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Abstract1

In this work we present some exactness conditions for the Shor relaxation of diagonal (or,2

more generally, diagonalizable) QCQPs, which extend the conditions introduced in different3

recent papers about the same topic. It is shown that the Shor relaxation is equivalent to two 14

convex quadratic relaxations. Then, sufficient conditions for the exactness of the relaxations5

are derived from their KKT systems. It will be shown that, in some cases, by this derivation6

previous conditions in the literature, which can be viewed as dual conditions, since they only7

involve the Lagrange multipliers appearing in the KKT systems, can be extended to primal-8

dual conditions, which also involve the primal variables appearing in the KKT systems.9

Keywords Quadratically Constrained Quadratic Programming · Shor relaxation · Convex10

relaxations · Exactness conditions11

1 Introduction12

In the recent literature different results about the exactness of the Shor relaxation (see [17])13

for Quadratically Constrained Quadratic Programming (QCQP in what follows) problems14

have been proposed. The Shor relaxation can be proved to be exact for the Generalized Trust15

Region Subproblem (GTRS), where a single (not necessarily convex) quadratic inequality16

constraint is present. The exactness proof can be derived from a result discussed in [11].17

For other QCQPs the Shor relaxation is not always exact and different papers introduce18

conditions under which exactness holds for sub-classes of QCQPs. Some exactness results19

for the case of QCQPs with two quadratic constraints have been presented in [21], while in20

[1] a necessary and sufficient condition for the exactness of the related Lagrangian dual has21

been given. Note that the case with two quadratic constraints, which includes the well known22

Celis-Dennis-Tapia (CDT) problem, has been recently proved to be polynomially solvable in23

different works [5, 10, 16]. However, both the polynomial approaches proposed in [10, 16],24

based on the enumeration of all KKT points via the solution of bivariate polynomial systems,25

and the polynomial approach proposed in [5], based on Barvinok’s construction, have a26

B M. Locatelli
marco.locatelli@unipr.it

1 Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma, Parma, Italy
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limited practical applicability due to the large exponent of the polynomials appearing in the27

complexity result. For QCQPs with a single unit ball constraint and further linear constraints,28

in [13] a dimension condition establishing exactness of the Shor relaxation is introduced.29

In [3] a Second Order Cone Programming (SOCP) relaxation for the same problem has30

been discussed, while in [15] it has been shown that such relaxation is equivalent to the31

Shor relaxation. By the analysis of the KKT conditions for the SOCP relaxation, in [15] a32

condition more general than the dimension condition presented in [13] has been given. Note33

that in [6, 19] an exact convex relaxation, obtained by adding to the Shor relaxation a so34

called SOC-RLT constraint, has been introduced for the case of a single linear constraint,35

while in [7] the result has been extended to a generic number of linear constraints provided36

that these constraints have an empty intersection inside the unit ball. It is also worthwhile37

to mention that a polynomial-time algorithm for the solution of this problem (possibly also38

with the addition of further ball and reverse ball constraints) has been proposed under the39

assumption that the overall number of constraints is fixed (see [4]). The approach is based40

on an enumeration of all possible KKT points.41

In this paper we are interested in deriving exactness conditions of the Shor relaxation in42

case of diagonal QCQPs, i.e., quadratic problems where the Hessian of all quadratic functions43

is diagonal or can be made diagonal after a change of variables (the Hessian matrices are44

simultaneously diagonalizable). In what follows we assume that the QCQP problem is already45

given in diagonal form. Throughout the paper N = {1, . . . , n} will be the index set of the46

variables, and M = {1, . . . , m} will be the index set of the constraints. For a given symmetric47

matrix Y, the notation Y � O means that the matrix is positive semidefinite. By diag(Y) we48

will denote the vector whose entries are the diagonal entries of matrix Y.49

A diagonal QCQP problem is defined as follows:50

c� = minx x�Dx + 2c�x
x�Ai x + 2a�

i x ≤ bi i ∈ M,
(1)51

where matrix D and all matrices Ai , i ∈ M , are diagonal. The classical Shor relaxation for52

this problem is:53

v� = minx,X D • X + 2c�x
Ai • X + 2a�

i x ≤ bi i ∈ M
X − xx� � O.

(2)54

The existence of minimizers and, thus, the use of min rather than inf in problems (1) and (2)55

is guaranteed under the following suitable assumptions, introduced in [8]:56

Assumption 1 The following hold:57

– The feasible region of (1) is nonempty;58

– ∃ ȳ ≥ 0 such that
∑

i∈M ȳi Ai � O;59

– The interior of the feasible region of (2) is nonempty.60

In particular, note that these assumptions imply that the feasible region of problem (1) is61

bounded.62

This assumption will be maintained throughout the paper.63

In [8] some sufficient conditions are introduced under which there exists an optimal rank-one64

solution for the Shor relaxation, which is equivalent to proving that the Shor relaxation is65

exact, i.e., v� = c�. More precisely, for k ∈ N , let:66

Lk =
{

μ ≥ 0 : Dkk +
∑

i∈M

μi Ai
kk = 0, ck +

∑

i∈M

μi aik = 0

}

, (3)67
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and for j ∈ N :68

H j =
{

μ : D j j +
∑

i∈M

μi Ai
j j ≥ 0

}

. (4)69

It is proved that the Shor relaxation is exact if for each k ∈ N the following polyhedral set70

is empty:71

Sk = Lk ∩ [∩ j∈N\{k}H j
]
. (5)72

This result allows to re-derive a sign-definiteness condition presented in [18], stating that73

exactness holds if for all j ∈ N , c j and ai j , i ∈ M , are all nonpositive or all nonnegative.74

Moreover, for the relevant special case when Ai ∈ {I,−I, O} for each i ∈ M , i.e., when75

all constraints are ball, reverse ball, and linear constraints, in [8] it is shown that exactness76

holds when the sign-definite condition is only satisfied by the variable corresponding to77

the lowest diagonal entry of matrix D. Note that this special case is addressed also in [2],78

where a branch-and-bound approach for its solution is proposed and an application to source79

localization problems is presented.80

A further very recent result has been proved in [23], where a class of problems larger than81

the class of diagonal QCQPs is considered. We briefly discuss the condition introduced in82

that paper, only in the case of inequality constraints, although also equality constraints may83

be included. Note that in this case matrices D and Ai , i ∈ M , are not necessarily diagonal.84

Let85

A(γ ) = D +
∑

i∈M

γi Ai , b(γ ) = c +
∑

i∈M

γi ai .86

Let87

� = {γ : A(γ ) � O, γ ≥ 0}.88

A face F of � which does not contain any γ such that A(γ ) � O is called a semidefinite89

face, and the zero eigenspace of F is90

V(F) = {x : A(γ )x = 0, ∀γ ∈ F}.91

In [23] it is assumed that � is a polyhedral set. While this assumption is always fulfilled for92

diagonal QCQPs, it is also shown that it may hold also for non-diagonal QCQPs, but it is93

pointed out that it is coNP-hard to decide whether the assumption holds. Exactness of the94

Shor relaxation is proved under the condition that there exists some infinite sequence {hk}95

such that hk → 0 (see the perturbation argument below) and for any k and any semidefinite96

face F it holds that:97

0 /∈ {ProjV(F)(b(γ ) + hk) : γ ≥ 0}. (6)98

Note that in the same paper also some conditions are discussed under which the convex hull99

of the epigraph of the QCQP is given by the projection of the epigraph of its Shor relaxation.100

Another recent result about this topic can be found in [14]. In that work minimax QCQPs101

are considered, namely, the following problems are addressed102

minx maxr∈R x�Dr x + 2c�
r x + c0r

x�Ai x + 2a�
i x ≤ bi i ∈ M,

(7)103

where all matrices Dr , r ∈ R, Ai , i ∈ M , are diagonal, possibly obtained after the simultane-104

ous diagonalization of all the Hessian matrices. Note that this class of problems is equivalent105
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to the class of problems (1). Indeed, each problem (1) can be viewed as a special case of (7) by106

taking |R| = 1, while, on the other hand, each problem (7) can be converted into an instance107

of problem (1) after the addition of a variable y, which becomes the objective function to108

be minimized, and of the related constraints y ≥ x�Dr x + 2c�
r x + c0r for each r ∈ R. In109

[14] a SOCP relaxation of problem (7) is introduced which is equivalent to the Lagrangian110

dual of this problem and, thus, also to the Shor relaxation (recall that the Lagrangian dual111

and the Shor relaxation are dual to each other and, thus, have the same optimal value if a112

constraint qualification holds). In [14] an exactness condition is introduced based on the so113

called epigraphical set, defined as follows:114

E = {
(w, v) ∈ R

|R|+|M| : ∃x ∈ R
|N | : x�Dr x + 2c�

r x + c0r ≤ wr , r ∈ R,

x�Ai x + 2a�
i x ≤ vi , i ∈ M

}
.

(8)115

It is shown that the SOCP relaxation is exact if the epigraphical set is closed and convex.116

Some applications of diagonal QCQPs In the literature there are different applications of117

diagonal QCQPs. Here we briefly review a few of them.118

The extended trust region subproblem (extended TRS) is the trust region problem with119

additional linear constraints. After diagonalizing the objective function, this becomes a diag-120

onal QCQP where Ai ∈ {I, O} for each i ∈ M (more precisely, all matrices Ai are null, except121

one which is equal to the identity matrix). As outlined in [13], such problem arises from the122

application of the trust region method in the context of linearly constrained problems, from123

nonlinear optimization problems with discrete variables, and from robust optimization prob-124

lems. Moreover, QP problems whose feasible region is a polytope can be reformulated as an125

extended TRS after the addition of a ball constraint (a ball enclosing the feasible polytope).126

In [14] the max dispersion problem is presented as an application of diagonal QCQPs. In127

this problem, given a finite set of location positions ui , i = 1, . . . , p, and a further point x0,128

we aim at identifying the position of a new location which maximizes the minimal distance129

from all the other locations. The new position is subject to a ball constraint, i.e., it must130

belong to a sphere centered at x0, and is possibly subject to further linear constraints.131

The problem of minimizing a quadratic function over a ’Swiss cheese’ domain, i.e., a132

feasible region defined by ball, reverse ball, and linear constraints, has been discussed, e.g.,133

in [4] (see also [23] for an exactness result when the objective function to be minimized is134

the Euclidean norm). After diagonalization of the objective function, this problem belongs to135

the special case of diagonal QCQPs with Ai ∈ {I,−I, O} for each i ∈ M . The latter special136

case is also the focus of paper [2], where a branch and bound approach is proposed and an137

application to sparse source localization problems is presented.138

Finally, in [8] it is shown that general QCQPs can be reformulated as diagonal QCQPs139

with additional variables.140

Statement of contribution The main contribution of this work lies in the derivation of141

exactness conditions of the Shor relaxation for diagonal QCQPs through an approach different142

with respect to the existing, recent, literature, in particular, with respect to [8, 14, 23]. The143

conditions are derived from the KKT conditions of an equivalent SOCP reformulation of the144

Shor relaxation. They are primal-dual conditions, while the other conditions in the literature145

appear to be dual conditions. As we will see through a simple example, besides being derived146

in a different way, the new conditions also allow to establish exactness results which cannot147

be established by the existing conditions. The new conditions are particularly significant148

123

SPI Journal: 10898 Article No.: 1258 TYPESET DISK LE CP Disp.:2022/11/28 Pages: 17 Layout: Small



un
co

rr
ec

te
d

pr
oo

f

Journal of Global Optimization

when Ai ∈ {I,−I, O} for each i ∈ M , which, according to the previous discussion, is a149

relevant subcase of diagonal QCQPs.150

Outline of the paper In this paper we first state in Sect. 2, by a straightforward extension151

of a result proved in [15], that for diagonal QCQPs the Shor relaxation is equivalent to a152

quadratic convex relaxation of problem (1). Next, in Sect. 3 the exactness condition related153

to the emptiness of the sets (5) is re-derived through an analysis of the KKT conditions of the154

convex relaxation. Moreover, in Sect. 4, it is shown how to strengthen the exactness condition155

in some cases and, in particular, in the already mentioned case when Ai ∈ {I,−I, O} for each156

i ∈ M . It is shown through an example that the new condition can be stronger than those157

discussed in [8, 14, 23]. Finally, in Sect. 5 a further equivalent convex relaxation is introduced158

and it is shown that KKT conditions for this relaxation allow to define an exactness condition159

which can be more efficiently checked.160

2 A convex relaxation equivalent to the Shor relaxation161

Before proceeding, we subdivide the class of diagonal QCQPs in some subclasses on the162

basis of a partition Nh , h ∈ H , of the set N , such that each set Nh contains indexes of163

variables whose coefficients of the quadratic terms are all equal throughout the constraints164

(but not necessarily in the objective function). Formally:165

∀ j, k ∈ Nh, ∀ h ∈ H , ∀ i ∈ M : Ai
j j = Ai

kk = ξ ih . (9)166

Note that the general case is a special case where |H | = |N | and each set Nh is a singleton. In167

the special case, discussed in [8], when Ai ∈ {I,−I, O} for all i ∈ M , we have that |H | = 1.168

In fact, when |H | = 1 the problem can always be rewritten in such a way that Ai ∈ {I,−I, O}169

for all i ∈ M . We introduce the following assumption.170

Assumption 2 For each h ∈ H , the set arg min j∈Nh D j j is a singleton. We denote by jh its171

single member and by d∗
h the minimum diagonal entry D j j for j ∈ Nh , i.e.:172

jh = arg min
j∈Nh

D j j , d∗
h = min

j∈Nh
D j j . (10)173

Later on we will show that removing this assumption allows to derive an even more general174

exactness condition. But, in order to simplify the presentation, we will impose that the175

assumption holds.176

In what follows we employ set NH = { jh : h ∈ H} ⊆ N .177

Exploiting the fact that all matrices are diagonal, following [3], a convex relaxation of problem178

(1) is:179

p� = min
(x,z)∈X

∑

j∈N

D j j z j + 2
∑

j∈N

c j x j , (11)180

where:181

X =
⎧
⎨

⎩
(x, z) :

∑

h∈H

∑

j∈Nh

ξ ih z j + 2
∑

j∈N

ai j x j ≤ bi , i ∈ M, x2
j ≤ z j , j ∈ N

⎫
⎬

⎭
.182

Note that this is a relaxation since the same problem with constraints x2
j ≤ z j , j ∈ N ,183

replaced by equations x2
j = z j is an equivalent reformulation of problem (1). In [15] the184
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equivalence was proven between this relaxation and the Shor relaxation when A1 = I, a1 = 0,185

Ai = O for all i ∈ M \ {1}. The result can be extended in a quite straightforward way to the186

general problem (1) (see also the proof in [23] and note that the result can also be obtained187

as a special case of some results on sparse semidefinite programming problems presented in188

[12]).189

Theorem 1 It holds that p� = v�, i.e., the optimal values of the Shor relaxation (2) and of190

the convex relaxation (11) are equal.191

Now, this equivalence result can be employed in order to establish exactness conditions for192

the Shor relaxation by the analysis of the KKT conditions of the convex relaxation. This will193

be the topic of the next section.194

Before proceeding we briefly introduce the perturbation argument already adopted in [8, 15,195

23] (see, e.g., the discussion following Proposition 1 in [8], Theorem 3.1 in [15], and (6) in196

[23]). We will make extensive use of this argument in the following sections.197

Proposition 1 Let Assumption 1 hold. Exactness of the Shor relaxation is verified for a198

problem with data (D, Ai , ai , c, b) if it is verified for an infinite sequence of problems with199

perturbed data (D + �Dk, Ai , ai , c + �ck, b) such that200

||�Dk ||, ||�ck || → 0.201

Proof The result holds true for perturbations �Dk and �ck in the objective function, since, by202

continuity and by boundedness of the feasible region implied by Assumption 1, the optimal203

values of problem (1) with the perturbed data converge to the optimal value of the unperturbed204

problem, and the same holds for the optimal values of the corresponding Shor relaxations. ��205

3 Sufficient conditions for exactness of the Shor relaxation206

Theorem 1 implies that proving exactness of the Shor relaxation is equivalent to prove207

exactness of the convex relaxation (11). Under Assumption 1, which we recall is maintained208

throughout the paper, optimal solutions of the convex problem (11) fulfill the corresponding209

KKT conditions. In particular, we notice that existence of an interior feasible solution (X̄, x̄)210

for problem (2) implies that also the convex relaxation (11) admits an interior feasible point.211

Indeed, it is enough to consider the point (diag(X̄), x̄). Then, Slater’s condition holds and212

we can search the minimizer of problem (11) among the KKT points of the same problem.213

The KKT conditions are the following:214

D j j +
∑

i∈M

μiξ
ih − ν j = 0 j ∈ Nh, h ∈ H (12a)215

c j +
∑

i∈M

μi ai j + ν j x j = 0 j ∈ N (12b)216

μi

⎛

⎝bi −
∑

h∈H

∑

j∈Nh

ξ ih z j − 2
∑

j∈N

ai j x j

⎞

⎠ = 0 i ∈ M (12c)217

ν j (z j − x2
j ) = 0 j ∈ N (12d)218

(x, z) ∈ X , μ, ν ≥ 0. (12e)219
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Note that in view of equations (12a), for each h ∈ H :220

ν j − ν jh = D j j − d∗
h ∀ j ∈ Nh . (13)221

In view of the definition of jh , we have, under Assumption 2, ν j > 0 for all j ∈ Nh \ { jh}.222

223

Now, it obviously holds that the relaxation is exact if all constraints x2
j ≤ z j , j ∈ N ,224

are active at the optimal solution of (11). In view of the complementarity conditions (12d),225

this certainly holds if ν j > 0 for all j ∈ N .226

Let us denote by W the set of vectors (x, z,μ, ν) which fulfill the KKT conditions (12).227

Since, as previously observed, for each h ∈ H , ν j > 0 for all j ∈ Nh \ { jh}, then228

Wh = W ∩ {ν : ν jh = 0} = ∅ ∀h ∈ H , (14)229

is an exactness condition for the Shor relaxation. Indeed, if (14) holds, it follows that no KKT230

point with some ν j = 0, j ∈ N , exists. However, in general emptiness of these sets cannot231

be easily checked.232

Each set Wh for h ∈ H can be rewritten as follows. Since ν jh = 0, from (12a)-(12b) and233

from (13) with ν jh = 0, we can derive the following expressions for x j , j ∈ N \ NH , in234

terms of μ:235

xh
j (μ) =

⎧
⎨

⎩

− c j +∑
i∈M μi ai j

D j j −d∗
h

∀ j ∈ Nh \ { jh}
− c j +∑

i∈M μi ai j

D j j +∑
i∈M ξ ir μi

∀ j ∈ Nr \ { jr }, r �= h.
(15)236

It also follows from (12a)-(12b) and from (12d) that for r ∈ H \ {h}:237

(d∗
r +

∑

i∈M

μiξ
ir )x jr = −(c jr +

∑

i∈M

μi ai jr ) (16a)238

(d∗
r +

∑

i∈M

μiξ
ir )z jr = −(c jr +

∑

i∈M

μi ai jr )x jr . (16b)239

We denote by M jr the set of vectors (x jr , z jr ,μ) which fulfill these two equations. Then,240

the set Wh , i.e., the set of KKT points with ν jh = 0, is defined by the following constraints,241

where L jh is defined in (3):242

μ ∈ L jh ∩ [∩r∈H\{h}H jr

]
243

(x jr , z jr ,μ) ∈ M jr r ∈ H \ {h}244

∑

r∈H

[ξ ir z jr + 2ai jr x jr ] +
∑

j∈N\NH

[xh
j (μ)2 + 2ai j xh

j (μ)] ≤ bi i ∈ M (17a)245

x2
jr ≤ z jr r ∈ H . (17b)246

Note that for j /∈ NH , ν j > 0, so that we could replace z j with xh
j (μ)2. Taking into account247

that the values for xh
j (μ) are given in (15), the above sets can be seen as solution sets of a248

system of polynomial equations and inequalities, where the degree of the polynomials is at249

most 2n. Unfortunately, establishing whether these systems admit no solution or, equivalently,250

that the Shor relaxation is exact is, in general, a hard task.251

However, in the next section we will discuss cases for which the condition can be efficiently252

checked. Moreover, if a set W ′ ⊇ W is available, a valid exactness condition is253

W ′
h = W ′ ∩ {ν : ν jh = 0} = ∅ ∀h ∈ H , (18)254
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and for proper choices of W ′ emptiness can be checked efficiently. For instance, the exactness255

condition stated in Theorem 1 of [8], derived in that work by showing existence of a rank-one256

solution for the Shor relaxation when the condition holds, here it is derived in a different257

way, by choosing W ′ as the set defined by the constraints (12a) and (12b) and by μ ≥ 0. In258

this case we have that259

W ′
h = L jh ∩ [∩r∈H\{h}H jr

]
,260

so that exactness is guaranteed if the above polyhedral sets are empty for all h ∈ H .261

The condition presented in [8], as well as the one discussed in [23], can be viewed, in262

terms of the KKT conditions (12) for the convex problem (11), as dual exactness conditions,263

since they only involve the Lagrange multipliers associated to the constraints or, stated in264

another way, we consider a set W ′ only depending on the dual variables. But the KKT system265

also involves the original, primal, variables. So the question is whether we can include, at266

least in some special cases, both the original variables and the Lagrange multipliers in order267

to define primal-dual exactness conditions, but in such a way that the conditions can be268

efficiently checked. This will be the topic of the next sections.269

We finally note that in case Assumption 2 is not fulfilled, then we have a further degree of270

freedom. Indeed, if arg min j∈Nh D j j is not a singleton, by using the perturbation argument271

stated in Proposition 1, we can choose any member jh ∈ arg min j∈Nh D j j and add a small272

positive perturbation to values D j j for all other members j ∈ arg min j∈Nh D j j . Then, given273

a set W ′ ⊇ W , exactness is guaranteed if for each h ∈ H274

∃ jh ∈ arg min
j∈Nh

D j j : W ′
h = ∅.275

4 Some applications of a primal-dual exactness condition276

In this section we present some cases where the exactness condition (14), based on the277

emptiness of the sets defined by constraints (17), can be checked in an efficient way.278

4.1 The cases |M| = 1 and |M| = 2279

We briefly discuss the case |M | = 1. This is the already mentioned GTRS problem for which280

it is well known that the Shor relaxation is always exact. Exactness can be viewed as an281

immediate consequence of the fact that, for each h ∈ H , the two equations in the definition282

of the set L jh , possibly after the application of the perturbation argument stated in Proposition283

1 (either perturb d∗
h or c jh ), cannot be fulfilled at the same time, so that the set Wh is empty.284

When |M | = 2 exactness does not always hold but the condition (14) can be easily checked.285

For each h ∈ H , in order to check emptiness of the set Wh , we need to proceed as follows.286

First note that:287

– either the two equations in the definition of the set L jh are linearly dependent, in which288

case we can apply the perturbation argument, perturbing, e.g., c jh so that the two equa-289

tions become incompatible and emptiness of Wh is guaranteed for arbitrarily small290

perturbations of the objective coefficients;291

– or they are linearly independent, in which case the corresponding system admits a unique292

solution μ̄ = (μ̄1, μ̄2).293

In the latter case we may have:294
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– min{μ̄1, μ̄2} < 0: then nonnegativity of the μ values is violated and, again, Wh is295

guaranteed to be empty.296

– min{μ̄1, μ̄2} = 0: by the usual perturbation argument, we can introduce a perturbation297

either of d∗
h or of c jh in order to have a negative μ value and, consequently, emptiness of298

Wh for arbitrarily small perturbations of the objective coefficients holds;299

– min{μ̄1, μ̄2} > 0: in this case we can convert all inequalities (17a) into equations by300

exploiting the complementarity conditions (12c). Moreover:301

– if (μ̄1, μ̄2) violates one of the inequalities defining the half-spaces H jr for some302

r ∈ H \ {h}, then Wh is empty;303

– otherwise, if one of the inequality defining the half-spaces H jr for some r ∈ H \ {h}304

is active, then we must have, by (16a), that:305

c jr +
∑

i∈M

μ̄i ai jr = d∗
r +

∑

i∈M

μ̄iξ
ir = 0.306

By the perturbation argument, e.g., by slightly increasing d∗
r , we have that (μ̄1, μ̄2)307

violates one of the two equations above, so that emptiness of Wh for arbitrarily small308

perturbations of the objective coefficients holds.309

– otherwise, when all the inequalities defining the half-spaces H jr , r ∈ H \ {h}, are310

sastified and not active at (μ̄1, μ̄2), then by (16a) and (16b) we can set for each311

r ∈ H \ {h}:312

x jr = −c jr + ∑
i∈M μ̄i ai jr

d∗
r + ∑

i∈M μ̄iξ ir
, z jr = x2

jr .313

This way, in the two equations (17a) we just have the two unknowns z jh and x jh .314

Once we have solved the linear system and computed the values of these unknowns,315

we can conclude that the set Wh is empty if x2
jh

> z jh holds for all possible solutions316

of the system.317

For the sake of illustration we derive the exactness condition in the case of trust region318

problems with one additional linear constraint.319

4.1.1 The case of trust region problems with a single additional linear constraint320

As already mentioned, for this problem in [6, 19] an exact SOC-RLT relaxation is proposed.321

The Shor relaxation is not always exact but its exactness can be checked by a very simple322

condition. The problem can always be converted into an instance of diagonal QCQP:323

min
∑

j∈N D j j x2
j + 2

∑
j∈N c j x j∑

j∈N x2
j ≤ 1

2
∑

j∈N a j x j ≤ b.

324

Note that we can take |H | = 1 in this case.325

Exactness certainly holds if c j1 a j1 ≥ 0 (sign-definiteness condition). If c j1 a j1 < 0, we326

have μ̄1 = −d∗
1 and μ̄2 = − c j1

a j1
. Then,327

x1
j (μ̄1, μ̄2) = −

c j − a j
c j1
a j1

D j j − d∗
1

∀ j ∈ N \ { j1}.328
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For convenience, let x̄ j = x1
j (μ̄1, μ̄2). Then,329

x1
j1(μ̄1, μ̄2) = b − 2

∑
j∈N\{ j1} a j x̄ j

a j1
.330

Again, for convenience, set x̄ j1 = x1
j1
(μ̄1, μ̄2). Finally, exactness of the convex relaxation331

holds if332

∑

j∈N

x̄2
j ≥ 1. (19)333

Actually, the exactness condition holds if the above inequality is strict. However, we can also334

include the equality case, e.g., by the perturbation argument. Indeed, we can perturb c j for335

some j ∈ N \ { j1} so that the equality becomes a strict inequality.336

Remark 1 In [9], where a correction of Theorem 3 in [8] is given, it is proved that for a337

class of random diagonal QCQPs the probability of having an exact semidefinite relaxation338

converges to 1 as |N | → ∞. For QCQPs with a single quadratic constraint and a single linear339

constraint this fact emerges quite clearly from the above exactness condition. Indeed, under340

very mild assumptions on the random generation of the data, for some j ∈ N \ { j1} there is a341

strictly positive probability � > 0 that x̄ j /∈ (−1, 1), and this is enough to guarantee that the342

exactness condition (19) holds. Therefore, under the assumption of independent generation343

of the data, the probability of fulfilling the exactness condition is at least 1 − (1 − �)|N |−1,344

which converges to 1 as |N | → ∞.345

4.2 The case |M| = 3346

With a little more effort, exactness conditions can also be given for |M | = 3.347

For each h ∈ H we need to proceed as follows. We first notice that we can consider only348

points for which none of the inequalities defining the half-spaces H jr , r ∈ H \ {h}, is active.349

Indeed, if one of them were active, then by (16a) we should also have c jr +∑
i∈M μi ai jr = 0,350

i.e., the three μ variables should fulfill four equations which, possibly after applying the351

perturbation argument, is not possible. Indeed, if the four equations do not admit any solution,352

we are done (emptiness of Wh holds). If they admit a solution, then one of the equations353

can be obtained as a linear combination of the other three equations. Then, we can add a354

small perturbation to one of the coefficients c jh , c jr , d∗
h , d∗

r in order to make the linearly355

dependent equation incompatible with the three other equations, thus causing emptiness of356

Wh for arbitrarily small perturbations of the objective coefficients.357

If none of the inequalities defining the half-spaces H jr , r ∈ H \ {h}, is active, by the358

two equations in the definition of the set L jh , we have that at least two μ variables must be359

positive. Indeed, in case at least two μ variables were equal to 0, we would be left with two360

equations (those in L jh ) with a single unknown, which could be made incompatible by the361

usual perturbation argument applied, e.g., to the coefficient c jh .362

Thus, we can consider four distinct cases: (i) μ1, μ2 > 0, μ3 = 0; (ii) μ1, μ3 > 0, μ2 =363

0; (iii) μ2, μ3 > 0, μ1 = 0; (iv) μ1, μ2, μ3 > 0.364

If case i) holds, then we can:365

– derive μ1, μ2 from the two equations in the definition of the set L jh ;366

– check whether the computed values (together with μ3 = 0) fulfill the inequalities defining367

the half-spaces H jr , r ∈ H \ {h}, and the positivity constraints μ1, μ2 > 0;368
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– if not, emptiness of Wh holds (possibly after applying the perturbation argument, e.g., in369

case either μ1 or μ2 is equal to 0);370

– if yes, then:371

– derive x j , j ∈ Nh \ { jh} from (16a) and z j from (16b);372

– impose, in view of (12c), that equality holds for constraints (17a) for i = 1, 2;373

– derive the solution(s) x jh and z jh of the system obtained from these two equations;374

– finally, if x2
jh

> z jh for all such solutions, then Wh = ∅.375

In a completely similar way we can deal with cases ii) and iii).376

In case iv), we proceed as follows:377

– in view of (12c) we notice that all three constraints (17a) must be active;378

– then we have a system of three equations with two unknowns x jh and z jh , which can be379

fulfilled only if one of the three equations can be obtained as a linear combination of380

the other two equations. In particular, this imply that the right-hand side of one of the381

equations is a given linear combination of the right-hand sides of the other two equations;382

– in the equation obtained by imposing the equality between the right-hand side of one383

of the equations and a given linear combination of the right-hand sides of the other two384

equations, replace two of the three μ variables, say μ1 and μ2, by affine functions of the385

remaining one μ3 obtained through the two equations in the definition of the set L jh ;386

– the resulting equation turns out to be an univariate polynomial equation with variable μ3387

and its roots can be efficiently computed;388

– for each root μ̄3 > 0, compute the corresponding values of μ̄1, μ̄2 and of x̄ jh , z̄ jh ;389

– finally, if for each root μ̄3 > 0 either μ̄1 ≤ 0, or μ̄2 ≤ 0, or x̄2
jh

> z̄ jh , then Wh = ∅.390

In principle, we could proceed in the same way for larger |M | values, but the resulting391

procedure tends to become quite inefficient with the need of solving multivariate polynomial392

systems.393

4.3 The case |H| = 1, |M| arbitrary394

We discuss the special case when |M | is arbitrary but |H | = 1, so that for each i ∈ M ,395

Ai
j j = ξi for all j ∈ N . The case when Ai ∈ {I,−I, O} for each i ∈ M , discussed in [8],396

corresponds to ξ i ∈ {0,−1, 1}, for each i ∈ M . Based on the previous discussion, we have397

from (17) that the single set whose emptiness guarantees exactness of the Shor relaxation is:398

⎧
⎨

⎩
(x j1 , z j1 , μ) : μ ∈ L j1 , x2

j1
≤ z j1 , ξ i z j1 + 2ai j1 x j1 +

∑

j �= j1

[ξ i x j (μ)2 + 2ai j x j (μ)] ≤ bi ∀i ∈ M

⎫
⎬

⎭
, (20)399

where400

x j (μ) = −
c j + ∑

i∈M
μi ai j

D j j − d∗
1

. (21)401

A drawback of the above condition is that the set (20), defined by linear and quadratic402

inequalities, is not convex if ξi < 0 for at least one i ∈ M .403

In the next section, we will introduce a further condition, at least as strong as this one, but404

only involving convex sets, so that the condition can be checked in polynomial time. Before405

that, in what follows we present a simple example where exactness can be established by the406

new condition but not through the conditions introduced in [8], [14] and [23].407
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Example 1 Let us consider the following problem parameterized with respect to the right-hand408

side of the second constraint:409

min −x2
1 − 1

2 x2
2 + x2

x2
1 + x2

2 + x1 − x2 ≤ 2
−x1 + x2 ≤ ξ.

(22)410

The feasible set has a nonempty interior for ξ ∈ (1 − √
5,+∞). Now, the set defined by411

constraints (20) in this case is:412

{
(x1, z1, μ1, μ2) : −1 + μ1 = 0, μ1 − μ2 = 0, z1 + 1 + x1 + 1 ≤ 2, x1 − 1 ≤ ξ, x2

1 ≤ z1

}
,413

which can be seen to be empty for ξ < −1, so that exactness of the convex relaxation (11) is414

established in these cases, while it is not empty (consider, e.g., x1 = z1 = 0, μ1 = μ2 = 1)415

for ξ ≥ −1. But exactness cannot be established by the conditions proposed in [8], [14] and416

[23]. Indeed, regarding the condition proposed in [8], we notice that for k = 1 the set (5) is:417

{(μ1, μ2) : −1 + μ1 = 0, μ1 − μ2 = 0, μ1, μ2 ≥ 0},418

which is not empty. Regarding the condition introduced in [14], in this case the epigraphical419

set (8) is420

E = {(w1, v1, v2) : ∃(x1, x2) : −x2
1 − 1

2
x2

2 + x2 ≤ w1, x2
1 + x2

2 + x1 − x2 ≤ v1, −x1 + x2 ≤ v2}.421

It can be seen that the points
(
− 5

2 , 4,−2
)

and
(
− 5

2 , 2, 0
)

belong to E (consider x1 =422

1, x2 = −1 and x1 = x2 = −1, respectively). But their midpoint
(
− 5

2 , 3,−1
)

does not423

belong to E , so that E is not convex. Regarding the condition introduced in [23], we notice424

that in this case we have425

A(γ1, γ2) =
(−1 + γ1 0

0 − 1
2 + γ1

)

, b(γ1, γ2) =
(

γ1 − γ2

1 − γ1 + γ2

)

.426

We also have the following semidefinite face:427

F = {(γ1, γ2) : γ1 = 1, γ2 ≥ 0},428

so that429

V(F) = {(t, 0) : t ∈ R}.430

Then, the condition introduced in [23] requires that for some sequence {hk}, with hk → 0,431

we have that432

0 /∈ {1 − γ2 + hk, γ2 ≥ 0},433

which, however, does not hold. Note that the exactness conditions in [8], [14] and [23] do not434

depend on the right-hand sides of the constraints. Thus, in this example all three conditions435

are not fulfilled for all possible ξ values.436

5 A further convex relaxation437

The convex relaxation (11) can be further simplified when the set of variables can be par-438

titioned as indicated in (9), where each set Nh collects variables whose quadratic terms are439
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equal throughout all the constraints. Recalling the definitions of jh and d∗
h given in (10), the440

new convex relaxation is the following:441

min
x,w∈X ′

∑

h∈H

d∗
h wh +

∑

h∈H

∑

j∈Nh

(D j j − d∗
h )x2

j + 2
∑

h∈H

∑

j∈Nh

c j x j , (23)442

where443

X ′ =
⎧
⎨

⎩

∑

h∈H

ξihwh + 2
∑

h∈H

∑

j∈Nh

ai j x j ≤ bi , i ∈ M,
∑

j∈Nh

x2
j ≤ wh, h ∈ H

⎫
⎬

⎭
.444

Note that for |H | = |N | this is the same as the convex relaxation (11). But for |H | < |N |445

this relaxation requires the addition of a lower number of variables and of related convex446

quadratic constraints. The KKT conditions for such relaxation are:447

d∗
h +

∑

i∈M

μiξ
ih − γh = 0 h ∈ H (24a)448

(D j j − d∗
h )x j + c j +

∑

i∈M

μi ai j + γh x j = 0 j ∈ Nh, h ∈ H (24b)449

μi

⎛

⎝bi −
∑

h∈H

ξ ihwh − 2
∑

h∈H

∑

j∈Nh

ai j x j

⎞

⎠ = 0 i ∈ M (24c)450

γh(wh −
∑

j∈Nh

x2
j ) = 0 h ∈ H (24d)451

(w, x) ∈ X ′, μ, γ ≥ 0. (24e)452

We prove the following proposition stating that the optimal value of the new convex relaxation453

(23) is equal to the optimal value of the original convex relaxation (11) (and, as a consequence,454

also of the Shor relaxation).455

Proposition 2 The optimal values of the convex relaxations (11) and (23) are equal.456

Proof Let (x�, w�) be an optimal solution of (23). For each h ∈ H , let457

z̄ j =
{

x�
j
2 j �= jh

w� − ∑
j∈Nh\{ jh} x�

j
2 j = jh .

458

it turns out that (x�, z̄) is feasible for (11) and its objective function value is equal to that of459

(x�, w�). Then, the optimal value of (11) is not larger than the optimal value of (23). To prove460

equivalence, we only need to show that also the opposite is true. Let (x�, z�) be an optimal461

solution of (11). For each h ∈ H , let462

w̄h =
∑

j∈Nh

z�
j .463

Then, (x�, w̄) is feasible for (23) and its objective function value is not larger than that of464

(x�, z�). Then, the optimal value of (23) is not larger than the optimal value of (11) and465

equivalence is proved. ��466

If we consider the special case |H | = 1, which includes (in fact, is equivalent to) the case467

when Ai ∈ {I,−I, O}, then only a single additional variable w1 needs to be introduced.468
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Without loss of generality, we assume that j1 = 1. As in Sect. 3, we denote by W the set469

of KKT points, while we denote by W ′ ⊇ W the set of points fulfilling (24) except the470

complementarity conditions (24c). Then, exactness holds if W ′ ∩ {γ1 = 0} = ∅. Let us471

consider the following half-spaces for i ∈ M :472

H≤
i = {(x1, w1,μ) : ξiw1 + 2ai1x1 + 2

∑

j∈N\{1}
ai j x j (μ) ≤ bi },473

where x j (μ) is defined in (21), while H=
i is the hyper-plane defined in the same way but474

with the equality replacing the inequality. Then, we have the following result.475

Proposition 3 For |H | = 1 the convex relaxation (23) is exact if the following convex set is476

empty:477

Q1 =
{

(x1, w1,μ) ∈ ∩i∈M H≤
i : μ ∈ L1, x2

1 + ∑
j∈N\{1} x j (μ)2 ≤ w1

}
. (25)478

Proof It is enough to observe that W ′ ∩ {γ1 = 0} = Q1. ��479

Note that this condition can be checked more efficiently than the one stated in Sect. 4.3 (with480

j1 = 1), since (25) is a convex set, and is at least as strong as that condition. Indeed, if481

(μ̄, x̄, w̄1) belongs to the set (25), then (μ̄, x̄, z̄), where482

z̄ j = x̄2
j , j �= 1, z̄1 = w̄1 −

∑

j �=1

x̄2
j ,483

belongs to the set (20).484

In fact, in (25) we could replace
∑

j∈N x2
j ≤ w with

∑
j∈N x2

j < w. Indeed, if the485

set defined in (25) is not empty but only contains points for which equality holds, then the486

relaxation is still exact. Thus, we could reformulate Proposition 3 in this slightly stronger487

way.488

Proposition 4 For |H | = 1 the convex relaxation (23) is exact if the following convex problem489

has a nonnegative optimal value.490

min(x1,w1,μ)∈∩i∈M H≤
i : μ∈L1

x2
1 + ∑

j∈N\{1} x j (μ)2 − w1. (26)491

Up to now we have basically ignored the complementarity conditions (24c). We can strengthen492

the exactness result stated in Proposition 3 by taking them into account.493

We first notice that, possibly after the application of the perturbation argument, we494

must have that at least two μ values are strictly positive. Indeed, both the equation495

d∗
1 +∑

i∈M ξiμi = 0 and the equation c1 +∑
i∈M ai1μi = 0 must be fulfilled and, possibly496

after an arbitrarily small perturbation of d∗
1 or c1, such equations can not be fulfilled if all497

but one of the μ values are equal to 0.498

Then, by complete enumeration of all subsets I ⊆ M with |I | ≥ 2, we have that W =499

∪I⊆M, |I |≥2WI , where500

WI = [∩i∈M\I H≤
i ] ∩ [∩i∈I H=

i ] ∩ {(x1, w1,μ) : μ ∈ L1, μi = 0 ∀i ∈ M \ I }.501

Therefore, the relaxation is exact if for each I ⊆ M , |I | ≥ 2, we have WI ∩{γ1 = 0} = ∅ or,502

equivalently, if the following convex problem has empty feasible region or has nonnegative503

optimal value:504
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minx1,w1, μ∈L1, μi =0 ∀i∈M\I
∑

j∈N\{1} x j (μ)2 + x2
1 − w1

(x1, w1,μ) ∈ [∩i∈M\I H≤
i ] ∩ [∩i∈I H=

i ].505

This condition is strong and can be applied when |M | is low (in fact, we have already applied506

it in Sects. 4.1 and 4.2 not only for the case |H | = 1 but also for the general case). But507

its obvious drawback is that it becomes unpractical when |M | is large, since the number of508

convex problems grows exponentially with |M |.509

An alternative condition, which can be checked in polynomial time, is based on the fol-510

lowing cover ∪I⊆M, |I |=2W ′
I ⊇ W , where W ′

I = [∩i∈M\I H≤
i ]∩ [∩i∈I H=

i ]∩ {(x1, w1,μ) :511

μ ∈ L1}. Thus, we have the following exactness condition.512

Proposition 5 For |H | = 1 the Shor relaxation is exact if for each I ⊂ M with |I | = 2, it513

holds that W ′
I ∩ {γ1 = 0} = ∅ or, equivalently, that the following convex problem either has514

empty feasible region or has nonnegative optimal value:515

minx1,w1, μ∈L1

∑
j∈N\{1} x j (μ)2 + x2

1 − w1

(x1, w1,μ) ∈ [∩i∈M\I H≤
i ] ∩ [∩i∈I H=

i ]. (27)516

Notice that this condition is stronger than the one stated in Proposition 3 since the feasible517

region of each problem (27) is a subset of the feasible region of problem (26), and over it the518

objective functions of the two problems are equal.519

In what follows we provide an example where exactness cannot be established by the520

result stated in Sect. 4.3 but can be established by Proposition 5.521

Example 2 Let us consider again problem (22) from Example 1. The convex relaxation (23)522

of that problem is:523

min −w1 + 1
2 x2

2 + x2

w1 + x1 − x2 ≤ 2
−x1 + x2 ≤ ξ

x2
1 + x2

2 ≤ w1.

524

As already discussed, the exactness condition stated in Section 4.3 does not hold for all525

ξ ≥ −1. Also recall that exactness cannot be established by the conditions proposed in [8],526

[14] and [23] for all possible ξ values, since these conditions do not depend on the right-527

hand sides of the constraints. Regarding Proposition 5, we first notice that we can only take528

I = {1, 2}, so that in problem (27), after deriving x1 and w1 as a function of μ1, μ2, we529

have that M \ I = ∅, while μ1 = μ2 = 1, x1(μ1, μ2) = −1 − ξ , x2(μ1, μ2) = −1, and530

w1(μ1, μ2) = 2 + ξ . Then, the optimal value of problem (27) is equal to ξ2 + ξ and, thus,531

exactness holds for all ξ ≤ −1 and all ξ ≥ 0. Note that, since |M | = 2, here we could also have532

employed the exactness condition stated in Sect. 4.1. For ξ ∈ (−1, 0) the exactness condition533

does not hold but, actually, this happens since the bound provided by the convex relaxation in534

these cases is not tight. Indeed, the optimal value of the convex relaxation is equal to − 5
2 −ξ ,535

attained at the given point x1 = −1 − ξ , x2 = −1, w1 = 2 + ξ , while the optimal value536

of problem (22) can be seen to be equal to
[
−6 − 2ξ − (2 + ξ)

√
4 + 2ξ − ξ2

]
/4, attained537

at the following point where both constraints are active: x∗
1 =

[
−ξ − √

4 + 2ξ − ξ2
]
/2,538

x∗
2 =

[
ξ − √

4 + 2ξ − ξ2
]
/2.539
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6 Conclusion540

In this work we have shown that exactness results for the Shor relaxation of diagonal QCQPs541

can be derived by first proving the equivalence of this relaxation with two convex quadratic542

relaxations, and then by analyzing the KKT systems of these convex relaxations. All this543

allows to re-derive previous exactness results in the literature and, in some cases, to strengthen544

them into primal-dual exactness conditions, i.e., conditions based both on the original (primal)545

variables of the convex relaxations and on the dual variables (Lagrange multipliers). As a546

possible topic for future research we mention the possibility of extending the exactness results547

to non-diagonal QCQPs. In fact, as already mentioned, the result in [23] already covers some548

non-diagonal cases. It could be interesting to see whether the derivation discussed in this549

paper could be extended, e.g., to block diagonal QCQPs, by first proving the equivalence550

between the Shor relaxation and a convex program where a distinct semidefinite condition551

is imposed for each distinct block, and then deriving optimality conditions for the convex552

problem.553

Data Availability There are no data that support the findings of this study.554
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