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Abstract

Objectives: The predominance of Bantu languages in sub-Saharan Africa has sparked

a large debate over the processes through which they came to disperse over time

and space—the “Bantu expansion.” The overall genetic similarity shown by Bantu-

speaking populations indicates that movement of people occurred too, but the extent

of the correlation between genetics, linguistics and geography has been a matter of

debate among scholars of different disciplines. In this work, we aim to investigate

how genetic, linguistic and geographic distances relate to each other in Bantu-

speaking populations.

Methods: We analyzed genome-wide SNP array data from a set of 37 Bantu and

non-Bantu-speaking populations together with related linguistic and geographic data.

Due to the complex demographic relationships resulting from events of admixture in

the history of these populations, we develop and implement a method for controlling

the signatures of admixture.

Results: Genetic distances were only minimally correlated with linguistic and geo-

graphic distances, possibly as the result of gene flow from neighboring groups into

Bantu-speaking populations. When signatures of admixture are controlled for, the

correlation of genetic data with linguistic and geographic distances significantly

increases.

Discussion: The increase of the correlation between linguistic and genetic distances

after the signatures of admixture are taken into account is in agreement with a sce-

nario of spatial co-dispersal of languages and people. Additional specific cultural and

demographic dynamics have probably further affected the relationship between lan-

guage and genetics, which will be necessary to take into account when integrating

multidisciplinary data to reconstruct the history of populations.
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1 | INTRODUCTION

Almost a third of the people living in Africa speak a language belong-

ing to the Bantu family, which is part of the Niger-Congo phylum

and by far the largest linguistic family in the continent

(de Maret, 2013; Simons & Fennig, 2018). The predominance of

these languages across most of the continent has sparked a large

debate over their common origin and the processes through which

they dispersed over time and space. Besides a few outliers, the close

relatedness of these languages suggests that the distribution

observed today results from a relatively recent and rapid dispersal—

the so-called “Bantu expansion” (Bostoen et al., 2015; de

Maret, 2013; Johnston, 1886; Vansina, 1979). The origin of the

Bantu languages in present-day Cameroon near the border with

Nigeria is well supported by linguistic and archeological studies

(de Maret, 2013; Grollemund et al., 2015; Lavachery, 2001). Studies

also indicate that climate and environmental changes (namely the

contraction of the rainforest creating the “Sangha River Interval”)
might have facilitated a fast migration of these communities

(Bostoen et al., 2015; Grollemund et al., 2015). An association with

the spread of cultural elements has been also suggested, in particu-

lar iron smelting and agriculture, even if not in the earliest stages

(Mitchell, 2002). Moreover, new evidence points to a spread-over-

spread model for the dispersal of Bantu languages (Seidensticker

et al., 2021).

An increasing amount of genetic data indicates shared ancestry

among Bantu speakers, supporting an actual migration of people

across Africa (Busby et al., 2016; de Filippo et al., 2012; Li

et al., 2014; Patin et al., 2017; Tishkoff et al., 2009). The suggestion

of a demic process brought additional questions, some still conten-

tious today. Among these, some address the actual routes taken

during this expansion, as these have clear implications for the

genetic diversity of present-day Bantu-speaking populations

(BSPs). Others question the degree of association between the cul-

tural and genetic elements of this diffusion. However, poor resolu-

tion of the genetic markers investigated and limitations in

representative sampling across the continent have restricted our

ability to answer such questions. The complexity of how biological

and cultural markers can be used to map population histories has

been recently explored in populations from northeast Asia,

highlighting how different linguistic features might be related to

genetic history, different features possibly operating at different

time-depths (Matsumae et al., 2021).

Before the 21st century, the reconstruction of this dispersal has

been mostly based on the interpretation of linguistic, archeological,

and historical data (Bastin et al., 1983; Bastin et al., 1999; de

Maret, 2013; Heine, 1973; Heine et al., 1977; Henrici, 1973;

Lavachery, 2001; Vansina, 1990). The two main migratory routes

proposed differ primarily on when and where the BSPs crossed the

Equatorial forest barrier. The “early split” model (ES), states that

BSPs would have split early in their evolutionary history, with one

group moving South from their homeland to most of Central and

South-West Africa, and others traveling East, at the North of the

rainforest, in the direction of the Great African Lakes. Only after

reaching this region, would they travel South and settle across the

eastern coast. On the other hand, the “late split” model (LS), pro-

poses that the separation between Bantu groups would have only

occurred after the first migration South across the rainforest. South

of the forest, this common population would have then split into

two groups, one traveling further South along the coastline, and the

other traveling East, both in the direction of the Great Lakes and fur-

ther South along the East coast of the continent (Figure 1a,b). With

the appearance of phylogenetic methods applied to linguistic data in

the 2000s, a flurry of phylogenetic studies emerged (Currie

et al., 2013; Grollemund et al., 2015; Holden, 2002; Holden

et al., 2005; Holden & Gray, 2006; Rexová et al., 2006) in order to

solve the Bantu phylogeny and by extension, to explain the Bantu

expansion. As studies progressed, the picture of the Bantu migra-

tions became clearer with all these studies being in favor of the LS

model. Geneticists also joined the discussion and previous attempts

trying to reconcile linguistic and genetic distances have provided

stronger support for the LS model (de Filippo et al., 2012). However,

most of the investigated populations were from Central-West Africa

and significant support was obtained only for uniparental markers,

while autosomal STR data were inconclusive. More recent work

focusing on genome-wide data from Mozambique and Angola simi-

larly supported a LS model (Semo et al., 2020).

In order to investigate the patterns of human variation associated

with the Bantu expansion and explore the relationships between

genetic, geographic and linguistic data from BSPs, we assembled

genome-wide SNP data from an array of African populations. Given

the complex demographic history of these populations, we implemen-

ted a method aimed at controlling for the effects of recent admixture,

which is expected to significantly shape the genetic diversity observed

today (Hellenthal et al., 2014). In this work, we aimed to explore the

extent of the correlation between genetic, linguistic and geographic

distances in BSPs, with a particular focus on the impact of gene-flow

on these relationships. Our results show that a) the interactions

among sympatric communities affected BSPs genetic structure and, b)

taking gene flow into consideration improves substantially the rela-

tionships between genetics and linguistics/geography. We suggest

that genes and languages experienced different processes in their dis-

persal, complicating the attempts to reconcile them under a simple

unifying model.

2 | MATERIALS AND METHODS

2.1 | Samples

DNA samples were obtained through saliva samples collected during

several field trips using the Oragene® DNA collection kits (DNA Gen-

otek, Inc., Ottawa, Ontario, Canada) and extracted according to the

manufacturer's protocols. All participants were healthy adults from

whom informed consent was obtained. The project and consent forms

were explained to all participants by local collaborators who spoke
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local languages. After the explanation about the study and participa-

tion, space was given to the participant to ask for clarifications before

they signed the consent form. In addition, a copy of the consent form

including information about the study and contacts for future ques-

tions was provided. The ethnic and linguistic background of the

donors, as well as from their parents and grandparents, was surveyed
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F IGURE 1 (a and b) Schematic representation of the dispersal of the Bantu languages according to the (a) early or (b) late split model (see
main text). (c) Location of the Bantu-speaking populations included in the study. Circles represent samples for which both genetic and linguistic
data are available (included both in the “complete” and “overlap dataset”), while triangles represent samples for which only genetic data is
available (only included in the “complete dataset”). Colors refer to the five geographical clusters identified in panel d. (d) Hierarchical clustering of
the great-circle distances, identifying five geographical clusters: Dark green, cluster A; light green, cluster B; dark purple, cluster C; gray, cluster D;
and light purple, cluster E. (e) Correlation between geographical (great-circle distances) and genetic (FST) distances; open circles correspond to
comparisons only observed in the “complete dataset” and full circles correspond to comparisons observed in both datasets. (f) Correlation
between linguistic and genetic distances. (g) Correlation between geographical and linguistic distances.
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through a questionnaire. The data from Basotho (Marks et al., 2012;

Marks et al., 2015), Owambo, Mbukushu, and Kwangali (González-

Santos et al., 2015; Montinaro et al., 2017), and Mozambique and

Zimbabwe (Ongaro et al., 2019) were previously published elsewhere.

A total of 41 novel samples from sub-Saharan Africa populations

were genotyped with the Human Omni5-Quad BeadChip (Illumina,

San Diego, CA, USA) in this study (Table S1). The Ndebele and Himba

samples were collected in Lesotho (2009; OxTREC 28-08) and

Namibia (2010; OxTREC 49-09 and OxTREC 42-11), respectively

(projects reviewed by the Oxford Tropical Research Ethics

Committee—OxTREC). The Yansi and Kongo samples were collected

from the Democratic Republic of Congo individuals living in Belgium

(2015; 20/1/2015-ULB20115) by PdM. Additional DNA samples from

Zambia were provided by MA as part of a project approved by local

IRB (The University of Zambia Biomedical Research Ethics Committee

[UNZABREC], IRB 001131).

2.2 | Genetic dataset

The software PLINK v1.9 (Chang et al., 2015; Purcell et al., 2007) was

used to merge our novel data with available genome-wide SNP data

from the literature genotyped on different Illumina and Affymetrix

platforms (Figure 1c; Table S1).

The data went through a quality control (QC) process before any

analysis was performed. Each individual dataset was first processed

using PLINK to remove markers and then individuals with a missing

call rate higher than 10%. All variant positions were also lifted to build

37 of the Human Genetic map using data provided by either Illumina

or Affymetrix, accordingly.

After this first QC step, all populations were merged in a single

data file. Merging genotype data produced with both Illumina and

Affymetrix platforms has been previously employed with success,

with no evidence of errors or biases (Henn et al., 2012; Montinaro

et al., 2017; Reich et al., 2009). Then, an additional QC step was per-

formed by removing variants and afterwards individuals with a missing

call rate higher than 2%. In order to overcome the effects of markers

in strong linkage disequilibrium, all markers with a correlation (r2)

greater than 0.4 were also removed, using a sliding window of

200 SNPs, shifted at 25 SNPs intervals (Behar et al., 2010). A final set

of 10,809 SNPs was retained and used in all the analyses. We evalu-

ated the performance of a reduced SNP dataset in recovering popula-

tion relationships by estimating the degree of correlation between FST

distances (Wright, 1949) calculated using 10,809 and 107,738 SNPs,

by including a same subset of populations/individuals typed only with

Illumina platforms (Table S1).

After the datasets were assembled the software KING

(Manichaikul et al., 2010) was used to infer kinship between samples.

All pairs of individuals with a kinship rate higher than 0.0884 (up to

second-degree relationship) had one of the individuals randomly

removed. The inclusion of reference populations for potential sources

of admixture in some of the analyses highlighted two individuals (both

from Mozambique) with an Eurasian genetic profile. These samples

probably represented very recent non-African influence and were

then removed. A total of 1212 individuals from 32 BSPs and 250 sam-

ples from five additional reference populations were available for ana-

lyses (Table S1).

2.3 | Linguistic dataset

The linguistic data on Bantu languages were selected from Grolle-

mund et al. (2015). To obtain this dataset 100 basic vocabulary words

were considered and cognate sets for each of these words were iden-

tified and coded as discrete multistate characters (Table S2). The

wordlist was based on a Swadesh list replacing some words which are

not relevant for African languages with words that are more stable

and informative for these languages. In order to produce the cognate

sets that are used to calculate linguistic distances, we compared

words. If two words, with a similar meaning, present a similar phonetic

form, we consider them as cognates, indicating that they might be

related. The distance matrix between languages was estimated based

on the Hamming distance, counting the number of differences

between pairs of sequences/characters. A neighbor-joining algorithm

with sequential agglomeration (data were combined into progressively

larger overlapping clusters) was used to construct and subset a phylo-

genetic network based on the linguistic distance matrix of the popula-

tions (Table S3; Saitou & Nei, 1987). Lemande was here used as an

outgroup since it belongs to the group of languages that have been

shown to be the first to diverge within the Bantu languages tree

(Grollemund et al., 2015). We also note here that Mbuti and other

rainforest hunter-gatherers speak Bantu languages but were not

included within the Bantu speakers dataset as representing known

examples of linguistic transitions (Patin et al., 2009). The tree was con-

structed using the Splitstree software using the Neighbor-Joining

algorithm (Saitou & Nei, 1987; Figure S1).

As the data to build the linguistic distance matrix was not always

available—either because (a) the exact Bantu language spoken was

not known, or, even if known, (b) linguistic data for the construction

of the distance matrix was not available—a subset of the “complete

dataset” (which comprises all the populations for which genetic data

was available) was assembled to include only those populations that

could be included in the linguistic distance matrix—the “overlap data-

set” (Table S1). We also investigated a larger linguistic dataset com-

prising 416 Bantu-speaking populations and 3876 cognate sets coded

as binary characters (Grollemund et al., 2015). The results of the cor-

relation analysis with geography were compared across these datasets

to evaluate if major differences emerged when subsets were

analyzed.

2.4 | Geographical dataset

The geographical coordinates of the populations were registered dur-

ing fieldwork or retrieved from the original studies. For populations

not sampled in the country of origin or with no geographical
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information available, we used the coordinates of the capital city of

the country of origin (Figure 1c; Table S1). The geographical distance

between pairs of populations was calculated through two different

approaches: the great-circle line distances and model-based distances.

In the first stage, the great-circle line distances between each pair

of populations was calculated. However, it is known that geographical

barriers played a major factor in the dispersal of human populations

and thus the great-circle distances are not a true representation of

the real distances that populations had to travel (Liu et al., 2006;

Prugnolle et al., 2005). Model-based distances were thus calculated

based on how clusters of neighboring populations were connected to

each other through various waypoints (see section 3). The clusters of

populations—solely based on geography and not taking into consider-

ation other factors—were identified through a hierarchical clustering

of great-circle distances between pairs of populations. We found that

a cut-off of the population tree at 1000 km generated a relatively

small number of clusters (5) consistent with their geographical loca-

tion (Figure 1c,d). Given the geographical location of the clusters of

populations we identified one or more waypoints—mA, mB, mC1,

mC2, mD1, mD2, and mE—to represent the borders of each cluster.

These waypoints (with the exception of cluster E due to the distribu-

tion of populations in this cluster) corresponded to the combination of

either the northernmost or the southernmost population coordinates

with the easternmost or the westernmost coordinates in that cluster.

For waypoint mE—as its location would not be an accurate represen-

tation of the cluster's borders with the previous method—the coordi-

nates were obtained as the midpoint between the northernmost and

easternmost population. Additionally, some of the midpoints between

these waypoints were also identified—mAB and mABD. The different

paths aimed to represent different points of split between East and

West Bantu languages more than providing a direct test for the

hypotheses of dispersal of Bantu languages and therefore our results

should be interpreted with due caution in this regard.

Nevertheless, for completeness, we included an additional set of

waypoints—tA and tB—to design in a simplified way the path possibly

followed under the assumption of an early split of the Bantu lan-

guages. These waypoints were identified by considering the latitude

of the northernmost and the longitude of the easternmost (A) or west-

ernmost (B) population in the two clusters, respectively, as done for

the identification of other waypoints. For each pathway, the geo-

graphical distances for populations within each cluster were calculated

as great-circle distances. The different pathways differ in the way

populations in different clusters are connected—the distance between

them being the sum of the distance between each population and the

corresponding waypoint for its cluster, and the distance between

waypoints (directly or through other waypoints; see Section 3). All dis-

tances were calculated with the function rdist.earth of the package

fields (Nychka et al., 2015).

Due to the different patterns of variation within and between

clusters for linguistic and genetic distances, we introduced a series of

modifications to all the pathways as a way to assess how these modi-

fications altered the correlation coefficient. Furthermore, some of the

modifications focused specifically on clusters A and E since they

showed, respectively, the most divergent patterns for linguistic (high-

est within clusters heterogeneity) and genetic (highest between clus-

ters differentiation) distances.

2.5 | Data analysis

2.5.1 | Genetic distance corrections

The software ADMIXTURE v1.23 (Alexander et al., 2009) was used to

explore the genetic variation among populations in the study. This

method allows for a model-based estimation of cluster allocation by

implementing a maximum likelihood algorithm assigning individuals to

a predefined number of clusters (K). The cross-validation

(CV) procedure implemented in the software—which assesses the con-

sistency between different runs of subsets of the data at any given

value of K—was used as an indication of the most supported value of

clusters, assuming that a well-supported division should have a rela-

tive lower CV error (Alexander et al., 2009; Alexander & Lange, 2011).

Each value of K was run for several iterations until the log-likelihood

between iterations increased by less than 10�4 (Alexander

et al., 2009). We refer to these different clusters as “components,” as
they are often combined in different proportions to compose the pro-

file of populations.

Given that ADMIXTURE is not a formal test for gene-flow

between populations, we performed three-population admixture tests

(f3 statistics) that are based on the concept that shared genetic drift

between populations implies a shared evolutionary history (Reich

et al., 2009). Briefly, in a f3 statistic with the form f3(X;PopA,PopB) a

significantly negative value of the statistic (Z-score <�3) highlights a

complex phylogeny for the target population (“X”), as the result of a

certain amount of ancestry from populations related to PopA and

PopB. All the f3 tests were performed for windows of 100 markers

using the threepop companion software in the TreeMix suite

(Pickrell & Pritchard, 2012).

To mitigate the effects of recent admixture in BSPs, we devel-

oped a method to correct the allele frequencies used to calculate the

genetic distance between pairs of populations. Haplotype-based

approaches could not be implemented due to the low SNP density

resulting from the merging of datasets genotyped on different plat-

forms (Lawson et al., 2012). We based this correction on the two ele-

ments of the results of the ADMIXTURE analyses, (for K = 7, see

section 3): (i) the fractions of each component for each individual in

the dataset (Q-file); and (ii) the allele frequencies of the inferred com-

ponents (P-file). From the Q-file we isolated Niger-Congo-specific

components present in each BSP (see section 3) and normalized these

frequencies so that the total sum of the components retained was

equal to 1. By doing so, we regenerated BSPs as only composed of

Niger-Congo components, removing most of non-Niger-Congo influ-

ences. The rationale of this approach is to try to remove the impact of

admixture on the extant population and ideally reconstruct the allelic

profile of the ancestral “un-admixed” population. In order to obtain

the putative allelic frequencies in these original populations we
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multiplied, for each allele, the fraction of each ancestral component

by the frequency of the allele in the corresponding ancestral popula-

tion (from the P-file).

2.5.2 | Simulations

We validated our correction approach by implementing a series of

simulations using the program admix-simu (https://github.com/

williamslab/admix-simu). We considered five source populations

(CEU, Somali, Mbuti, Ju/'hoansi, and Yoruba) and simulated admixture

between Yoruba and one of the other sources occurring 40 genera-

tions ago with mixing proportions α∊(0.1, 0.2, 0.5, 0.8, 0.9). The cor-

rection method described above was then applied to the simulated

datasets. For each pair of sources (Yoruba and each one of the other

four populations) and the corresponding simulated populations, an

ADMIXTURE analysis was performed and the results for K = 3 were

used for the correction (in order to allow the identification of more

than one potential Niger-Congo component in the simulated samples).

For consistency, the reconstruction of the allelic frequencies was

applied to all populations, simulated and sources, with the latter being

reconstructed using all three of the identified components. A compari-

son between the FST between the simulated populations and their

sources was performed both before and after the correction to visual-

ize the changes in population affinity generated by our approach.

2.5.3 | Correlation tests

In order to generate matrices of genetic distances, the pairwise FST

between pairs of populations was calculated through a custom-made

script, using the classic Wright's measure of FST (Wright, 1949). As the

index value is calculated for each individual marker, in order to com-

bine the estimates across multiple SNPs and estimate the genome-

wide FST value we used Weir and Cockerham's approach (Bhatia

et al., 2013; Weir & Cockerham, 1984). The pvclust R package was

used to build a hierarchical tree based on the pairwise FST values using

the complete linkage method, and to assess the significance of its

topology based on 10,000 bootstrap replications (R Core Team, 2016;

Suzuki & Shimodaira, 2006).

In order to test for correlations between the genetic, geographi-

cal, and linguistic distances between pairs of BSPs, we performed a

Mantel test—using the non-parametric Spearman's rank correlation

method—using the vegan R package on all our distance matrices

(Oksanen et al., 2017). A linear regression analysis was fitted to the

data and the coefficient of determination—r2, explaining the propor-

tion of variation in one of the variables that is explained by the other

variable analyzed—was calculated. This coefficient was used to evalu-

ate the fit of the various modifications tested on the data and for

comparisons across different scenarios. We additionally explored the

correlation of the three variables (genetics, linguistics and geography)

by the way of a Procrustes analysis using the vegan R package

(Oksanen et al., 2017). Briefly, we started by standardizing the genetic

and linguistic data for all variables and calculating a Principal Compo-

nent Analysis of each set of data. A Procrustes test was then per-

formed across the PCA results and its significance was tested based

upon 10,000 permutations (Peres-Neto & Jackson, 2001).

3 | RESULTS

3.1 | Correlations between geographic, genetic
and linguistic distances

We aimed to explore the relationships among BSPs in sub-Saharan

Africa by combining and comparing their spatial, genetic, and linguistic

variation (Figure 1; Tables S1–S3; Figure S1). In order to do so, we

started by testing the correlation between different pairwise distances

in our dataset—genetic (FST), geographical (great-circle distances), and

linguistic distances (based on the number of differences between pairs

of words; Grollemund et al., 2015). As the linguistic distance matrix

represented only a subset of the total samples in the dataset, compari-

sons between genetics and geography were done both for the “com-

plete dataset” and the “overlap dataset” (Table S1). The geographical

and genetic distances showed no significant correlation, for either

dataset (p > 0.05; Figure 1e). On the contrary, linguistic distances

showed a significant (p < 0.05) positive correlation with both geo-

graphical and genetic distances (Figure 1f,g). However, even if statisti-

cally significant, the amount of variation explained is small, less than

2% when linguistics is correlated with genetics, but above 30% with

geography.

The restricted SNP dataset generated FST estimates highly corre-

lated with those calculated when a number of SNPs 10 times larger

was considered (r2 = 0.999; p < 0.001; Figure S2). The amount of vari-

ation explained by geography for the more comprehensive linguistic

dataset—composed of 416 Bantu-speaking populations and 3876 cog-

nate sets—was virtually identical to the one used in this study (34%

and 33%, respectively; Figure S3). Due to the larger number of infor-

mation analyzed in the more comprehensive linguistic dataset the data

in this dataset had to be coded as binary characters instead, leading to

a decrease in the overall distances obtained. However, the encoding

of the data does not affect the topology of a tree for a given set of

populations—as evidenced by the very strong correlation (r2 = 0.93)

observed between the distances for the two linguistic datasets

(Figure S4). These results validate the use of a smaller number of

genetic markers and populations in our analyses.

3.2 | Signatures of admixture in BSPs

In order to better understand the associations between genetics and

the other two variables, we investigated the genetic make-up of our

dataset. We ran ADMIXTURE for a range of a possible number of

K ancestral populations (from 2 to 10; Figures S5 and S6) in the “com-

plete dataset” and included five additional populations as possible

sources of gene-flow [(i) Europeans (CEU); (ii) East African Cushitic
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(Somalia); (iii) Kx'a (Ju/'hoansi); (iv) rainforest hunter-gatherers

(Mbuti); and (v) West African Niger-Congo (Yoruba)]. Even though

the lowest CV value was observed for K = 6, K = 7 also showed a

relatively low CV error (Figure S5). The main difference observed

was that for K = 7 the Mbuti population was represented by a single

specific component, while two different components (one associ-

ated with Ju/'hoansi and another observed across multiple BSPs)

were observed for K = 6 (Figure S5). For K = 7, components

strongly associated with both linguistics and geography could be

identified, as previously reported (Tishkoff et al., 2009; Figure 2a).

One specific component was modal in each of the five populations

here used as possible sources of admixture: CEU (dark blue),

Ju/'hoansi (pink), Mbuti (dark orange), Somalia (light blue), and Yor-

uba (red). Two additional components were found in significant

amounts almost exclusively in BSPs (light green and purple). BSPs

seem to be mainly characterized by different amounts and combina-

tions of these two components and the “Yoruba” component. Given

the information related to population-specific components and low

CV value associated with K = 7, we used this number of clusters in

the subsequent analyses.

The three components characterizing all BSPs showed pairwise

FST values below 0.025, lower than the values between any of these

individual components and the remaining ones (the lowest being

0.068; Table S4). These three components are not randomly distrib-

uted across BSPs. The “Yoruba” component shows higher frequencies

in populations from Central-West Africa, while the other two are

more prevalent in East Africa BSPs (“Bantu East” component, light

green) and in populations from the southern regions of the continent

(a)

(b)

(c)

F IGURE 2 (a) ADMIXTURE plot for K = 7 for the “complete dataset,” plus five source populations. (b) Significant f3 tests for different
combinations of sources/test population. (c) Hierarchical population tree based on the corrected genetic distances. All the nodes showed
bootstrap values above 60%. The bootstrap values are shown in Figure S9. Population labels as in Figure 1.
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(“Bantu South” component, purple). Non-Niger-Congo components

are also observed in several BSPs.

In order to formally test for admixture with non-Niger-Congo

groups in BSPs we performed the three-population tests with the for-

mat f3(X;Yoruba, “Source”)—“Source” being either CEU, Somalia,

Ju/'hoansi, or Mbuti (Reich et al., 2009). Significant f3 statistics (Z-

score <�3) were observed for several of the tested trios (Figure 2b).

Signatures of admixture with Ju/'hoansi are the most widespread in

the dataset (18 out of 32 BSPs). Some of these populations, mainly in

central-western and southern Africa, showed signatures of gene flow

also with Mbuti, which might suggest Ju/'hoansi and Mbuti might act

as relatively good proxies for each other or alternatively be an exam-

ple of an “outgroup case” (Patterson et al., 2012). The widespread sig-

natures of admixture with both Ju/'hoansi and Mbuti reflect the

interaction with local communities that BSPs experienced in their dis-

persal across sub-Saharan Africa (Montinaro et al., 2017; Patin

et al., 2014). East Africa BSPs were the only populations where admix-

ture with the neighboring Somalia and CEU was observed, with all

BSPs in this region showing signatures of admixture with both

sources. However, it is important to note that Somalia also showed

significant signatures of admixture with CEU itself (f3

statistic = �0.00545; Z-score = �19.98; data not shown), possibly

associated with the out-of-Africa and subsequent back migration

(Pagani et al., 2012).

3.3 | Correlation between corrected genetic
distances, linguistic and geographical distances

In an attempt to correct for the impact of gene flow in BSPs we

masked the effects of admixture by generating a reconstruction of the

original “un-admixed” populations using the results of the ADMIX-

TURE analysis (see Methods). We validated this approach via simula-

tions, generating mixed populations from two different sources, as

described in Methods. The corrected genetic distances for the simu-

lated populations were always closer to the Niger-Congo source pop-

ulation (Yoruba) than the other sources (Somali, Ju/'hoansi, Mbuti or

CEU) and the corrected FST values estimated for Yoruba were sub-

stantially smaller than non-corrected ones (Figure S7).

We applied the ADMIXTURE-based correction to our dataset and

then calculated the pairwise FST between the newly generated popula-

tions. The tree produced by these distances shows a clustering of

BSPs strongly associated with their geographical distribution

(Figures 1c,d and 2c; Figures S8 and S9).

We analyzed the impact of this genetic correction on the correla-

tion with both the geographical and the linguistic distances (the origi-

nal distances will be referred to from here on as “non-corrected
genetic distances” and the adjusted ones as “corrected genetic dis-

tances”). For the “overlap dataset,” both these correlations were now

significant (p < 0.05) and the r2 increased dramatically (Figure S10). In

the case of linguistic distances, the percentage of variation explained

by the genetic distances increased from less than 2% (Figure 1d) to

27% (Figure S10b). When analyzing geographical distances this was

even more striking. Before the correction, no statistically significant

correlation between the two distances was observed (Figure 1e). On

the contrary, geographical and corrected genetic distances were now

strongly correlated (p < 0.05), with more than 54% of the variation

explained (Figure S10a). Similarly, when analyzing the “complete

dataset,” the variation of the corrected genetic distances explained by

geography was larger (42%, p < 0.05; Figure S10a). From here on, we

refer to the corrected FST when mentioning genetic distances unless

otherwise indicated.

These results were also confirmed by the way of a Procrustes

analysis, where all the tested correlations but one—between non-

corrected genetic distances and linguistic distances— are significant

(p < 0.05; Table S5). In the case of the genetics distances, the correla-

tion in a symmetric Procrustes rotation is increased for the corrected

distances using both the complete (coefficient of correlation increased

from 0.4553 to 0.7517) and the overlap datasets (coefficient of corre-

lation increased from 0.4974 to 0.9134) with the geographic dis-

tances; the correlation between genetics and linguistic distances

becomes significant when corrected genetic distances are used

(p < 0.05; Table S5).

As some of the populations we analyzed are characterized by

small sample sizes, we explored the impact on the analyses when

groups with less than 5 (two populations) and 10 individuals (seven

populations) were removed (Tables S1 and S6). The removal of groups

with small sample sizes generally improved the coefficient of correla-

tion in the non-corrected dataset, for all the comparisons. To the con-

trary, the analyses without these populations did not always show an

improvement in the coefficient of correlation when the corrected FST

was taken into consideration. In line with the observations reported

for the full dataset, when populations with less than 5/10 individuals

were removed there was an increase of the correlation coefficient

reported when estimates based on the uncorrected to the corrected

FST values were compared (Table S6). Overall these results support

the FST correction approach proposed here, with correlation patterns

being consistent independently of population sizes; the full dataset

was therefore used for the subsequent analyses.

3.4 | Exploring different spatial pathways for the
“Bantu expansion”

Great-circle distances are not a true representation of the actual dis-

tance that needs to be traveled between any two sites, as they ignore

the existence of potential barriers to the movement of people. To

evaluate how differences in the way distances between populations

are calculated affect the correlation with genetic and linguistic varia-

tion, we generated several alternative pathways linking populations

and calculated the associated traveling distances (model-based dis-

tances; see methods; Figure 3). Given the geographical location of the

clusters of populations we initially identified one or more waypoints—

mA, mB, mC1, mC2, mD1, mD2, and mE—to represent the borders of

each cluster (Figure 3a). These waypoints corresponded to the combi-

nation of the highest and/or lowest coordinate for both latitude and
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longitude of each cluster. Additionally, midpoints between some of

these waypoints were also identified—mAB and mABD. By connecting

the various clusters via these waypoints we explored how differences

in the paths of dispersal across sub-Saharan Africa affected the corre-

lation of linguistic and genetic variation to geography in BSPs.

The use of model-based distances led to a generalized increase in

the amount of linguistic and corrected genetic variation explained

when compared to great-circle distances (Table 1). However, genetics

and linguistics were found to behave differently in response to these

modifications. The pathway that seemed to better correlate with

genetic variation was pathway C, with over 55% and 78% of the

corrected genetic variation being explained by geography (in the

“complete” and “overlap dataset,” respectively). Instead, the pathway

with the highest correlation with linguistic distances was pathway D,

with almost 50% of the variation in linguistic distances explained by

geography. The two pathways differ in having larger geographic dis-

tances between clusters B/C and D/E in pathway C and clusters A and

B/C in pathway D.

We highlight here that our methodology is not specifically

designed to test the different hypotheses related to the dispersal of

Bantu languages. Rather, we aim to provide some indication of how

different pathways might produce results that are more strongly asso-

ciated with linguistic and genetic distances. For this reason, we also

tested an additional pathway linking cluster A and cluster B in the

northern part of the forest distribution using waypoints tA and tB

(Figure 3, pathway E). This pathway was associated with the largest
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F IGURE 3 (a) Location and composition of the five geographical clusters identified in Figure 1 and waypoints (red crosses) used to estimate
the model-based geographical distances; population labels as in Figure 1. (b) Schematic representation of the pathways used for the calculation of
the model-based geographical distances.

TABLE 1 Coefficient of determination (r2) for the correlation between the geographical (great-circle distances or the seven pathways tested)
and either the linguistic, non-corrected, or corrected genetic distances.

Non-corrected genetic distances Corrected genetic distances Linguistic distances

GCD n.s. 0.5449 0.3381

Pathway A1 0.0577 0.6290 0.4368

Pathway A2 0.0671 0.5053 0.4742

Pathway A3 0.0490 0.6475 0.4375

Pathway B n.s. 0.4371 0.4315

Pathway C 0.0411 0.7852 0.4008

Pathway D 0.0346 0.5266 0.4953

Pathway E 0.1033 0.5324 0.3596

Note: n.s., nonsignificant.
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coefficient of correlation when analyzed with the non-corrected

genetic distances, but the coefficient was consistently among the low-

est when this pathway was tested with the linguistic and corrected

genetic distances (Table 1).

3.5 | Different patterns of linguistic and genetic
variation in geography-based clusters

We further explored the patterns of genetic and linguistic variation by

considering the variation within and between the identified geograph-

ical clusters (Table S7; Figure S11). We found a homogeneity in the

degree of geographical variation within the different clusters

(Figure S11a)—which seems to indicate that we do not need to control

for geography-related heterogeneity within clusters. Heterogeneity

was nevertheless observed within clusters for linguistic distances

(Figure S11b). Cluster A showed the highest values among all the clus-

ters, significantly different from all except Cluster C (p < 0.05 after

Bonferroni correction; Figure S2b), possibly due to the small sample

size of the latter (only three populations). The corrected genetic dis-

tances within each cluster were overall very low and more homoge-

neous than the non-corrected ones, as noted before (Figure 2c;

Figure S11c,d). Cluster E showed the largest set of distances between

clusters (Figure S11e). On the contrary, no single cluster showed an

excess of differentiation from others when linguistic variation was

considered (Figure S11f). The geographic distances between popula-

tions in Cluster E and all the populations in the other clusters were sig-

nificantly different across pathways, pathway E showing the largest

number of significant comparisons (5 out of 6, Figure S11g).

On the basis of these observations, we introduced a few modifi-

cations to the pathways in order to explore how different specific ele-

ments affected our results. Linguistic and genetic distances appeared

to respond differently to modifications to the pathways. Linguistically,

the strongest correlation with geography was for pathway D, r2

improving to more than 0.6 when comparisons within clusters A and

E were removed (both individually and together). On the other hand,

the modifications that yielded the biggest r2 improvements for the

genetic distances were based on the increasing of the geographic

distances between cluster E and all the other clusters

(Table S7)—pathway C being the best distance-based model for the

“overlap dataset” (distances increased by 1000 km; r2 = 0.81), and

pathway B for the “complete dataset” (distances increased by

2000 km; r2 = 0.60). Completely removing populations from cluster

E from the analysis resulted in pathway B as the best fit for both

genetic datasets (Table S7). Notably, none of the modifications

resulted in pathway E generating the largest values of the coefficient

of correlation (Table S7).

4 | DISCUSSION

Bantu-speaking populations (BSPs) have been shown to share a strik-

ing genetic similarity despite their broad distribution across a vast area

of most of sub-Saharan Africa (Busby et al., 2016; Tishkoff

et al., 2009). In fact, this shared genetic ancestry has been one of the

pieces of evidence used to support the Bantu expansion being an

actual movement of people across the continent and not just a cul-

tural spread of languages through neighboring populations (Tishkoff

et al., 2009). Nonetheless, this extended shared ancestry does not

mean uniformity, and it is noteworthy that some degree of differentia-

tion is found among BSPs. While early studies focusing on Bantu

speakers highlighted their relative genetic homogeneity, more recent

studies have brought to light their heterogeneity (Choudhury

et al., 2017; Patin et al., 2017).

The aim of this work was to evaluate to what extent genetics,

geography, and linguistics are related in BSPs. In doing so, we also

highlighted some of the elements that affected these correlations the

most. The analysis of the distribution of the distances between BSPs

showed a strong link between linguistic diversity and geography. As

people movements accompanied the Bantu linguistic dispersal, we

expected the current genetic variation among its speakers to be

strongly defined by geographical proximity and linguistic similarities

within the Bantu family, mirroring what is observed when broader

ethno-linguistic diversity of African populations was investigated

(Busby et al., 2016; Tishkoff et al., 2009). However, the non-corrected

genetic distances did not show a significant link to either geography

or linguistic distances (Figure 1e).

The dispersal of BSPs and their interaction with local inhabitants

of the newly occupied regions have deeply shaped the genetic and

cultural variation of sub-Saharan Africa (González-Santos et al., 2015;

Patin et al., 2014; Patin et al., 2017; Tishkoff et al., 2009). Admixture

dynamics can vary greatly and as a result BSPs show different genetic

profiles throughout the continent (Barbieri, Vicente, et al., 2013;

Marks et al., 2015; Mitchell, 2002; Montinaro et al., 2017; Patin

et al., 2014; Patin et al., 2017; Pickrell et al., 2012; Pickrell

et al., 2014; Tishkoff et al., 2009). ADMIXTURE analysis combined

with formal tests of admixture pointed to the role that gene flow had

in shaping the different patterns of diversity observed in today's BSPs.

European/East African admixture was observed in all BSPs from clus-

ter B in East Africa. On the other hand, signatures of admixture with

Ju/'hoansi/Mbuti are more common in BSPs from Central-West and

South-East Africa, in agreement with previous studies (Barbieri,

Butthof, et al., 2013; Barbieri, Vicente, et al., 2013; Marks et al., 2015;

Rocha & Fehn, 2016). Overall, it is clear that the genetic structure of

BSPs is highly influenced by different dynamics of admixture, mostly

shaped by geographical proximity with non-Bantu-speaking communi-

ties. Isolation by distance dynamics during the Bantu expansion might

have further impacted the degree of differentiation observed among

these populations.

In order to overcome some of the issues related to admixture, we

implemented a method to recover the signal of the ancestral BSPs,

before the impact of admixture with native non-Niger-Congo inhabi-

tants. After this correction, there was a general increase in homogene-

ity across all BSPs, more so for geographically close groups (Figure 2c

and Figure S11d). These results were corroborated with a Procrustes

analysis in which the correlation of the Procrustes rotation was
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improved for all comparisons after the correction of the genetic dis-

tances (Table S5).

Using model-based distances also led to a general increase in the

correlation of genetic and linguistic variation with geography (Table 1;

Table S7). Nonetheless, even though both the genetic and linguistic

diversity of BSPs are strongly linked with geography, they seem to be

shaped by different evolutionary dynamics as the pathways better

correlating languages and genetics with geography are different

(Table 1; Table S7).

Languages appear to be more affected by the time of their sepa-

ration, with older clusters of populations (near the Bantu homeland in

Central-West Africa) presenting higher levels of language diversity

than clusters of populations that settled later (Figure S11b). This

seems to be affecting linguistics-geography correlation, as the removal

of the comparisons within this region (cluster A) led to a generalized

increase of the variation explained (Table S7). Linguistically, most

pathways improved the correlation with geography by also simulta-

neously removing comparisons within cluster E, in South-East Africa.

This effect might be explained by the presence of linguistic structure

between the two main groups of southeastern Bantu languages

(Nguni and Sotho-Tswana).

Isolation and drift (combined with admixture) appear to play a

major role in the genetic differentiation among BSPs, with demo-

graphic fluctuations possibly influenced by factors such as overexploi-

tation of resources, pandemics, and climate change (Wotzka, 2006).

The pathway that explained the highest amount of genetic variation

(pathway C) was among those with higher geographical distances with

populations from cluster E (Figure S11g). Similarly, modifications to

the pathways that produced the highest increases in the correlations

were those involving increases in the geographical distances to cluster

E (Table S7). All this seems to indicate that the pairwise FST involving

populations from cluster E might be higher than expected based solely

on geography. This may indicate that the most supported pathway

might be one that is maximizing the geographical distances to these

populations to accommodate this. When populations from cluster E

were removed from the analysis the pathway explaining most of the

genetic variation was pathway B (56.7% and 68.7% for the “complete”
and “overlap dataset,” respectively; Table S7). These observations are

in line with the reported decrease in genetic diversity moving South

along Eastern Africa highlighted in Mozambican and South African

populations (Semo et al., 2020). Overall, our results showed that cor-

rections taking in consideration variation in the paths of dispersal and

gene-flow increase the degree of correlations between genetics, lin-

guistics and geography, and that these variables should be properly

considered when investigating BSPs relationships. However, it should

be noted that none of the tested pathways provided the strongest

correlation with geography for both genetics and linguistics, as proba-

bly too simplistic in their representation of the dispersal of BSPs. We

also would like to stress that we did not intend to directly test the dif-

ferent hypothesis for the “Bantu dispersal” but instead explore how

such a line of investigation should consider in a more direct way the

role played by gene-flow in affecting the biological relationships of

populations. The observation that the pathway that mirrored in a

simplified way the early split model (pathway E) never generated the

largest values of correlation (Table S7), except when non-corrected

genetic distances were considered (Table 1), should therefore not be

interpreted as definitive in rejecting this model.

Our results, while confirming the need for taking in consideration

more realistic dispersal patterns when exploring correlations with

genetic distances (Ramachandran et al., 2005), also call for more

sophisticated simulations integrating appropriate modeling of the bio-

logical and cultural dynamics affecting genetics and linguistics as well

as the processes shaping the spatial dispersal of BSPs, as all are neces-

sary to explicitly test the support for the different scenarios proposed

for the “Bantu expansion.”
Our findings highlight how the interactions with inhabitants of

the regions where they settled shaped the variation of several BSP

populations, influencing their overall similarity and the extent of the

correlation between their genetic variation, linguistic diversity and

spatial distribution. Usually considered as a homogeneous group, the

population structure of BSPs should instead be properly taken into

consideration, in particular in biomedical and ancestry investigations.

We note that no corrections were attempted here for the linguis-

tic data but it is reasonable to assume that languages too might have

been affected by other dynamics during their evolution and dispersal.

An important aspect to take in consideration for example is that often

individuals speak more than one Bantu language and that therefore

languages do not often operate as “barriers” to gene flow between

groups. If so, a simple model of sequential splits followed by isolation

might prove unrealistic and inappropriate to explore the relationship

between languages and other variables, unless corrected for additional

sources of variation. It is also worth mentioning that the dynamics of

dispersal of genes and languages might be so different that their full

reconciliation over a geographical model might prove complicated. In

addition, different linguistic features might be tracking different time-

depths as well as being more appropriate to explore intra or inter vari-

ation of linguistic families (Matsumae et al., 2021). The integration of

archeological and linguistic data—and possibly the molecular analyses

of ancient remains (Lipson et al., 2020)—with more complex demo-

graphic models is probably essential for a better understanding of the

cultural and demic processes through which languages and people

spread across Africa as part of the “Bantu expansion.” These consider-

ations apply to investigations focusing on similar events in other parts

of the world (Creanza et al., 2015).
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