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A second-order numerical scheme for the porous
Shallow Water Equations based on a DOT ADER

augmented Riemann solver

Alessia Ferraria,∗, Renato Vacondioa, Paolo Mignosaa

aDepartment of Engineering and Architecture, University of Parma, Parco Area delle
Scienze 181/A, 43124 Parma, Italy

Abstract

In the present work, a novel DOT ADER numerical solver capable of handling

porosity and bottom discontinuities in the framework of the 1D porous Shal-

low Water Equations (SWEs) is presented. In order to ensure the preservation

of the water at rest condition, a new set of well-balanced governing equations

based on the isotropic porosity parameter is derived. The effects exerted by

the bed slope and porosity variation source terms are accurately accounted for

inside the Riemann solver: to this purpose, an augmented Riemann problem

is created by adding two fictitious equations stating the invariance of poros-

ity and bottom in time to the SWEs system. With the aim of computing the

non-conservative fluxes, which in the augmented system replace the original

source terms, meanwhile ensuring robustness, stability and accuracy, a novel

approximate numerical scheme, based on the entropy-satisfying DOT family, is

introduced. The extension of the novel Riemann solver, which strictly conserves

mass, to a second order of accuracy in both space and time is addressed in the

ADER framework. The fulfillment of the C-property condition (i.e. the exact

preservation of an initial quiescent flow) in the presence of a discontinuous poros-

ity field and over a non-flat bottom with abrupt variation is theoretically proved

and numerically verified. The capability of the proposed numerical scheme to
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simulate some Riemann problems developing across porosity discontinuities and

bed steps is finally assessed.

Keywords: Shallow Water Equations with porosity, Augmented Riemann

problems, DOT, ADER, Porosity discontinuity, Bed step

1. Introduction

The modeling of flooding events in urban areas represents a crucial task

dealing with hazard and risk assessment. In this framework, the Shallow Water

Equations (SWEs) with porosity are a promising tool to account for the effects

exerted by buildings, without impacting on the mesh resolution and hence on

the computational times. In fact, the storage isotropic porosity is defined as the

volume fraction of the urban area available for mass and momentum storage;

Defina et al. (1994) firstly introduced this concept in the SWEs to deal with

partially dry areas.

Since then, several differential isotropic formulations have been presented in

order to consider both the reduced storage and the additional resistances that

buildings exert on the flow: Guinot & Soares-Frazão (2006), Soares-Frazão et al.

(2008), Cea & Vázquez-Cendón (2010), Finaud-Guyot et al. (2010), Benkhal-

doun et al. (2016), Ferrari et al. (2017), Velickovic et al. (2017), Cozzolino et al.

(2018), Ferrari et al. (2019), Viero (2019).

Other works derived the equations in integral form and adopted, additionally

to the storage porosity, a conveyance parameter to account for the connectivity

of the urban medium: Sanders et al. (2008), Özgen et al. (2016a), Özgen et al.

(2016b), Bruwier et al. (2017), Guinot et al. (2017), Guinot et al. (2018).

Since porosity schemes aim at simulating flood events on real urban layouts,

beyond the formulation derivation and the chosen porosity parameter, the free-

surface modeling has to ensure a stable treatment of discontinuities that are

commonly present in porous fields and bathymetries.

An accurate way to fix this issue is to account for the effects of the source

terms inside the Riemann solver creating an augmented Riemann problem,
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where the variables appearing in the source terms are added to the list of the

conserved variables, and the source terms are substituted by non-conservative

fluxes. In this framework, some works focused on the bed slope source term:

Bernetti et al. (2008), George (2008), Murillo & Garćıa-Navarro (2010), Rosatti

& Begnudelli (2010), Cozzolino et al. (2011), Murillo & Garćıa-Navarro (2012),

Navas-Montilla & Murillo (2015), Caleffi et al. (2016), among others. With

regard to the treatment of the porosity source term by means of augmented

Riemann problems, Benkhaldoun et al. (2016) proposed a nonhomogeneous

solver based on a predictor-corrector procedure for unstructured triangular

grids, whereas Ferrari et al. (2017) derived an augmented 2D Roe solver capable

of handling porous abrupt variations on Cartesian grids. The scheme of Ferrari

et al. (2017) was developed according to some physical assumptions concerning

the porosity variation and neglecting the bottom reaction. Moreover, dealing

with a Roe scheme, an entropy-fix procedure was required. Furthermore, that

scheme did not exactly preserve the condition of quiescent flow (as the adopted

governing equations did not inherently guarantee this condition), and finally it

was limited to first order of accuracy.

This paper aims at deriving, in a 1D framework, a novel high-order approxi-

mate Riemann solver capable of treating porous and bottom jumps, meanwhile

ensuring the exact preservation of the water at rest condition. To this purpose,

a new set of well-balanced governing equations, based on the isotropic porosity

parameter, is derived, and an augmented Riemann solver is created to solve

these non-conservative equations. A novel numerical solver, based on the path-

conservative DOT (Dumbser & Toro (2011)) scheme, is developed in order to

obtain a robust, general and entropy-satisfying approximate Riemann solver, ca-

pable of treating the non-conservative products (due to porosity discontinuities

and bed steps), without requiring computationally expensive entropy-fix proce-

dure typical of the Roe-based ones. The numerical scheme is then extended to

second order following the ADER approach (Toro et al. (2001), Titarev & Toro

(2002), Toro & Titarev (2002)).

The reminder of the paper is organized as follows: in Section 2 the new set
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of the well-balanced governing equations is derived. Section 3 is dedicated to

the augmented Riemann problem definition and to the study of its eigenstruc-

ture. The first order DOT numerical solver is described in Section 4, meanwhile

the extension to the second-order in the framework of the ADER approach is

described in Section 5. In Section 6, the exact preservation of the water at

rest condition is theoretically proved and numerically verified. Then, the DOT-

ADER solver is applied to test the order of convergence and to simulate some

Riemann problems developing across porosity discontinuities and bed steps in

Section 7. Finally, the conclusions of the work and insights into the future

developments are outlined in Section 8.

2. Governing equations

In this work, the original formulation of the 2D-SWEs with a single storage

porosity parameter (Guinot & Soares-Frazão (2006)) is considered. Assuming

a frictionless bed, and neglecting the head loss terms due to obstructions, in a

1D framework, the governing equations written in conservation form become:
∂φh
∂t + ∂φuh

∂x = 0

∂φuh
∂t + ∂

∂x (φu2h+ 1
2gφh

2) = 1
2gh

2 ∂φ
∂x − gφh

∂z
∂x

(1)

where h represents the water depth, φ the porosity, u the velocity, g the gravi-

tational acceleration, and z the bottom elevation. The source terms at the right

hand of the momentum equation represent the reaction due to the porosity

variation (first term) and to the bed slope (second term), respectively.

With the aim of obtaining a well-balanced scheme, and following the idea

originally proposed by Liang & Borthwick (2009) for the classical SWEs, the

water depth h in system (1) is substituted by the water surface elevation η,

recalling that η = h+ z:
∂φ(η−z)

∂t + ∂φuh
∂x = 0

∂φuh
∂t + ∂

∂x [φu2h+ 1
2gφ

(
η2 − 2ηz + z2

)
] = 1

2gh
2 ∂φ
∂x − gφh

∂z
∂x

(2)
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Then, considering both porosity and bottom variables constant in time, after

simple manipulations, the new set of the governing equations results:
∂φη
∂t + ∂φuh

∂x = 0

∂φuh
∂t + ∂

∂x

[
φu2h+ 1

2gφ(η2 − 2ηz)
]

= 1
2g(η2 − 2ηz)∂φ∂x − gφη

∂z
∂x

(3)

As will be theoretically proved and numerically verified in Section 6, system

(3) guarantees the C-property (i.e. the exact preservation of the water at rest

condition).

3. The mathematical model

With the aim of taking into account the effects of both porosity and bed

elevation discontinuities inside the Riemann solver, φ and z are considered as

additional fictitious conserved variables (as the original idea of LeRoux (1998)

for the bed slope term). This means that two equations stating the invariance

of porosity and bed elevation in time are added to system (3), resulting in the

following augmented Riemann problem written in compact form:

∂U

∂t
+
∂F

∂x
+ H

∂U

∂x
= 0 (4)

where the vectors of the conserved variables U and of the fluxes F, and the ma-

trix of the non-conservative fluxes H originated by the non-conservative prod-

ucts, whose presence deserves special attention (Abgrall & Karni (2010)), are

defined as:

U =


φη

φuh

φ

z

 ,F =


φuh

φu2h+ 1
2gφ(η2 − 2ηz)

0

0

 ,H =


0 0 0 0

0 0 − 1
2g(η2 − 2ηz) gφη

0 0 0 0

0 0 0 0


(5)

The definition of the Generalized Riemann Problem in system (4) implies

that the original source terms now influence the eigenstructure of the problem.

Particularly, the eigenvalues and eigenvectors of the 1D porous SWEs in Eq.

(1), which correspond to those of the classical SWEs (Guinot & Soares-Frazão
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(2006)), may not coincide with those of system (4). In order to study the

eigenstructure of the augmented problem, system (4) is rewritten in the following

quasi-linear form:
∂U

∂t
+ A

∂U

∂x
= 0 (6)

where the matrix A represents the sum of the Jacobian matrix of the flux vector

F and the non-conservative one H:

A =
dF

dU
+ H =


0 1 0 0

gh− u2 2u u2z − gη2 + gηz u2φ

0 0 0 0

0 0 0 0

 (7)

The computation of the roots of the characteristic polynomial |A− λI| = 0

(Toro (2001)) allows for the definition of the following eigenvalues λ1, λ2, λ3,

and λ4:

λ1 = u−
√
gh, λ2 = 0, λ3 = 0, λ4 = u+

√
gh (8)

Since the eigenvalues are real and distinct the augmented system (4) is hy-

perbolic (even if not stricly hyperbolic). The characteristic fields λ1 and λ4,

which correspond to those of the SWEs without porosity, are genuinely non-

linear, and they are associated with rarefactions and shocks, while λ2 and λ3

are linearly degenerate and they are associated with contact waves.

Once the eigenvalues are defined, the right eigenvectors are calculated ac-

cording to the relation AR=λR (Toro (2001)) that associates a given eigenvec-

tor R to each eigenvalue λ of matrix A. Thus, the set of the right eigenvectors

results:

R1 =


1

u−
√
gh

0

0

 ,R2 =


−u2z+gη2−gηz

gh−u2

0

1

0

 ,R3 =


−u2φ
gh−u2

0

0

1

 ,R4 =


1

u+
√
gh

0

0


(9)
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4. The DOT Riemann Solver

Following the formalism of path-conservative schemes (Dal Maso et al. (1995),

Parés (2006), Castro et al. (2007)), Dumbser & Toro (2011) extended the Osher-

Solomon Riemann solver (Osher & Solomon (1982)) to non-conservative hyper-

bolic systems, leading to the DOT Riemann solver, which is robust, complete,

and entropy-satisfiying. In the framework of finite-volume schemes, the spatial

and temporal integration of Eq. (6) in the control volume [xi− 1
2
, xi+ 1

2
]×[tn, tn+1]

leads to the following formula for updating the solution to next time-step (Parés

(2006), Castro et al. (2006), Canestrelli et al. (2009), Stecca et al. (2016)):

Un+1
i = Un

i −
1

∆x

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

A(Ui)∂xUidxdt−
∆t

∆x
(D−

i+ 1
2

+ D+
i− 1

2

) (10)

where i denotes the considered cell, n the current time level tn, Un
i and Un+1

i the

cell-averaged values of the conserved variable at time tn and tn+1, respectively,

∆x the cell size, and ∆t the time-step.

In a first order scheme, the integral term in Eq. (10) vanishes, since constant

cell averaged values are assumed (∂xUi = 0) and the values at the cell interfaces

correspond to the cell averaged values: U+
i+ 1

2

∼= Un
i+1,U

−
i+ 1

2

∼= Un
i .

The fluctuations (jump terms) D−
i+ 1

2

,D+
i− 1

2

, which depend on the discontin-

uous values at the cell interface, are computed in the DOT Riemann solver as

(Dumbser & Toro (2011)):

D±
i+ 1

2

=
1

2

∫ 1

0

[A (Ψ (s))± |A (Ψ (s))|] ∂Ψ

∂s
ds (11)

where the matrix A is defined according to Eq. (7) and the matrix absolute

value |A| is evaluated as:

|A| = R|Λ|R−1, |Λ| = diag(|λ1|, |λ2|, |λ3|, |λ4|) (12)

with R the matrix of the right eigenvectors of A, R−1 its inverse, and |Λ| the

diagonal matrix of the eigenvalues absolute values.

The matrices A and |A| are evaluated along the path Ψ (s), that is a Lip-

schitz continuous function connecting the left (U−
i+ 1

2

) and right (U+
i+ 1

2

) states,
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at the interface i+ 1
2 , in phase-space. Particularly, the conserved variables ap-

pearing in matrices A and |A| are defined in the interval s = [0; 1] according to

the following linear relation:

Ψ(s) = U−
i+ 1

2

+ s(U+
i+ 1

2

−U−
i+ 1

2

) (13)

Once Ψ(s), and then the matrices A and |A| are evaluated, the jump terms

in Eq. (11) are computed by means of a G-point Gauss-Legendre quadrature

rule (Dumbser & Toro (2011)) with positions sj and weights ωj in the interval

[0;1]. Recalling that ∂Ψ/∂s =
(
U+
i+ 1

2

−U−
i+ 1

2

)
, the approximated formula of

Eq. (11) becomes:

D±
i+ 1

2

∼=
1

2


G∑
j=1

ωj [A (Ψ (sj))± |A (Ψ (sj))|]

(U+
i+ 1

2

−U−
i+ 1

2

)
(14)

In this work, a three-point Gauss-Legendre quadrature, with the following po-

sitions and weights, is adopted:

s1 =
5 +
√

15

10
, s2 =

1

2
, s3 =

5−
√

15

10
, ω1 =

5

18
, ω2 =

8

18
, ω3 =

5

18
(15)

Apart from the DOT scheme, the velocity variable u, which is derived from

the updated conserved variables as u = φuh/ (φη − φz), is here corrected in

order to avoid the division by very small water depths as follows (Kurganov &

Petrova (2007)):

u =

√
2h(uh)√

h4 +max(h4, ε)
(16)

where ε is a small threshold (ε = (∆x)4). The water depth and the specific

discharge to be used in Eq. (16) are evaluated as h = φη−φz and uh = φuh/φ,

respectively.

Finally, it is noteworthy that the absence of source terms in the set of the

augmented governing equations (4), and the adoption of a finite volume scheme,

automatically ensures the mass conservation (Hirsch (2007)).
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5. Extension to high-order: the ADER scheme

The numerical scheme in Eq. (10) is extended to a second order of accuracy

in both space and time by adopting the ADER approach (Toro et al. (2001),

Titarev & Toro (2002), Toro & Titarev (2002)). The core of this technique is

to use a space-time Taylor series expansion and a Cauchy-Kowalewski proce-

dure in order to solve high-order Riemann problems at the element boundaries

(Stecca et al. (2016)). Particularly, the ADER framework allows for the exten-

sion to high order in a one-step by adopting a temporal evolution of the spatial

reconstructed polynomial present in each cell.

Reconstruction. The first step of the ADER approach is to compute a piecewise-

linear reconstruction polynomial pi of the conserved variables for each cell. Since

a k -order accurate scheme requires a (k -1)-degree polynomial, a linear data re-

construction is sufficient for a second-order accurate scheme. Moreover, in order

to avoid the occurrence of spurious oscillations near discontinuous solutions, a

Total Variation Diminishing (TVD) scheme is considered (TVD schemes are fre-

quently used for a second-order of accuracy). Therefore, the following first-order

degree polynomial is adopted:

pi(x) = Un
i + ∆i(x− xi) (17)

where ∆i is the limited reconstruction slope defined as (Toro (2013)):

∆i = ξi∆i/∆x (18)

with ξi and ∆i denoting the slope limiter and the slope vector, respectively.

This last term is evaluated as follows (Toro (2013)):

∆i =
1

2
(1 + γ) ∆i− 1

2
+

1

2
(1− γ) ∆i+ 1

2
(19)

with ∆i− 1
2

= Un
i −Un

i−1, ∆i+ 1
2

= Un
i+1 −Un

i and γ is a free parameter in the

interval [−1, 1]. In this work γ = −1 was adopted and thus ∆i ≡ ∆i+ 1
2
.
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Among the different formulations available for the slope limiter computation

(Toro (2013)), the van Leer-type slope limiter is here adopted (Toro (2013)):

ξ(r) =

 0, r ≤ 0

min
{

2r
1+r , ξR(r)

}
, r > 0

(20)

where terms r and ξR(r) are defined as:

r =
∆i− 1

2

∆i+ 1
2

, ξR(r) =
2β

1− γ + (1 + γ)r
, β =

2

1− CFL
(21)

with CFL the Courant-Friedrichs-Lewy number.

Space-time Taylor series expansion. The space-time evolution of each non-oscillatory

polynomial, previously reconstructed at time tn, is calculated according to the

following first-order Taylor series expansion with respect to the barycentre xi:

Ui(x, t) ≈ Un
i + (x− xi)∂xU + (t− tn)∂tU (22)

The time derivative in Eq. (22) is calculated as a function of space derivative

adopting the Cauchy-Kowaleski procedure that allows:

∂tU = −A∂xU (23)

Therefore, by substituting Eq. (23) in (22), the Taylor series expansion

results:

Ui(x, t) ≈ Un
i + (x− xi)∂xU−A(t− tn)∂xU (24)

Finally, the variables expanded at each cell interfaces are evaluated by replac-

ing the spatial derivatives in Eq. (24) with the derivative of the reconstruction

polynomial (Eq. (17)):

U−
i+ 1

2

= U−i (xi+ 1
2
, tn+

1
2 ) = Un

i + (∆xI−∆tA) 1
2∆i

U+
i+ 1

2

= U+
i+1(xi+ 1

2
, tn+

1
2 ) = Un

i+1 − (∆xI + ∆tA) 1
2∆i

(25)

Update of the conserved variables. Dealing with the high-order extension of a

numerical scheme that solves a non-conservative set of governing equations, the

integral term in the explicit update formula (10) cannot be neglected due to
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the presence of a not constant value inside each cell. Therefore, the space-time

integral is approximated with a Gauss quadrature (Lee et al. (2013)):

1

∆x

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

A(Ui)∂xUidxdt ≈
∆t

∆x

 G∑
j=1

ωjA
(
Ψ
(
U−
i+ 1

2

,U+
i− 1

2

, s
))(U+

i+ 1
2

−U−
i+ 1

2

)
(26)

The Taylor expansion previously described allows for the knowledge of the

interface values in Eq. (25) that are then adopted to compute the integral term

in Eq. (26) and the fluctuations in Eq. (14).

Finally, these quantities are introduced in the explicit formula in Eq. (10), and

the update of the solution to the next time-step is performed.

6. C-property

The fulfillment of the C-property with a non-uniform porosity field and over

a non-flat bottom is assessed in this section. Firstly, the water at rest condition

is proved by showing that in this case the fluctuations in Eq. (14) are null.

Assuming a one-point Gauss-Legendre quadrature with weight ω = 1 and po-

sition s = 0.5, and recalling that u−
i+ 1

2

= u+
i+ 1

2

= 0 and η−
i+ 1

2

= η+
i+ 1

2

= η, the

path in Eq. (13) results:

Ψ(0.5) =



1
2η(φ+

i+ 1
2

+ φ−
i+ 1

2

)

0

1
2 (φ+

i+ 1
2

+ φ−
i+ 1

2

)

1
2 (z+

i+ 1
2

+ z−
i+ 1

2

)

 =


ηφ

0

φ

z

 (27)

The conserved variables resulted from Eq. (27), which for sake of clarity have

been marked with the overline symbol, are then used to compute the matrices

A and |A|. Particularly, the water surface elevation is evaluated from Eq. (27)

as η = ηφ/φ, and the water depth as h = η − z. Therefore, the matrices A and

|A| are evaluated from Eq. (7) and (12), respectively, considering null velocity
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and substituting the path values of Eq. (27):

A =


0 1 0 0

gh 0 −gη2 + gηz 0

0 0 0 0

0 0 0 0

 |A| =


√
gh 0 −η

√
gh 0

0
√
gh 0 0

0 0 0 0

0 0 0 0

 (28)

Finally, the fluctuations D+
i+ 1

2

and D−
i+ 1

2

become:

D+
i+ 1

2

=
1

2
[A (Ψ(s)) + |A (Ψ(s))|]

(
U+
i+ 1

2

−U−
i+ 1

2

)

=
1

2



√
gh 1 −η

√
gh 0

gh
√
gh −gη2 + gηz 0

0 0 0 0

0 0 0 0




η(φ+

i+ 1
2

− φ−
i+ 1

2

)

0

φ+
i+ 1

2

− φ−
i+ 1

2

z+
i+ 1

2

− z−
i+ 1

2

 ≡


0

0

0

0


(29)

D−
i+ 1

2

=
1

2
[A (Ψ(s))− |A (Ψ(s))|]

(
U+
i+ 1

2

−U−
i+ 1

2

)

=
1

2


−
√
gh 1 η

√
gh 0

gh −
√
gh −gη2 + gηz 0

0 0 0 0

0 0 0 0




η(φ+

i+ 1
2

− φ−
i+ 1

2

)

0

φ+
i+ 1

2

− φ−
i+ 1

2

z+
i+ 1

2

− z−
i+ 1

2

 ≡


0

0

0

0


(30)

After having proved that the jump terms are null, and hence the derived

DOT Riemann solver theoretically guaranties the quiescent flow condition, the

exact C-property preservation is numerically verified. Following Xing & Shu

(2005), the bottom topography z is described in the range 0 ≤ x ≤ 10 by both

a smooth function:

z(x) = 5e−
2
5 (x−5)

2

(31)

and a discontinuos function:

z(x) =

 4 4 ≤ x ≤ 8

0 otherwise
(32)
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As initial condition of the two bottom configurations, a constant free-surface

elevation η = z+h = 10 m is assumed. The domain is discretized with N = 500

computational cells and the solution is computed until t=0.5 s. Additionally,

the original test case has been here modified by including a variable porosity

field: in order to test the presence of discontinuities, a random porosity field in

the range [0,1] is considered. The setup of these tests is shown in Fig. 1a and

Fig. 1b for the smooth and discontinuous bottom, respectively.

The presence of wet and dry interfaces has been also tested by considering

the smooth bottom and a free-surface elevation η = 3 m (Fig. 1c).

Figure 1: C-property verification: stationary flow with a non-uniform porosity over a smooth

(a) and discontinuous (b) bottom, and (c) containing wet and dry interfaces.

For both water surface elevation and specific discharge variables, the L1 and

L∞ error norms were computed in order to quantify the misfit between the

numerical and the exact/initial solution. Table 1 shows that the C-property is

exactly preserved up to the machine precision.
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Table 1: C-property verification: L1 and L∞ errors for water surface elevation and specific

discharge

Bottom L1(η) L1(uh) L∞(η) L∞(uh)

(a) smooth 3.34E-16 4.36E-13 1.78E-15 4.57E-11

(b) discontinuos 3.27E-16 4.38E-13 1.78E-15 3.82E-11

(c) wet and dry 4.16E-08 2.19E-13 1.77E-07 9.24E-11

7. Numerical results

In this section, the order of accuracy is firstly verified and then the numerical

model is validated performing some Riemann problems characterized by bottom

or porosity discontinuities.

7.1. Convergence

The second order of accuracy of the implemented numerical scheme is verified

by performing the following quasi-stationary test (LeVeque (1998)), where the

bottom topography (Fig. 2) presents a bump that is described as:

z(x) =

 0.25(cos(10π(x− 1.5)) + 1) if1.4 ≤ x ≤ 1.6

0 otherwise
(33)

At the beginning of the test the flow is at rest with the water surface elevation

shown in Fig. 2 and described as:

η(x) =

 1.2 if1.1 ≤ x ≤ 1.2

1 otherwise
(34)

The simulation is carried on until time t = 0.2 s, when the water pulse

traveling downstream has already overstepped the bump. At this time, the

water surface elevation and the specific discharge are as shown in Fig. 3 (a) and

(b), respectively.

As numerical reference solution for testing the order of accuracy, a very fine

mesh discretizing the domain with N = 3200 cells was adopted. Meanwhile, the
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Figure 2: Convergence analysis: bottom and initial water surface elevation.

remaining simulations were performed with coarser meshes from N = 100 up

to N = 800 cells. In Fig. 3, the reference solution and the one obtained with

N = 200 cells are shown. No spurious oscillations arise, thus confirming, that

the proposed scheme is capable of accurately reproducing the perturbation of a

quiescent state over a smooth bottom.

Figure 3: Convergence analysis: water surface elevation (a) and specific discharge (b) at time

t = 0.2 s, simulated with 200 and 3200 cells.

The error norms L1 and L2 computed for both water surface elevation and

specific discharge, and reported in Table 2, confirm that the scheme guarantees

a second order of accuracy.
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Table 2: Convergence: number of cells N, error norms L1 and L2, and order of accuracy for

water surface elevation and specific discharge.

N L1(η) O(L1(η)) L2(η) O(L2(η)) L1(uh) O(L1(uh)) L2(uh) O(L2(uh))

100 1.61E-02 1.61E-02 5.70E-02 5.71E-02

200 4.20E-03 1.94 4.24E-03 1.93 1.50E-02 1.93 1.51E-02 1.92

400 1.00E-03 2.07 1.12E-03 1.92 3.69E-03 2.02 4.05E-03 1.90

800 2.39E-04 2.06 2.70E-04 2.05 8.86E-04 2.06 1.02E-03 1.99

7.2. Riemann Problems

The capability of the proposed numerical scheme to reproduce some Riemann

problems characterized by discontinuities is investigated in this section. The

exact solutions used to compare the numerical results are obtained by means

of the Exact Riemann solvers ad-hoc derived to treat porosity (Ferrari et al.

(2017)) and bottom (Rosatti & Begnudelli (2010)) discontinuities, respectively.

In all the tests, the domain is 100 m long and discretized with N =600 cells, and

the discontinuity in the initial values is located at x = 50 m.

In order to test different wave configurations, the initial conditions reported in

Table 3 are considered.

Table 3: Initial conditions of the Riemann problems.

Test number ID hL(m) uL(m/s) φL(−) zL(m) hR(m) uR(m/s) φR(−) zR(m)

1 RPS 8 0 0.9 0 3 0 0.7 0

2 RPR 8 -2 0.9 0 6.5 5 0.7 0

3 RRPR 6 -18 0.9 0 15 0 0.7 0

4 RBS 5 0 1 0 1 0 1 0.5

5 RBR 8 -2 1 0 5 7 1 0.5

6 RRBR 6 -16 1 0 10 0 1 0.5

7 RB 4 0 1 0 0 0 1 1

The first test, Rarefaction-Porosity-Shock (RPS), is a Stoker Riemann prob-

lem, which at t = 0 presents still water with different depths at both sides of

x = 50 m, where a porosity discontinuity is located. The ”dam-break” generates

a left rarefaction propagating to the left of the porous discontinuity, a station-

ary step at x = 50 m and a shock wave at the right. Figure 4 shows that the

numerical results obtained with both first and second order accurate schemes
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well agree with the exact solution, both for water depth and velocity.

Figure 4: RPS test at t = 1s: water depth (a) and velocity (b) comparison between exact and

numerical solutions.

In the second Riemann problem, Rarefaction-Porosity-Rarefaction (RPR),

two rarefactions origin from the discontinuity, one left-moving and the other

right-going. The comparison showed in Fig. 5 highlights that the numerical

scheme well captures the wave pattern and the intermediate state values of this

divergent flow.

Figure 5: RPR test at t = 1s: water depth (a) and velocity (b) comparison between exact

and numerical solutions.

As pointed out in the Introduction, one of the main advantages of the DOT

Riemann solver is to be entropy-satisfying, that means that it does not require
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any special procedure (e.g. the solution of non-linear system of equations in

the Roe solvers), to ensure the Lax entropy condition also in the presence of

transonic rarefactions. Therefore, the third Riemann problem, Rarefaction-

Rarefaction-Porosity-Rarefaction (RRPR), concerns the passage through the

critical state at the discontinuity location. Two rarefactions depart at the left of

the middle contact wave, one left-going and the other right-facing, meanwhile at

the right of the discontinuity a right rarefaction develops. The numerical model

is capable of capturing the wave configurations, even if the right intermediate

state of this severe test is slightly underestimated (Fig. 6).

Figure 6: RRPR test at t = 1s: water depth (a) and velocity (b) comparison between exact

and numerical solutions.

In the following, the numerical model is tested considering at x = 50 m a

bottom step instead of a porous discontinuity: this bed-step generates the three

wave configurations previously described. Figures 7, 8 and 9 display the results

at time t = 1 s for the Rarefaction-Bottom-Shock (RBS), Rarefaction-Bottom-

Rarefaction (RBR), and Rarefaction-Rarefaction-Bottom-Rarefaction (RRBR)

test, respectively. In all the tests, the numerical model well agree with the exact

solver: the contact wave across which the bed elevation varies is captured, as

well as the wave pattern and the intermediate values.

The last tested configuration (RB) presents a still column of water collapsing

on a dry bed step at right. Figure 10 compares the numerical solution at time
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Figure 7: RBS test at t = 1s: water depth (a) and velocity (b) comparison between exact and

numerical solutions.

Figure 8: RBR test at t = 1s: water depth (a) and velocity (b) comparison between exact

and numerical solutions.

t = 0.4 s with the exact solution presented in Han & Warnecke (2014). Both

order of accuracy well reproduce the rarefaction wave travelling at the left side

of the step and the dry bed state at right; as expected the results of the second

order scheme better approximate the wave on the dry bed (Figure 10b).

8. Conclusions and future work

This work focused on the derivation of a new well-balanced numerical scheme

capable of treating discontinuities in the framework of the Shallow Water Equa-
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Figure 9: RRBR test at t = 1s: water depth (a) and velocity (b) comparison between exact

and numerical solutions.

Figure 10: RB test at t = 0.4s: water surface elevation (a) and velocity (b) comparison

between exact and numerical solutions.

tions with porosity. To this purpose, an augmented Riemann solver accounting

for both porosity and bottom non-conservative products has been introduced

and its eigenstructure has been studied. Moreover, an entropy-satisfying DOT

Riemann solver, which strictly conserves mass, has been developed and the nu-

merical scheme has been then extended to high-order in the ADER framework.

As confirmed by the convergence analysis, a second-order of accuracy based on

the TVD reconstruction has been achieved, and higher order can be addressed

in the future.

As theoretically and numerically verified, the numerical model preserves the
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exact C-property over a non-flat bottom and with a discontinuous porosity field.

Finally, the numerical model has been validated against a selection of Riemann

problems, including also transonic waves and wet and dry fronts.

The investigation of the influence of the integration path on the numerical

solver (Caleffi & Valiani (2017)), the extension of the 1D proposed numerical

model to two dimensions, and the application to real test cases are left to future

works.
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