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A B S T R A C T   

PROSPECT is the most widely used optical leaf model for a wide range of remote sensing applications on 
vegetation and has been developed and parameterised based on empirical data measured almost exclusively on 
terrestrial plant leaves. As aquatic plants differ substantially from terrestrial plants in leaf morphology and 
physiology, the validity of the relationships underlying PROSPECT in aquatic plants needs to be verified 
empirically. To this end, we compiled a comprehensive dataset of leaf spectra and biochemical-structural pa
rameters sampled along a water affinity gradient, including floating and emergent hydrophytes, helophytes and 
riparian species, and terrestrial plants. In parallel, we designed a multidimensional experiment to explore the 
performance of PROSPECT across different groups and to characterise sources of modelling error, focusing on 
aquatic plants. Our results showed that estimates of most leaf parameters from PROSPECT inversions diverged 
increasingly from measured traits when moving from terrestrial to aquatic species. The suboptimal performance 
of PROSPECT on aquatic plants appears to be driven by three main factors: difficulties in disentangling leaf dry 
matter components (particularly proteins), unresolved issues related to the overlap of primary and secondary 
pigment mixtures and absorption, and the peculiarities of internal leaf structure (i.e. the presence of ‘aeren
chyma’). These findings highlight the need for careful preliminary evaluation of the applicability and limitations 
of PROSPECT when applied to vegetation types that differ significantly from the typical terrestrial trees and 
grasses used for model calibration, including aquatic plants. Such evaluation should be preferably based on 
empirical data covering natural heterogeneity, so that future applications of remote sensing for mapping aquatic 
and wetland vegetation characteristics can be improved in terms of robustness and transferability.   

1. Introduction 

Aquatic plants, or macrophytes – defined as large phototrophic or
ganisms (i.e., not phytoplankton) adapted to live and grow with organs 
completely or partially covered by water, either permanently or peri
odically (Chambers et al., 2008) – make up a small proportion of the 
total species pool: different estimates have quantified that they cover 
between 0.2% (Govaerts et al., 2021) and 1% (Murphy et al., 2019) of all 
vascular plant species at global scale. Despite this, aquatic plants play a 
key role in water bodies, wetlands, and coastal areas: they act on 
ecosystem functioning (e.g. nutrient and carbon cycles), regulate the 
quality and balance of water and sediments, provide food and habitat for 
fish and birds, protect shorelines and riparian areas, and overall sustain 
biodiversity in freshwater and marine ecosystems (Himes-Cornell et al., 
2018; Thomaz, 2021). To emphasise the difference with terrestrial 

plants, we will henceforth refer to macrophytes simply as aquatic plants. 
The foundation of remote sensing of vegetation in the visible to 

shortwave infrared domain (400–2500 nm) is the relation between leaf 
biophysical parameters – or traits – and their reflectance features (Jac
quemoud and Ustin, 2019). This link has been exploited to retrieve foliar 
traits starting from reflectance spectra measured with different sensors 
(from proximal spectroradiometers to spaceborne imagers), using either 
statistical, empirical or physically based approaches (Verrelst et al., 
2015). Among the latter, PROSPECT, a radiative transfer model that 
simulates leaf reflectance and transmittance spectra from a limited set of 
traits (pigments, water and dry matter content, mesophyll structure; 
Féret et al., 2021; Jacquemoud and Baret, 1990), is by far the most 
widely used (Jacquemoud and Ustin, 2019). Although the physical 
theory behind the PROSPECT is intended to be generalisable across 
plant functional groups and species, the model components (e.g. specific 
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absorption coefficients, refractive index) have been parameterised based 
on empirical datasets consisting almost exclusively of terrestrial plants, 
e.g. LOPEX (Hosgood et al., 1993) and ANGERS (Jacquemound et al., 
2003). 

Villa et al. (2021) recently investigated the association between leaf 
spectra and functional traits in aquatic plant species based on a sys
tematic collection of empirical data covering environmental heteroge
neity, highlighting that structural, biochemical, and physiological traits 
can be predicted from reflectance via PLSR models with variable reli
ability. Indeed, the currently available literature on spectroscopic ap
plications for leaf trait retrieval is largely based on terrestrial plants - 
with a few exceptions focusing on specific groups (Proctor and He, 2013; 
Penuelas et al., 1993; Villa et al., 2021). Therefore, the relationships 
between optical properties and reflectance based on leaf optical models 
such as PROSPECT cannot be taken for granted in aquatic plants, which 
have significant differences from terrestrial plants in terms of 
morphology and physiology (Maberly and Gontero, 2018). 

Compared to terrestrial plants, species with submerged and/or 
floating leaves tend to have lower dry matter content per unit leaf 
weight (Pierce et al., 2012; Klančnik et al., 2014a) and invest fewer 
resources in structural components such as lignin (Grasset et al., 2015), 
sometimes with mechanisms for building hard tissues based on biogenic 
silica (Schoelynck et al., 2010). Large lacunal space within the paren
chyma tissue (also called ‘aerenchyma’) is common in both leaves and 
stems of aquatic plants (Große, 1996; Jung et al., 2008), aiming to 
enhance gas transport between plant organs when oxygen availability in 
water or sediments is low (Marzocchi et al., 2019). This feature is re
flected in the arrangement of mesophylls, which is different from that of 
most terrestrial species, and promotes the relocation of chloroplasts 
close to the adaxial side of the leaf (Ronzhina, and P’yankov, V. I., 
2001). Living in an environment with extremely variable light avail
ability - very low for submerged species due to water absorption or very 
high for floating and emergent species with limited leaf shading possi
bilities - aquatic plants tend to be more plastic in pigment balance and 
pool composition compared to terrestrial species (Ronzhina et al., 
2004), which are characterised by a major role of different types of 
carotenoids as well as other accessory pigments (Horppila et al., 2022; 
Klančnik et al., 2012). 

In this context, a fundamental question arises: is the PROSPECT 
model capable of predicting structural and biochemical parameters of 
aquatic plant leaves with similar reliability as demonstrated for terres
trial plant leaves (see: Féret et al., 2019; Jacquemoud et al., 2009; 
Verrelst et al., 2015)? To address this question, we designed the 
collection and analysis of new empirical data to test the capabilities of 
the PROSPECT model inversion on plant species distributed along a 
gradient of water affinity, i.e. sampling leaves from more aquatic to 
terrestrial species, taking into account both the plant life form (growth 
habit) and the degree of leaf contact with water. Target species include 
floating and emergent hydrophytes, helophytes and riparian species, as 
well as terrestrial plants. 

The objectives of this work are: i) to evaluate the effect of varying 
settings (spectral input, model version, mesophyll structure parameter 
estimation) on PROSPECT inversion results; ii) to quantify the accuracy 
of leaf parameters estimated via PROSPECT across species grouped by 
water affinity; and iii) to characterise the source of bias in PROSPECT 
performance over aquatic plant leaves, focusing on their peculiarities 
with respect to terrestrial plants. 

2. Materials and methods 

2.1. Data collection 

We measured multiple spectral and biophysical parameters on leaves 
systematically sampled along a gradient of water affinity within plant 
communities of the Mantua lakes system, northern Italy, in the summer 
of 2021. This freshwater system (45◦10′ N, 10◦47′ E) is composed of 

three shallow, turbid lakes (mean depth of 3.5 m) and two connected 
wetlands (upstream and downstream of the lakes), which host a sub
stantial diversity of aquatic plant species, especially floating and 
emergent hydrophytes and helophytes (Villa et al., 2017). 

The final dataset includes measured parameters for a total of 190 
leaves, covering 13 species and incorporating natural spatial and tem
poral variability, i.e. representing samples from two different spatially 
separated populations (5 leaves from different individuals/branches per 
population) for each species, measured at two moments of the growing 
season, at early vegetative (09 June 2021) and mature (20–22 July 
2021) stages. As anticipated, the sampled species cover a gradient of 
water affinity ranging from aquatic to terrestrial growth forms, and with 
leaves in (partial) contact with water to exclusively aerial leaves, which 
are divided into five groups: i) floating-leaved hydrophytes (group FL), 
represented by Nelumbo nucifera (juvenile, floating leaves), Nuphar lutea, 
Trapa natans,; ii) hydrophytes with emergent leaves (group ER), repre
sented by Ludwigia hexapetala, N. nucifera (adult leaves emergent above 
water); iii) helophytes (group H), represented by Carex riparia, Phrag
mites australis; iv) riparian species (group RR), represented by Humulus 
lupulus, Salix alba, Salix cinerea; v) terrestrial species (group TV), rep
resented by Carpinus betulus, Quercus robur, Taraxacum officinale, Trifo
lium pratense (see sample locations and photos in Suppl. Fig. S1-S2). 

Leaf spectral response, biophysical and biochemical parameters (or 
traits) were measured on all sampled leaves. Radiance reflected from 
leaves was measured using a contact probe with a halogen light source 
attached to a full range (350–2500 nm) spectroradiometer (SR-3500, 
Spectral Evolution). Within seconds of detachment, the leaf surface was 
gently wiped with a paper tissue and spectra readings were then taken 
with the same leaf placed against two different backgrounds: dark (black 
neoprene, ~4% absolute reflectance) and bright (Spectralon, nominal 
absolute reflectance >95%). The reflected radiance measured with dark 
and bright backgrounds was used to derive leaf reflectance (BRF) for 
each sample, adapting the simplified approach proposed by Lillesaeter 
(1982) – see Supplementary Materials for equations used. This approach 
to spectral measurements was adopted to ensure a better match between 
leaf spectra and parameters, especially for pigments and physiological 
parameters, and to avoid spectral changes due to leaf cutting 
(Richardson and Berlyn, 2002; Rascher et al., 2007). In fact, in this 
setup, i.e. measuring spectra on a boat for in vivo work, it is not logis
tically feasible to use an integrating sphere to derive hemispherical 
reflectance (DHRF). Indeed, the directional effects introduced by our 
setup in the leaf reflectance measurements are not a major distortion 
(Potůčková et al., 2016), and the BRF has been shown in previous work 
not to significantly bias the model-estimated leaf parameters (e.g. 
Stuckens et al., 2009; Shiklomanov et al., 2016). Based on extensive data 
on terrestrial plant leaves from temperate to tropical sites in China and 
the United States, Wang et al. (2023) recently demonstrated that 
PROSPECT inversions from bidirectional reflectance can estimate foliar 
traits with good accuracy, similar to or better than PROCOSINE, which 
was developed specifically for BRF (Jay et al., 2016); this performance 
was attributed by the authors to a possible overestimation of the 
mesophyll structure parameter in PROSPECT inversions from BRF, 
counterbalancing the effects of specular reflectance. In addition, Li et al. 
(2023) found that for small viewing angles (as is the case for contact 
probe reflectance measurements), the inversion accuracy of PROSPECT 
is similar to that of a modified model accounting for leaf angular 
reflectance anisotropy. 

Nevertheless, to compensate surface effects on leaf reflectance, 
mainly due to directional anisotropy with near-specular properties, a 
correction factor based on Li et al. (2019) was applied to the derived 
reflectance spectra to enhance comparability with DHRF measurements. 
Average and standard deviation of measured leaf reflectance for the five 
groups sampled across the Mantua water affinity gradient are shown in 
Fig. 1 (further details on leaf spectra measured are provided in Suppl. 
Fig. S3-S8). 

A number of functional traits were determined on the same leaves 
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used for the spectral response measurements. Leaf disks of known sur
face area (24.8 mm2) were used for the determination of pigment con
tent (chlorophyll-a, chlorophyll-b, carotenoids), leaf dry matter content 
(LDMC, as dry mass to fresh mass ratio), equivalent water content (EWT, 
as water content per area) and leaf mass per area (LMA, as dry mass per 
area). Pigments were extracted from leaf discs in 80% acetone and the 
extracts were stored in the dark at 4 ◦C for 24 h. After centrifugation of 
the samples, the supernatant was read spectrophotometrically at 
wavelengths of 470, 646, 663 and 750 nm for pigment calculation ac
cording to Wellburn (1994). Fresh weight and dry weight (after drying 
in an oven at 50 ◦C until a constant weight was reached) of leaf discs 
were measured with a precision balance (0.1 mg) and used for the 
determination of LDMC, EWT and LMA (Perez-Harguindeguy et al., 
2013). Leaf carbon content (LCC) and leaf nitrogen content (LNC) were 
determined from an aliquot of ground dry material by combustion 
analysis using an elemental analyser (Thermo FlashEA 1112). Total 
protein content was calculated from the LNC content using a generalised 
conversion factor of 4.43 (Yeoh and Wee, 1994), and carbon-based 
compounds (CBC) content - including lignin, cellulose, hemicellulose, 
and other carbohydrates - was calculated as the difference between LMA 
and total protein content (Féret et al., 2021). For the determination of 
leaf thickness, thin sections were cut and placed on a microscope slide; 
the slides were observed with an optical microscope (ZEISS Primostar) 
and thickness was determined as the mean of three measurements per 
section, avoiding the main veins. 

2.2. Experiment setup 

Starting from this dataset, we thoroughly assessed the performance 
of PROSPECT across species with different water affinity features by 
performing a series of PROSPECT inversion tests based on leaf reflec
tance via the prospect package in R (Féret and de Boissieu, 2022), 
varying with: i) spectral range covered – the full spectrum (FS: 
400–2500 nm) or optimised subsets depending on the parameter (OPT: 
Spafford et al., 2021); ii) model version – PROSPECT-D (D: Féret et al., 
2017) or PROSPECT-PRO (PRO: Féret et al., 2021); and iii) computation 
of the mesophyll structure parameter N (Nstruct) – estimated as an 
inversion output (Nest) or prior setting from near-infrared spectral 
features (Nprior: Spafford et al., 2021). We also compared the perfor
mance of PROSPECT inversions on our dataset with those obtained on 
other leaf datasets, and the accuracy of leaf parameters estimated from 

PROSPECT inversions with those estimated from other methods. Finally, 
we examined the differences between measured leaf spectra and those 
modelled with PROSPECT to investigate the specific leaf features that 
affect the reliability of PROSPECT in aquatic plant species. A summary 
of the experiment setup is shown in Fig. 2. 

2.2.1. Comparison of PROSPECT inversion settings 
We first compared the inversion results, in terms of retrieved Chl-ab, 

Car, EWT, LMA, and N, of different PROSPECT versions (D vs. PRO) 
testing different combinations of settings, i.e. spectral range (FS or OPT), 
and Nstruct computation (Nest or Nprior). In addition, we compared the 
inversion results over the same parameters starting from different 
spectral ranges (FS vs. OPT) and using as input estimated Nstruct (Nest) or 
prior Nstruct (Nprior). 

2.2.2. Leaf parameter estimation along a water affinity gradient 
We then assessed the differences between selected leaf parameters 

(Chl-ab, Car, EWT, LMA) estimated from the PROSPECT inversion or 
derived from their ratios (Chl/Car = Chl− ab

Car , LDMC = LMA
LMA+EWT) with those 

measured in our reference dataset in terms of precision (Bias), root mean 
square error (RMSE), normalised root mean square error (nRMSE), and 
coefficient of determination (R2). Such comparisons were made based 
on the outputs from the best setting for PROSPECT-PRO (FS-Nest) to 
those from the best setting for PROSPECT-D (OPT-Nprior). We per
formed this evaluation separately for the five plant groups distributed 
along the water affinity gradient (FL, ER, H, RR, TV) and further 
aggregated them into three macro-groups: hydrophytes (FL and ER 
groups), riparian plants (H and RR groups), and terrestrial plants (TV 
group). In addition, the comparison was extended to leaf proteins and 
CBC content, as well as estimated C/N ratio (Féret et al., 2021) by 
considering inversions of PROSPECT-PRO with two different settings 
(FS- Nest vs. OPT-Nprior). 

2.2.3. PROSPECT inversion performance on different datasets 
To check the consistency of results derived from our reference 

dataset, we compared the estimation performance (modelled vs. 
measured leaf parameters) of PROSPECT inversions on our dataset with 
that derived using homologous leaf datasets publicly available online: i) 
LOPEX (Hosgood et al., 1993), excluding dry and needle leaf samples; ii) 
NEON (Wang, 2020), excluding needle leaf samples; and iii) IFGG/KIT 
(Kattenborn et al., 2017), excluding pigment content data as these were 
estimated from the PROSPECT inversion based on leaf spectra. Com
parisons were based on the same model version and settings for all 
datasets, i.e. PROSPECT-D (OPT-Nprior). Although doubts have been 
raised about the reliability of pigment measurements in LOPEX (Féret 
et al., 2017), we did not exclude these parameters from our comparison 
in order to fully exploit the richness of this dataset, which is still the most 
comprehensive among the freely available datasets. Other leaf datasets 
were not considered because they either contained few leaf parameters 
or were biased towards some species (e.g., the ANGERS dataset, pre
dominantly composed of Acer platanoides samples). 

2.2.4. Leaf parameter estimation with different methods 
After evaluating performance on different datasets, we compared the 

performance of leaf parameter estimation using PROSPECT inversions 
(version D, settings OPT-Nprior) with that of other semi-empirical 
methods previously documented in the literature: i) linear regression 
based on optimised spectral indices (LRM_Git, Gitelson et al., 2006), ii) 
partial least squares regression based on leaf reflectance across a range 
of species (PLSR_Sch, Schweiger et al., 2018), and iii) partial least 
squares regression based on leaf reflectance of floating and emergent 
hydrophytes (PLSR_Vil, Villa et al., 2021). As in section 2.2.2, we 
perform this evaluation separately for three macro-groups along the 
water affinity gradient (hydrophytes, riparian plants, and terrestrial 
plants). 

Fig. 1. Leaf reflectance measured across the Mantua water affinity gradient, as 
mean and standard deviation by plant group. 
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2.2.5. Differences in leaf spectra measured and modelled by PROSPECT 
As a final step, we compared the leaf reflectance modelled by for

ward runs of PROSPECT-D, fed with leaf parameters measured on our 
samples - where anthocyanin content was derived following Féret et al. 
(2017) and prior Nstruct from Spafford et al. (2021) – to reflectance 
measured on corresponding leaves. To do this, we calculated the RMSE 
(absolute and relative) of modelled reflectance to measured values, 
aggregated by group (along the water affinity gradient); we also calcu
lated the relative reflectance difference (modelled measured/measured) 
at the detailed scale of the sampled populations (species/growth stage) 
to investigate relationships between spectral modelling errors and leaf 
characteristics of different aquatic plant species. 

3. Results and discussion 

3.1. Comparison of PROSPECT inversion settings 

Fig. 3 (row 1) shows that, when inverted from the full spectral range 
(400–2500 nm), PROSPECT-PRO tends to predict slightly lower Chl-ab, 

Car and EWT values compared to version D. The discrepancy is sub
stantial for LMA, where the underestimation by the PRO version peaks at 
40% for most of the samples from FL group (especially T. natans sam
ples) and riparian Salix spp. At the root of these inconsistencies, there 
appear to be systematic differences in the estimation of Nstruct between 
the D and PRO versions when the spectral inversion input is limited to 
reflectance. This pattern is highlighted for all groups (although the effect 
is minimal for terrestrial plants) and may have a cascading effect on all 
other leaf parameters. Féret et al. (2021) showed that for PROSPECT- 
PRO the effect of Nstruct variability on leaf absorptance is null, while it 
is evident for leaf reflectance, but the issue of different results for D and 
PRO versions in this respect needs further investigation. 

Using optimised spectral ranges specific to each leaf parameter 
(Spafford et al., 2021), PROSPECT-PRO and –D inversions differ 
slightly in predicted Chl-ab (2–3% higher for the PRO version), while 
predicted Car is similar. As PROSPECT-D and -PRO do not differ with 
respect to leaf pigments (Féret et al., 2021), this Chl-ab inversion bias is 
difficult to explain, unless some unreported differences in the pros
pect package code between the two model versions play a role. 

Fig. 2. Summary scheme of the experimental setup for the evaluation of PROSPECT simulations on the Mantua water affinity dataset.  

Fig. 3. Comparison of leaf parameters estimated from the inversion of PROSPECT-D and -PRO under variable settings: row 1 (suffix 4): R-FS-Nest; row 2 (suffix 7): R- 
OPT-Nprior. 
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Estimates of structural parameters are generally consistent between 
PROSPECT versions (R2 = 0.88 and 0.85 respectively; Fig. 3, row 2), 
with a tendency to lower estimated values for PRO versions, more 
evident for EWT and across samples from FL group (showing EWT that 
can surpass 200 g m− 2). 

Fig. 4 shows the differences between leaf parameters estimated based 
on the full spectrum or optimised spectral ranges, using either 
PROSPECT-D or PRO model versions. Chl-ab predicted values are 
slightly higher when using optimised ranges, compared to inversions 
based on full spectrum, especially over riparian and terrestrial plants 
and except for N. lutea samples. For Car estimation, the situation is 
generally inverted, i.e. the use of optimised ranges as input tends to 
produce lower values compared to the full spectrum, with a few samples 
(mainly the FL group and some N. nucifera leaves) overcoming 20 μg 
cm− 2. The differences in inversion performance between the two input 
strategies, are more marked for structural parameters, and in particular 
for EWT - which is consistently estimated to be higher with full spectrum 
input, especially for leaves in the FL group due to the patterns shown for 
Nstruct (Fig. 4, fifth column). 

Compared to the limited output variability shown in Fig. 3, the 
notable discrepancy in PROSPECT inversion results shown in Fig. 4 
shows that inversion performance is generally more influenced by the 
choice of input spectral range than by the model version used, which is 
expected based on the relative similarity of PROSPECT-D and -PRO over 
most leaf parameters (Féret et al., 2017; Féret et al., 2021). 

Looking at individual leaf parameters, PROSPECT results appear to 
be more sensitive to inversion settings over LMA (especially for samples 
in the FL and RR groups) and carotenoids, which have a minor impact on 
model results compared to EWT and chlorophylls in the SWIR and VNIR 
regions, respectively (Féret et al., 2019; Sun et al., 2019). The estimation 
of chlorophylls is instead quite consistent with changing settings. 

3.2. Performance of leaf parameter estimation along a water affinity 
gradient 

Comparing the performance of PROSPECT inversions in estimated 
parameters against the actual leaf measurements in the Mantua water 
affinity dataset (Table 1), using the best settings for the PRO (FS-Nest) 
and D (OPT-Nprior) versions, we observed that PROSPECT-PRO inver
ted over the full spectrum generally provides better results for leaf 
pigments, on average - i.e. lower RMSE (12.8–15.8 μg cm− 2 for Chl-ab, 
3.8–8.3 μg cm− 2 for Car, and 1.35–1.43 for Chl/Car) and nRMSE 
(22–41%, 36–105%, 45–58%, respectively), but the overall level of 
precision is subpar (R2 never exceeds 0.5). Inversions of PROSPECT-D 
based on optimised spectral ranges score more precise estimates for 

Chl-ab (R2 > 0.6) for both hydrophytes and terrestrial species, with a 
tendency towards overestimation (Bias in the range 14.6–16.7 μg cm− 2). 
For leaf structural parameters the situation is mixed: EWT and LDMC are 
better predicted on average by inverting PROSPECT-D from optimised 
spectral ranges, with RMSE of 32.6–78.5 g m− 2 for EWT (nRMSE =
19–24%), and 0.09–0.12 g g− 1 for LDMC (nRMSE = 22–56%), while 
LMA estimates are more accurate using PROSPECT-PRO based on the 
full spectrum, with RMSE of 13.9–22.7 g m− 2 (nRMSE = 22–29%). 

Accuracy figures in general, i.e. pooling all groups in the Mantua 
water affinity dataset, are in line or slightly lower than those recently 
reported by Spafford et al. (2021) and Wang et al. (2023), remarking 
that pigments estimation tend to be less sensitive to input spectral range, 
while structural trait estimates are improved by using specifically 
selected spectral domains, especially for EWT. 

Along the water affinity gradient, the error of Chl-ab and Car esti
mates from PROSPECT inversions tends to be slightly lower for terres
trial species than for hydrophytes. Both EWT and LMA estimates are less 
biased for terrestrial species (TV group) than for true hydrophytes (FL 
and ER groups), with riparian plants (H and RR groups) occupying the 
middle ground between the extremes. This is consistent with the 
ecological setting of the latter group, which typically occupies the 
transitional zone in wetland ecotones (Lamb and Mallik, 2003; Klančnik 
and Gaberščik, 2016), as reflected in the water affinity gradient we 
investigated. 

The suboptimal performance in terms of precision of PROSPECT- 
PRO in estimating LMA, particularly when using the full spectrum (R2 

= 0.36; Fig. 5), is mainly due to the mis-estimation of protein content 
(R2 < 0.4). This is particularly evident for hydrophytes, but it also affects 
other species groups, while CBC estimation is relatively reliable (R2 =

0.51) when using optimised ranges. Indeed, Wang et al. (2015) have 
already highlighted that proteins are estimated with lower accuracy 
compared to other LMA components (lignin and cellulose) in fresh leaf 
samples of terrestrial species. Reinforcing what Wang et al. (2023) 
recently highlighted, the feasibility of assessing nitrogen content and C/ 
N balance based on PROSPECT-PRO inversions – demonstrated over a 
limited sample of terrestrial species (Féret et al., 2021) – need to be 
further investigated for their transferability to a wider range of plant 
species, especially hydrophytes. Within our dataset, hydrophytes do 
indeed have a significantly different C:N balance (p < 0.05) compared to 
riparian and terrestrial plants, linked to a higher LNC (p < 0.05), which 
may be due to the peculiar composition of proteins and amino acids in 
aquatic plants (Boyd, 1970). A possible explanation for this pattern is 
that for terrestrial vegetation (with leaves developing in the air), the 
reflectance-transmittance relationship is mediated by the structure of 
the mesophylls (Jacquemoud and Ustin, 2019), whereas this may not be 

Fig. 4. Comparison of leaf parameters estimated from the inversion of two PROSPECT versions with the full spectrum or optimised spectral ranges as input: row 1: 
version D (R-FS-Nest vs. R-OPT-Nprior); row 2: version PRO (R-FS-Nest vs. R-OPT-Nprior). 
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the case for aquatic plants, i.e. when leaves develop in water or at the 
air-water interface. This affects the validity of the Beer-Lambert law 
assumptions underlying PROSPECT and significantly biases the model 
inversion performance. 

In terms of group-specific characteristics, the plots in Fig. 5 highlight 
that samples from the ER group are the most challenging for the esti
mation of structural characteristics (EWT, LMA) from the PROSPECT 
inversion. Intra-group differences in emergent hydrophytes result in 
contrasting patterns for the inversion performance of leaf structural 
parameters, i.e. LMA and its components, which are mainly driven by 
the negative correlation between leaf thickness and Nstruct in N. nucifera 
samples, possibly related to the relevant effect of leaf age and turnover - 
not assessed in our dataset - on lotus traits (Tsuchiya, 1991). 

3.3. Comparison of PROSPECT inversion performance on different 
datasets 

The scatter plots in Fig. 6 show that performance of PROSPECT-D 
inversions, highlighted for the Mantua water affinity dataset, is gener
ally in line with other homologous datasets - covering different plant 
groups and consisting almost entirely of terrestrial species (light grey 
dots in Fig. 6 plots). 

Notable differences with the LOPEX dataset are shown for 

carotenoids, which appear to be sensibly overestimated in the Mantua 
water affinity dataset, especially for most hydrophyte samples (FL and 
ER groups). PROSPECT-D estimates of pigments over the NEON dataset 
appear to be similarly biased, with a systematic overestimation of 
measured chlorophylls, even more pronounced for carotenoids; this 
pattern is noteworthy because pigment content in the NEON dataset was 
measured by high performance liquid chromatography, which should 
provide more reliable results than spectrophotometric measurements of 
leaf extracts used for the Mantua water affinity dataset and LOPEX. The 
weak performance of PROSPECT in estimating carotenoids across 
different datasets, where such pigments were derived by different 
methods, seems to indicate unresolved challenges in separating ab
sorption features of different pigments, even in the latest versions of the 
model (Wang et al., 2023; Zhang et al., 2022), which are more evident 
for aquatic plant samples - characterised by higher total carotenoid 
content than terrestrial species in our dataset (p < 0.05). 

PROSPECT-D inversion comparisons for structural parameters tend 
to diverge from measured data in the IFGG/KIT dataset, which consists 
exclusively of grassland species, showing a trend towards underesti
mation of both EWT and LMA at higher values. The overall consistency 
of PROSPECT-based estimates compared to the three external datasets 
tested - which include different methods for deriving leaf parameters 
and spectra and have already been recognised in previous literature 

Table 1 
Performance (precision and accuracy metrics) of PROSPECT inversion in modelling selected leaf parameters for different macro-groups in the Mantua water affinity 
dataset, expressed as Bias, RMSE, nRMSE, R2. Results from PROSPECT-PRO (FS-Nest) and from PROSPECT-D (OPT-Nprior) are compared (best performing in bold)    

PROSPECT-PRO (FS-Nest) PROSPECT-D (OPT-Nprior)   

Bias RMSE nRMSE R2 Bias RMSE nRMSE R2 

Hydrophytes (FL + ER) 

Chl-ab (μg cm− 2) 13.1 15.8 0.38 0.44 14.6 16.4 0.39 0.65 
Car (μg cm− 2) 6.9 8.3 0.90 0.13 9.8 10.5 1.14 0.15 
Chl/Car − 0.98 1.43 0.45 0.14 − 1.41 1.68 0.52 0.24 
EWT (g m− 2) − 5.5 81.7 0.20 0.47 − 30.0 78.5 0.19 0.49 
LMA (g m− 2) 2.4 21.5 0.29 0.28 21.0 30.0 0.41 0.28 
LDMC (g g− 1) 0.01 0.04 0.23 0.45 0.07 0.09 0.56 0.13 

Riparian plants (H + RR) 

Chl-ab (μg cm− 2) − 4.3 12.8 0.22 0.25 4.2 12.3 0.21 0.43 
Car (μg cm− 2) 0.5 3.8 0.36 0.01 3.0 5.0 0.47 0.01 
Chl/Car − 0.81 1.39 0.52 0.13 − 1.06 1.54 0.58 0.30 
EWT (g m− 2) 8.3 52.3 0.22 0.24 − 5.0 47.3 0.19 0.22 
LMA (g m− 2) − 13.8 22.7 0.22 0.49 15.8 23.5 0.23 0.65 
LDMC (g g− 1) − 0.06 0.10 0.22 0.21 0.06 0.10 0.22 0.28 

Terrestrial plants (TV) 

Chl-ab (μg cm− 2) 9.3 13.6 0.41 0.49 16.7 18.9 0.57 0.61 
Car (μg cm− 2) 4.9 6.2 1.05 0.27 9.7 10.8 1.84 0.29 
Chl/Car − 1.05 1.35 0.58 0.01 − 1.76 1.94 0.83 0.03 
EWT (g m− 2) 19.0 38.3 0.28 0.45 13.6 32.6 0.24 0.48 
LMA (g m− 2) − 0.7 13.9 0.22 0.43 19.4 23.0 0.36 0.57 
LDMC (g g− 1) − 0.07 0.14 0.25 0.34 0.03 0.12 0.22 0.44  

Fig. 5. Comparison of leaf parameters measured over the Mantua water affinity dataset with those estimated from the inversion of PROSPECT-PRO with two 
different settings: row 1 (suffix 4): FS-Nest; row 2 (suffix 8): OPT-Nprior. 
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Fig. 6. Comparison of leaf parameters estimated from the inversion of PROSPECT-D (setting: OPT-Nprior) and those measured on leaf samples in our dataset, 
showing the same comparison (measured vs. modelled parameters) over other leaf datasets available online, shown as light grey dots on the background: row 1 
LOPEX; row 2 NEON; row 3 IFGG/KIT. 

Fig. 7. Comparison of leaf parameters measured on the Mantua water affinity dataset with those estimated using different approaches: inversion of PROSPECT-PRO 
(settings: FS-Nest) in row 1, and of PROSPECT-D (settings: OPT-Nprior) in row 2, LRM models from Gitelson et al. (2006) in row 3, PLSR models of Schweiger et al. 
(2018) in row 4, and Villa et al. (2021) in row 5. 
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(Féret et al., 2021; Kattenborn et al., 2019; Wang et al., 2022) - dem
onstrates the substantial reliability of Mantua water affinity gradient 
data for quantitative assessment of model performance (especially for 
terrestrial plant leaves). 

3.4. Performance of leaf parameter estimation with different methods 

Among the compared methods presented in Section 2.2.4, the best 
performance on the Mantua water affinity dataset for estimating leaf 
pigment content (Fig. 7, Table 2) is achieved by the PLSR models cali
brated by Schweiger et al. (2018) for Chl-a (nRMSE = 15%), Chl-ab 
(nRMSE = 19%) and Car (nRMSE = 21%), although a clear underesti
mation of carotenoids is highlighted over hydrophyte samples (FL and 
ER groups, Bias = − 2.0 μg cm− 2). Pigments balance is instead better 
estimated by the PLSR model developed by Villa et al. (2021), with 
nRMSE = 17% for Chl/Car. Concerning structural parameters, the best 
performance is achieved by PROSPECT for LMA (nRMSE = 20% and R2 

= 0.36 for PRO version based on full range, nRMSE = 25% and R2 = 0.51 
for D version based on optimised ranges) and by the PLSR model from 
Villa et al. (2021) for LDMC (nRMSE = 14%). 

Looking at the results disaggregated by the three water affinity 
macro-groups, the best estimates of chlorophyll content are given by 
PLSR of Schweiger et al. (2018) for hydrophytes (nRMSE = 22%) and 
riparian plants (nRMSE = 18%), and by LRM of Gitelson et al. (2006) for 
terrestrial species (nRMSE = 29%), with PLSR of Villa et al. (2021) 
(nRMSE = 30% on hydrophytes) or PROSPECT-PRO (nRMSE = 22–41% 
on riparian and terrestrial species) as the second best methods. On the 
other hand, the PLSR model calibrated by Villa et al. (2021), although 
based only on floating and emergent aquatic species, is the best option 
for direct estimation of the Chl/Car ratio for all the groups covered in 
our data (nRMSE<35%), with other methods having more than twice 
the error (nRMSE>45%). In any case, the error of Chl/Car estimation 
with PLSR from Villa et al. (2021) increases when moving from hydro
phytes (nRMSE = 18%) to terrestrial plants (nRMSE = 35%). 

Among the structural parameters, the best results in estimating LMA 
and LDMC in our dataset are overall achieved by PROSPECT, although 
when restricted to hydrophytes and riparian plants (i.e. excluding the TV 
group), the performance of Villa et al. (2021) PLSR for LDMC is com
parable or slightly better. Although LMA is better estimated by 
PROSPECT-PRO across all groups (nRMSE = 20%), errors tend to in
crease from terrestrial (RMSE = 13.9 g m− 2 or 22%) to hydrophyte 
species (RMSE = 21.5 g m− 2 or 29%). 

In the latter group, the performance of the PLSR model specifically 
calibrated for floating and emergent aquatic plants (Villa et al., 2021) is 
comparably accurate to that of PROSPECT-D (RMSE = 30.3 g m− 2) and 
tend to be more precise than PROSPECT-PRO (R2 = 0.48), mainly due to 
a systematic overestimation bias of 19.8 g m− 2. 

These results confirm the superior flexibility of PLSR models in 
estimating leaf traits from reflectance, provided they are trained on 
representative, high-quality data (Kothari et al., 2023). PLSR models 
implemented by Schweiger et al. (2018) and Villa et al. (2021) achieve 
lower estimation errors for pigment content compared to PROSPECT, 
even more so for aquatic plant leaves (FL and ER groups). In particular, 
PLSR achieves good results for the direct estimation of the Chl/Car ratio 
(Song and Wang, 2022), possibly because the mutual correlation of both 
pigment groups and overlapping light absorption bands are handled 
more effectively in this way than in the simplified PROSPECT model 
formulation (Shiklomanov et al., 2016; Zhang et al., 2022). On the other 
hand, the good reliability of the PROSPECT inversion for the estimation 
of structural parameters (LMA and LDMC) generally confirms the recent 
findings of Féret et al. (2021), Spafford et al. (2021) and Wang et al. 
(2023) on LMA, although it should be noted that the PLSR model cali
brated by Villa et al. (2021) can provide a slight performance advantage 
in terms of precision on FL and ER groups. As improved LMA estimation 
has been achieved by some authors by including in PROSPECT addi
tional terms that account for surface and internal leaf structure (Li et al., 

2023; Qiu et al., 2018; Wan et al., 2021), testing these refined versions 
would be an interesting direction for further investigation of model 
performance on aquatic plants. 

3.5. Differences between measured and modelled leaf spectra from 
PROSPECT 

The RMSE between measured leaf reflectance and that modelled 
from PROSPECT-D (settings: OPT-Nprior) differs among plant groups, 
and oscillates within 1–6% range in the VNIR and 1–5% range in the 
SWIR (Fig. 8, row 1). 

With the exclusion of helophytes (group H) in the VNIR and a 
localised peak for hydrophytes (groups FL, ER) in the red edge region 
(690–720 nm), the modelled reflectance with PROSPECT-D has an ab
solute RMSE<0.05 over the whole spectrum. The high RMSE of the H 
group in VNIR reflectance (Fig. 8, row 1, left panel) is caused by the 
anomalous underestimation of modelled leaf reflectance in C. riparia 
samples, which could be due to biomineral encrustations (silica and 
calcium) on the leaf of this graminoid (Klančnik et al., 2014b), 
increasing surface light scattering (Li et al., 2023). Averaged across the 
Mantua water affinity dataset, the RMSE of leaf reflectance is approxi
mately 1–4% for wavelengths below 800 nm and 1–3% for wavelengths 
above 800 nm. 

Apart from the localised peaks mentioned, such modelling errors are 
in line with previous work with similar comparisons, i.e. 1–5% and 
1–3% for wavelengths below and above 800 nm respectively, using 
different datasets and older versions of PROSPECT (Féret et al., 2008); 
1–2% using the ANGERS dataset and other data for wavelengths below 
800 nm (Féret et al., 2017); 1–3% using the LOPEX dataset for wave
lengths above 800 nm (Wang et al., 2015), 1–3% using various datasets 
and wavelengths above 1000 nm (Féret et al., 2021). This indicates that 
our measurement setup, including a specularity correction factor (Li 
et al., 2019) applied to BRF measurements, resulted in leaf reflectance 
spectra that were not substantially biased compared to what is expected 
from DHRF measurements, which are typically assumed in PROSPECT 
models. The reliability of the leaf reflectance data in the Mantua water 
affinity dataset is further supported by the evaluation of differences (in 
absolute and relative terms) between measured and modelled spectra 
compared to homologous differences derived from the CABO dataset 
(Kothari et al., 2022) - the largest and most comprehensive (over 1900 
samples from 105 species, including P. australis) publicly available 
dataset of leaf optical properties to date. The results of this evaluation 
showed that the reflectance modelling bias for our dataset is not sub
stantially different from that of the CABO dataset (using DHRF mea
surements) averaged over all samples (Suppl. Fig. S9, row 1). 
Considering only P. australis samples, a helophyte species common to 
both datasets, the reflectance measured and modelled by PROSPECT 
tends to differ more in CABO (as DHRF) than Mantua (as corrected BRF) 
data in the visible region (below 750 nm) and vice versa in the NIR 
region (750–1100 nm) - with the bias in our data averaging +2–3% and 
− 1-2% for wavelengths below and above 1000 nm, respectively (Suppl. 
Fig. S9, row 2).The relative RMSE of the modelled leaf reflectance 
(Fig. 8, row 2) clearly shows that the PROSPECT modelling error in the 
VNIR tends to decrease along the water affinity gradient, i.e. from 
floating hydrophytes to riparian species (relative RMSE decreases in this 
sequence: FL-ER-H-RR), with localised peaks (relative RMSE>50%) 
particularly visible for hydrophytes (FL, ER groups). The positions of 
these peaks - i.e. around 510–520 nm (related to carotenoids and/or 
anthocyanins), 690–710 nm (related to chlorophyll-a) and 620–630 nm 
(possibly related to accessory pigments such as chlorophyll-b or antho
cyanins) - again point to possible inconsistencies not fully resolved in 
PROSPECT regarding pigment mixture and absorption overlap (Shiklo
manov et al., 2016; Zhang et al., 2022), which become deeper with 
increasing water affinity. On the other hand, hydrophytes in our dataset 
do not show significant differences in terms of RMSE of PROSPECT- 
modelled reflectance compared to riparian plants (H, RR groups) in 
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Table 2 
Performance (precision and accuracy metrics) of different methods in modelling a subset of leaf parameters (LMA, LDMC, Chl-a/ab, Chl/Car) for different macro-groups in the Mantua water affinity 
dataset, expressed as Bias, RMSE, nRMSE, R2. The results of five methods are compared: PROSPECT-PRO (FS-Nest), PROSPECT-D (OPT-Nprior), LRM models of Gitelson et al. (2006), PLSR models of 
Schweiger et al. (2018), and PLSR models of Villa et al. (2021) (best performing in bold). 

PROSPECT-PRO 
(FS-Nest)

PROSPECT-D 
(OPT-Nprior)

LRM_Git
(Gitelson et al., 2006)

PLSR_Sch 
(Schweiger et al., 2018)

PLSR_Vil 
(Villa et al., 2021)
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SE

nR
M
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R
2

H
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(F

L
+

E
R

) LMA (g m-2) 2.4 21.5 0.29 0.28 21.0 30.0 0.41 0.28 19.8 30.3 0.41 0.48
LDMC (g g-1) 0.01 0.04 0.23 0.45 0.07 0.09 0.56 0.13 0.06 0.07 0.45 0.39
Chl (µg cm-2)* 13.1 15.8 0.38 0.44 14.6 16.4 0.39 0.65 -8.8 11.2 0.27 0.47 7.0 9.2 0.22 0.61 7.3 10.4 0.30 0.44
Chl/Car -0.98 1.43 0.45 0.14 -1.41 1.68 0.52 0.24 -0.72 1.61 0.50 0.18 2.05 2.25 0.70 0.01 -0.04 0.58 0.18 0.45

R
ip

ar
ia

n 
pl

. 
(H

+
R

R
)

LMA (g m-2) -13.8 22.7 0.22 0.49 15.8 23.5 0.23 0.65 45.0 55.3 0.53 0.37
LDMC (g g-1) -0.06 0.10 0.22 0.21 0.06 0.10 0.22 0.28 -0.01 0.07 0.16 0.38
Chl (µg cm-2)* -4.3 12.8 0.22 0.25 4.2 12.3 0.21 0.43 -16.7 19.2 0.32 0.40 7.1 10.8 0.18 0.63 18.4 21.9 0.46 0.39
Chl/Car -0.81 1.39 0.52 0.13 -1.06 1.54 0.58 0.30 4.26 7.57 2.83 0.24 1.04 1.25 0.47 0.01 -0.24 0.61 0.23 0.04

T
er

re
st

ri
al

 
pl

an
ts

 (
T

V
) LMA (g m-2) -0.7 13.9 0.22 0.43 19.4 23.0 0.36 0.57 54.9 65.2 1.01 0.75

LDMC (g g-1) -0.07 0.14 0.25 0.34 0.03 0.12 0.22 0.44 -0.02 0.13 0.23 0.29
Chl (µg cm-2)* 9.3 13.6 0.41 0.49 16.7 18.9 0.57 0.61 -8.2 9.7 0.29 0.72 14.8 16.3 0.49 0.68 24.0 27.1 1.03 0.33
Chl/Car -1.05 1.35 0.58 0.01 -1.76 1.94 0.83 0.03 -0.36 1.90 0.81 0.08 0.91 1.08 0.46 0.07 0.26 0.82 0.35 0.02

* Total chlorophylls (Chl-ab) for PROSPECT, LRM_Git, PLSR_Sch; Chl-a for PLSR_Vil. 
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the SWIR region, with relative reflectance difference values generally 
lower than in the VNIR region, i.e. between 10 and 40% (Fig. 8, row 2, 
right panel). 

At the species level, the differences between PROSPECT-modelled 
and measured leaf reflectance, shown in Fig. 9, highlight some pecu
liarities of aquatic plant species. First, the highest overestimation peak 
in the 510–520 nm region for T. natans samples is associated with low 
carotenoid content and a high Chl/Car ratio. Second, the peak of 
reflectance overestimation around 600–650 nm could be related to 
anthocyanin content in floating and emergent plants, especially for 
species characterised by a reddish abaxial side during some growth 
stages, such as juvenile N. nucifera and mature T. natans. Thirdly, the 
small peak of reflectance difference around 650–660 nm pairs with the 
different chlorophyll pool balance (high Chl-a/Chl-b ratio) of the 
floating hydrophyte T. natans. Fourth, the spectral variability of the 
relative reflectance difference in the 1900–2000 nm range - where water 
absorption is the main driver - for many hydrophytes (N. nucifera, 
N. lutea, T. natans) suggests that the patterns linking leaf water content 
and spectra in aquatic plants may be different from those considered in 
the PROSPECT formulation, which is mainly shaped by the biochemical 
and structural arrangements of terrestrial plant leaves (Féret et al., 
2017). Furthermore, the generally low leaf C/N ratio (10–15) of hy
drophyte species (up to the helophyte P. australis) - reflecting the typical 
absence of nitrogen-limiting conditions in mostly eutrophic wetland 
systems - indicates a different balance of N- and C-based compounds as 
dry matter components. 

This might pose a challenge for PROSPECT to reliably model aquatic 
plant LMA, especially the PRO version, as it is based on stoichiometric 
ranges calibrated on terrestrial species (Féret et al., 2021). 

Finally, the scatter plots of Fig. 10 comparing two proxies for leaf 
structural complexity - one measured (thickness) and the other modelled 
(N mesophyll parameter from PROSPECT-D inversions) - show a strong 
decoupling of leaf thickness from Nstruct for more water-affine species 
(N. lutea, N. nucifera, T. natans) characterised by thicker leaves, which is 
not seen in terrestrial species (in the LOPEX dataset: Fig. 10 right panel). 
In the wake of observations by other authors on the volume scattering 
modelling in PROSPECT, which showed different degrees of reliability 
across species and functional types (Qiu et al., 2018; Féret et al., 2019), 
such decoupling suggests that the internal leaf structure for hydrophytes 

- related to the presence of large void spaces that form the aerenchyma 
typical of aquatic plants (Große, 1996; Jung et al., 2008) - and pecu
liarities in cuticle morphology (Maberly and Gontero, 2018) may 
strongly influence the differentiation of their leaf optical properties from 
those of most terrestrial plants. Therefore, the simplified modelling of 
volumetric scattering implemented so far in PROSPECT, which relies on 
Nstruct as the sole descriptor of internal leaf structure, may lead to sig
nificant biases in the estimation of leaf spectral parameters for aquatic 
plant species. 

4. Conclusions 

Based on empirical data of leaf reflectance and measured parameters 
(biochemical and structural), a multidimensional assessment of PROS
PECT model capabilities was performed over a water affinity gradient 
from floating and emergent hydrophytes to terrestrial plants, through 
helophytes and riparian species. 

Overall, PROSPECT results for the estimation of LMA and caroten
oids appear to be more sensitive to changing inversion settings 
compared to chlorophyll estimation, with the choice of input spectral 
range playing a prominent role in the model version used. Nevertheless, 
the PRO version showed some inconsistencies in LMA estimation in 
Nstruct retrieval than the D version. 

Along the water affinity gradient, PROSPECT-based estimates of 
most parameters (carotenoids, EWT and LMA) diverge increasingly from 
measured values from hydrophytes to riparian plants to terrestrial spe
cies, while the situation is more uniform across groups for chlorophylls. 

As the suboptimal performance of PROSPECT-PRO for LMA (R2 <

0.4) is primarily driven by errors in the estimation of protein content, 
the capabilities of this latter version for the assessment of nitrogen-based 
compounds and the carbon‑nitrogen balance in leaves need to be further 
evaluated for transferability to aquatic plants - and possibly to other 
plant groups that show significant differences from common terrestrial 
species. 

In parallel with the degradation of model inversion performance 
with water affinity, the error in leaf reflectance simulated with PROS
PECT tends to increase from terrestrial to aquatic leaf samples, with 
localised error peaks for hydrophyte species in the visible spectrum. This 
pattern points to unresolved modelling issues dealing with pigment 

Fig. 8. Plant group-specific mean differences in leaf reflectance modelled from PROSPECT-D and measured with a light-equipped contact probe attached to the SR- 
3500 spectroradiometer over the Mantua water affinity dataset, in terms of RMSE (row 1), and relative RMSE (row 2). 
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mixture and absorption overlap, which become more apparent with 
increasing water affinity (and water content). Indeed, more flexible 
PLSR models can effectively deal with multicollinearity and avoid ab
sorption overlap issues when trained on high quality reference data, 
outperforming PROSPECT in leaf pigment estimation. 

Another source of relevant bias in the model results is the strong 
decoupling of estimated Nstruct from leaf thickness for more water-affine 

species, suggesting that peculiarities in the internal leaf structure of 
hydrophytes strongly deviate from the basic assumptions of PROSPECT. 

The reliability of our results is supported by the consistency of the 
PROSPECT inversion performance across different external datasets and 
the modelling error of leaf spectra, which is in line with previous work, 
although based almost exclusively on terrestrial plants. 

The overall picture of our findings underscores the need for a 

Fig. 9. Relative differences in leaf reflectance modelled from PROSPECT-D (settings: R-OPT-Nprior) and measured with a light-equipped contact probe attached to 
the SR-3500 spectroradiometer over the Mantua water affinity dataset (excluding terrestrial plants), grouped by species and time of sampling (odd entries in the 
species list are from samples measured in early June, even entries from samples measured in late July). The last row shows the box plots of the main leaf char
acteristics measured for each species. Nuphar lutea (NL), Trapa natans (TN), Nelumbo nucifera (NNf, NN); Ludwigia hexapetala (LH), Phragmites australis (PA), Carex 
riparia (CR); Salix spp. (SAC), Humulus lupulus (HL). 

Fig. 10. Comparison between measured leaf thickness and Nstruct estimated from the PROSPECT-D inversion (settings: OPT-Nprior) extracted from the Mantua water 
affinity and LOPEX datasets. 
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quantitative assessment of the PROSPECT capabilities over leaves with 
significant structural and biochemical differences (e.g. aquatic plants) 
compared to those of the terrestrial species that make up the calibration 
data used to develop the model. Such an assessment is a prerequisite for 
characterising and improving the performance of remote sensing ap
plications on aquatic and wetland vegetation. In fact, these applications 
often rely on the upscaling of leaf spectral characteristics to canopy and 
ecosystem scales using airborne and spaceborne hyperspectral data, 
based on models that incorporate PROSPECT as a cornerstone, although 
its assumptions have only been empirically tested for terrestrial vege
tation, including crops. 

Potential improvements in PROSPECT performance for vegetation 
other than temperate broadleaved trees and crops, which have been the 
main source of model calibration to date, e.g. aquatic plants, can be 
achieved by recalibrating the specific absorption coefficients (especially 
for secondary pigments) and the refractive index on the basis of exten
sive and comprehensive leaf datasets that take into account natural 
heterogeneity in terms of functional groups, growth stages and envi
ronmental conditions, as well as by including additional model param
eters that account for leaf structural complexity (e.g. mesophyll 
stratification or presence of aerenchyma). 

Funding 

This work was supported by the project “macroDIVERSITY”, funded 
by the Ministry of Education, University and Research, PRIN 2017 
[grant 2017CTH94H]. Alice Dalla Vecchia has benefited from the 
equipment and framework of the COMP-HUB Initiative (Department of 
Chemistry, Life Sciences and Environmental Sustainability of Parma 
University), funded by the ‘Departments of Excellence’ program of the 
Italian Ministry for Education, University and Research (MIUR, 
2018–2022). Rossano Bolpagni has benefited from the equipment and 
framework of the COMP-R Initiative (Department of Chemistry, Life 
Sciences and Environmental Sustainability of Parma University), funded 
by the ‘Departments of Excellence’ program of the Italian Ministry for 
Education, University and Research (MIUR, 2023–2027). 

CRediT authorship contribution statement 

Paolo Villa: Conceptualization, Methodology, Investigation, Formal 
analysis, Supervision, Writing – original draft. Alice Dalla Vecchia: 
Data curation, Resources, Methodology, Writing – review & editing. 
Erika Piaser: Data curation, Investigation, Writing – review & editing. 
Rossano Bolpagni: Data curation, Resources, Methodology, Supervi
sion, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no competing interests. 

Data availability 

The datasets generated and analysed during the current study will be 
made available on EcoSIS (ecosis.org) upon publication. 

Acknowledgements 

The authors thank Jean-Baptiste Féret (UMR-TETIS, IRSTEA Mont
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