7 41.0 37.1 2.4 38.3
11 4 2 7 × 7 X 42.9 38.1 0.8 50.0
12 4 2 7 × 3→ 3 × 7 X 42.6 37.8 0.9 51.1

Table 6. Impact of FCC module configurations applied to R3-CNN detector. Row #2 is the R3-CNN in row #4 of Table 2.

margin. Conversely, its introduction after L2C does not bring any benefits.305

In the case of two heads per type and four loops, L2C produces higher performance (see rows #9 and #8) compared to row #3.306

Rectangular convolutions (row #10) worsen the performance compared to row #9, but have the advantage of a good increase in307

speed. As in the previous case, the introduction of our non-local module (row #11 and #12) produces a good performance boost308

with respect to the model without them (row #9 and #10).309

To summarize, FCC with only L2C makes the network lighter, reducing the wight by 14 to 18 percent, while slightly worsening310

the performance compared to using FC layers. Moreover, a boost in performance is achieved by the non-local block inserted before311

L2C, surpassing the original performance with a good margin, albeit at the cost of a higher execution time.312

4.5.2. Ablation study on Mask IoU module313

Description. In order to increase performance even further, we borrowed the Mask IoU learning task from [45] and redesigned its314

branch to introduce as few weights as possible. After testing the original Mask IoU branch, as done previously on detection head,315

we conducted an ablation study. We considered two baselines: a lighter (row #2) and a better-performing (row #8) model in Table316

7. They also correspond to rows #6 and #11 in Table 6, respectively.317
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318

# Model Lt H MIoU L2C NLb NLa BAP S AP Speed # Params (M)
1 HTC 3 3 41.7 36.9 3.3 77.2
2

R3-CNN

3 1 41.7 37.6 1.2 37.9
3 3 1 X 41.6 38.5 1.1 54.9
4 3 1 X 7 × 7 41.7 38.4 1.1 43.2
5 3 1 X 7 × 3→ 3 × 7 41.8 38.4 1.1 44.3
6 3 1 X 7 × 7 X 41.4 38.3 1.1 49.6
7 3 1 X 7 × 7 X X 41.6 38.3 1.1 50.0
8

R3-CNN

4 2 42.9 38.1 0.8 50.0
9 4 2 X 42.7 38.6 0.9 66.3
10 4 2 X 7 × 7 42.7 38.7 0.8 54.6
11 4 2 X 7 × 7 X 42.8 38.7 0.8 61.0
12 4 2 X 7 × 7 X X 42.7 38.6 0.8 61.4

Table 7. Impact of FCC to Mask IoU branch.

Results. Table 7 summarizes the results. As expected, original Mask IoU module (rows #3 and #9) improves the segmentation.319

Differently from the detection head, the redesigned Mask IoU branch with only L2C with 7×7 kernels (rows #4 and #10) is enough320

to maintain almost the same performance compared to the original branch (rows #3 and #9), but introduces few new parameters and321

almost does not affect the execution time. Contrary to the previous experiment, neither rectangular convolutions (row #5) nor our322

non-local blocks (rows #6 and #7) bring any noticeable improvement.323

4.6. Results on Generic RoI Extractor (GRoIE)324

For the following experiments, we chose the Faster R-CNN as the baseline to have a generic and lightweight model to compare325

with. Our goal, for the following experiments, is to find the best layers for the pre- and post-processing. Conv 3×3, 5×5, 7×7 mean326

we are using 2D convolution with kernel 3×3, 5×5, 7×7 , respectively. Conv 7×3→ 3×7 means that we use two consecutive 2D327

convolutional layers with 7 × 3 and 3 × 7, respectively. For the Non-local block [46], we tested the original architecture composed328

by convolutional layers with kernel 1 × 1 and a customized version, composed by convolutional layers with kernel 7 × 7.329

4.6.1. Pre-processing module analysis330

Description. For this ablation analysis, we did not apply any post-processing. We tested two types of pre-processing: a convolu-331

tional layer with different kernel sizes and a non-local block.332

333

Results. Table 8 shows the results. The increase in the kernel size improves the final performance, confirming the close correlation334

between neighboring features. The use of a rectangular convolution did not help as it did in Section 4.5.1 for the detection head. In335
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Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
Conv 3 × 3 38.1 58.7 41.5 22.2 41.7 49.0
Conv 5 × 5 38.2 59.2 41.6 22.5 41.6 49.0
Conv 7 × 7 38.3 59.2 41.6 22.7 41.7 49.4
Conv 7 × 3→ 3 × 7 37.9 58.5 41.3 22.0 41.5 49.1
Non-local 1 × 1 37.7 58.9 40.7 22.0 41.4 48.5
Non-local 7 × 7 38.4 59.2 41.9 22.5 42.1 49.5

Table 8. Ablation analysis on pre-processing module.

the case of the non-local module, the original one does not have the expected benefit. Our non-local module with a larger kernels336

gives a slight advantage over the others, but not enough to justify the introduced slowdown.337

4.6.2. Post-processing module analysis338

Description. In this experiment we analyze the post-processing module, by not applying any pre-processing.339

340

Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
Conv 3 × 3 37.3 58.3 40.4 21.2 41.0 48.5
Conv 5 × 5 37.8 58.7 40.9 22.2 41.2 48.8
Conv 7 × 7 37.9 59.0 41.2 21.5 41.8 48.6
Conv 7 × 3→ 3 × 7 37.4 58.4 40.5 21.4 40.9 48.7
Non-local 1 × 1 37.8 59.1 40.5 22.0 41.7 48.3
Non-local 7 × 7 38.7 59.7 42.3 22.7 42.4 49.7

Table 9. Ablation analysis on post-processing module.

Results. Comparing Tables 8 and 9, we can notice that performance trend is the same. However, in the post-processing, the341

convolutional performance increment is less evident. Contrary to the original non-local, our version with 7 × 7 kernels obtained a342

considerably high improvement.343

4.6.3. GRoIE module analysis344

Description. Finally, we tested the GRoIE architecture with the best-performing pre- and post-processing modules: a 7 × 7 convo-345

lution as pre-processing and non-local with 7 × 7 kernels as post-processing.346

347

Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
GRoIE 39.3 59.8 43.0 23.0 42.7 50.8

Table 10. Best GRoIE configurations.
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Bounding Box Mask
# Method AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 Mask 37.3 58.9 40.4 21.7 41.1 48.2 34.1 55.5 36.1 18.0 37.6 46.7
2 CondInst 38.3 57.3 41.3 22.9 41.9 49.0 34.4 54.9 36.6 15.8 37.9 49.5
3 HTC 41.7 60.4 45.2 24.0 44.8 54.7 36.9 57.6 39.9 19.8 39.8 50.1
4 SBR-CNN 42.0 61.1 46.2 24.2 45.3 55.3 39.2 58.7 42.4 20.6 42.6 54.2
5 GC-Net 40.5 62.0 44.0 23.8 44.4 52.7 36.4 58.7 38.5 19.7 40.2 49.1
6 HTC+GC-Net 43.9 63.1 47.7 26.2 47.7 57.6 38.7 60.4 41.7 21.6 42.2 52.5
7 SBR-CNN+GC-Net 44.8 64.6 49.0 27.2 48.0 58.8 41.3 62.1 44.7 23.1 44.6 56.4
8 DCN 41.9 62.9 45.9 24.2 45.5 55.5 37.6 60.0 40.0 20.2 40.8 51.6
9 HTC+DCN 44.7 63.8 48.6 26.5 48.2 60.2 39.4 61.2 42.3 21.9 42.7 54.9

10 SBR-CNN+DCN 45.3 64.6 49.7 27.2 48.8 60.6 41.5 62.2 45.0 22.9 45.1 58.0

Table 11. Performance of the state-of-the-art models compared with SBR-CNN model. Bold and red values are respectively the best and second-best
results.

Results. From Table 10, we can observe a great improvement in the performance, surpassing the original AP by 1.9%.348

4.7. Experiments on SBR-CNN349

Description. In this experiment, we compare Mark-RCNN, CondInst [42] and HTC with our SBR-CNN (Self-Balanced R-CNN)350

model with the following configuration: the best-performing three-loop model with the rebuilt detection head and MaskIoU head351

(see row #4 of Table 7), with our GRoIE having its best configuration (see Table 10) in place of both Bounding Box and Mask352

RoI extractors. In addition, we take into account GC-Net [31] and Deformable Convolutional Networks (DCN) [51], investigating353

whether the performance benefit we bring is independent of the underlying architecture. To be as fair as possible, we compare also354

GC-Net and DCN joined with HTC. For example, HTC+GC-Net means that we considered the combination of both architectures.355

356

Results. In Table 11 we see that, independently from the architecture, our SBR-CNN reaches the highest AP values in all metrics in357

both tasks, even if the counterpart is merged with HTC. More specifically, fusing other models with SBR-CNN not only maintains358

the performance increment but also increases the gap in favor of SBR-CNN.359

In case of BAP, for instance, looking at the BAP in the standalone case (row #4), SBR-CNN outperforms HTC (row #3) by a360

0.3% margin only. But, when combined with GC-Net and DCN, this improvement is even higher (0.9% in the case of GC-Net -361

row #7 vs #6 - and 0.6% in the case of DCN - row #10 vs #9). Considering all metrics, the improvement is up by 1.5% (see AP50362

in row #7 vs #6).363

In case of S AP, it fluctuates from +2.1% up to +2.6%, when comparing SBR-CNN+GC-Net with HTC+GC-Net (row #7 vs #6).364

Considering all metrics, the highest improvement is +4.1% (see APl in row #10 vs #9).365
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Fig. 6. Examples of instance segmentation comparison between Mask R-CNN (left) and SBR-CNN (right), filtered with a class confidence threshold of 0.7.

5. Conclusions and future works366

We propose a new object detection and instance segmentation architecture called SBR-CNN, which addresses two of intrinsic367

imbalances which affect two-stage architectures descending from Mask R-CNN: the IoU Distribution Imbalance of positive input368

bounding boxes with the help of a new mechanism for refining RoIs through a loop between detection head and RoI extractor, and a369

loop for mask refinement inside the segmentation head. Furthermore, we address the Feature Imbalance that afflicts the FPN layers,370

proposing a better performing RoI Extractor which better integrates low- and high-level information. Finally, we investigate the371

effect of a redesign of the model head toward a lightweight fully convolutional solution (FCC). Our empirical studies confirmed that372

if the task involves classification, there is the necessity to maintain some spatial sensitivity information by the enhanced non-local373

block. Otherwise, when a regression task is involved, a convolutional head is enough.374

Our SBR-CNN proves to be successfully integrated into other state-of-the-art models, reaching a 45.3% AP for object detection375

and 41.5% AP for instance segmentation, using only a small backbone such as ResNet-50. In Figure 6, there are some examples of376

instance segmentation of SBR-CNN compared with a Mask R-CNN. Many times, our detections are less overconfident and have a377

more precise segmentation (see the bird on the top). Our SBR-CNN model also has a tendency to have fewer false positives (see378
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Fig. 7. Examples of instance segmentation comparison between HTC (left) and SBR-CNN (right), filtered with a class confidence threshold of 0.7.

the people on bottom images), maybe as a consequence of less high confidence values. In Figure 7 we also compared our model379

with results obtained by HTC. Our model could find more objects inside the images, but also for objects found by both network, we380

can obtains a better segmentation. The most evident case is the bottommost case.381

The SBR-CNN model, formed by the contributions R3-CNN, FCC and GRoIE also carries with it some limitations. In particular,382

in the lighter R3-CNN naive version, the segmentation head is really effective, making R3-CNN ideal as a replacement for HTC. The383

same consideration cannot be made for the detection head. To compensate for the decrease in performance, it is possible to either384

use an intermediate version such as the deeper, or use naive R3-CNN in conjunction with FCC, depending how much is critical385

the need to decrease as much as possible the number of parameters. If the second option is chosen, the system has the advantage386
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of making the performance higher and decreasing the size in terms of weights, but with the disadvantage of being much slower on387

evaluation. For this reason, in future, it would be advisable to explore equivalent solutions for FCC but which has lower execution388

times. Finally, it would be interesting to evaluate in more detail why using two Non-local attention modules, both in GRoIE and in389

FCC, does not leads to an increase in performance as expected.390
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