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THE SURFACE DIFFUSION FLOW WITH ELASTICITY IN THREE

DIMENSIONS

NICOLA FUSCO, VESA JULIN, AND MASSIMILIANO MORINI

Abstract. We establish short-time existence of a smooth solution to the surface diffusion
equation with an elastic term and without an additional curvature regularization in three
space dimensions. We also prove the asymptotic stability of strictly stable stationary sets.
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1. Introduction

Morphological evolution of strained elastic solids, driven by stress and surface mass trans-
port occurs in many physical systems. One instance is the hetero-epitaxial growth of elastic
films when a lattice mismatch between film and substrate is present. Another example is
given by the phase separation in several small connected phases within a common elastic
body, which takes place in certain alloys under specific temperature conditions. A third situ-
ation is represented by the nucleation and evolution of material voids inside a stressed elastic
solid. From the mathematical point of view, such phenomena are related to a free energy
functional, which is typically given by the sum of the stored elastic energy and the surface
energy accounting for the surface tension along the interface between the phases. In this con-
text the equilibria are identified with the local or global minimizers under a volume constraint
of the aforementioned energy.

All these variational problems can be regarded as non-local isoperimetric problems, where
the non-locality is given by the elastic term. They are very well studied in the physical and
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2 NICOLA FUSCO, VESA JULIN, AND MASSIMILIANO MORINI

numerical literature, see for instance [26, 29, 40, 41, 42]. Concerning rigorous mathematical
analysis, we refer to [6, 8, 10, 17, 21, 25, 28] for some existence, regularity and stability results
related to a variational model describing the equilibrium configurations of two-dimensional
epitaxially strained elastic films, and to [9, 16] for results in three-dimensions. A hierarchy of
variational principles to describe equilibrium shapes in the aforementioned contexts has been
introduced in [30].

In what follows we consider the following prototypical energy

(1.1) J (F ) :=
1

2

ˆ
Ω\F

CE(uF ) : E(uF ) dx+H2(∂F ) .

The associated minimum problem under a volume constraint can be used to describe the
equilibrium shapes of voids in elastically stressed solids (see for instance [41]). Here, the set
F ⊂⊂ Ω represents the shape of the void that has formed within the elastic body Ω (an
open subset of R3), uF stands for the equilibrium elastic displacement in Ω \ F subject to a
prescribed boundary conditions uF = w0 on ∂Ω (see (2.12) below), C is the elasticity tensor
of the (linearly) elastic material, E(uF ) := (DuF + DTuF )/2 denotes the elastic strain of
uF , and H2 stands for the surface measure. The presence of a nontrivial Dirichlet boundary
condition uF = w0 on ∂Ω is what causes the solid Ω \ F to be elastically stressed. We refer
to [15, 20] for related existence, regularity and stability results in two dimensions. See also
[11] for a relaxation result valid in all dimensions for a variant of (1.1).

In this paper we study the morphological evolution of shapes towards equilibria of the func-
tional (1.1), driven by stress and surface diffusion. Assuming that relaxation to equilibrium in
the bulk occurs at a much faster time scale, see [38], we have, according to the Einstein-Nernst
equation, that the evolution is governed by the following volume preserving law

(1.2) Vt = ∆∂Ftµt on ∂Ft

where Vt denotes the outer normal velocity of the evolving surface ∂Ft at time t and ∆∂Ftµt
stands for the Laplace-Beltrami operator acting on the chemical potential µt along ∂Ft. In
turn, since µt is given by the first variation of the free-energy functional J evaluated at Ft
and taking into account (2.14) below, (1.2) reads as

(1.3) Vt = ∆∂Ft

(
HFt −Q(E(uFt))

)
,

where HFt is the sum of the principal curvatures of ∂Ft, with the orientation given by the outer
normal, uFt is the elastic equilibrium in Ω \ Ft subject to uFt = w0 on ∂Ω and Q(E(uFt)) :=
1
2CE(uFt) : E(uFt). Note that the last quantitity involves the traces of the gradient of the
elastic equilibrium on the evolving boundary.

From the mathematical point of view, (1.3) is a fourth order geometric parabolic equation
coupled with the elliptic Lamé system, which is solved time by time in the (evolving) bulk.
Note also that when w0 = 0 the elastic term vanishes and thus (1.3) reduces to the pure
surface diffusion flow

(1.4) Vt = ∆∂FtHFt

for evolving surfaces, studied in [19] (in the general n-dimensional case). Thus, we may
also regard (1.3) as a sort of canonical nonlocal perturbation of (1.4) by an additive elastic
contribution.

As observed already by Cahn and Taylor [14] for (1.4), the equation (1.3) can be seen
formally as the gradient flow of the energy functional J with respect to a suitable Riemannian
metric of H−1-type, see for instance [24, Remark 3.1].
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Let us mention that in the physical literature a variant of the energy (1.1) with a curvature
regularization term has also been considered, see [3, 12, 18, 31, 40, 41]. This in turn leads to
a variant of (1.3) with a sixth order regularization term. In particular, in [23] the following
regularized energy

Jε(F ) :=
1

2

ˆ
Ω\F

CE(uF ) : E(uF ) dx+

ˆ
∂F

(
1 +

ε

p
|HF |p

)
dH2

and the associated evolution equation

(1.5) Vt = ∆∂Ft

[
HFt−Q(E(uFt))−ε

(
∆∂Ft(|HFt |p−2HFt)−|HFt |p−2HFt

(
p−1
p H2

Ft−2K∂Ft

))]
are considered in the context of periodic graphs modeling the evolutions of epitaxially strained
elastic films (see also [22] for the two-dimensional version of the same equation). Here K∂Ft

stands for the Gaussian curvature of ∂Ft, ε > 0 is a small parameter, and p > 2. The local-
in-time existence and the asymptotic stability results proven in [23] (see also [22, 39]) rely
heavily on the presence of the curvature regularization, which makes the elastic contribution
a lower order term easily controlled by the sixth order leading terms of the equation. In
fact, all the estimates provided there are ε-dependent and degenerate as ε → 0+. This is
not surprising as the nonlocal elastic term in (1.1) cannot be treated simply as a lower order
perturbation of the perimeter, as shown by the fact that its presence may lead to formation
of singularities in the static case (see [25] and references therein), and the numerical analysis
in [41] suggests that in the evolutionary case the flow may form cusp-like singularities. Thus
the case ε = 0 requires completely different methods.

A first breakthrough in this direction has been obtained in [24], where short time existence
result for (1.3) was proved in the two-dimensional case. In [24] we also proved the asymptotic
stability of strictly stable stationary sets. However, the techniques developed there cannot
be applied to higher dimensions, as some of the crucial estimates rely on the fact that an
L2-bound of the curvature of the evolving curves provides uniform C1,α-bounds. This is of
course no longer true in higher dimensions. Moreover, the higher dimensional case is of course
much more involved from the geometric point of view.

In this paper we are able to address equation (1.3) in the physical three-dimensional case
and we establish short time existence and uniqueness of a solution starting from sufficiently
regular initial sets, see Theorem 4.4. We highlight that Theorem 4.4 provides also quantitative
estimates of the k-th order derivatives of the solution depending only on the H3-norm of
the initial datum, somewhat in the spirit of those proved in [32]. We also remark that in
general one cannot expect global-in-time existence. Indeed, even when no elasticity is present,
singularities such as pinching may develop in finite time, see for instance [27].

In the second main result of the paper we establish global-in-time existence and study the
long-time behavior for a class of initial data: we show that strictly stable stationary sets, that
is, sets G that are stationary for the energy functional J and with positive second variation
∂2J (G) are exponentially stable for the flow (1.3). More precisely, if the initial set F0 is
sufficiently close in H3 to the strictly stable set G and has the same volume, then the flow
(1.3) starting from F0 exists for all times and converges to G exponentially fast in Ck for
every k as t→ +∞, see Theorem 5.1 for the precise statement.

A few comments on the proofs are in order. Concerning short-time existence, as in [24]
our strategy is based on the natural idea of thinking of the elastic contribution Q as a forcing
term. More precisely, we set up a fixed point argument on the map f 7→ Q(E(u

F ft
)), where
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F ft is the solution to the forced flow

(1.6) Vt = ∆∂Ft

(
HFt − f

)
.

Major technical difficulties originate from the already mentioned fact that the nonlocal elastic
term is not in general lower order with respect to the perimeter. One of the main technical
breakthroughs obtained in the present paper is a new delicate elliptic estimate on the higher
order derivatives of Q(E(uFt)) in terms of the higher order norms of the evolving boundaries
∂Ft, see Theorem 4.1. The crucial and somewhat surprising point of this result is the lin-
ear structure of the estimate, which allows us to show that the map f 7→ Q(E(u

F ft
)) is a

contraction.
Concerning the asymptotic stability analysis, we adapt to the present situation the methods

developed in [1] for the surface diffusion flow without elasticity (see also [24]). The rough idea
is to look at the asymptotic behavior of the map

t 7→
ˆ
∂Ft

∣∣∇∂Ft(HFt −Q(E(uFt)
)∣∣2 dH2 ,

where ∇∂Ft stands for the tangential gradient on ∂Ft, and to show that it is decreasing and
that in fact it vanishes with exponential rate as t → +∞. A crucial role in this analysis
is played by the energy identity proven in Proposition 5.3 and by the estimates on the flow
provided by Theorem 4.4. Let us remark that such estimates allow us also to considerably
simplify the arguments of [1] and to obtain stronger asymptotic convergence results.

This paper is organized as follows. In Section 2 we set up the problem, introduce the
main notation and present some differential geometry preliminaries that will be useful in the
subsequent analysis. We also collect several auxiliary results concerning the energy functional
J in (1.1). In particular, we describe some properties of strictly stable stationary sets that are
crucial for the asymptotic stability analysis carried out in Section 5. Section 3 is devoted to the
study of (1.6), while the short-time existence theory for the flow (1.3) is addressed in Section 4.
In Section 6 we briefly illustrate how to apply our main existence and asymptotic stability
results in the case of evolving periodic graphs, that is in the geometric setting considered
in [23]. In particular, in Theorem 6.1 we address the exponential asymptotic stability of
flat configurations, thus extending to the evolutionary setting the results of [9]. In the final
Appendix we collect the proofs of two technical lemmas and provide the derivation of the
energy identity stated in Proposition 5.3.

From a technical point of view the three dimensions enter in a crucial way via the Sobolev
embedding and affect the regularity of the space where the fixed point argument is set. It
would be probably possible to extend the methods to higher dimensions at the expense of
setting the problem in more regular spaces which in turn would require to differentiate the
equation more and more as the dimension increases.

We conclude this introduction by mentioning that it would be interesting to investigate
whether the flow (1.5) studied in [23] converge to (1.3) as ε → 0+. This issue could be
probably addressed by adapting the methods developed in [7].

2. Preliminaries

2.1. Geometric preliminaries. In this section we introduce notation related to Riemannian
geometry. As an introduction to the topic we refer to [4, 34]. Let Σ ⊂ Rn be a smooth (n−1)-
dimensional compact hypersurface without boundary. Since Σ is embedded in Rn it has a
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natural metric, denoted by g, induced by the Euclidean metric. We thus have a Riemannian
manifold (Σ, g) and we denote the inner product for vector fields X,Y as 〈X,Y 〉,

〈X,Y 〉 = g(X,Y ) = gijX
iY j ,

where the last expression is in local coordinates. Throughout the paper we adopt the Einstein
summation convention. Similarly we define the inner product of covector fields ω, η, which in
local coordinates can be written as

〈ω, η〉 = gijωiηj ,

where gij is the inverse matrix of gij . The inner product extends to
(
k
0

)
-tensor fields T = Ti1···ik

and S = Sj1···jk as

〈T, S〉 = gi1j1 · · · gikjkTi1···ikSj1···jk .

The norm of a tensor T is then |T | =
√
〈T, T 〉 and we have the inequality 〈T, S〉 ≤ |T ||S|.

Given a
(
k
0

)
-tensor field T we raise the first index by T i1i2···ik = gi1lTl i2···ik and thus we obtain

a
(
k−1

1

)
-tensor field. We may thus write the above inner product as

〈T, S〉 = T j1···jkSj1···jk .

The trace of a
(
k
0

)
-tensor field T , with k ≥ 2, on the first two indeces is trT = gjlTjl i3···ik .

We denote the Riemannian connection on (Σ, g) by ∇ and ∇kT = ∇i1 · · · ∇ikT means the
k-th covariant derivative of a tensor field T . There is a slight danger of confusion, since ∇kf
also denotes the k-th component of the gradient of a function f defined by raising the index
of ∇f as ∇kf = gki∇if . However, the meaning of ∇kf will be clear from the context. We
also recall that ∇ is compatible with the metric g which means that ∇g = 0.

In local coordinates the components of the covariant derivative of a vector field X = Xi

and of a covector field ω = ωk are

∇jXi =
∂Xi

∂xj
+ ΓijkX

k and ∇jωk =
∂ωk
∂xj
− Γljkωl,

where Γkij are the Christoffel symbols given in local coordinates by

Γkij =
1

2
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
.

The covariant derivative of a
(
k
l

)
-tensor field T = T j1···jli1···ik is thus a

(
k+1
l

)
-tensor field which in

local coordinates can be written as

∇mT j1···jli1···ik =
∂T j1···jli1···ik
∂xm

+
l∑

s=1

T j1···p···jli1···ik Γjsmp −
k∑
s=1

T j1···jli1···p···ikΓpmis .

The divergence of a vector field Xi is divX = ∇iXi = ∂Xi

∂xi
+ ΓiikX

k and the Laplace-
Beltrami of a function f is

∆f = div∇f = ∇i∇if.
This can be written as the trace of the covariant Hessian ∇2f as

∆f = tr∇2f = gij∇i∇jf.
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We recall the divergence theorem for compact manifolds (without boundary), which states
that for a vector field X on Σ it holdsˆ

Σ
divX dHn−1 = 0.

This yields the integration by parts formula for a function f and a vector field Xˆ
Σ
Xi∇if dHn−1 = −

ˆ
Σ
f divX dHn−1.

The integration by parts formula generalizes to any
(
k
0

)
-tensor field T and

(
k+1

0

)
-tensor field

S as

(2.1)

ˆ
Σ
〈∇T, S〉 dHn−1 = −

ˆ
Σ
〈T, tr∇S〉 dHn−1,

where the trace is on the first two indeces of ∇S.
The Riemann curvature endomorhpism is a

(
3
1

)
-tensor field Rlijk defined such that for vector

fields X,Y, Z we have

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where ∇X is the covariant derivative in direction of X and ∇[X,Y ] is the Lie bracket, see
[4, Definition 2.15]. We adopt the convention to define the Riemann curvature tensor by
lowering the index to the end, i.e., Rijkl = glmR

m
ijk. The commutation formula of the covariant

derivatives for a vector field Xk thus becomes

(2.2) ∇i∇jXk −∇j∇iXk = gkmRijlmX
l

and for a covector field ωk

∇i∇jωk −∇j∇iωk = −gmlRijkmωl.

Similar formulas hold for the commutation of higher order covariant derivatives. In partic-
ular, throughout the paper we will make repeated use of the fact that for any integer k ≥ 3
there exists a constant C > 0 such that

(2.3) |∇i1 . . .∇ikf −∇iσ(1) . . .∇iσ(k)f | ≤ C
k−2∑
l=1

|∇lf |

for any choice of the indices i1, . . . , ik and for any permutation σ of {1, . . . , k}. We recall also
that ∇i∇jf = ∇j∇if for any i, j.

Given a positive integer k and p ∈ [1,∞] we denote by W k,p(Σ) the Sobolev space endowed
with the norm

‖f‖Wk,p(Σ) :=

k∑
m=0

(ˆ
Σ
|∇mf |p dHn−1

) 1
p

,

when p ∈ [1,∞) and the obvious one when p =∞. Here ∇mf stands for the m-th covariant
derivative of f . As customary, when p = 2 we shall always write Hk instead of W k,2. We
further define the norms ‖f‖Ck,α(Σ), ‖f‖Hk+1/2(Σ) and ‖f‖H−1/2(Σ) with k ∈ N and α ∈ (0, 1),

in a standard way using the partition of unity. Then the standard embedding theorems for
smooth domains hold also in these spaces. Moreover, we recall the following well known
interpolation inequalities, see [35, Proposition 6.5] and [5, Theorem 3.70].
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Lemma 2.1. Let Σ ⊂ Rn be a smooth (n−1)-dimensional compact manifold without boundary.
Let l,m, k be integers such that 0 ≤ l < m, k ≥ 0, 1 ≤ q, r ≤ ∞. There exists a constant C
with the following property: for every smooth covariant tensor T of order k, one has

(2.4) ‖∇lT‖Lp(Σ) ≤ C‖T‖ϑWm,r(Σ)‖T‖
1−ϑ
Lq(Σ),

where
1

p
=

l

n− 1
+ ϑ

(1

r
− m

n− 1

)
+ (1− ϑ)

1

q

for all ϑ ∈ [l/m, 1) for which p is nonnegative. Moreover, if f is a smooth function then

‖∇lf‖Lp(Σ) ≤ C‖∇mf‖ϑLr(Σ)‖f‖
1−ϑ
Lq(Σ),

for all ϑ ∈ [l/m, 1) for which p is nonnegative, provided l ≥ 1.

Remark 2.2. Note that (2.4) implies also that

‖∇lT‖Lp(Σ) ≤ C‖∇mT‖ϑLr(Σ)‖T‖
1−ϑ
Lq(Σ) + C‖T‖Lmax{q,r}(Σ) .

To see this it is enough to observe that ‖T‖Wm,r(Σ) = ‖T‖Wm−1,r(Σ) + ‖∇mT‖Lr(Σ) and that,
in turn, for every l = 1, . . . ,m− 1 using (2.4) and Young’s Inequality one gets

‖∇lT‖Lr(Σ) ≤ ε‖T‖Wm,r(Σ) + Cε‖T‖Lr(Σ).

We also recall that the Morrey’s inequality implies

‖f‖C1,α(Σ) ≤ C‖f‖W 2,p(Σ)

for p > n− 1 and α = 1− (n− 1)/p.
We will also need the following result, (see the proof of [5, Theorem 4.19]).

Lemma 2.3. Let f be a smooth function on Σ and let k be a positive integer. There is a
constant C, which depends on k and Σ, such that

(2.5) ‖∇2kf‖2L2(Σ) ≤
ˆ

Σ
(∆kf)2 dHn−1 + C‖f‖2H2k−1(Σ)

and

(2.6) ‖∇2k+1f‖2L2(Σ) ≤
ˆ

Σ
|∇(∆kf)|2 dHn−1 + C‖f‖2H2k(Σ).

Proof. We only proof (2.5) in the cases k = 1, 2, since the higher order cases and (2.6) are
analogous. Recall that Ricci tensor is given by Rjm = gikRijmk. Thus from (2.2), with X
equal to the covariant gradient of f and taking k = i, we get

∇i∇j∇if −∇j∆f = Rjl∇lf.

We multiply the above equality by ∇jf and use the integration by parts formula (2.1) to
obtain

−
ˆ

Σ
∇i∇jf ∇j∇if dHn−1 +

ˆ
Σ

(∆f)2 dHn−1 =

ˆ
Σ
Rij∇if ∇jf dHn−1.

This yields the claim since (recall that for any given function f , ∇i∇jf = ∇j∇if)

∇i∇jf ∇j∇if = ∇i∇jf ∇i∇jf = |∇2f |2.
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The argument in the case k = 2 is similar but more technical. We have by the previous
statement ˆ

Σ
|∆2f |2 dHn−1 ≥

ˆ
Σ
|∇2∆f |2 dHn−1 − C‖f‖2H3(Σ).

Hence, we need to prove that

(2.7)

ˆ
Σ
|∇2∆f |2 dHn−1 ≥

ˆ
Σ
|∇4f |2 dHn−1 − C‖f‖2H3(Σ).

First, by the integration by parts formula (2.1) we haveˆ
Σ
|∇2∆f |2 dHn−1 =

ˆ
Σ

(∇i∇j∇k∇kf) (∇i∇j∇l∇lf) dHn−1

= −
ˆ

Σ
(∇i∇i∇j∇k∇kf) (∇j∇l∇lf) dHn−1.

Then, using (2.3), we obtainˆ
Σ
|∇2∆f |2 dHn−1 ≥ −

ˆ
Σ

(∇k∇i∇i∇j∇kf) (∇j∇l∇lf) dHn−1 − C‖f‖2H3(Σ)

= −
ˆ

Σ
(∇i∇j∇kf) (∇i∇k∇j∇l∇lf) dHn−1 − C‖f‖2H3(Σ),

where the last equality follows by integration by parts. We proceed using formula (2.3) again
and integration by parts to deduceˆ

Σ
|∇2∆f |2 dHn−1 ≥ −

ˆ
Σ

(∇i∇j∇kf) (∇l∇i∇j∇k∇lf) dHn−1 − C‖f‖2H3(Σ)

= −
ˆ

Σ
(∇i∇l∇i∇j∇kf) (∇j∇k∇lf) dHn−1 − C‖f‖2H3(Σ)

≥ −
ˆ

Σ
(∇i∇i∇j∇k∇lf) (∇j∇k∇lf) dHn−1 − C‖f‖2H3(Σ)

=

ˆ
Σ

(∇i∇j∇k∇lf) (∇i∇j∇k∇lf) dHn−1 − C‖f‖2H3(Σ).

Thus we have (2.7), since (∇i∇j∇k∇lf) (∇i∇j∇k∇lf) = |∇4f |2. �

Remark 2.4. In the case k = 1 we have a more precise version of Lemma 2.3 for hypersur-
faces. It is clear that the proof of Lemma 2.3 implies thatˆ

Σ
|∇2f |2 dHn−1 ≤

ˆ
Σ

(∆f)2 dHn−1 + (
√
n− 1 + 1)

ˆ
Σ
|B|2|∇f |2 dHn−1,

where B denotes the (scalar) second fundamental form (see [34] for definition). This follows
from the fact that we may estimate the Ricci curvature by |Ric| ≤ (

√
n− 1 + 1)|B|2.

Remark 2.5. Using Lemma 2.1 we may write the statement of Lemma 2.3 in the following
way. For every ε > 0 there exists Cε > 0 such that

‖f‖2H2k(Σ) ≤ (1 + ε)

ˆ
Σ

(∆kf)2 dHn−1 + Cε‖f‖2L2(Σ)

and

‖f‖2H2k+1(Σ) ≤ (1 + ε)

ˆ
Σ
|∇(∆kf)|2 dHn−1 + Cε‖f‖2L2(Σ).
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Indeed, this follows by the interpolation inequality together with standard Young’s inequality

‖∇lf‖L2(Σ) ≤ C‖∇hf‖θL2(Σ)‖f‖
1−θ
L2(Σ)

≤ ε‖∇hf‖L2(Σ) + C(ε)‖f‖L2(Σ)

for every 1 ≤ l ≤ h− 1 and θ = θ(h, l) is given by Lemma 2.1.

For clarity we denote the standard inner product between two vectors x, y in Rn as x · y
and the differential of the map F : Rn → Rm by DF to distinguish them from the inner
product on manifold and from the covariant derivative. There is, however, a possibility of
confusion when we denote the divergence of a vector field X : Rn → Rn by divX, since “div”
also denotes the divergence of a vector field on manifold. We will denote the divergence of
a vector field on the manifold (Σ, g) by divg and in Rn by divRn if this is not clear from the
context.

When the manifold Σ is given by a boundary of a smooth bounded set F ⊂ Rn it has a
natural orientation and we denote by νF the unit outer normal. In this case we may extend
the definition of divergence on Σ to vector fields which have values in Rn. Let X : U → Rn
be a smooth vector field, where U is an open neighborhood of Σ. We define the tangential
divergence of X on ∂F by

divτ X := divX − 〈DXνF , νF 〉.
The divergence theorem statesˆ

∂F
divτ X dHn−1 =

ˆ
∂F
HF (X · νF ) dHn−1,

where HF denotes the sum of the principal curvatures of ∂F . We denote the second fun-
damental form of ∂F by BF , which in our case is a symmetric

(
2
0

)
-tensor (or equivalently a

symmetric matrix). Finally we may project a vector field X : U → Rn to the tangent space
of ∂F by

(2.8) Xτ := X − (X · νF )νF .

Then Xτ canonically defines a vector field on (∂F, g) and we denote by divgXτ its divergence.
For a given function u : U → R we define the tangential gradient on Σ = ∂F as the projection
of its gradient Du

(2.9) Dτu := (Du)τ .

The tangential gradient and the covariant gradient are canonically isomorphic. In particular,
it holds

(2.10) |∇u(x)|g = |Dτu(x)| for x ∈ Σ,

where | · |g denotes the norm given by the metric tensor g, and | · | is the length of a vector in
Rn.

2.2. The energy functional. In this section we introduce the energy functional that under-
lies the flow. We also introduce the proper notions of stationary points and stability that will
be needed in the study of the long-time behavior of the flow. As explained in the introduction,
the free energy functional is the sum of the perimeter and of a bulk elastic term. Throughout
the paper Ω will denote a fixed bounded open set of R3 with Lipschitz boundary.

Concerning the elastic part, for F ⊂⊂ Ω and for an elastic displacement u : Ω \ F → R3

we denote by E(u) the symmetric part of Du, that is, E(u) := Du+(Du)T

2 . In what follows, C
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stands for the elasticity tensor acting on 3×3-matrices, such that CA = 1
2C(A+AT ) and CA

is symmetric for all 3 × 3-matrices A. Moreover, CA : A > 0 if A is symmetric and A 6= 0.
Finally we shall denote by Q(A) := 1

2CA : A the elastic energy density.
We are now ready to write the energy functional. For a fixed boundary displacement

w0 ∈ H
1
2 (∂Ω), we set

(2.11) J (F ) :=

ˆ
Ω\F

Q(E(uF )) dx+H2(∂F ) ,

where uF is the elastic equilibrium satisfying the Dirichlet boundary condition w0 on a fixed
relatively open subset ∂DΩ ⊆ ∂Ω. More precisely, uF is the unique solution in H1(Ω \F ;R3)
of the following elliptic system

(2.12)


divCE(uF ) = 0 in Ω \ F,
CE(uF )[νF ] = 0 on ∂F ∪ (∂Ω \ ∂DΩ),

uF = w0 on ∂DΩ.

Note that by the second condition for every x ∈ ∂F the vector CE(uF )(x)[e] belongs to the
tangent space of ∂F at x for every vector e.

Next, we provide the first and the second variation formulas for (2.11). To this aim, for
any vector field X ∈ C1

c (R3;R3), let (Φt)t∈(−1,1) be the associated flow, that is the solution of

(2.13)


∂Φt

∂t
= X(Φt),

Φ0 = Id.

The first and the second variation of the functional (2.11) are stated in the following theorem.
Recall that HF denotes the sum of the principal curvatures and BF the second fundamental
form of ∂F . Sometimes, with a slight abuse of terminology, we will refer to HF as the mean
curvature of ∂F .

Theorem 2.6. Let F ⊂⊂ Ω be a smooth set, X ∈ C1
c (Ω;R2) and let (Φt)t∈(−1,1) be the

associated flow as in (2.13). Set ψ := X · νF on ∂F and let Xτ be as in (2.8). Then,

(2.14)
d

dt
J (Φt(F ))∣∣

t=0

=

ˆ
∂F

(HF −Q(E(uF )))ψ dH2.

If in addition divRn X = 0 in a neighborhood of ∂F we have

d2

dt2
J (Φt(F ))∣∣

t=0

=

ˆ
∂F
|∇ψ|2 − |BF |2ψ2 dH2 − 2

ˆ
Ω\F

Q(E(uψ)) dx

−
ˆ
∂F
∂νF (Q(E(uF )))ψ2 dH2 −

ˆ
∂F

(HF −Q(E(uF ))) divg(ψXτ ) dH2,(2.15)

where the function uψ is the unique solution in H1(Ω \ F ;R3), with uψ = 0 on ∂DΩ, of

(2.16)

ˆ
Ω\F

CE(uψ) : E(ϕ) dx = −
ˆ
∂F

divg(ψCE(uF )) · ϕdH2

for all ϕ ∈ H1(Ω \ F ;R2) such that ϕ = 0 on ∂DΩ.

Formulas (2.14) and (2.15) have been derived in [9] when F is the subgraph of a periodic
function. The very same calculations apply to the more general situation considered here.
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Throughout the paper we fix a smooth reference set G ⊂⊂ Ω and define the reference
manifold as (Σ, g), where Σ = ∂G and g is the metric induced by the Euclidean metric in R3.
We denote the outer normal of G simply by ν. For every η > 0 we denote

Nη(Σ) := {x ∈ R3 : |dG(x)| < η},

where dG denotes the signed distance function of G. Denote also π the orthogonal projection
on the boundary of G. Since G is smooth,

(2.17) there exists η0 > 0 such that dG and π are smooth in N2η0(Σ).

We denote by hkM (Σ) the following class of sets, whose boundary is a suitable normal graph
over Σ. Precisely, for any integer k ≥ 1 and M > 0 we say

(2.18) F ∈ hkM (Σ) if ∂F = {x+ hF (x)ν(x) : x ∈ Σ} ⊂ Nη0(Σ) with ‖hF ‖Hk(Σ) ≤M.

In particular, by Morrey embedding any set in h3
M (Σ) is C1,α-diffeomorphic to the reference

set G for every α ∈ (0, 1). The space hk,αM (Σ), α ∈ (0, 1), is defined similarly in terms of the

Ck,α-norm of the function hF .
Let G1, . . . , Gm be the bounded open sets enclosed by the connected components ΓG,1, . . . ,

ΓG,m of the boundary ∂G. Note that the Gi’s are not in general the connected components of
G and it may happen that Gi ⊂ Gj for some i 6= j. If F ∈ h3

M (Σ), then F is C1-diffeomorphic
to G and thus ∂F has the same number m of connected components ΓF,1, . . . , ΓF,m, which
can be numbered in such a way that

(2.19) ΓF,i = {x+ hF (x)ν(x) : x ∈ ΓG,i},

for a suitable hF ∈ H3(Σ). The boundaries ΓF,i then enclose the sets Fi, which in turn are
diffeomorpic to Gi.

We are interested in area preserving variations, in the following sense.

Definition 2.7. Let F ⊂⊂ Ω be a smooth set. Given a vector field X ∈ C∞c (Ω;R3), we say
that the associated flow (Φt)t∈(−1,1) is admissible for F if there exists ε0 ∈ (0, 1) such that

|Φt(Fi)| = |Fi| for t ∈ (−ε0, ε0) and i = 1, . . . ,m.

Remark 2.8. Note that if the flow associated with X is admissible in the sense of the previous
definition, then for i = 1, . . . ,m we haveˆ

ΓF,i

X · νF dH1 = 0.

In view of this remark it is convenient to introduce the space H̃1(∂F ) consisting of all functions
ψ ∈ H1(∂F ) with zero average on each component of ∂F , i.e.,ˆ

ΓF,i

ψ dH1 = 0 for every i = 1, . . . ,m.

Any admissible vector field X thus defines a function ψ ∈ H̃1(∂F ). Conversely, given ψ ∈
H̃1(∂F ) ∩ C∞(∂F ) it is possible to construct a sequence of vector fields Xn ∈ C∞c (Ω;R2),
with divRn Xn = 0 in a neighborhood of F , such that Xn · νF → ψ in C1(∂F ), see [2, Proof
of Corollary 3.4] for the details. Note that in particular the flows associated with Xn are
admissible.
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Definition 2.9. Let F ⊂⊂ Ω be a set of class C2. We say that F is stationary if

d

dt
J (Φt(F ))∣∣

t=0

= 0

for all admissible flows in the sense of Definition 2.7.

Remark 2.10. By Remark 2.8 and in view of (2.14) it follows that a set F ⊂⊂ Ω of class C2

is stationary if and only if there exist constants λ1, . . . , λm such that

HF −Q(E(uF )) = λi on ΓF,i

for every i = 1, . . . ,m. Note that if F is a sufficiently regular (local) minimizer of (2.11)
under the constraint |F | = const., then there exists a constant λ such that

HF −Q(E(uF )) = λ on ∂F.

Thus, our notion of stationarity differs from the usual notion of criticality just recalled. Note
that by a bootstrap argument it can be proved that a stationary set is smooth. In fact, it
can be shown that it is even analytic, see [33]. Note that if F is stationary, then the second
variation formula (2.15) reduces to

d2

dt2
J (Φt(F ))∣∣

t=0

=

ˆ
∂F
|∇ψ|2 − |BF |2ψ2 dH2

− 2

ˆ
Ω\F

Q(E(uψ)) dx−
ˆ
∂F
∂νF (Q(E(uF )))ψ2 dH2,(2.20)

where we recall that ψ = X · νF and uψ is the function satisfying (2.16).

In view of (2.20), for any set F ⊂⊂ Ω of class C2 it is convenient to introduce the quadratic

form ∂2J (F ) defined on H̃1(∂F ) as

∂2J (F )[ψ] :=

ˆ
∂F
|∇ψ|2 − |BF |2ψ2 dH2

− 2

ˆ
Ω\F

Q(E(uψ)) dx−
ˆ
∂F
∂νF (Q(E(uF )))ψ2 dH2,

(2.21)

where uψ is the unique solution of (2.16) under the Dirichlet condition uψ = 0 on ∂DΩ. We
may finally give the definition of stability for a stationary point.

Definition 2.11. Let F ⊂⊂ Ω be a stationary set in the sense of Definition 2.9. We say that
F is strictly stable if

(2.22) ∂2J (F )[ψ] > 0 for all ψ ∈ H̃1(∂F ) \ {0}.

It is not difficult to see that (2.22) is equivalent to the coercivity of ∂2J (F ) on H̃1(∂F ).
More precisely, (2.22) holds if and only if there exists c0 > 0 such that

(2.23) ∂2J (F )[ψ] ≥ c0‖ψ‖2H̃1(∂F )
for all ψ ∈ H̃1(∂F ),

see [9]. In turn the latter coercivity property is stable with respect to small H3-perturbations.
More precisely, we have:
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Lemma 2.12. Assume that the reference set G ⊂⊂ Ω is a (smooth) strictly stable stationary
set in the sense of Definition 2.11. Then, there exists σ0 > 0 such that for all F ∈ h3

σ0(Σ),
defined in (2.18), we have

∂2J (F )[ψ] ≥ c0

2
‖ψ‖2

H̃1(∂F )
for all ψ ∈ H̃1(∂F ),

where c0 is the constant in (2.23).

Proof. The proof follows the argument in [9, Proof of Theorem 5.2 and Lemma 5.3], where
the case of F being the subgraph of a periodic function is considered. Although the geometric
framework here is more general, we may follow exactly the same line of argument up to the
obvious changes due to the different setting. We note that in our case we may even simplify
the aforementioned proof by taking advantage of the fact that F ∈ h3

σ0(Σ) (while in [9] only

W 2,p-bounds were assumed). Indeed, under this assumption we have that uF is of class H3 in
a neighborhood of Σ, with the norm estimated by a constant depending on σ0 (see the proof

of Theorem 4.1). In turn, ∂νF (Q(E(uF ))) ∈ H
1
2 (∂F ) with a bound depending on σ0, which

is a much stronger information than the boundedness in H−
1
2 (∂F ) proven in [9]. �

We conclude this section by showing that in a sufficiently small H3-neighborhood of G the
stationary sets are isolated, once we fix the areas enclosed by the connected components of
the boundary.

Proposition 2.13. Assume that the reference set G ⊂⊂ Ω is a smooth strictly stable station-
ary set in the sense of Definition 2.11 and let σ0 be the constant provided by Lemma 2.12.
There exists σ1 ∈ (0, σ0) with the following property: Let F1, F2 ∈ h3

σ1(Σ), defined in (2.18),
be stationary sets in the sense of Definition 2.9 and (with the same notation as in (2.19))
assume that |F1,i| = |F2,i| for i = 1, . . . ,m. Then F1 = F2.

Proof. Let F1 and F2 be in h3
σ1(Σ), with σ1 ∈ (0, σ0) to be chosen, and denote the compo-

nents defined in (2.19) by Fi,1, . . . , Fi,m for i = 1, 2. We begin by constructing a vector field
X : Nη0(Σ) → R3 such that the associated flow (Φt)t∈([0,1]) is admissible is sense of Defini-
tion 2.8 and takes the set F1 to F2. More precisely, it holds Φ0(F1) = F1, Φ1(F1) = F2 and
|Φt(F1,i)| = |F1,i| for every t ∈ [0, 1] and i = 1, . . . ,m. The construction can be done as in
[37, Proposition 3.4] (see also [24, Lemma 2.8]) in such a way that |X(x)| ≤ 2|X(x) · νFt(x)|
for x ∈ ∂Ft and for all t ∈ [0, 1], and that

∂Ft = {x+ hFt(x)ν(x) : x ∈ Σ} with ‖hFt‖H3(Σ) ≤ Cσ1 < σ0,

where the last inequality holds provided that σ1 is small enough with a constant C depending
only on G. Recalling (2.15), (2.21), using the Lemma 2.12 and by integrating by parts we get

d2

dt2
J (Φt(F1)) = ∂2J (Ft)[X · νFt ]−

ˆ
∂Ft

(HFt −Q(E(uFt))) divg((X · νFt)Xτ ) dH2

≥ c0

2
‖X · νFt‖2H1(∂Ft)

+

ˆ
∂Ft

〈∇(HFt −Q(E(uFt))), (X · νFt)Xτ 〉 dH2.
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We denote Rt := HFt − Q(E(uFt)) and estimate the last term by (5.3), which we will show
later in the proof of Theorem 5.1, to get that there exists θ ∈ (0, 1) such that

ˆ
∂Ft

〈∇Rt, (X · νFt)Xτ 〉 dH2 ≤
(ˆ

∂Ft

|∇Rt|2 dH2

)1/2(ˆ
∂Ft

|(X · νFt)Xτ |2 dH2

)1/2

≤ C‖hFt‖
θ/2
H3(Σ)

(ˆ
∂Ft

|X · νFt |4 dH2

)1/2

≤ Cσθ/21 ‖X · νFt‖
2
L4(∂Ft)

.

Therefore we have by the Sobolev embedding

d2

dt2
J (Φt(F1)) ≥ c0

2
‖X · νFt‖2H1(∂Ft)

− Cσθ/21 ‖X · νFt‖
2
L4(∂Ft)

≥ c0

2
‖X · νFt‖2H1(∂Ft)

− Cσθ/21 ‖X · νFt‖
2
H1(∂Ft)

≥ c0

4
‖X · νFt‖2H1(∂Ft)

,

provided that σ1 is small enough.
On the other hand by the stationarity of F1 and F2 we have

d

dt
J (Φt(F1))∣∣

t=0

=
d

dt
J (Φt(F1))∣∣

t=1

= 0.

This means that d2

dt2
J (Φt(F1)) = 0 and therefore X ·νFt = 0 on ∂Ft for all t ∈ (0, 1). Therefore

t 7→ Φt(F1) is constant and F1 = F2.
�

3. Short time existence for the surface diffusion with a forcing term

In the following we shall assume n = 3. Given a smooth function f : Σ× [0,+∞)→ R we
shall consider the following forced surface diffusion equation

(3.1) Vt = ∆∂Ft(HFt + f(·, t) ◦ π)

where Vt denotes the outer normal velocity of ∂Ft and ∆∂Ft is the Laplace-Beltrami operator
on ∂Ft endowed with the metric induced by the Euclidean metric. Note that we consider a
forcing term which time by time is constant along the normal directions to Σ. Although this
class of forcing terms is not general, this choice is natural to obtain the existence of (1.3),
where the nonlocal term is defined only on the evolving boundary (or, in fact, on Ω \ Ft).

The goal in this section is to prove short time existence of a unique smooth solution of
(3.1) starting from F0 which is close to the reference set G. This will be done in Theorem 3.1.

3.1. The flow in coordinates. Given a sufficiently smooth function h : Σ → (−η0, η0),
where η0 is introduced in (2.17), we denote by Fh the bounded open set whose boundary is
given by

∂Fh = {x+ h(x)ν(x) : x ∈ Σ},
where ν is the outer unit normal to ∂G. Note that the projection π|∂Fh : ∂Fh → Σ is invertible

and we denote by π−1
Fh

its inverse. In this case we have π−1
Fh

(x) = x+ h(x)ν(x).
We denote by ν the normal and by k1, k2 the principle curvatures of Σ, while τ1, τ2 denote

the corresponding eigenvectors on the tangent plane. The exterior normal to Fh at any point
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π−1
Fh

(x) is

(3.2) νFh ◦ π
−1
Fh

=
1

J

(
(1 + hk1)(1 + hk2)ν − (1 + hk2)∂τ1h τ1 − (1 + hk1)∂τ2h τ2

)
,

where J2 = (1 + hk1)2(1 + hk2)2 + (1 + hk1)2(∂τ1h)2 + (1 + hk2)2(∂τ2h)2. We recall (see [36,
p. 21]) that the mean curvature HFh of ∂Fh can be written as

HFh ◦ π
−1
Fh

= −(νFh ◦ π
−1
Fh
· ν)∆h+ P (x, h,∇h),

where P is a smooth function such that P (·, 0, 0) = HG, the mean curvature of the boundary
of G. We rewrite the above formula as

(3.3) HFh ◦ π
−1
Fh

= −∆h+ 〈A(x, h,∇h),∇2h〉+HG + a(x, h,∇h),

where the tensor A and the function a are smooth and vanish when both h and ∇h are 0.
Let us denote by gh the pull-back metric on Σ induced by the diffeomorphism π−1

Fh
: Σ →

∂Fh. Since the manifold (∂Fh, g) endowed with the Euclidean metric g is isometric to (Σ, gh)
then for every smooth function f defined on Σ we have(

∆∂Fh(f ◦ π)
)
◦ π−1

Fh
= ∆ghf

where ∆gh is the Laplace-Beltrami operator on Σ with respect to the metric gh. One can also
check that (see [36, p. 21])

(gh)ij = gij + aij(·, h,∇h),

where the functions aij are smooth and vanish when both h and ∇h vanish, and that we have
the following expansion of the Christoffel symbols

(Γgh)ijk = (Γg)
i
jk + aijk(x, h,∇h) + bilmjk (x, h,∇h)

∂2h

∂xl∂xm
.

Above bilmjk is a smooth function and aijk is a smooth function which vanish when h and ∇h
vanish. We recall that the we may write the Laplace-Beltrami operator ∆gh as

∆ghf := (gh)ij∇̃i∇̃jf,

where ∇̃i∇̃j stands for the second order covariant derivatives with respect to gh. Hence we
get by the above formulas and after some straightforward calculations that

(3.4) ∆ghf = ∆f + 〈A1(x, h,∇h),∇2f〉+ 〈A2(x, h,∇h),∇f〉+ 〈B(x, h,∇h), (∇2h⊗∇f)〉.

Concerning the equation of interest, assume that a smooth flow (Ft)t∈(0,T ) is a solution of
(3.1) and that ∂Ft can be written as

(3.5) ∂Ft = {x+ h(x, t)ν(x) : x ∈ Σ}.

Then the normal velocity is given by Vt = ∂th(νFt · ν). Therefore, combining (3.3) and (3.4)
and after long but straightforward calculations, we may rewrite the equation (3.1) as

∂h

∂t
= −∆2h+ 〈A(x, h,∇h),∇4h〉

+ J1(x, h,∇h,∇2h,∇3h) + J2(x, h,∇h,∇2h,∇f,∇2f),
(3.6)
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where as usual A is a smooth 4th-order tensor depending on (x, h,∇h) vanishing when both
h and ∇h vanish, J1 is given by

J1 = 〈B1, (∇3h⊗∇2h)〉+ 〈B2,∇3h〉+ 〈B3, (∇2h⊗∇2h⊗∇2h)〉
+ 〈B4, (∇2h⊗∇2h)〉+ 〈B5,∇2h〉+ b6

(3.7)

and J2 is of the form

(3.8) J2 = ∆f + 〈A1,∇2f〉+ 〈A2,∇f〉+ 〈B, (∇2h⊗∇f)〉.

Here and throughout the paper we denote by A (possibly with a subscript) a smooth tensor-
valued function depending on (x, h,∇h) and vanishing at (x, 0, 0), while B (possibly with a
subscript) stands for a smooth tensor-valued function depending on (x, h,∇h). We replace
capital letters A and B with a and b, respectively, in case of scalar valued functions.

3.2. Short time existence and uniqueness. Let us fix an initial set F0 ∈ h3
K0

(Σ) which
is close to G. Finding a solution of (3.1) for a short time with intial set F0 is equivalent to
finding a solution h of (3.6) with initial datum h(·, 0) = hF0 =: h0. This is the goal of this
section and the result is stated in the following theorem.

Theorem 3.1. Let f : Σ × [0,+∞) → R be a smooth function. Given δ0 > 0 and K0 > 1,
there exist ε0, T0 ∈ (0, 1) with the following property: if F0 ∈ h3

K0
(Σ), defined in (2.18), if

(3.9) sup
0≤t≤T0

‖f(·, t)‖L∞(Σ) +

ˆ T0

0
‖f(·, t)‖2H3(Σ) dt ≤ K0,

and ‖h0‖L2(Σ) < ε0, where h0 := hF0, then the equation (3.6) has a unique smooth solution

(Ft) of the form (3.5) with h ∈ C∞(0, T0;C∞(Σ)) ∩H1(0, T0;H1(Σ)) and

(3.10) sup
0≤t≤T0

‖h(·, t)‖L2(Σ) ≤ δ0.

Moreover, for every integer k ≥ 0 there exist constants Ck, qk > 0, independent of δ0 and K0,
such that

sup
0≤t≤T

tk‖h(·, t)‖2H2k+3(Σ) +

ˆ T

0
tk‖h(·, t)‖2H2k+5(Σ) dt

≤ Ck
(
‖h0‖2H3(Σ) +

ˆ T

0

(
1 + ‖f‖qkL∞(Σ) +

k∑
i=0

ti‖f(·, t)‖2H2i+3(Σ)

)
dt

)
,

(3.11)

for every T ≤ T0.

The proof of Theorem 3.1 is based on a fixed point argument in a carefully chosen function
space and to this aim we need two lemmas. In the first one we estimate the derivatives of the
nonlinear terms in (3.6).

Proposition 3.2. Let h and f be of class C∞(Σ). For every integer k ≥ 1 there exist C̃k > 0
and pk ≥ 2 such that given M0 > 0 there is σ0 > 0 with the property that if

‖h‖2H3(Σ) ≤M0 and ‖h‖L2(Σ) ≤ σ0
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then

ˆ
Σ
|∇k(〈A,∇4h〉)|2 + |∇kJ1|2 + |∇kJ2|2 dH2 ≤ 1

4

ˆ
Σ
|∇k+4h|2 dH2

+ C̃k

(
1 + ‖f‖pkL∞(Σ) +

ˆ
Σ
|∇k+2f |2 dH2

)
,

where A, J1, and J2 are as in (3.6), (3.7), and (3.8).

Proof. Recall that A(x, h,∇h) vanishes at (x, 0, 0) and thus given ε > 0 there exists δ ∈ (0, 1)
such that if ‖h‖C1(Σ) ≤ δ, then by Leibniz formula

|∇k(〈A,∇4h〉)|2 ≤ ε|∇k+4h|2 + C
k∑
i=1

|∇i(A(x, h,∇h)|2|∇k+4−ih|2.

On the other hand, the assumptions on h together with standard interpolation imply that
‖h‖C1 ≤ δ and ‖h‖W 2,4 ≤ 1 when σ0 is chosen small (depending on M0). It turns out to be
convenient to set w := ∇h. Since ‖w‖∞ ≤ δ < 1, one may check that

k∑
i=1

|∇i(A(x, h,∇h)|2|∇k+4−ih|2 ≤ C
k∑
i=1

|∇k+3−iw|2

+ C
k∑
i=1

∑
1≤j1≤···≤jm−1≤i
j1+···+jm−1≤i

m≥2

|∇j1w|2 · · · |∇jm−1w|2|∇k+3−iw|2

≤ C
k∑
i=1

|∇k+3−iw|2 + C
∑

1≤j1≤···≤jm≤k+2
j1+···+jm≤k+3

m≥2

|∇j1w|2 · · · |∇jmw|2.

Then by Hölder’s inequality we obtain

ˆ
Σ
|∇k(〈A,∇4h〉)|2 dH2 ≤

ˆ
Σ

(
ε|∇k+3w|2 + C

k∑
i=1

|∇k+3−iw|2
)
dH2

+ C
∑

1≤j1≤···≤jm≤k+2
j1+···+jm≤k+3

m≥2

‖∇j1w‖22(k+3)
jl

· · · ‖∇jmw‖22(k+3)
jm

.

Observe that for every l = 1, . . . ,m− 1, it holds by the interpolation Lemma 2.1

‖∇jlw‖ 2(k+3)
jl

≤ C‖w‖θl
Hk+3‖w‖1−θl∞ ,

where θl = jl
k+3 . To treat the last derivative we use a different interpolation:

‖∇jmw‖ 2(k+3)
jm

≤ C‖w‖θm
Hk+3‖∇w‖1−θm4 ,
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where θm = 2jm(k+2)
(2k+3)(k+3) −

1
2k+3 <

jm
k+3 (recall that 3 ≤ jm < k + 3). Therefore, recalling that

‖w‖∞, ‖∇w‖4 ≤ 1, we get

ˆ
Σ
|∇k(〈A,∇4h〉)|2 dH2 ≤

ˆ
Σ

(
ε|∇k+4h|2 + C

k∑
i=1

|∇k+4−ih|2
)
dH2

+ C
∑

1≤j1≤···≤jm≤k+2
j1+···+jm≤k+3

m≥2

m∏
l=1

‖w‖2θl
Hk+3 .

Observe that for every choice of j1, . . . , jm the sum of the corresponding θl satisfies

m∑
l=1

θl <
m∑
l=1

jl
k + 3

≤ 1.

Therefore by Young’s inequality, by Remark 2.2, and recalling that ‖w‖∞ ≤ 1, we conclude
from the above inequality that

(3.12)

ˆ
Σ
|∇k(〈A,∇4h〉)|2 dH2 ≤ 1

20

ˆ
Σ
|∇k+4h|2 dH2 + C̃k.

Using again ‖w‖∞ ≤ 1, we have that

|∇kJ1| ≤ C
k∑
i=1

|∇k+3−iw|+ C
∑

1≤j1≤···≤jm≤2+k
j1+···+jm≤3+k

m≥2

|∇j1w| . . . |∇jmw|.

Therefore, arguing exactly as above, we have

(3.13)

ˆ
Σ
|∇kJ1|2 dH2 ≤ 1

20

ˆ
Σ
|∇k+4h|2 dH2 + C̃k.

In order to control the derivatives of J2 we need a slightly different argument, because we
need to separate the terms involving f and h from each other. We recall (3.8) and begin by
estimating

|∇k(∆f + 〈A1,∇2f〉)| ≤ C
k∑
l=0

|∇l+2f |+ C
k∑
i=1

∑
1≤j1≤···≤jm≤i
j1+···+jm≤i

m≥1

|∇j1w| . . . |∇jmw||∇k+2−if |.
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Therefore, using interpolation as aboveˆ
Σ
|∇k(∆f+〈A1,∇2f〉)|2 dH2 ≤ C

(
‖f‖2∞ + ‖∇k+2f‖22

)
+ C

k∑
i=1

∑
1≤j1≤···≤jm≤i
j1+···+jm≤i

m≥1

m∏
l=1

‖∇jlw‖22(2+k)
jl

‖∇k+2−if‖22(2+k)
2+k−i

≤ C
(
‖f‖2∞ + ‖∇k+2f‖22

)
+ C

k∑
i=1

∑
1≤j1≤···≤jm≤i
j1+···+jm≤i

m≥1

m∏
l=1

‖w‖2θ(jl)
Hk+3‖w‖2(1−θ(jl))

∞ ‖∇2+kf‖
2(k+2−i)
k+2

2 ‖f‖
2i
k+2
∞ ,

where θ(jl) := jl(k+1)
(k+2)2

. Observe that since j1 + · · ·+ jm ≤ i
m∑
l=1

(
2θ(jl) + 2

(2 + k − i)
k + 2

)
≤ 2[(2 + k)2 − i]

(2 + k)2
< 2.

Therefore, using Young’s inequality, we may conclude that

(3.14)

ˆ
Σ
|∇k(∆f + 〈A1,∇2f〉)|2 dH2 ≤ 1

20
‖∇k+4h‖22 + C̃k

(
1 + ‖f‖pk∞ + ‖∇k+2f‖22

)
.

A similar argument, whose details are left to the reader, shows thatˆ
Σ
|∇k〈A2,∇f〉+ 〈B, (∇2h⊗∇f)〉|2 dH2 ≤ 1

20
‖∇k+4h‖22 + C̃k

(
1 + ‖f‖pk∞ + ‖∇k+2f‖22

)
.

The conclusion then follows by combining this inequality with (3.12), (3.13), and (3.14). �

In the second lemma we“linearize”the terms J1 and J2 in the equation (3.6). The argument
is similar to the previous one and therefore we postpone its proof until the Appendix.

Lemma 3.3. Let T ∈ (0, 1) and let h1, h2, f : Σ× (0, T )→ R be smooth functions such that

sup
0≤t≤T

‖hi(·, t)‖2H3(Σ) +

ˆ T

0

ˆ
Σ
|∇5hi|2 dH2dt ≤M0,

and

sup
0≤t≤T

‖f(·, t)‖L∞(Σ) +

ˆ T

0

ˆ
Σ
|∇3f |2 dH2dt ≤ K0.

Then, there exists θ ∈ (0, 1) with the following property: for any ε > 0 there exist C =
C(ε,K0,M0) > 0 and δ = δ(ε,M0) > 0 such that if sup0≤t≤T ‖hi(·, t)‖L2(Σ) ≤ δ, i = 1, 2,
thenˆ T

0

ˆ
Σ
|Jh2−Jh1 |2 dH2dt ≤ ε

ˆ T

0

ˆ
Σ
|∇4h2−∇4h1|2 dH2dt+CT θ sup

0≤t≤T
‖h2(·, t)−h1(·, t)‖2H2(Σ),

where Jh is defined as in (3.17).
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Proof of Theorem 3.1. GivenK0, let us define the set S of functions in C∞(0, T0;C∞(Σ))∩
H1(0, T0;H1(Σ)), which satisfy

(3.15) sup
0≤t≤T0

‖h(·, t)‖L2(Σ) ≤ σ0 and sup
0≤t≤T0

‖h(·, t)‖2H3(Σ) +

ˆ T0

0
‖h(·, t)‖2H5(Σ) dt ≤M0,

where the constants M0 and σ0 will be chosen later. We also define a subclass S ′ ⊂ S of
functions which satisfy the additional requirement (3.11), where the constants Ck and qk will
again be chosen later. The goal is to obtain a solution of (3.6) in S ′ which is unique in S.

We begin by assuming that h0 is smooth with ‖h0‖H3(Σ) < K0 and 2‖h0‖L2(Σ) ≤ σ0. We

now define a map L : S → C∞(0, T0;C∞(Σ)) by setting L (h) := h̃, where h̃ : Σ×[0,∞)→ R
is the solution of

(3.16)


∂h̃

∂t
= −∆2h̃+ Jh(x, t)

h̃(·, 0) = h0

and where we have set

(3.17) Jh(x, t) := 〈A(x, h,∇h),∇4h〉+ J1(x, h,∇h,∇2h,∇3h) + J2(x, h,∇h,∇2h,∇f,∇2f)

with A, J1, J2 as in (3.6).
We note that the set S ′ is nonempty when the constants Ck are chosen properly. To see

this consider the solution h̄ of

(3.18)


∂h̄

∂t
= −∆2h̄

h̄(·, 0) = h0.

By classical regularity estimates h̄ is smooth and satisfies sup0≤t≤1 ‖h̄(·, t)‖L2(Σ) ≤ ‖h0‖L2(Σ)

and

sup
0≤t≤1

tk‖h(·, t)‖2H2k+3(Σ) +

ˆ 1

0
tk‖h(·, t)‖2H2k+5(Σ) dt ≤ C

′
k ‖h0‖2H3(Σ)

for all integers k ≥ 0, and therefore h̄ ∈ S ′ provided that we choose M0 sufficiently large. We
remark that in Steps 1 and 2 below we give an argument which can be applied to prove the
above estimate.

Step 1: In this step we prove that if h ∈ S then h̃ = L (h) ∈ S for a suitable choice of
M0, σ0 and T0.

To prove this we multiply (3.16) by ∆3h̃. Integrating by parts both sides we get

∂

∂t

1

2

ˆ
Σ
|∇(∆h̃)|2 dH2 = −

ˆ
Σ

∂h̃

∂t
∆3h̃ dH2 =

ˆ
Σ

(∆2h̃− Jh)∆3h̃ dH2

=

ˆ
Σ

(
− |∇(∆2h̃)|2 + 〈∇Jh,∇(∆2h̃)〉

)
dH2.
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By Proposition 3.2 it follows that if σ0 is sufficiently small then by Young inequality

∂

∂t

1

2

ˆ
Σ
|∇(∆h̃)|2 dH2 ≤ −1

2

ˆ
Σ
|∇(∆2h̃)|2 dH2 +

1

2

ˆ
Σ
|∇Jh|2 dH2

≤ −1

2

ˆ
Σ
|∇(∆2h̃)|2 dH2 +

1

8

ˆ
Σ
|∇5h|2 dH2

+
3

2
C̃1

(
1 + ‖f‖q0L∞(Σ) +

ˆ
Σ
|∇3f |2 dH2

)
,

where q0 = p1 and C̃1 are from the Proposition 3.2. Integrate this over (0, t) with t ≤ T0,
where T0 will be chosen later, and get

ˆ
Σ
|∇(∆h̃(·, t))|2 dH2 −

ˆ
Σ
|∇(∆h0)|2 dH2 +

ˆ t

0

ˆ
Σ
|∇(∆2h̃)|2 dH2ds

≤ 3

4

ˆ T0

0

ˆ
Σ
|∇5h(·, t)|2 dH2 dt+ 3C̃1

ˆ T0

0

(
1 + ‖f(·, t)‖q0L∞(Σ) +

ˆ
Σ
|∇3f(·, t)|2 dH2

)
dt.

(3.19)

From this estimate, from the fact that h satisfies (3.15), f satisfies (3.9), ‖h0‖H3(Σ) < K0 and
using Remark 2.5 (with a sufficiently small ε) we obtain

(3.20) sup
0≤t≤T0

‖h̃(·, t)‖H3 +

ˆ T0

0
‖h̃(·, t)‖2H5 dt

≤ C sup
0≤t≤T0

‖h̃(·, t)‖L2 +K2
0 +

4

5
M0 + 4C̃1((T0 + T0K

q0
0 ) +K0).

In order to estimate the L2-norm of h̃, we multiply the equation (3.16) by h̃. Recalling (3.17),
using the interpolation Lemma 2.1 to estimate the derivatives of h in terms of ‖∇5h‖2 and
‖∇3h‖2 and the derivatives of f in terms of ‖∇3f‖2 and ‖f‖∞ and then using the H3-bound
on h, we get

ˆ
Σ

∂h̃

∂t
h̃ dH2 = −

ˆ
Σ

∆2h̃ h̃ dH2 +

ˆ
Σ
Jhh̃ dH2

≤
ˆ

Σ
(−|∆h̃|2 +

h̃2

η
) dH2 + η

ˆ
Σ
J2
h dH2

≤ 1

η

ˆ
Σ
h̃2 dH2

+ Cη

ˆ
Σ

(
1 + ‖∇h‖4+(1 + |∇2h|2)|∇3h|2 + |∇2h|6 + (1 + |∇2h|2)(|∇f |2 + |∇2f |2)

)
dH2

≤ 1

η

ˆ
Σ
h̃2 dH2 + Cη

(
1 + ‖f‖2L∞ +

ˆ
Σ

(|∇5h|2 + |∇3f |2) dH2

)
,

(3.21)
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for some C > 0 depending on M0 and K0. Integrating this over (0, t) and using the fact that
h satisfies (3.15) and f satisfies (3.9) yield

1

2

ˆ
Σ
h̃(·, t)2 dH2 − 1

2

ˆ
Σ
h2

0 dH2 ≤ T0

η
sup

0≤t≤T0
‖h̃(·, t)‖2L2(Σ)

+ C̃η

(
T0 + T0K

2
0 +M0 +K0

)
.

Hence, recalling that ‖h0‖L2(Σ) ≤ σ0
2 we have

sup
0≤t≤T

‖h̃(·, t)‖2L2 ≤
σ2

0

4
+

2T0

η
sup

0≤t≤T0
‖h̃(·, t)‖2L2 + 2C̃η

(
T0 + T0K

2
0 +M0 +K0

)
.

From this inequality, choosing η and T0 sufficiently small (depending on M0 and K0) we
conclude that

sup
0≤t≤T0

‖h̃(·, t)‖L2(Σ) ≤ σ0.

In turn, since σ0 ≤ 1, we may choose M0 sufficiently large (depending on K0) and T0 smaller
if needed to deduce that from (3.20) that

sup
0≤t≤T0

‖h̃(·, t)‖H3(Σ) +

ˆ T0

0
‖h̃(·, t)‖2H5(Σ) dt ≤M0.

This concludes the proof of the fact that h̃ = L (h) satisfies (3.15) and thus belongs to S.

Step 2: Let us now prove that if h ∈ S ′ then h̃ = L (h) ∈ S ′, i.e., it satisfies (3.11) with

h replaced by h̃. We begin by observing that the case k = 0 can be proven by a similar
argument as the one used in Step 1, by combining (3.19), (3.21) and replacing T0 by T ≤ T0.
We proceed by induction and assume that (3.11) holds for k − 1 and prove it for k. We

argue similarly as in the previous step and multiply the equation (3.16) by ∆2k+3h̃, and after
integrating by parts the left-hand side (2k + 3)-times and the right-hand side (2k + 1)-times
and using Proposition 3.2 with k replaced by 2k + 1 we get

∂

∂t

1

2

ˆ
Σ
|∇(∆k+1h̃)|2 dH2 ≤ −1

2

ˆ
Σ
|∇(∆k+2h̃)|2 dH2 +

1

2

ˆ
Σ
|∇2k+1Jh|2 dH2

≤ −1

2

ˆ
Σ
|∇(∆k+2h̃)|2 dH2 +

3

8

ˆ
Σ
|∇2k+5h|2 dH2

+
3

2
C̃2k+1

(
1 + ‖f(·, t)‖p2k+1

L∞ +

ˆ
Σ
|∇2k+3f |2 dH2

)
.

From this estimate we obtain

∂

∂t

(
tk
ˆ

Σ
|∇(∆k+1h̃)|2 dH2

)
≤ k tk−1

ˆ
Σ
|∇(∆k+1h̃)|2 dH2 − tk

ˆ
Σ
|∇(∆k+2h̃)|2 dH2

+
3

4
tk
ˆ

Σ
|∇2k+5h|2 dH2 + 3C̃2k+1t

k

(
1 + ‖f(·, t)‖p2k+1

L∞ +

ˆ
Σ
|∇2k+3f |2 dH2

)
.
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Integrating this inequality over (0, t) for t ≤ T yields

sup
0≤t≤T

tk
ˆ

Σ
|∇(∆k+1h̃)|2 dH2 +

ˆ T

0
tk
ˆ

Σ
|∇(∆k+2h̃)|2 dH2dt

≤ k
ˆ T

0
tk−1

ˆ
Σ
|∇2k+3h̃|2 dH2dt

+

ˆ T

0
tk
(

3

4

ˆ
Σ
|∇2k+5h|2 dH2 + 3C̃2k+1(1 + ‖f(·, t)‖p2k+1

L∞ +

ˆ
Σ
|∇2k+3f |2 dH2)

)
dt.

By using the fact that h̃ satisfies (3.11) with k − 1, and h satisfies (3.11) we deduce

sup
0≤t≤T

tk‖∇(∆k+1h̃)‖2L2(Σ) +

ˆ T

0
tk
ˆ

Σ
|∇(∆k+2h̃)|2 dH2dt

≤ (kCk−1 +
3

4
Ck + 3C̃2k+1)

( ˆ T0

0
(‖h0‖2H3(Σ) + 3 + 3‖f(·, t)‖qkL∞(Σ) +

k∑
i=0

ti‖f(·, t)‖2H2i+3) dt

)
when we choose qk ≥ max{qk−1, p2k+1}. Using the fact that sup0≤t≤T0 ‖h̃(·, t)‖L2 ≤ σ0 and

by Remark 2.5, we obtain the estimate (3.11) for h̃ by choosing Ck large enough.

Step 3: In this step we prove that the map L introduced in the previous step is a
contraction with respect to a suitable norm, provided that σ0 and T0 are chosen sufficiently
small.

To this aim, let h1, h2 ∈ S and let h̃1, h̃2 ∈ S be the corresponding solutions of (3.16).

Multiplying the equation satisfied by h̃i by ∆2(h̃2− h̃1), subtracting and integrating by parts
we get

∂

∂t

1

2

ˆ
Σ
|∆(h̃2(·, t)− h̃1(·, t))|2 dH2

= −
ˆ

Σ
|∆2(h̃2 − h̃1)(·, t)|2 dH2 +

ˆ
Σ

∆2(h̃2 − h̃1)(·, t)(Jh2(·, t)− Jh1(·, t)) dH2

≤ −1

2

ˆ
Σ
|∆2(h̃2 − h̃1)(·, t)|2 dH2 +

1

2

ˆ
Σ
|Jh2(·, t)− Jh1(·, t)|2 dH2.

Fix ε > 0 small. By choosing σ0 smaller in (3.15) if needed, we may integrate the above
inequality over (0, t), with t < T0, and use Remark 2.5 and Lemma 3.3 to obtain

‖h̃2(·, t)− h̃1(·, t)‖2H2(Σ) +

ˆ T0

0

ˆ
Σ
|∇4(h̃2 − h̃1)|2 dH2dt

≤ C‖h̃2(·, t)− h̃1(·, t)‖2L2(Σ) + C

ˆ T0

0

ˆ
Σ
|h̃2 − h̃1|2 dH2dt

+ ε

ˆ T0

0

ˆ
Σ
|∇4(h2 − h1)|2 dH2dt+ CT θ0 sup

0≤t≤T0
‖h2(·, t)− h1(·, t)‖2H2(Σ)

≤ C sup
0≤t≤T0

‖h̃2(·, t)− h̃1(·, t)‖2L2(Σ)

+ ε

ˆ T0

0

ˆ
Σ
|∇4(h2 − h1)|2 dH2dt+ CT θ0 sup

0≤t≤T0
‖h2(·, t)− h1(·, t)‖2H2(Σ) .

(3.22)
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Next we have to estimate the first term on the right-hand side. To this aim we multiply
the equations satisfied by h̃1 and h̃2 by h̃2 − h̃1, subtract and get

∂

∂t

1

2

ˆ
Σ
|h̃2(·, t)− h̃1(·, t)|2 dH2 =

ˆ
Σ

(h̃2(·, t)− h̃1(·, t)) ∂
∂t

(h̃2 − h̃1)(·, t) dH2

= −
ˆ

Σ
(h̃2(·, t)− h̃1(·, t))∆2(h̃2 − h̃1)(·, t) dH2

+

ˆ
Σ

(h̃2(·, t)− h̃1(·, t))(Jh2(·, t)− Jh1(·, t)) dH2

≤ −
ˆ

Σ
|∆(h̃2 − h̃1)(·, t)|2 dH2 +

1

2

ˆ
Σ
|h̃2(·, t)− h̃1(·, t)|2 dH2

+
1

2

ˆ
Σ
|Jh2(·, t)− Jh1(·, t)|2 dH2.

Integrating over (0, t), with t < T0, and using again Lemma 3.3 we get

ˆ
Σ
|h̃2(·, t)−h̃1(·, t)|2 dH2 ≤ T0 sup

0≤t≤T0
‖h̃2(·, t)− h̃1(·, t)‖2L2(Σ)

+ ε

ˆ T0

0

ˆ
Σ
|∇4h1 −∇4h2|2 dH2dt+ CT θ0 sup

0≤t≤T0
‖h1(·, t)− h2(·, t)‖2H2(Σ),

from which it follows that

(3.23) sup
0≤t≤T0

‖h̃2(·, t)− h̃1(·, t)‖2L2(Σ) ≤ 2ε

ˆ T0

0

ˆ
Σ
|∇4h1 −∇4h2|2 dH2dt

+ 2CT θ0 sup
0≤t≤T0

‖h1(·, t)− h2(·, t)‖2H2(Σ),

provided that T0 ≤ 1
2 . Combining (3.22) and (3.23), and taking ε small and T0 smaller if

needed, we deduce that

(3.24) sup
0≤t≤T0

‖h̃2(·, t)− h̃1(·, t)‖2H2(Σ) +

ˆ T0

0

ˆ
Σ
|∇4(h̃2 − h̃1)|2 dH2dt

≤ 1

2

(
sup

0≤t≤T0
‖h2(·, t)− h1(·, t)‖2H2(Σ) +

ˆ T0

0

ˆ
Σ
|∇4(h2 − h1)|2 dH2dt

)
.

Step 4. (Conclusion) We may proceed with a standard argument, by recursively setting
h1 = h̄, with h̄ defined as in (3.18), and hn := L(hn−1) and for every n ≥ 2. From (3.24) we
have that there exists h such that hn → h in L∞(0, T0;H2(Σ))∩L2(0, T0;H4(Σ)). Moreover,
from Step 1 and Step 2 we have also that hn ⇀ h weakly in H1

loc(0, T ;Hk(Σ)) and that h
satisfies (3.10) and (3.11). Using these convergences one can easily pass to the limit in the
equations satisfied by the hn’s to conclude that h is a solution of (3.1). We remark that
the smoothness of h in time follows from the equation and from the regularity in space of h.
Note that the smoothness assumption on h0 can be removed by a standard approximation
argument. Finally, the uniqueness follows from the same argument used to prove (3.24). �
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4. Short time existence for the surface diffusion flow with elasticity

Here we will prove the existence of the flow

(4.1) Vt = ∆∂Ft(HFt −Q(E(uFt)))

where uFt is the minimizer of the elastic energy, that is the solution to (2.12), with F replaced
bu Ft.

The most crucial point for the proof of the short time existence of (4.1), is to prove sharp
regularity estimates for uF up to the boundary ∂F in terms of regularity of ∂F . We prove
this in the theorem below.

Theorem 4.1. Let K > 0, α ∈ (0, 1), and let k ≥ 3 be an integer. There exists Ck =

Ck(K) > 0 such that if h ∈ Hk(Σ) and Fh ∈ h1,α
K (Σ), defined as in (2.18), then

(4.2) ‖Q(E(uFh)) ◦ π−1
Fh
‖
Hk− 3

2 (Σ)
≤ Ck(‖h‖Hk(Σ) + 1).

Moreover if h1, h2 ∈ H3(Σ) and Fhi ∈ h3
K(Σ) for i = 1, 2, then there exists C = C(K) > 0

such that

(4.3) ‖uFh2 ◦ π
−1
Fh2
− uFh1 ◦ π

−1
Fh1
‖H3/2(Σ) ≤ C‖h2 − h1‖H2(Σ).

Proof. We begin by proving (4.2). By standard approximation argument we may assume that
h is smooth, which implies that uFh is smooth up to the boundary ∂Fh.

We consider a diffeomorphism Φh : Ω \G→ Ω \ Fh such that

Φh(x) = x+ h(π(x))ν(π(x))

in N+
η0(G), where for any σ > 0 N+

σ (G) = {x ∈ Ω\G : dG ≤ σ} is the one-sided neighborhood

of Σ . Note that we may construct Φh such that ‖Φh − I‖Hk(Ω\G) + ‖Φ−1
h − I‖Hk(Ω\G) ≤

C‖h‖Hk(Σ).
Let us fix x0 ∈ Σ. There exists a smooth diffeomorphism Φ from a neighborhood U⊂⊂ Ω of

x0 to a ball B2R which straightens the boundary such that Φ(U\G) = B+
2R = B2R∩{x3 > 0}.

Setting v = uFh ◦ Φh ◦ Φ−1 and h̄ := h ◦ π ◦ Φ−1, v is a solution of a system of the form

(4.4)

ˆ
B+

2R

A(x, h̄,Dh̄)Dv : Dϕdx = 0

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩ {x3 > 0}, where the tensor A is smooth.

In particular, by using the explicit definition of h̄ and Lemma 7.1 it holds ‖h̄‖Hk(B+
2R) ≤

C(k)(1 + ‖h‖Hk(Σ)) for every k ∈ N. Moreover, by using Korn’s inequality, one may check
that A is elliptic in the sense that

(4.5)

ˆ
B+

2R

A(x, h̄,Dh̄)Dϕ : Dϕdx ≥ c0

ˆ
B+

2R

|Dϕ|2 dx,

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩ {x3 > 0}.

We now start differentiating the equation in the tangential directions so to estimate the
tangential derivatives. Then we will use the equation to extract from these estimates also
information and the normal and the mixed derivatives.
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Let us fix k ≥ 3 and a multi-index β = (β1, β2, 0), with β1 + β2 = k− 1. By differentiating
the equation (4.4) in the β-directions we have

(4.6)

ˆ
B+

2R

Dβ(A(x, h̄,Dh̄)Dv) : Dϕdx = 0.

Let η ∈ C∞0 (B2R) be a standard cut-off function such that η ≡ 1 in BR and 0 ≤ η ≤ 1. By
choosing ϕ = Dβvη2 as a test function in (4.6) and by expanding the termDβ((A(x, h̄,Dh̄)Dv)
by Leibniz formula we deduceˆ

B+
2R

(A(x, h̄,Dh̄)DDβv) : DDβvη2 dx ≤ 2

ˆ
B+

2R

|A(x, h̄,Dh̄)||DDβv||Dη|η|Dβv| dx

+ C
k−1∑
i=1

ˆ
B+

2R

|DiA(x, h̄,Dh̄)||Dk−iv|(|DDβv|η2 + |Dβv||Dη|η) dx.

Moreover, by the ellipticity condition (4.5) we have

c0

2

ˆ
B+

2R

|D(Dβv)|2η2 dx ≤ c0

ˆ
B+

2R

|D(Dβvη)|2 dx+ c0

ˆ
B+

2R

|Dβv|2|Dη|2 dx

≤
ˆ
B+

2R

(A(x, h̄,Dh̄)D(Dβvη)) : D(Dβvη) dx+ c0

ˆ
B+
R

|Dβv|2|Dη|2 dx

≤
ˆ
B+

2R

(A(x, h̄,Dh̄)DDβv) : DDβvη2 dx

+ C

ˆ
B+

2R

|DDβv||Dη|η|Dβv|+ |Dβv|2|Dη|2 dx,

where in the last inequality we have used fact that ‖h̄‖C1,α ≤ C, which in turn implies that
A(x, h̄,Dh̄) is bounded. Combining the previous estimates and using Young’s inequality we
obtain, recalling that η = 1 on B+

R ,

(4.7)

ˆ
B+
R

|D(Dβv)|2 dx ≤ C
ˆ
B+

2R

|Dk−1v|2 dx+ C
k−1∑
i=1

ˆ
B+

2R

|DiA(x, h̄,Dh̄)|2|Dk−iv|2 dx.

We denote w = Dh̄ and estimate by Leibniz formula

k−1∑
i=1

|DiA(x, h̄,Dh̄)|2|Dk−iv|2 ≤ C
k−1∑
i=1

|Dk−iv|2+C
k−1∑
i=1

∑
1≤j1≤···≤jm≤i
j1+···+jm≤i

m≥1

|Dj1w|2 · · · |Djmw|2|Dk−iv|2.

Then by Hölder’s inequality we get

k−1∑
i=1

ˆ
B+

2R

|DiA(x, h̄,Dh̄)|2|Dk−iv|2 dx ≤ C‖v‖2
Hk−1(B+

2R)

+ C
k−1∑
i=1

∑
1≤j1≤···≤jm≤i
j1+···+jm≤i

m≥1

‖Dj1w‖22(k−1)
j1

. . . ‖Djmw‖22(k−1)
jm

‖Dk−iv‖22(k−1)
k−i−1

,
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where all the norms in the last line are evaluated in B+
2R. Note that if i = k − 1 then in the

last term it is understood that ‖Dk−iv‖ k−1
k−1−i

= ‖Dv‖L∞ . Note that by standard Schauder

estimates the assumption ‖h‖C1,α(Σ) ≤ K implies that ‖Dv‖L∞(B+
2R) ≤ C. We use Lemma 2.1

to estimate

‖Djlw‖ 2(k−1)
jl

≤ C‖w‖θ(jl)
Hk−1‖w‖

1−θ(jl)
L∞ ≤ C‖w‖θ(jl)

Hk−1

for θ(jl) := jl
k−1 . By the same lemma we also have

‖Dk−iv‖ 2(k−1)
k−i−1

≤ C‖v‖θHk‖Dv‖1−θL∞ ≤ C‖v‖
θ
Hk

for θ = k−i−1
k−1 . Since θ(j1) + · · ·+ θ(jm) ≤ i

k−1 , from (4.7) and from the previous estimate we
have by Young’s inequality

ˆ
B+
R

|D(Dβv)|2 dx ≤ C‖v‖2
Hk−1(B+

2R)
+ C

k−1∑
i=1

(‖w‖
2i
k−1

Hk−1(B+
2R)

+ 1)‖v‖
2(k−i−1)
k−1

Hk(B+
2R)

≤ ε‖Dkv‖2
L2(B+

2R)
+ C‖v‖2

Hk−1(B+
2R)

+ C(1 + ‖h‖2Hk(Σ)).

In order to control the remaining derivatives we use the equation (4.4) in the strong form

div(A(x, h̄,Dh̄)Dv) = 0 .

Indeed, observe that we have estimated all the derivatives of the type Dβ(Dv), where β =
(β1, β2, 0), with β1 + β2 = k− 1. Using these estimates and differentiating the equation k− 2
times with respect to the horizontal directions and once in the vertical direction, we may
estimate Dβ(Dx3x3v) for all β = (β1, β2, 0), with β1 + β2 = k − 2, by using an interpolation
argument as before to control the lower order derivatives. Then we proceed by induction by
differentiating the equation k− 3 times with respect to the horizontal directions and twice in
the vertical direction, and so on, until we differentiate the equation k − 1 times only in the
vertical direction. As a result we obtainˆ

B+
R

|Dkv|2 dx ≤ ε‖Dkv‖2
L2(B+

2R)
+ C‖v‖2

Hk−1(B+
2R)

+ C(1 + ‖h‖2Hk(Σ)).

The previous estimate holds at every point on ∂Fh. Thus we may coverN+
σ1(Fh), with σ1 <

η0
2 ,

by a finite union of balls and use the previous estimate in every ball of the covering. Precisely,
we go back to the original map, set u = uFh ◦Φh for simplicity, use Lemma 7.1 and conclude
that there are 0 < σ1 < σ2 such thatˆ

N+
σ1

|Dku|2 dx ≤ Cε
ˆ
N+
σ2

|Dku|2 dx+ C‖u‖2
Hk−1(N+

σ2
)

+ C(1 + ‖h‖2Hk(Σ))

≤ 2Cε

ˆ
N+
σ2

|Dku|2 dx+ C‖u‖2
L2(N+

σ2
)

+ C(1 + ‖h‖2Hk(Σ)),

where the last inequality follows from standard interpolation inequality. Choosing ε small we
obtain ˆ

N+
σ1

|Dku|2 dx ≤ 2

ˆ
N+
σ2
\N+

σ1

|Dku|2 dx+ C‖u‖2
L2(N+

σ2
)

+ C(1 + ‖h‖2Hk(Σ)).
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By standard interior regularity it holdsˆ
N+
σ2
\N+

σ1

|Dku|2 dx ≤ C‖uFh‖
2
L2(Ω\Fh).

From the two previous inequalities and by standard interpolation we have that

‖u‖Hk(N+
σ1

) ≤ C(1 + ‖u‖L2(N+
σ1

) + ‖h‖Hk(Σ)).

By the minimality and by Poincaré inequality we have that ‖uFh‖L2(Ω\Fh) is bounded by the
boundary value w0. Using the last part of Lemma 7.1, we have from the above inequality
that

‖Q(E(uFh)) ◦ Φh‖Hk−1(N+
σ1

) ≤ C(1 + ‖h‖Hk(Σ)).

From this inequality the first claim follows by the trace theorem.
As for the second part of the lemma, let Φi be a diffeomorphism constructed as above from

Ω \G to Ω \ Fhi . Note that, since h1 and h2 are bounded in C1,α, we may construct the Φi’s
in such a way that

‖Φ2 − Φ1‖H1(Ω\G) ≤ C‖h2 − h1‖H1(Σ).

As before we fix x0 ∈ Σ and denote as before by Φ the diffeomorphism that straightens Σ.
Setting vi = uFhi ◦ Φi ◦ Φ−1 and h̄i = hi ◦ π ◦ Φ, we have that

ˆ
B+

2R

A(x, h̄i, Dh̄i)Dvi : Dϕdx = 0

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩{x3 > 0}, where A is the same tensor as before.

Differentiating the equations in the xj-direction, j = 1, 2, and subtracting the two resulting
equations we obtainˆ

B+
2R

A(x, h̄2, Dh̄2)D(Dj(v2 − v1)) :Dϕdx = −
ˆ
B+

2R

Dj(A(x, h̄2, Dh̄2))D(v2 − v1) : Dϕdx

−
ˆ
B+

2R

[A(x, h̄2, Dh̄2)− A(x, h̄1, Dh̄1)]DDjv1 : Dϕdx

−
ˆ
B+

2R

Dj [A(x, h̄2, Dh̄2)− A(x, h̄1, Dh̄1)]Dv1 : Dϕdx.

We choose ϕ = Dj(v2 − v1)η2 as a test function to get an inequality similar to (4.7) with v
replaced by v2 − v1, from which we obtainˆ
B+
R

|D(Dj(v2 − v1))|2 dx ≤ C
ˆ
B+

2R

(1 + |D2h̄2|2 + |D2h̄1|2)|Dv2 −Dv1|2 dx

+ C

ˆ
B+

2R

(|h̄2 − h̄1|2 + |Dh̄2 −Dh̄1|2 + |D2h̄2 −D2h̄1|2)|Dv1|2 dx

+ C

ˆ
B+

2R

(|h̄2 − h̄1|2 + |Dh̄2 −Dh̄1|2)|D2v1|2 dx .

Recall first that as before ‖Dv1‖L∞ ≤ C. Moreover, we assume that ‖hi‖H3(Σ) ≤ K and there-
fore by the proof of the first statement we conclude that ‖vi‖H3(B+

2R) ≤ C. Using interpolation
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we getˆ
B+

2R

|D2h̄1|2|Dv2−Dv1|2 dx ≤ ‖D2h̄1‖2L4 ‖Dv2−Dv1‖2L4 ≤ C‖h̄1‖2H3 ‖v2−v1‖
3
2

H2‖v2−v1‖
1
2

L2 .

In the same way, using interpolation and the fact that ‖v1‖H3(B+
2R) is bounded, we may

estimate the remaining two integrals on the right hand side by C‖h̄2 − h̄1‖2H2(B+
2R)

, with a

constant C depending only on ‖v1‖H3(B+
2R), hence on ‖h1‖H3(Σ). Then, using the equation to

estimate D33(v2 − v1), we get for any ε ∈ (0, 1)ˆ
B+
R

|D2(v2 − v1)|2 ≤ C‖v2 − v1‖
3
2

H2(B+
2R)
‖v2 − v1‖

1
2

L2(B+
2R)

+ C‖h̄2 − h̄1‖2H2(B+
2R)

≤ ε
ˆ
B+

2R

|D2(v2 − v1)|2 + C

ˆ
B+

2R

|v2 − v1|2 + C‖h2 − h1‖2H2(Σ) .

Using a simple covering argument as before, going back to the original functions and arguing
as above we get

‖D2(uFh2 ◦Φh2 −uFh1 ◦Φh1)‖L2(N+
σ1

) ≤ C‖uFh2 ◦Φh2 −uFh1 ◦Φh1‖L2(N+
σ2

) +C‖h2−h1‖H2(Σ).

Observe now that writing down the equations satisfied by uFhi ◦Φhi in Ω \G and using as an
admissible test function ϕ = uFh1 ◦ Φh1 − uFh2 ◦ Φh2 , one may check that

‖D(uFh1 ◦ Φh1 − uFh2 ◦ Φh2)‖L2(Ω\G) ≤ C‖Φ1 − Φ2‖H1(Ω\G) ≤ C‖h1 − h2‖H1(Σ).

The conclusion follows from this estimate and from the previous one by the Poincaré inequal-
ity. �

Remark 4.2. Let hFi and uFi for i = 1, 2 be as in Theorem 4.1. The inequality at the end
of the proof of the theorem implies that

‖uFh2 ◦ π
−1
Fh2
− uFh1 ◦ π

−1
Fh1
‖H1/2(Σ) ≤ C‖h2 − h1‖H1(Σ).

Moreover, if in addition to the assumptions of the second part of Theorem 4.1 we know also
that ‖hi‖C1(Σ) is sufficiently small for i = 1, 2, then the proof of the inequality (4.3) also gives
the estimate

‖(DuFh2 ) ◦ π−1
Fh2
− (DuFh1 ) ◦ π−1

Fh1
‖L2(Σ) ≤ C‖h2 − h1‖H2(Σ).

Let us consider the smooth flow (Ft)t∈(0,T0) with initial set F0, which is a solution of (3.1)
with smooth forcing term f : Σ × [0, T0) → R. Here T0 is the existence time provided by
Theorem 3.1. For every given time t ∈ (0, T0) we consider the elastic equilibrium ut in
Ω\Ft defined in (2.12) and we use the regularity estimates from Theorem 4.1 to establish the
following lemma.

Lemma 4.3. Let K0 > 1 be such that ||Q(E(uG))||L∞(Σ) < K0/4. There exist T > 0
and ε̃ > 0 with the following property: if ‖h0‖H3(Σ) < K0, and ‖h0‖L2(Σ) < ε̃, and f is a
smooth function satisfying (3.9) then the solution of (3.1), with initial datum h0, provided by
Theorem 3.1 exists for the time interval (0, T ) and it holds

(4.8) sup
0≤t≤T

‖Q(E(ut)) ◦ π−1
Ft
‖L∞(Σ) +

ˆ T

0
‖Q(E(ut)) ◦ π−1

Ft
‖2H3(Σ) dt ≤ K0.
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Moreover, for every k ∈ N there exists C ′k(K0) > 0 such that

(4.9)

k∑
i=0

ˆ T

0
ti‖Q(E(ut)) ◦ π−1

Ft
‖2H2i+3(Σ) dt ≤

1

2

(
C ′k(K0) +

k∑
i=0

ˆ T

0
ti‖f(·, t)‖2H2i+3(Σ) dt

)
.

Proof. We begin by proving (4.8). Let us fix α ∈ (0, 1). Given δ0 > 0 to be chosen later and
taking ε̃ equal to the corresponding ε0, let h(·, t) be the solution defined on (0, T0), provided
by Theorem 3.1. Note that from (3.10) and (3.11) we have sup0≤t≤T0 ‖h(·, t)‖H3 ≤ C(K0)

and sup0≤t≤T0 ‖h(·, t)‖L2 ≤ δ0. In turn, by interpolation sup0≤t≤T0 ‖h(·, t)‖C1,α ≤ Cδθ0 < 1
for some θ ∈ (0, 1). Recall also that by choosing ε̃ small we can make δ0 as small as we wish.
Observing that the coefficients of the equation solved by ut ◦π−1

Ft
are close in C0,α to the ones

of the equation solved by uG, by standard elliptic estimates we have that

sup
0≤t≤T0

‖ut ◦ π−1
Ft
− uG‖C1,α(Σ) ≤ ω(δ0),

and ω(δ0)→ 0 as δ0 → 0. In turn, we conclude that for every t ∈ (0, T0) it holds

‖Q(E(ut)) ◦ π−1
Ft
‖L∞ ≤ ‖Q(E(ut))−Q(E(uG)) ◦ π−1

Ft
‖L∞ + ‖Q(E(uG)) ◦ π−1

Ft
‖L∞ ≤

K0

3

provided ε̃ (and thus δ0) is small enough.
Concerning the second term on the left-hand side of (4.8), we have by a well-known inter-

polation result and by (4.2) for k = 5 from Theorem 4.1

ˆ T

0
‖Q(E(ut))◦π−1

Ft
‖2H3(Σ) dt

≤ C
ˆ T

0
‖Q(E(ut)) ◦ π−1

Ft
‖2θ
H

7
2 (Σ)
‖Q(E(ut)) ◦ π−1

Ft
‖2(1−θ)
L∞(Σ) dt

≤ C
ˆ T

0
(1 + ‖h(·, t)‖2θH5(Σ))K

2(1−θ)
0 dt

≤ η
ˆ T

0
‖h(·, t)‖2H5(Σ) dt+ CηK

2
0 T

≤ ηC
(
K2

0 +

ˆ T

0

(
1 + ‖f(·, t)‖q0L∞(Σ) + ‖f(·, t)‖2H3(Σ)

)
dt

)
+ CηK

2
0 T

≤ ηC
(
K2

0 + T + TKq0
0 +K0

)
+ CηK

2
0 T,

where the second last inequality follows from (3.11). The inequality (4.8) follows by choosing
η and T ≤ T0 sufficiently small.
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The inequality (4.9) follows by a similar argument. For all i = 1, . . . , k we have again by
interpolation and by (4.2) thatˆ T

0
ti‖Q(E(ut))◦π−1

Ft
‖2H2i+3(Σ) dt

≤ C
ˆ T

0
ti‖Q(E(ut)) ◦ π−1

Ft
‖2θ
H2i+7

2 (Σ)
‖Q(E(ut)) ◦ π−1

Ft
‖2(1−θ)
L∞(Σ) dt

≤ Ck
ˆ T

0
ti(1 + ‖h(·, t)‖2θH2i+5)K

2(1−θ)
0 dt

≤ η
ˆ T

0
ti‖h(·, t)‖2H2i+5 dt+ Ck,ηK

2
0 T.

The conclusion then follows by estimating the last integral by means of (3.11) and choosing
η sufficiently small and C ′k(K0) sufficiently large. �

Theorem 4.4. Let K0 > 1 be such that ||Q(E(uG))||L∞(Σ) < K0/4 and fix δ0 > 0. There

exist T ∈ (0, 1) and ε1 ∈ (0, 1) with the following property: if F0 ∈ h3
K0

(Σ), defined in (2.18),

with ‖h0‖L2(Σ) < ε1 then there exists a unique solution h to (4.1) in H1(0, T ;H1(Σ)) ∩
L∞(0, T ;H3(Σ)). Moreover, the solution belongs to H1

loc(0, T ;Hk(Σ)) for every k ≥ 1 and it
holds

(4.10) sup
0≤t≤T

‖h(·, t)‖L2(Σ) < δ0

and

(4.11) sup
0≤t≤T

tk‖h(·, t)‖2H2k+3(Σ) +

ˆ T

0
tk‖h(·, t)‖2H2k+5(Σ) dt ≤ C(k,K0).

Proof. We divide the proof into three steps.

Step 1. Let K0, T be as in Lemma 4.3. Let S be the set of functions in C∞(0, T ;C∞(Σ))
that satisfy

sup
0≤t≤T

‖f(·, t)‖L∞(Σ) +

ˆ T

0
‖f(·, t)‖2H3(Σ) dt ≤ K0

and
k∑
i=0

ˆ T

0

(
ti‖f(·, t)‖2H2i+3(Σ)

)
dt ≤ C ′k(K0)

for every k ∈ N, where C ′k(K0) are the constants from (4.9). We define a map L : S → S as

L (f)(·, t) := −Q(E(ut)) ◦ π−1
Ft

for all t ∈ (0, T ), where Ft is the solution of (3.1) with initial
datum h0 and forcing term f , and where ut stands for uFt , that is for the elastic equilibrium
in Ω \ Ft. Lemma 4.3 implies that the map L : S → S is well defined, provided that ε1 ≤ ε̃.
Note also that S is clearly nonempty as the zero function belongs to S.

We will show that L : S → S is a contraction with respect to a suitable norm.

Step 2. Fix µ ∈ (0, 1). Let f1 and f2 be two smooth functions in S and let h1 and h2 be the
corresponding solutions of (3.6) with intial datum h0. The goal in this step is to show that it
holds

(4.12)

ˆ T

0

ˆ
Σ

(h2(·, t)− h1(·, t))2 dH2dt ≤ µ
ˆ T

0

ˆ
Σ

(f2(·, t)− f1(·, t))2dH2dt,
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by possibly decreasing the time T in a way independent of f1 and f2. We recall that by
Theorem 3.1 we have that

sup
0≤t≤T

‖h(·, t)‖L2(Σ) ≤ δ0 and sup
0≤t≤T

‖h(·, t)‖H3(Σ) ≤ C(K0) ,

provided that ε1 < ε0. By interpolation these imply that sup0≤t≤T ‖h(·, t)‖C1,α(Σ) ≤ Cδθ0 <
1 for some θ ∈ (0, 1). In turn, by standard Schauder estimates the corresponding elastic
equilibria in Fh(·,t) are uniformly bounded in C1,α up to the boundary, i.e., sup0≤t≤T ‖ut ◦
π−1
Ft
‖C1,α(Σ) ≤ C. We will use these facts repeatedly in the proof.

We denote by Ft,i the set related to hi(·, t) with ∂Ft,i = {x + hi(x, t)ν(x) : x ∈ Σ}. We

multiply (3.1) for i = 1, 2 by
(
(h2 − h1) ◦ π

)(
(Ji ◦ π)νFt,i · (ν ◦ π)

)−1
, where Ji stands for the

tangential Jacobian on Σ of the map x 7→ x + hi(x)ν(x) and π for the projection on Σ. We
then get

ˆ
∂Ft,i

(∂thi(·, t) ◦ π)
(h1 − h2) ◦ π

Ji ◦ π
dH2

=

ˆ
∂Ft,i

∆∂Ft,i [H∂Ft,i + fi(·, t) ◦ π)]
(
(h2 − h1) ◦ π

)(
(Ji ◦ π)νFt,i · (ν ◦ π)

)−1
dH2.

Recall that, denoting by ∂τ1hi and ∂τ2hi the tangential derivatives of hi in the directions of
the principal curvatures, we have

Ji =
√

(1 + hik1)2(1 + hik2)2 + (1 + hik1)2(∂τ1hi)
2 + (1 + hik2)2(∂τ2hi)

2,

where k1, k2 are the principal curvatures of Σ. Therefore we have by the formula for the outer
normal (3.2) that(

(Ji ◦ π)νFt,i · (ν ◦ π)
)−1

=
1

(1 + hik1)(1 + hik2)
◦ π =: R(·, hi) ◦ π.

By integrating by parts we get

ˆ
∂Ft,i

(∂thi(·, t) ◦ π)
(h1 − h2) ◦ π

Ji ◦ π
dH2

=

ˆ
∂Ft,i

(H∂Ft,i + fi(·, t) ◦ π)∆∂Ft,i [(h1 − h2) ◦ π R(·, hi) ◦ π] dH2

Rewriting the integrals above on Σ and subtracting, we have

1

2

∂

∂t

ˆ
Σ

(h2 − h1)2 dH2

=

ˆ
Σ

(
J2H∂Ft,2 ◦π

−1
Ft,2
−J1H∂Ft,1 ◦π

−1
Ft,1

+J2f2−J1f1

)
∆∂Ft,2 [(h2−h1)◦πR(·, h2)◦π]◦π−1

Ft,2
dH2

+

ˆ
Σ
J1(H∂Ft,1 ◦ π

−1
Ft,1

+ f1)
(
∆∂Ft,2 [(h2 − h1) ◦ πR(·, h2) ◦ π] ◦ π−1

Ft,2

−∆∂Ft,1 [(h2 − h1) ◦ πR(·, h1) ◦ π] ◦ π−1
Ft,1

)
dH2.

We recall (3.3) and (3.4), where the coefficients A, A1 and A2 vanish as (h,∇h) = 0. We
recall also that ‖hi(·, t)‖C1,α is small uniformly in time and that fi are uniformly bounded
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with respect to time. After straighforward calculations we have

1

2

∂

∂t

ˆ
Σ

(h2 − h1)2 dH+
1

2

ˆ
Σ
|∆(h2 − h1)|2 dH2 ≤ ε

ˆ
Σ
|∇2(h2 − h1)|2 dH2

+ C

ˆ
Σ

(1 + |∇2h1|+ |∇2h2|)(|h2 − h1|+ |∇(h2 − h1)|)·

· (|h2 − h1|+ |∇(h2 − h1)|+ |∇2(h2 − h1)|) dH2

+ C

ˆ
Σ
|f2 − f1|

(
(1 + |∇2h1|+ |∇2h2|)(|h2 − h1|+ |∇(h2 − h1)|) + |∇2(h2 − h1)|

)
dH2

+ C

ˆ
Σ

(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2 + |∇(h2 − h1)|2) dH2 =: RHS.

Using Young’s Inequality we obtain

RHS ≤ ε
ˆ

Σ
|∇2(h2 − h1)|2 dH2

+ C

ˆ
Σ

(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2 + |∇(h2 − h1)|2) dH2 + C

ˆ
Σ
|f2 − f1|2 dH2.

Observe now that by interpolation, by controlling the second derivatives of hi with the
H3-norms, and using the fact that ‖h(·, t)‖H3 is bounded uniformly with respect to time we
have ˆ

Σ
(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2 + |∇(h2 − h1)|2) dH2

≤ C(1 + ‖∇2h1‖2L4 + ‖∇2h2‖2L4)‖h2 − h1‖2W 1,4 ≤ C‖h2 − h1‖
3
2

H2‖h2 − h1‖
1
2

L2 .

From the previous inequalities we get

1

2

∂

∂t

ˆ
Σ

(h2 − h1)2 dH2 ≤ −1

2

ˆ
Σ
|∆(h2 − h1)|2 dH2 + ε

ˆ
Σ
|∇2(h2 − h1)|2 dH2

+ Cε

ˆ
Σ

(|∇(h2 − h1)|2 + (h2 − h1)2 + (f2 − f1)2) dH2.

Using now Remark 2.5 we in turn obtain

1

2

∂

∂t

ˆ
Σ

(h2 − h1)2 dH2 +
1

4

ˆ
Σ
|∇2(h2 − h1)|2 dH2 ≤ C

ˆ
Σ

(|h2 − h1|2 + (f2 − f1)2) dH2.

Integrating this with respect to time over (0, t), with t ∈ (0, T ), we have
ˆ

Σ
(h2(·, t)− h1(·, t))2 dH2 +

1

2

ˆ t

0

ˆ
Σ
|∇2(h2(·, s)− h1(·, s))|2 dH2ds(4.13)

≤ C
ˆ t

0

ˆ
Σ

(|h2(·, s)− h1(·, s)|2 + (f2(·, s)− f1(·, s))2) dH2ds.

Integrating the above inequality with respect to time over (0, T ) we obtain (4.12) when T is
sufficiently small.

Step 3. Here we finally prove that the map L : S → S is a contraction with respect to the
L2(0, T ;L2(Σ))-norm. To be more precise, let f1 and f2 be two functions in S and h1 and h2
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the corresponding solutions of (3.1). For simplicity we denote the elastic equilibrium for Fhi
as ui(·, t) := uFt,i , for i = 1, 2. Then L (fi) = −Q(E(ui)) ◦ π−1

Ft,i
and our goal is to show

(4.14)ˆ T

0
‖Q(E(u2(·, t))) ◦ π−1

Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖2L2(Σ)dt ≤

1

2

ˆ T

0
‖f2(·, t)− f1(·, t)‖2L2(Σ) dt.

Let us fix t ∈ (0, T ). We begin by proving that given ε > 0, if δ0 is small enough we have

‖Q(E(u2(·, t))) ◦ π−1
Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖L2(Σ)

≤ C‖∇(u2(·, t) ◦ π−1
Ft,2

)−∇(u1(·, t) ◦ π−1
Ft,1

)‖L2(Σ)

+ ε‖∇2(h2(·, t)− h1(·, t))‖2L2(Σ) + C‖h2(·, t)− h1(·, t)‖H1(Σ).

(4.15)

To shorten the notation we denote Ui := Dui ◦ π−1
Ft,i

, νi = νFt,i ◦ π
−1
Ft,i

and hi = hi(·, t) for

i = 1, 2. Recall that Q(E(ui(·, t))) ◦ π−1
Ft,i

= 1
2CUi : Ui. We may thus write

‖Q(E(u2(·, t))) ◦ π−1
Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖L2(Σ) =

1

2
‖C(U2 + U1) : (U2 − U1)‖L2(Σ).

We estimate this simply as

‖C(U2 + U1) : (U2 − U1)‖L2(Σ) ≤‖C(U2 + U1) :
(
(U2 − U1)(I − ν ⊗ ν)

)
‖L2(Σ)

+ ‖C(U2 + U1) :
(
(U2 − U1) (ν ⊗ ν)

)
‖L2(Σ)

(4.16)

Note that by the second condition in (2.12) it holds CUi[νi] = CE(ui) ◦ π−1
Ft,i

[νi] = 0 on Σ.

We use this equality to estimate the last term in (4.16) by

‖C(U2 + U1) :
(
(U2 − U1) (ν ⊗ ν)

)
‖L2(Σ)

≤ ‖C(U2 + U1) :
(
(U2 − U1) (ν ⊗ (ν − ν2))

)
‖L2(Σ) + ‖CU1 :

(
(U2 − U1) (ν ⊗ ν2)

)
‖L2(Σ)

= ‖C(U2 + U1) :
(
(U2 − U1) (ν ⊗ (ν − ν2))

)
‖L2(Σ) + ‖CU1 :

(
(U2 − U1) (ν ⊗ (ν2 − ν1))

)
‖L2(Σ).

Using the expression (3.2) for the normal ν2 and the uniform C1,α-bound for hi we deduce
that ‖ν − ν2‖L∞(Σ) ≤ Cδθ0 and ‖ν2 − ν1‖L2(Σ) ≤ C‖h2 − h1‖H1(Σ). Moreover, by the C1,α-
bound for ui we have that ‖Ui‖L∞ ≤ C and by the second inequality in Remark 4.2 it holds
‖U2 − U1‖L2(Σ) ≤ C‖h2 − h1‖H2(Σ). Therefore we may estimate the above inequality as

‖C(U2 + U1) :
(
(U2 − U1)(ν ⊗ ν)

)
‖L2(Σ) ≤ ε‖h2 − h1‖H2(Σ) + C‖h2 − h1‖H1(Σ).

Thus we deduce by (4.16) that

‖C(U2 + U1) : (U2 − U1)‖L2(Σ) ≤ ‖C(U2 + U1) :
(
(U2 − U1)(I − ν ⊗ ν)

)
‖L2(Σ)

+ ε‖h2 − h1‖H2(Σ) + C‖h2 − h1‖H1(Σ).
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The inequality (4.15) then follows from (2.10) as

‖C(U2 + U1) :
(
(U2 − U1)(I − ν ⊗ ν)

)
‖L2(Σ)

= ‖C(U2 + U1) :
(
(Du2(·, t) ◦ π−1

Ft,2
−Du1(·, t) ◦ π−1

Ft,1
)(I − ν ⊗ ν)

)
‖L2(Σ)

≤ C‖
(
Du2(·, t) ◦ π−1

Ft,2
−Du1(·, t) ◦ π−1

Ft,1

)
τ
‖L2(Σ)

≤ C‖
[
(Du2(·, t) ◦ π−1

Ft,2
)Dπ−1

Ft,2
− (Du1(·, t) ◦ π−1

Ft,1
)Dπ−1

Ft,1

]
τ
‖L2(Σ)

+ C‖
[
(Du2(·, t) ◦ π−1

Ft,2
)(Dπ−1

Ft,2
−Dπ−1

Ft,1
)
]
τ
‖L2(Σ)

+ C‖
[
(Du2(·, t) ◦ π−1

Ft,2
−Du1(·, t) ◦ π−1

Ft,1
)(I −Dπ−1

Ft,1
)
]
τ
‖L2(Σ)

≤ C‖∇(u2(·, t) ◦ π−1
Ft,2

)−∇(u1(·, t) ◦ π−1
Ft,1

)‖L2(Σ) + C‖h2 − h1‖H1(Σ) + ε‖h2 − h1‖H2(Σ),

where in the last inequality we used the second estimate in Remark 4.2 and the fact that the
C1-norm of h1 is small.

We proceed by using (4.15) and interpolation to deduce

‖Q(E(u2(·, t))) ◦ π−1
Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖L2(Σ)

≤ C‖∇(u2(·, t)◦π−1
Ft,2

)−∇(u1(·, t)◦π−1
Ft,1

)‖
1
2

H
1
2 (Σ)
‖∇(u2(·, t)◦π−1

Ft,2
)−∇(u1(·, t)◦π−1

Ft,1
)‖

1
2

H−
1
2 (Σ)

+ ε‖h2 − h1‖H2(Σ) + C‖h2(·, t)− h1(·, t)‖H1(Σ).

By the estimate (4.3) in Theorem 4.1 we have

‖∇(u2(·, t) ◦ π−1
Ft,2

)−∇(u1(·, t) ◦ π−1
Ft,1

)‖
H

1
2 (Σ)

≤ ‖u2(·, t) ◦ π−1
Ft,2
− u1(·, t) ◦ π−1

Ft,1
‖H3/2(Σ) ≤ C‖h2(·, t)− h1(·, t)‖H2 .

Moreover by using the well-known inequality ‖∇g‖
H−

1
2 (Σ)

≤ C‖g‖
H

1
2 (Σ)

and Remark 4.2 we

have

‖∇(u2(·, t) ◦ π−1
Ft,2

)−∇(u1(·, t) ◦ π−1
Ft,1

)‖
H−

1
2 (Σ)

≤ C‖u2(·, t) ◦ π−1
Ft,2
− u1(·, t) ◦ π−1

Ft,1
‖
H

1
2 (Σ)
≤ C‖h2(·, t)− h1(·, t)‖H1(Σ).

Collecting the previous three inequalities, using standard interpolation

‖h2(·, t)− h1(·, t)‖H1(Σ) ≤ C‖h2(·, t)− h1(·, t)‖1/2
H2(Σ)

‖h2(·, t)− h1(·, t)‖1/2
L2(Σ)

,

and by Young’s inequality we obtain

‖Q(E(u2(·, t))) ◦ π−1
Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖2L2

≤ 2ε‖∇2(h2(·, t)− h1(·, t))‖2L2 + Cε‖h2(·, t)− h1(·, t)‖2L2 .

Integrating the previous inequality over (0, T ) and using (4.12) and (4.13), we obtainˆ T

0
‖Q(E(u2(·, t))) ◦ π−1

Ft,2
−Q(E(u1(·, t))) ◦ π−1

Ft,1
‖2L2dt

≤
(
(Cε + εC)µ+ εC

) ˆ T

0
‖f2(·, s)− f1(·, s)‖2L2 dH1ds

≤ 1

2

ˆ T

0
‖f2(·, s)− f1(·, s)‖2L2 dH1ds,
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provided that ε and then µ are chosen sufficiently small. This proves (4.14) and we conclude
that L : S → S is a contraction with respect to the L2(0, T ;L2(Σ))-norm.

Step 4. (Conclusion) We may proceed with a standard argument, by recursively setting
f1 = 0, fn := L(fn−1) and for every n ≥ 1 letting hn be the solution to (3.1) with f replaced
by fn. From Step 2 and Step 3 we have that there exist f and h such that fn → f and hn → h
in L2(0, T ;L2(Σ)). Moreover, using (4.9) and (3.11), we conclude easily that for every n ≥ 1
the functions hn satisfy (4.10) and (4.11) for every k ∈ N, with constants depending only
on k and K0. Thus, we have that hn ⇀ h weakly in H1(0, T ;H1(Σ)) ∩ L∞(0, T ;H3(Σ)).
Moreover using the equation satisfied by hn and (3.11) we also have that ∂thn is bounded in
L2
loc(0, T ;Hk(Σ)) for every k ∈ N. Therefore we have that hn ⇀ h weakly in H1

loc(0, T ;Hk(Σ))

and thus strongly in L2
loc(0, T ;Hk(Σ)) and that h satisfies (4.10) and (4.11). Using these

convergences one can easily pass to the limit in the equations satisfied by the hn’s to conclude
that h is a solution of (4.1). The uniqueness follows from the same argument used in Step 2
and Step 3.

�

5. Asymptotic stability

In this section we study the flow when the initial set is close to a smooth strictly stable
stationary set G, which will be our reference set, i.e., we set Σ = ∂G. Throughout this section
we denote

Rt := HFt −Q(E(uFt)).

Moreover, in what follows we shall drop the subscript ∂Ft (and similar) in all the covariant
differential operators, when no danger of confusion arises. Here is the main result.

Theorem 5.1. Let G ⊂⊂ Ω be a regular strictly stable stationary set in the sense of Defini-
tion 2.11. There exists δ > 0 such that if F0 ∈ h3

δ(Σ), then the unique solution (Ft)t>0 of the
flow (4.1) with intial datum F0 is defined for all times t > 0.

Moreover Ft → F∞ exponentially fast, where F∞ is the unique stationary set near G such
that |F∞,i| = |F0,i| for i = 1, . . . ,m. In particular, if |F0,i| = |Gi| for i = 1, . . . ,m, then
Ft → G exponentially fast. Here Gi denote the open bounded sets enclosed by the components
ΓG,1, . . . ,ΓG,m of ∂G, F∞,i and F0,i are diffeomorphic to Gi, and ∂F0,i and ∂F∞,i are the
components of ∂F0 and ∂F∞ respectively.

Remark 5.2. By exponential convergence of Ft to F∞ we mean precisely the following:
writing ∂Ft := {x + h̃(x, t)νF∞(x) : x ∈ ∂F∞}, we have that for every k ∈ N there exists
ck > 0 and Ck > 1 such that

‖h̃(·, t)‖Ck(∂F∞) ≤ Cke−ckt

for t ≥ 1.

The proof of stability is based on the following energy identity.

Proposition 5.3. Let (Ft)t∈[0,T ) be the solution of (4.1) provided by Theorem 4.4. Then the
function

t 7→
ˆ
∂Ft

|∇Rt|2 dH2
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is absolutely continuous and for almost every t ∈ (0, T ) we have the following energy identity

(5.1)
d

dt

(ˆ
∂Ft

|∇Rt|2 dH2

)
= −2∂2J (Ft)[∆Rt]

− 2

ˆ
∂Ft

BFt [∇Rt,∇Rt] (∆Rt) dH2 +

ˆ
∂Ft

HFt |∇Rt|2 (∆Rt) dH2,

where ∂2J (Ft) is defined as in (2.21) and BFt [·, ·] denotes the fundamental form of ∂Ft.

The proof of the proposition is similar to [24, Proposition 4.3] (see also [1, Lemma 4.4])
and therefore we shift it to the appendix.

In order to control the two last terms in (5.1) we need the following interpolation result
on the evolving boundaries. The proof of the next lemma is precisely the same as [1, Lemma
4.7] and therefore we omit it.

Lemma 5.4. If F ⊂ U is such that ∂F = {x + hF (x)ν(x) : x ∈ Σ} with ‖hF ‖C1,α(Σ) ≤ M ,
then for every smooth function f ∈ C∞(∂F ) it holdsˆ

∂F
|BF ||∇f |2|∆f | dH2 ≤ C

(
1 + ‖HF ‖3L6(∂F )

)
‖∇∆f‖2L2(∂F ) ‖∇f‖L2(∂F ) .

The constant C depends only on M and Σ.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. For any set F ∈ h3
1(Σ) consider

D(F ) :=

ˆ
F∆G

dist (x,Σ) dx

and note that

(5.2)
1

C
‖hF ‖2L2(∂G) ≤ D(F ) ≤ C‖hF ‖2L2(∂G)

for a constant depending only on G. Moreover, we define

RF := HF −Q(E(uF ))

which is defined on ∂F .

Step 1.(Preliminary estimates) In this step we show that if F ∈ h3
1(Σ) and ‖hF ‖C1(Σ) ≤ δ

for δ sufficiently small, then it holds

(5.3)
1

C
‖hF ‖1/θH3(Σ)

≤ D(F ) +

ˆ
∂F
|∇RF |2 dH2 ≤ C ‖hF ‖θH3(Σ).

for some θ ∈ (0, 1) and some constant C > 1.
We begin by proving the first inequality. We use interpolation, (4.2) and the second in-

equality in Remark 4.2 to deduce that

‖∇
(
Q(E(uF )) ◦ π−1

F −Q(E(uG))
)
‖L2(Σ)

≤ C‖Q(E(uF )) ◦ π−1
F −Q(E(uF )) ◦ π−1

F ‖
θ′

H
3
2 (Σ)
‖Q(E(uF )) ◦ π−1

F −Q(E(uG))‖1−θ′
L2(Σ)

≤ (C + ‖Q(E(uF )) ◦ π−1
F ‖

θ′

H3/2(Σ)
)‖(DuF ) ◦ π−1

F − (DuG)‖1−θ′
L2(Σ)

≤ (C + ‖hF ‖θ
′

H3(Σ))‖hF ‖
1−θ′
H2(Σ)

≤ C‖hF ‖1−θ
′

H2(Σ)

(5.4)
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for θ′ ∈ (0, 1). Since G is a stationary set it holds ∇RG = 0 on Σ. Therefore we conclude by
the above inequality that

‖∇
(
HF ◦ π−1

F −HG

)
‖2L2(∂F )

≤ 2

ˆ
Σ
|∇(RF ◦ π−1

F )|2 dH2 + 2‖∇
(
Q(E(uF )) ◦ π−1

F −Q(E(uG))
)
‖2L2(Σ)

≤ 2C

ˆ
∂F
|∇RF |2 dH2 + C‖hF ‖2(1−θ′)

H2(Σ)
.

We use (2.6), (3.3) and the fact that ‖hF ‖C1(Σ) ≤ δ to deduce with straightforward calculations

‖hF ‖2H3(Σ) ≤ C‖∇(HF ◦ π−1
F −HG)‖2L2(Σ) + C‖hF ‖2H2(Σ).

Therefore, from the two previous inequalities and by interpolation we obtain that

‖hF ‖2H3(Σ) ≤ C
ˆ
∂F
|∇RF |2 dH2 + C‖hF ‖2(1−θ′)

H2 + C‖hF ‖2H2

≤ C
ˆ
∂F
|∇RF |2 dH2 +

1

2
‖hF ‖2H3 + C‖hF ‖θ

′′

L2 ,

for a suitable θ′′ ∈ (0, 1). The first inequality in (5.3) then follows from the previous
the previous estimate and from (5.2), recalling that since ‖hF ‖H3(Σ) ≤ 1 we have also
‖∇RF ‖L2(∂F ) ≤ C.

To prove the second inequality in (5.3) we argue similarly as above and use (3.3) to conclude
that

‖∇(HF ◦ π−1
F −HG)‖2L2(Σ) ≤ C ‖hF ‖

2
H3(Σ)

Moreover by (5.4) we have that

‖∇
(
Q(E(uF )) ◦ π−1

F −Q(E(uG))
)
‖L2(Σ) ≤ C ‖hF ‖1−θ

′

H2(Σ)

for θ′ ∈ (0, 1). Therefore since G is a critical set we obtainˆ
∂F
|∇RF |2 dH2 ≤ C

ˆ
Σ
|∇(RF ◦ π−1

F −RG)|2 dH2

≤ C
ˆ

Σ
|∇(HF ◦ π−1

F −HG)|2 dH2 + C

ˆ
Σ
|∇
(
Q(E(uF )) ◦ π−1

F −Q(E(uG))
)
|2 dH2

≤ C‖hF ‖2H3(Σ) + C‖hF ‖2(1−θ′)
H2(Σ)

≤ C‖hF ‖θH3(Σ).

Hence, we have (5.3).

Step 2.(Global existence) Let us assume that the initial set F0 is in h3
δ(Σ) with δ < ε1, where

ε1 ∈ (0, 1) is the constant provided by Theorem 4.4 corresponding to the choice δ0 = 1,
K0 = max{2, 5‖Q(E(uG))‖L∞(Σ)}. Then the flow (Ft)t∈[0,T ) starting from F0 which is a
solution of (4.1) exists for a time interval (0, T ), with T bounded from below by a positive
constant which depends only G. Let σ > 0 be a small number which will be chosen later.
Note that by (5.3) and by continuity we have

(5.5) D(Ft) +

ˆ
∂Ft

|∇Rt|2 dH2 ≤ C‖h(·, t)‖θH3(Σ) ≤ Cδ
θ < σ
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for some time interval (0, T ′), where the last inequality holds provided that δ is small enough.
Note that by (5.3) it follows that

(5.6) ‖h(·, t)‖H3(Σ) < Cσθ < min{ε1, σ1} for every t ∈ (0, T ′)

when σ is small enough, where σ1 is the constant provided by Proposition 2.13. In particular,
we conclude from Theorem 4.4 that as long as the flow (Ft)t∈(0,T ) satisfies (5.5) it is well
defined. In other words, if (0, T ∗) is the maximal time of existence and if it satisfies (5.5) for
every t ∈ (0, T ∗), then T ∗ =∞, i.e., the flow exists for all times.

Let us denote by [0, T ′) the maximal time interval where the flow satisfies (5.5). We claim
that if ‖h0‖H3(Σ) < δ for δ small enough, then the flow satisfies (5.5) for every t ∈ (0, T ∗) and

thus T ∗ = T ′ = +∞ .
We start by recalling that by Lemma 2.12 and (5.6), since σ1 < σ0, we have

∂2J (Ft)[∆Rt] ≥
c0

2
‖∆Rt‖2H1(∂Ft)

for every t ∈ (0, T ′).

Thus, from the energy identity (5.1), using also Lemma 5.4 and again (5.5), we may estimate

d

dt

ˆ
∂Ft

|∇Rt|2 dH2 ≤ −2∂2J (Ft)[∆Rt] + C

ˆ
∂Ft

|BFt ||∇Rt|2 |∆Rt| dH2

≤ −c0‖∆Rt‖2H1(∂Ft)
+ C (1 + ‖HFt‖3L6(∂Ft)

)‖∇∆Rt‖2L2(∂Ft)
‖∇Rt‖L2(∂Ft)

≤ −c0‖∆Rt‖2H1(∂Ft)
+ C
√
σ ‖∇∆Rt‖2L2(∂Ft)

≤ −c0

2
‖∆Rt‖2H1(∂Ft)

,

(5.7)

where the last inequality holds by taking σ smaller if needed.
Next we show that

(5.8) ‖∇Rt‖L2(∂Ft) ≤ C‖∆Rt‖L2(∂Ft)

for some constant which depends on Σ. Let us fix a component of ∂Ft and denote it by Γt.
Since Ft is diffeomorphic to G we denote the component of Σ diffeomorphic to Γt by Γ. Since
Γ is smooth, compact and connected Riemannian manifold we conclude by [5, Theorem 3.67]
that the Poincaré inequality holds on Γ, i.e., for every ϕ ∈ C∞(Γ) with

´
Γ ϕdH

2 = 0 it holds

‖ϕ‖L2(Γ) ≤ C‖∇ϕ‖L2(Γ).

Therefore since Γt = Φt(Γ) with Φt(x) = x + h(x, t)ν(x) and ‖h(·, t)‖C1,α ≤ C the Poincaré
inequality holds also on Γt. In particular, we have

‖Rt − R̄t‖L2(Γt) ≤ C‖∇Rt‖L2(Γt),

where R̄t denotes the average of Rt on Γt and the constant depends on Σ. Then by integration
by parts we getˆ

Γt

|∇Rt|2 dH2 = −
ˆ

Γt

(Rt − R̄t)∆Rt dH2

≤ ‖Rt − R̄t‖L2(Γt)‖∆Rt‖L2(Γt) ≤ C‖∇Rt‖L2(Γt)‖∆Rt‖L2(Γt).

We obtain (5.8) by repeating the above argument for every component of ∂Ft.
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By (5.7) and (5.8) we conclude that

d

dt

ˆ
∂Ft

|∇Rt|2 dH2 ≤ −c
ˆ
∂Ft

|∇Rt|2 dH2

for every t ∈ (0, T ′). Integrating this over (0, t), using (5.3) and ‖h0‖H3(Σ) ≤ δ yield

(5.9)

ˆ
∂Ft

|∇Rt|2 dH2 ≤ Ce−ctδθ.

On the other hand by differentiating D(Ft) with respect to time and using the same calcula-
tions as in [24, Lemma 3.3] we get

d

dt
D(Ft) =

ˆ
∂Ft

dG ∆Rt dH2 = −
ˆ
∂Ft

〈∇dG,∇Rt〉 dH2

≤ H2(∂Ft)
1/2

(ˆ
∂Ft

|∇Rt|2 dH2

)1/2

≤ Ce−
c
2
tδ

θ
2 .

Integrating this over (0, t), using (5.2) and ‖h0‖H3(Σ) ≤ δ yield

(5.10) D(Ft) ≤ D(F0) + Ce−
c
2
tδ

θ
2 ≤ Cδ2 + Ce−

c
2
tδ

θ
2 < σ

when δ is chosen small enough. Hence, we have that (5.5) holds for the whole life span of the
flow (0, T ∗) and by the previous discussion this implies that T ∗ =∞.

Step 3.(Convergence) Combining (5.3) and (5.5) we have that supt>0 ‖h(·, t)‖H3(Σ) ≤ Cσθ.
Therefore there exists a subsequence such that

h(·, tm)→ h∞(·) in H2(Σ).

We denote the target set by F∞, i.e., ∂F∞ = {x + h∞(x)ν(x) : x ∈ Σ}. By (5.9) we deduce
that ∇RF∞ = 0, i.e., F∞ is a stationary set. We will show that Ft → F∞ exponentially fast.

To this aim we define

D∞(F ) :=

ˆ
F∆F∞

dist (x, F∞) dx.

Repeating the calculations leading to (5.10) we get∣∣∣ d
dt
D∞(Ft)

∣∣∣ =
∣∣∣ˆ

∂Ft

dF∞ ∆Rt dH2
∣∣∣ ≤ H2(∂Ft)

1/2

(ˆ
∂Ft

|∇Rt|2 dH2

)1/2

≤ Ce−
c
2
tδ

θ
2 ,

where the last inequality follows from (5.9). This implies that limt→∞D∞(Ft) exists and the
choice of F∞ implies that D∞(Ft)→ 0. Therefore integrating the above inequality over (t,∞)
we get

D∞(Ft) ≤ Ce−
c
2
tδ

θ
2

for every t > 0. We change the reference set from Σ = ∂G to ∂F∞ and write ∂Ft =
{x+ h̃(x, t)νF∞(x) : x ∈ ∂F∞}. Then by inequality (5.2), with ∂G replaced by ∂F∞, and by
the above inequality we have

‖h̃(·, t)‖L2(∂F∞) ≤ Ce−
c
4
tδ

θ
4 .

Moreover, since ‖h(·, t)‖H3(Σ) ≤ Cσθ for all t > 0 then also ‖h̃(·, t)‖H3(∂F∞) ≤ C for all t > 0.

By Theorem 4.4 we conclude that ‖h̃(·, t)‖H2k+3(∂F∞) ≤ C(k, σ) for all t ≥ 1 and for every
k ∈ N. Thus we deduce by interpolation that

‖h̃(·, t)‖Ck(∂F∞) ≤ Cke−ckt for all t ≥ 1
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for some constants ck > 0 and Ck > 1 depending on k and K0.
To conclude the proof, for every t ∈ [0,+∞] denote by (ΓFt,i)i=1,...,m the connected com-

ponents of ∂Ft, numbered according to (2.19). Denote also by Ft,i the bounded open set
enclosed by ΓFt,i and recall that the flow preserves the volume of each Ft,i. Indeed,

d

ds
|Ft+s,i||s=0

=

ˆ
ΓFt,i

Vt dH2 =

ˆ
ΓFt,i

∆Rt dH2 = 0.

Thus, recalling (5.6) and Proposition 2.13, we may conclude that F∞ is the unique stationary
set in h3

σ1(∂G) such that |F∞,i| = |F0,i| for i = 1, . . . ,m.
�

6. Evolution of epitaxially strained elastic films

In this section we briefly describe how our main results read in the context of evolving
periodic graphs.

In this framework, given a (sufficiently regular) non-negative function h : R2 → [0,+∞),
1-periodic with respect to both variables x1, x2, the free energy associated with it reads

(6.1) J (h) :=

ˆ
Ωh

Q(E(uh)) dx+H2(Γh) ,

where x = (x1, x2, x3) ∈ R2, Γh, Ωh denote the graph and the subgraph of h, respectively,
over the periodic cell, i.e.,

Ωh := {(x1, x2, x3) ∈ (0, 1)2 × R : 0 < x3 < h(x1, x2)} ,
Γh := {(x1, x2, x3) ∈ (0, 1)2 × R : x3 = h(x1, x2)},

and uh is the elastic equilibrium in Ωh, namely the solution of the elliptic system

(6.2)


div CE(uh) = 0 in Ωh,

CE(uh)[νΩh ] = 0 on Γh,

Duh(·, x3) is 1-periodic,

u(x1, x2, 0) = e0(x1, x2, 0) ,

for a suitable fixed constant e0 6= 0. The above energy relates to a variational model for
epitaxial growth, see the introduction. Precisely, the graph Γh describes the (free) profile
of the elastic film, which occupies the region Ωh and is grown on a (rigid) and much thicker
substrate, while the mismatch strain constant e0 appearing in the Dirichlet condition for uh at
the interface {x1 = 0} between film and substrate measures the mismatch between the char-
acteristic atomic distances in the lattices of the two materials. In this framework, the (local)
minimizers of (6.1) under an area constraint on Ωh describe the equilibrium configurations of
epitaxially strained elastic films, see [21, 22, 23, 25] and the references therein.

In the context of periodic graphs, given an initial 1-periodic profile h0 ∈ H3
loc(R2) (in short

h0 ∈ H3
per

(
(0, 1)2

)
), we look for a local-in-time solution h(·, t) of the following problem:

(6.3)


1
Jt
∂th = ∆Γt (Ht +Q(E(ut))) on Γt and for all t ∈ (0, T ),

h(·, t) is 1-periodic for all t ∈ (0, T ),

h(·, 0) = h0 ,

where Jt :=
√

1 + |Dh(·, t)|2, ut stands for the solution of (6.2), with Ωht in place of Ωh,
we wrote Γt instead of Γht , and Ht denotes the mean curvature of Γt. Note that in the first
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equation of (6.3) we have +Q(E(ut)) instead of −Q(E(ut)). This is due to the fact that in
(6.1) the vector νΩh now points outwards with respect to the elastic body.

Although the setting is a bit different from that of the previous sections, the short-time
existence theory of Section 4 clearly extends also to the present situation, with the same
arguments. In this way we improve upon the results of [23] at least in the case of isotropic
surface energy density. We assume that the solution is periodic for all times. If we had
uniqueness in unbounded domains for this equation, the periodicity would be implied by the
periodic initial conditions.

Also the stability analysis of Section 5 applies without any essential changes, thus showing
that strictly stable stationary 1-periodic configurations are exponentially stable in the sense
of Theorem 5.1.

A particular class of critical configurations to which our stability theorem applies are the
flat configurations, that is, in the case of constants profiles h ≡ d, provided that d > 0 is
sufficiently small. Indeed in [9, Proposition 7.3] it is shown that if d is sufficiently small then
the flat configuration h ≡ d is strictly stable for the functional J . Therefore, we may state
the following theorem.

Theorem 6.1. There exists d0 > 0 with the following property: Let d ∈ (0, d0). Then, there
exists δ > 0 such that if

‖h0 − d‖H3((0,1)2) ≤ δ and

ˆ
(0,1)2

h0 dx = d ,

then the unique solution h(·, t) of (6.3) exists for all t > 0 and for every integer k ≥ 1 we
have

‖h(·, t)− d‖Ck([0,1]2) ≤ Cke−ckt for all t > 1

and for suitable positive constants Ck, ck.

7. Appendix: technical lemmas

In this appendix we collect a few technical results and we give the proof of Lemma 3.3 and
of Proposition 5.3.

Lemma 7.1. Let Σ be an m-dimensional smooth compact manifold in Rn and let k ≥ 1.
If f , g ∈ Hk(Σ) ∩ L∞(Σ), then fg ∈ Hk(Σ) and ‖fg‖Hk(Σ) ≤ C

(
‖f‖Hk(Σ)‖g‖L∞(Σ) +

‖g‖Hk(Σ)‖f‖L∞(Σ)

)
. Moreover, if A ∈ C∞(R) then A(f) ∈ Hk(Σ) and ‖A(f)‖Hk(Σ) ≤

C(1 + ‖f‖Hk(Σ)) where the constant depends on A and on ‖f‖L∞(Σ).

If U ⊂ Rm is an open set Φ : U → Φ(U) ⊂ Σ is a diffeomorphism of class Hk ∩C1, k ≥ 1,
and f ∈ Hk(Φ(U)) ∩ C1(Φ(U)), then ‖f ◦ Φ‖Hk(U) ≤ C(‖Df‖∞, ‖DΦ‖∞)(‖f‖Hk + ‖Φ‖Hk).

Moreover, if k ≥ 3, f ∈ Hk−1(Φ(U)), then ‖f ◦Φ‖Hk−1(U) ≤ C(‖f‖∞, ‖DΦ‖∞)(‖f‖Hk−1 +

‖Φ‖Hk).

Proof. The first two statements of the lemma are classical, see for instance [43, Proposi-
tions 3.7 and 3.9]. The third one can be proven by a similar argument. We leave the details
for the reader. �

We now prove Lemma 3.3.
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Proof of Lemma 3.3. First, recall (3.17) and observe that from the assumption on hi we have

sup0≤t≤T ‖hi(·, t)‖C1,α(Σ) ≤ Cδθ
′

for a suitable C > 0 and θ′ ∈ (0, 1). We begin by estimating
for ε > 0

ˆ T

0

ˆ
Σ
|〈A(x, h2,∇h2),∇4h2〉 − 〈A(x, h1,∇h1),∇4h1〉|2 dH2dt

≤ 2

ˆ T

0

ˆ
Σ
|A(x, h2,∇h2)|2|∇4h2 −∇4h1|2 dH2dt

+ 2

ˆ T

0

ˆ
Σ
|∇4h1|2|A(x, h2,∇h2)−A(x, h1,∇h1)|2 dH2dt

≤ ε
ˆ T

0

ˆ
Σ
|∇4h2 −∇4h1|2 dH2dt

+ C

ˆ T

0

ˆ
Σ
|∇4h1|2(|h2 − h1|2 + |∇h2 −∇h1|2) dH2dt.

(7.1)

To estimate the last term, we use the Sobolev inequality and the interpolation Lemma 2.1,
and have

ˆ T

0

ˆ
Σ
|∇4h2|2(|h2 − h1|2 + |∇h2 −∇h1|2) dH2dt

≤ C
ˆ T

0
‖h2(·, t)− h1(·, t)‖2W 1,4‖∇4h2(·, t)‖2L4 dt

≤ C sup
0≤t≤T

‖h2(·, t)− h1(·, t)‖2H2

ˆ T

0
‖h2(·, t)‖

5
3

H5‖∇h2(·, t)‖
1
3
L∞ dt

≤ Cδ
θ′
3 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2T

1
6

(ˆ T

0
‖h2(·, t)‖2H5 dt

) 5
6

≤ C(M0)T
1
6 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

(7.2)

Concerning the estimate of

ˆ T

0

ˆ
Σ
|J1(x, h2,∇h2,∇2h2,∇3h2)− J1(x, h1,∇h1,∇2h1,∇3h1)|2 dH2dt
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we observe that
ˆ T

0

ˆ
Σ
|〈B1(x, h2,∇h2),∇3h2 ⊗∇2h2〉 − 〈B1(x, h1,∇h1),∇3h1 ⊗∇2h1〉|2 dH2dt

≤ C
ˆ T

0

ˆ
Σ
|B1(x, h2,∇h2)−B1(x, h1,∇h1)|2|∇3h2 ⊗∇2h2|2 dH2dt

+ C

ˆ T

0

ˆ
Σ
|B1(x, h1,∇h1)|2|∇3h2 −∇3h1|2|∇2h2|2 dH2dt

+ C

ˆ T

0

ˆ
Σ
|B1(x, h1,∇h1)|2|∇2h2 −∇2h1|2|∇3h1|2 dH2dt

≤ C
ˆ T

0

ˆ
Σ

(|h2 − h1|2 + |∇h2 −∇h1|2)|∇3h2|2|∇2h2|2 dH2dt

+ C

ˆ T

0

ˆ
Σ
|∇2h2 −∇2h1|2|∇3h1|2 dH2dt

+ C

ˆ T

0

ˆ
Σ
|∇3h2 −∇3h1|2|∇2h2|2 dH2dt =: I1 + I2 + I3.

By a simple interpolation argument, we have

I3 ≤
ˆ T

0
‖∇3h2 −∇3h1‖2L4‖∇2h2‖2L4 dt ≤ CM0

ˆ T

0
‖h1 − h2‖

3
2

H4‖∇2h2 −∇2h1‖
1
2

L2

≤ ε
ˆ T

0
‖∇4h2 −∇4h1‖2L2 dt+ Cε(M0)T sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

Similarly

I2 ≤
ˆ T

0
‖∇2h2 −∇2h1‖2L4‖∇3h1‖2L4 dt

≤ C
ˆ T

0
‖h2 − h1‖

1
2

H4‖h2 − h1‖
3
2

H2‖h1‖
1
2

H5‖∇3h1‖
3
2

L2 dt

≤ ε
ˆ T

0
‖∇4h2 −∇4h1‖2L2 dt+ Cε(M0) sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2

ˆ T

0
1 + ‖h1‖

2
3

H5 dt

≤ ε
ˆ T

0
‖∇4h2 −∇4h1‖2L2 dt+ Cε(M0)T

2
3 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

Finally, arguing similarly as above,

I1 ≤
ˆ T

0
‖h1 − h2‖2W 1,6‖∇3h2‖2L6‖∇2h2‖2L6 dt

≤ CM0 sup
0≤t≤T

‖h2(·, t)− h1(·, t)‖2H2

ˆ T

0
‖h2‖

2
3

H5‖∇3h2‖
4
3

L2 dt

≤ C(M0)T
2
3 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .
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Since the difference of the remaining terms in J1 can be treated in a similar (in fact easier)
way, we conclude thatˆ T

0

ˆ
Σ
|J1(x, h2,∇h2,∇2h2,∇3h2 − J1(x, h1,∇h1,∇2h1,∇3h1))|2 dH2dt(7.3)

≤ ε
ˆ T

0
‖∇4h2(·, t)−∇4h1(·, t)‖22 dt+ Cε(M0)T θ sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

We are left to show thatˆ T

0

ˆ
Σ
|J2(x, h2,∇h2,∇2h2,∇f,∇2f − J2(x, h1,∇h1,∇2h1,∇f,∇2f))|2 dH2dt(7.4)

≤ ε
ˆ T

0
‖∇4h1(·, t)−∇4h2(·, t)‖22 dt+ Cε(M0,K0)T θ sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

As before we only prove the estimate for

I4 :=

ˆ T

0

ˆ
Σ
|〈A1(x, h2,∇h2)−A1(x, h1,∇h1),∇2f〉|2 dH2dt,

the other terms being similar (or easier). Using once again Lemma 2.1 we have

I4 ≤
ˆ T

0
‖h2 − h1‖2W 1,4‖∇2f‖2L4 dt

≤ C sup
0≤t≤T

‖h2(·, t)− h1(·, t)‖2H2

ˆ T

0
‖∇3f‖

3
2
2 ‖f‖

1
2
L∞ dt

≤ CK
1
2
0 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2

ˆ T

0
‖∇3f‖

3
2

L2 dt

≤ CK
5
4
0 T

1
4 sup

0≤t≤T
‖h2(·, t)− h1(·, t)‖2H2 .

The conclusion then follows by collecting (7.1)-(7.4). �

Finally we give the proof of Proposition 5.3.

Proof of Proposition 5.3. The proof is similar to the proof of [24, Lemma 3.3]. For this reason
we adopt the same notation as there and extend every function on ∂Ft using the signed
distance function dFt . In particular, the normal νt = νFt , the second fundamental form
Bt = BFt and the mean curvature Ht = HFt are extended to a tubular neighborhood of ∂Ft.
Recall that Dτ denotes the tangential gradient defined in (2.9) and divτ denotes the tangential
divergence, which is defined as divτ X = divX − (DXνt) · νt. The Laplace-Beltrami operator
on Ft can be written as ∆v = divτ (Dτv), the second fundamental form as Bt = Dτνt and the
mean curvature as Ht = divτ νt.

The regularity properties of h stated in Theorem 4.4 imply that for every integer k ≥ 1
∇kh ∈ H1

loc(0, T ;L2(Σ)). Therefore, in what follows all the time derivatives are well defined
almost everywhere. In turn, this allows us to differentiate ut := uFt with respect to time.

More precisely, setting u̇t := ∂ut+s
∂s

∣∣
s=0

, we can argue as in [9, Theorem 4.1] to conclude that
u̇ solves

(7.5)

ˆ
Ω\Ft

CE(u̇t) : E(ϕ) dx = −
ˆ
∂Ft

divτ (∆RtCE(ut)) · ϕdH2
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for all ϕ ∈ H1(Ω \ Ft;R3) such that ϕ = 0 on ∂DΩ. Note also that u̇t = 0 on ∂DΩ.
Let us fix time t > 0. To continue we observe that, by redefining the velocity field X

assosiated with the flow (4.1) if needed (in a time interval centered at t), we may assume that
Xt has only a normal component on ∂Ft; that is,

Xt = (Xt · νt)νt = (∆Rt)νt on ∂Ft.

Since we extended all the geometric quantities by means of the gradient of the signed distance
from Ft we have the following equality (see [13])

ν̇t = −Dτ (Xt · νt) = −Dτ (∆Rt) on ∂Ft,.

This implies (see the proof of [1, eq. (5.15)])

(7.6) Ḣt :=
∂

∂s
Ht+s

∣∣
s=0

= −∆2Rt on ∂Ft.

Moreover we have (see [13])

(7.7) ∂νtHt = −|Bt|2 on ∂Ft.

Denoting by Dτt+s the tangential gradient on ∂Ft+s and by JτΦs the tangential Jacobian of
Φs, we have

d

ds

(
1

2

ˆ
∂Ft+s

|DτRt+s|2 dH2

) ∣∣∣
s=0

=
d

ds

(
1

2

ˆ
∂Ft

(|Dτt+sRt+s|2 ◦ Φs) JτΦs dH2

) ∣∣∣
s=0

=
1

2

ˆ
∂Ft

|DτRt|2 divτ (∆Rt νt) dH2 +

ˆ
∂Ft

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

dH2

=
1

2

ˆ
∂Ft

Ht|DτRt|2∆Rt dH2 +

ˆ
∂Ft

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

dH2

(7.8)

We write the last term as

Dτt+sRt+s ◦ Φs = [I − νt+s ◦ Φs ⊗ νt+s ◦ Φs]DRt+s ◦ Φs

and get (recall Φ̇ = Xt = (∆Rt)νt)

∂

∂s

(
Dτt+sRt+s ◦ Φs

)∣∣∣
s=0

= [I − νt ⊗ νt] (DṘt +D2RtXt) + (−ν̇t ⊗ νt − νt ⊗ ν̇t)DRt

= Dτ Ṙt + ∆Rt
(
(I − νt ⊗ νt)D2Rt

)
[νt] + (DRt · νt)Dτ∆Rt − (DRt · ν̇t)νt.

Note that Dτ (DRt · νt) = BtDτRt +
(
(I − νt ⊗ νt)D2Rt

)
[νt]. Thus we have

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

= (DτRt ·Dτ Ṙt)−∆Rt(Bt[DτR,DτRt])

+ ∆Rt
(
DτR ·Dτ (DRt · νt)

)
+ (DτRt ·Dτ∆Rt) (DRt · νt).
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Therefore by integrating by parts the first and the third terms we obtain
ˆ
∂Ft

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

dH2

=

ˆ
∂Ft

(DτRt ·Dτ Ṙt)−∆Rt
(
Bt[DτR,DτRt]

)
dH2

+

ˆ
∂Ft

∆Rt
(
DτR ·Dτ (DRt · νt)

)
+ (DτRt ·Dτ∆Rt) (DRt · νt) dH2

=

ˆ
∂Ft

−∆Rt Ṙt −∆Rt
(
Bt[DτR,DτRt]

)
dH2

+

ˆ
∂Ft

−(DRt · νt) divτ (∆RtDτRt) + (DτRt ·Dτ∆Rt) (DRt · νt) dH2

=

ˆ
∂Ft

−∆Rt Ṙt − (DRt · νt) (∆Rt)
2 −∆Rt

(
Bt[DτR,DτRt]

)
dH2.

Let us denote ut = uFt and u̇t = ∂
∂tut. By (7.6) it holds

Ṙt = Ḣt +
∂

∂t
Q(E(ut)) = −∆2Rt + CE(u̇t) : E(ut)

and by (7.7) we have

(DRt, νt) = ∂νtHt + ∂νtQ(E(ut)) = −|Bt|2 + ∂νtQ(E(ut)).

Therefore we get
ˆ
∂Ft

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

dH2 =

ˆ
∂Ft

∆Rt ∆2Rt − CE(u̇t) : E(ut)∆Rt dH2

+

ˆ
∂Ft

|Bt|2(∆Rt)
2 − ∂νtQ(E(ut)) (∆Rt)

2 −∆Rt
(
Bt[DτR,DτRt]

)
dH2 .

Observe now that using the second equation in (2.12) and (7.5) we have

ˆ
∂Ft

CE(u̇t) : E(ut)∆Rt dH2 =

ˆ
∂Ft

CE(ut) : D(u̇t)∆Rt dH2

=

ˆ
∂Ft

CE(ut) : Dτ (u̇t)∆Rt dH2 = −
ˆ
∂Ft

divτ (∆RtCE(ut)) · u̇t = 2

ˆ
Ω\Ft

Q(E(u̇t)) dx.

Collecting the previous three identities we then get

ˆ
∂Ft

DτRt ·
∂

∂s

(
Dτt+sRt+s ◦ Φs

) ∣∣∣
s=0

dH2 = −
ˆ
∂Ft

|∇∆τRt|2 + 2Q(E(u̇t))∆Rt dH2

+

ˆ
∂Ft

|B|2(∆Rt)
2 − ∂νtQ(E(ut)) (∆Rt)

2 −Bt[∇Rt,∇Rt] ∆Rt dH2.

We notice that the first four terms coincide with −∂2J(Ft)[∆Rt] (see (2.21)). Thus, combining
the last identity with (7.8), we obtain (5.1). �
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