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Fully Automated Annotation of Seismocardiogram
for Noninvasive Vital Sign Measurements

Niccolò Mora, Federico Cocconcelli, Guido Matrella, Paolo Ciampolini

Abstract—This paper presents a fully automated procedure
for acquiring and analyzing seismocardiographic (SCG) traces
from an Inertial Measurement Unit (IMU) placed over a
subject’s sternum. An automated calibration procedure allows
for straightforward adaption to different subjects. Calibration is
performed once per subject, exploiting ECG (electrocardiogram)
markers; relevant patterns and parameters are automatically
extracted and used for successive SCG processing, which does
not require concurrent ECG information any longer.

Annotation of SCG traces is performed in two steps: in the first
one, a suitably engineered signal is derived from SCG and used
as coarse heartbeat detector; then, annotation can be performed
by comparing the prototype extracted at calibration time with
segments of SCG data, near to the detected beats.

The proposed methodology is validated by direct comparison
with ECG, adopted as gold-standard. In particular, three main
metrics are taken into account: sensitivity (i.e. percentage of
correctly identified heartbeats, compared to ECG), precision (i.e.
impact of false positives on truly detected beats) and R2 (i.e.
linearity between beat-to-beat measurements as computed by
ECG and SCG). Results show satisfactory performance, more
than adequate to continuous, long-term monitoring: overall,
approximately 90% of heartbeats are correctly detected, on
average, with minimal false positives (≈ 1%). Linearity between
ECG and SCG-computed beat-to-beat intervals is extremely high
(R2 > 0.95, on average), indicating good agreement between
the two measurement methods. These results suggest SCG can
be used as a reliable, contactless measure of heart-related
parameters.

Index Terms—SeismoCardioGram (SCG), Vital Sign
Monitoring, Inertial Measurement Unit (IMU), Accelerometry,
Active Assisted Living (AAL)

I. INTRODUCTION

ICT (Information and communication technologies) is a
key asset for Active and Healthy Aging (A&HA). For

example, smart living environments may allow older persons
to stay longer and better in their own home, by providing
home automation [1] and collaborative services [2]. Smart
environments may also improve personal safety: for example,
environmental sensors may be used to detect nighttime
wandering events in homes of older adults suffering from
Alzheimer’s disease [3]. Further Active and Ambient Assisted
Living (AAL, [4]) techniques may help in making services
more accessible by compensating physical impairments with
new smart devices. For examples, Brain-Computer Interfaces
have been integrated within AAL systems to allow severely
motor-impaired users to achieve communication and home
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control [5], [6]. Smart objects and Internet of Things (IoT)
technology also enable long-term behavioral monitoring,
which analyzes behavioral features for indirectly probing
user’s wellbeing: for instance, behavioral patterns can be
discovered from common home environmental sensors [7].
Behavioral changes over different periods or subjects, or
the emergence of new trends (possibly correlated to health
issues) can be detected and made known to caregivers,
significantly enhancing their insight. Activities of Daily
Living (ADL) can be recognized and traced as well [8],
providing useful information on subjects’ routines and
self-sufficiency. To allow for effectiveness and sustainability,
supportive technologies need to be inexpensive and accessible.
They have to be perceived as non-invasive and minimally
intrusive, so that they do not interfere with daily living
habits. In a data fusion perspective, behavioral monitoring
can be effectively complemented by vital signs monitoring
as well, providing a more comprehensive and accurate
vision, with vital sign monitors being subject to the same
ergonomic and economic constraints just mentioned. Within
the wide spectrum of vital sign measurements, acquired
in daily life scenarios, cardiovascular signals are by far
the most targeted. For example, continuous monitoring
of Heart Rate (HR) and Heart Rate Variability (HRV,
defined as the standard deviation of beat-to-beat intervals)
can be achieved exploiting many different techniques:
ElectroCardioGraphy (ECG) is the primary measurement
method for such quantities [9]. Besides clinical applications,
such as automated heart condition classification [10], or
full day recording of heart activity by means of Holter
devices, many consumer-grade heart rate monitors (e.g. fitness
chest strap) measure the electrical potentials from a single
ECG lead. However, prolonged contact of electrodes with
the skin may cause irritation and wear, causing discomfort
and hindering the possibility to carry out daily, continuous
monitoring. Another popular technique, exploited by most
wrist-worn monitors, is PhotoPlethysmoGraphy (PPG). PPG
senses light absorption variations, in distal locations, due to
increased/decreased presence of oxyhaemoglobin carried by a
blood pulse. Thus, HR measurements are immediately derived;
by exploiting different wavelength light sources, peripheral
oxygen saturation (SpO2) can be measured as well [11]. With
PPG, prolonged use may cause skin irritation due to heating
from the light source. Besides HR, PPG has also been used to
derive measurements of respiration [12]. Such measures can
also be obtained remotely, without direct body contact, by
exploiting Doppler radar measurement systems [13], [14] or
millimeter-waves antennas [15]; however, these systems are
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not suitable for daily use, as they involve complex setups.
Finally, Blood Pressure measurements are largely targeted
within the realm of vital sign monitoring. Besides automated
sphygmomanometers, indirect measurement techniques have
been devised, based on the measure of Pulse Transit Time
(PTT), i.e. the time that takes for the blood pressure wave
to travel from a proximal point to a distal one in the arterial
tree within the same cardiac cycle. Such measurement can
be performed, for example, by taking PPG as distal location
reference and ECG as proximal one [16].

Recent improvements in performance and cost-effectiveness
of MEMS (Micro Electro-Mechanical Systems) devices
have opened new possibilities in continuous vital sign
monitoring. Accelerometers and Inertial Measurement Units
(IMU) can be leveraged to measure vibrations produced by the
heart mechanical activity. In particular, BallistoCardioGraphy
(BCG) and SeismoCardioGraphy (SCG) are promising
techniques to extract information on cardiac events and phases,
including mentioned HR and HRV indicators. Compared
to ECG and PPG, such techniques have the advantage of
not requiring any contact electrode or detector: the sensing
element can be secured in place by a fixture, without direct
access to exposed skin; this may prevent irritations, allowing
for much longer monitoring sessions. With such a continuous
monitoring perspective, it is also important mentioning the
possibility of exploiting the very same accelerometric device
for multiple measurements to jointly assess heart parameters
and physical activity indicators, thus providing contextualized
and much more expressive information. It could be possible
to acquire information such as step count, energy expenditure,
quality of movement (e.g. symmetry in gait) and many
others. Also, accelerometer features may be fused with home
environment sensors to achieve improved ADL detection, thus
contributing to a more general and ubiquitous AAL monitoring
framework.

This paper focuses on the development of an automatic
procedure for acquiring SCG waveforms and identifying its
characteristic points, directly related to specific heart cycle
phases. The methodology is validated by direct comparison
with ECG information, adopted as gold-standard. Note that,
except for a quick calibration phase (only required if detailed
SCG annotation is desired), relevant measures can be directly
computed from the SCG traces alone; furthermore, such phase
is carried out just once per subject. The results achieved,
in terms of heartbeat detection, false positive immunity, and
agreement with ECG-based reference intervals show that the
proposed method reliably extracts HR information.

II. METHODS

A. Related Work

SeismoCardioGraphy (SCG) [17] is the study of the
precordial vibrations produced by the cardiac contractions
and by the mass of the blood ejected from the ventricles.
SCG has been known for decades, but only the recent
technological advancements in low-noise, low-power Inertial
Measurement Units (IMU), has allowed to perform precise,
long-term readings of such signal [18], [19]. At the same

Fig. 1: Correlation between ECG and SCG waveforms, with
their annotated characteristic landmarks.

time, different methodologies for cardiac events detection have
been proposed, based on vibrational studies. For example,
BallistoCardioGraphy (BCG) measures whole-body vibrations
in response to the cardiac activity and blood ejection. It can be
acquired non-invasively, for instance, by means of load cells in
weight scales [20] or piezoelectric films between the subject
and the bed [21]. On the other hand, GyroCardioGraphy
(GCG) [22], can provide similar information to SCG, by
capturing rotational movement of the chest wall. Finally,
PhonoCardioGraphy (PCG) records high-definition heart
sounds which arise from cardiac activity: recently, deep
learning techniques have been devised to analyze and classify
such signals [23], for detecting pathological conditions. Also,
PCG devices (similarly to PPG mentioned above) may act as
proximal point detector [24], complementing ECG in order
to estimate pulse transit times during cuff-less blood pressure
monitoring measurements.

Fig. 1 shows the relation between the heart’s electrical
activity, measured with ECG, and the SCG signal. Five
landmarks are identified, strictly related to cardiac mechanics:
MC (Mitral valve Closure), IM (Isovolumic Moment), AO
(Aortic valve Opening), AC (Aortic valve Closure), MO
(Mitral valve Opening). In order to acquire a stable SCG, the
IMU is usually placed on the subject’s chest, typically over
the sternum: this position allows to acquire good amplitude
signals; furthermore, it has the advantage of being along the
vertical symmetry axis, therefore the sensing element can also
be re-purposed to evaluate motion symmetry.

Many works in literature [25]–[27] focused on automated
recognition of relevant peaks and patterns, in order to derive
systolic time intervals measurements, such as HR, HRV, PEP
(Pre-Ejection Period), LVET (Left Ventricle Ejection Time).
In most cases, such detection is performed by exploiting
the dorso-ventral axis of the accelerometer data. Some heart
conditions can be monitored exploiting SCG: for example,
authors in [28] were able to quantitatively evaluate changes
in left ventricular function during an ischemic episode. Other
works describe methodologies to detect atrial fibrillation by
means of joint time-frequency analysis of SCG traces [29], or
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Fig. 2: Positioning of IMU sensor and ECG electrodes. The
IMU is placed over the subject’s sternum, with the reference
system as shown by the {x, y, z} axes. A standard ECG lead-I
is formed by LA-RA electrodes, whereas the DRL electrode
provides an attenuation of 50 Hz common mode noise.

focus more on a portable implementation, exploiting mobile
phones [30].

With respect to literature work, this paper mostly focuses
at developing a fully automatic procedure for the acquisition
and annotation of the SCG traces. This is to be framed in
the development of a low-cost, wearable device, suitable for
multi-dimensional (i.e., heart and activity) monitoring and for
deployment in practical AAL environments [31], [32]. For
usability’s sake, fully automated calibration procedures are
introduced. Beat detection can be self-consistently calibrated,
by focusing on certain detection signal features. If a more
detailed annotation of further SCG signal features is needed,
concurrent ECG measurement can be exploited to provide
a reliable reference, according to the automated procedure
described in the following. Nonetheless, calibration needs
to be performed just once per subject and, after full
calibration, user-specific assessment is carried out in an
”unsupervised” fashion, i.e. without further need of concurrent
ECG information.

B. Measurement Protocol and Data Acquisition

Fifteen acquisitions were performed for this study, involving
healthy subjects without any documented history of cardiac
problems; all participants volunteered for this study, conducted
following the guidelines of the Helsinki declaration on ethical
principles. Each session, lasting about 3 minutes, consisted in
the simultaneous acquisition of the SCG and, for validation
purposes, of the ECG. Subjects were comfortably sitting on a
chair while measurements were being taken. The experimental
setup for data capture involved four main units: an SCG
acquisition device, an ECG Analog Front-End (AFE), a
Micro-Controller Unit (MCU) to synchronize and control

Fig. 3: Block diagram of the synchronous SCG-ECG
acquisition system, handled by an MCU; measurement data
are streamed via WiFi, exploiting TCP/IP protocol. A desktop
PC is used for data logging and subsequent processing.

field-data acquisition, and a desktop PC to collect data and
analyze them at a later stage.

SCG signals were acquired by means of a MEMS Inertial
Measurement Unit (IMU); namely, an ST Microelectronics
LSM6DS33 device was exploited. In order to achieve electrical
insulation and to allow a more stable placement of the
accelerometer sensor, the IMU board was enclosed in a small
plastic container (approximately 40 mm × 25 mm × 15 mm).
The fixture was then positioned over the subject’s sternum and
secured in place using a belt and medical tape (ergonomic
design of the wearable device will be taken care of at a later
stage). The orientation of the IMU device is such that the {x,y}
plane is parallel to the chest wall (with the x-axis parallel to the
right-to-left shoulder direction, and the y-axis parallel to the
foot-to-head direction), whereas the z-axis is perpendicular to
it (i.e. parallel to the dorso-ventral direction). For the present
study, without any loss in generality, analysis of the SCG is
restricted just to the dorso-ventral direction. The experimental
setup is sketched in Fig 2. As far as the IMU parameter setup
is concerned, the device was set to operate at a sensitivity
of 61µg/LSB (g ≈ 9.81m/s2), featuring a full dynamic
range of ±2 g; anti-alias filtering is performed on-chip, with a
50 Hz cutoff frequency. Data reading and management of the
IMU sensor is handled by the MCU, exploiting the I2C (Inter
Integrated Circuit) serial protocol for data transfer.

Besides SCG, the reference ECG signal is simultaneously
acquired, using standard Ag/AgCl electrodes. A standard
lead-I ECG is recorded from Right Arm and Left Arm
electrode sites (or RA-LA in Fig. 2). The acquired signal is
amplified by means of an Analog Devices AD8232 IC, which
provides a low-noise, AC-coupled 40 dB gain Instrumentation
Amplifier (INA); a second-order Sallen-Key low-pass filter is
then cascaded to the INA, providing further 20 dB of DC
gain and a roll-off of -40 dB/dec from the cutoff-frequency
at 40 Hz onwards. Furthermore, in order to reduce the effect
of electromagnetic interference coupling from mains (220 V,
50 Hz) through the body, a Right Leg Driver feedback circuit
is added, providing up to 26 dB loop gain for the rejection of
50 Hz common mode noise. Finally, the signal is digitalized
by exploiting a 12-bit ADC (Analog to Digital Converter) on
the MCU.

Both SCG and ECG signals were sampled at
100 SPS (Samples Per Second). Acquisition is performed
synchronously by means of an ARM Cortex M0+ MCU.
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Incoming data are buffered and sent into bursts, in order to
maximally exploit the Wi-Fi (IEEE 802.11 b/g/n) TCP/IP
connectivity. Real time data logging is achieved at the
receiving side by implementation of a Python TCP client,
running on a standard desktop PC. Data curation and analysis
is carried out in the same environment, exploiting NumPy
and SciPy packages. The complete measurement system is
sketched as block diagram in Fig. 3.

Before applying further analyses, data are pre-processed:
ECG signals are filtered over a [0.1 Hz - 35 Hz] pass-band,
whereas IMU accelerometer data are band-pass filtered over
a [4 Hz - 20 Hz] band. Filters were designed exploiting
Kaiser window FIR (Finite Impulse Response) filter design.
In order to maintain phase relation between filtered SCG and
ECG signals, zero-phase digital filtering mode is exploited.
In addition, to account for different, subject-specific, signal
amplitudes, data are scaled by means of z-scoring:

xz =
x− µx

σx
, (1)

where x is the signal of interest, µx is its mean, and σx the
standard deviation.

C. Data Analysis

The general work-flow, adopted for complete annotation of
SCG waveforms, consists of two different phases:

• Calibration. In this phase, prototypes and parameters are
extracted from calibration data, making use of both ECG
and SCG recordings. Calibration is, in general, necessary
in order to account for variations between patterns and
relative amplitudes for different users. After calibration,
the learned patterns and parameters may be re-used, for
the same subject, to perform SCG data annotation.

• Annotation. This phase deals with identifying, in the test
SCG waveforms only, the previously extracted patterns.
Relevant feature points are recognized and marked in this
phase, with the annotation procedure further breaking
down to two stages. In the first stage, detection of
heartbeat events is coarsely performed, exploiting a
suitably defined signal (i.e. a Detection Signal). In the
second stage, actual annotation of SCG is carried out, by
trying to match the extracted prototype to the waveform
being considered, around each detected heartbeat.

If only HR measurements is looked for, calibration can
be self-consistently performed by taking an initial, quiet
SCG period as reference and by gathering statistics about
the detection signal’s local maxima: this provides a reliable
enough frame for discriminating among beat complexes. If
a more detailed annotation is needed, accounting for more
landmarks in the SCG waveform, calibration avails itself of
simultaneous acquisition of ECG potentials. This results in a
simple, fully automated procedure, to be carried out just once
per subject. In the following, for completeness’ sake, the full
methodology featuring extended calibration and annotation is
described, with the following notation:

• xDET : the detection signal, used to coarsely locate
heartbeats in the SCG

• xSCG: the original SCG signal, to be annotated
• xPROTO: the prototype of SCG patterns, extracted during

calibration phase
1) Detection Signal:
Detecting heartbeat events from SCG signals can be

a difficult task, given the complexity of the pattern and
superimposed noise: a simple thresholding approach is not
a reliable option. This also holds somehow true for R
peak detection within the ECG, where T waves may appear
comparable in amplitude. Usually, isolating R peaks implies
recognizing fast-varying signals, and methods based on
derivatives are commonly employed. For instance, reference
[33] compares several QRS-complex detection strategies
exploiting suitably defined difference operators (in FIR form);
reference [34] indicates second-derivative based methods as a
good compromise of sensitivity and computational efficiency.
Taking a closer look at Fig. 1, several similarities can
be noticed between the detection of the fast-varying QRS
complex and that of the MC-IM-AO one in the SCG.
Therefore, the following signal is defined as a good proxy
to detect cardiac beats within the SCG:

xDET,HF =

(
∂2xSCG

∂t2

)3

, (2)

where the HF subscript indicates that this signal emphasizes
high-frequency oscillations. In order to simplify further
processing, a smoothed version of such signal is considered.
One possible way for achieving this is by extracting the
signal envelope by computing its analytic representation using
the Hilbert transform. Another quick method is to filter the
absolute value of xDET,HF :

xDET = LPF (|xDET,HF |) , (3)

where LPF is a FIR low-pass filter. Setting the cutoff
frequency around 4 Hz was found to yield a good trade-off
between smoothness and preservation of temporal locality.

2) Calibration:
Calibration is performed once per subject, based on

comparison between ECG and SCG signals. The former signal,
in fact, is exploited to segment the latter one, in order to extract
relevant information. As far as the ECG is concerned, QRS
complexes are detected by exploiting second order derivatives
methods, as indicated in [33], [34]; then, R peaks are easily
marked. Once the R peaks locations are known, ensembles are
constructed as follows :

• for the beat detection signal xDET , segments are
extracted from a window [tpre,DET - tpost,DET ] with
respect to each R peak (for this application example,
tpre,DET = -100 ms, tpost,DET = 600 ms). Local maxima
of such windows are then marked and their values stored.
Summary statistics are derived over this population; in
particular, the 60th percentile is extracted as a threshold
for subsequent reference beats detection, from now on
named Amin,REF .

• for the SCG signal, xSCG, segments are extracted
from a window of [tpre,SCG - tpost,SCG] with
respect to each R peak (in this application context,
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Fig. 4: Ensembles plot of SCG and detector signal. For clearer
plotting, detector signals are normalized by min-max scaling.

Fig. 5: Extraction of the prototype SCG signal, together with
annotated fiducial points.

tpre,SCG = -50 ms, tpost,SCG = 300 ms). The resulting
ensemble has dimensions (beats, timesteps). Median
is then computed across all time instants, yielding
a prototype waveform, xPROTO (whose length is
timesteps), that will serve as template for matching
candidate waveforms. Contextually, a set of reference
negative peaks is marked, that will act as fiducial points
in SCG annotation.

Fig. 4 shows an example of ensemble waveforms collected
from a subject. For readability’s sake, the detector signals were
normalized to a [0-1] range using a simple min-max scaling
approach: actual amplitudes are considered when computing
the descriptive statistics. From the SCG waveforms in such
ensemble, the prototype is extracted and annotated, as shown
in Fig. 5.

3) Heartbeat Detection:
Heartbeat detection from SCG is performed by using the

detector signal xDET (defined in eq. 3), together with the
statistical threshold Amin,REF determined during calibration.
At first, xDET is scanned for local maxima: all peaks greater
than Amin,REF are taken as reference peaks. Then, leveraging
this knowledge, peak-to-peak time intervals are computed,

Algorithm 1 Coarse detection of heartbeat events.
Inputs:

• xDET : signal for heartbeat detection (on SCG data)
• Amin,REF : minimum amplitude for reference peaks

Begin:
Find reference peaks p such that xDET (p) ≥ Amin,REF

Compute beat intervals, detect too-long ones
(HR ≤ HRLF bpm)
ForEach interval in too-long intervals:

Estimate number of missing beats (nMISS)
Find nMISS top peaks, such that:
- HRLF ≤ HR ≤ HRHF bpm
- amplitude ≥ Amin,REF /4
- if peaks are closer than TMIN , choose first
Add interpolated peak to reference ones

Return index of possible heartbeats

Algorithm 2 SCG waveform annotation.
Inputs:

• detected beats: array of beats indexes from Alg. 1
• xSCG: SCG signal to annotate
• xPROTO: SCG signal prototype, with fiducial points

Begin:
ForEach beat in detected beats:

Extract window xSCG,W from xSCG, centered
around current beat
Align xSCG,W to xPROTO by maximizing
cross-correlation metric
Match xPROTO and xSCG,W local minima

Return indexes of matched points

with the intent to discover possibly missing heart beats. In this
example, beat-to-beat intervals larger than 1.5 s (i.e. equivalent
heart rate ≤ 40 bpm) are further processed. In order to estimate
the number of missed beats (nMISS) between two reference
peaks, the mean from last 5 valid beat-to-beat intervals is used.
Then, the top nMISS peaks are found, imposing the following
constraints:

• time between beats should fall within [THF − TLF ]
interval, or, in terms of heart rate between the equivalent
[HRLF − HRHF ] range. In this application example
(with no loss of generality) let us set THF = 333 ms,
TLF = 1.5 s, and, consequently, HRLF = 40 bpm,
HRHF = 180 bpm;

• beats should have an amplitude of at least Amin,REF /4;
• if two comparable peaks are closer than TMIN (in this

example, 200 ms), choose the first one.
If no candidates are found, suitable for interpolation, the

process gracefully logs the potential error and carries on the
waveform analysis. On the other hand, each time new beats
are found, they become knowledge base for future beats to
be interpolated. The process of beat detection is reported as
pseudo-code in Algorithm 1.

4) SCG Waves Annotation:
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Fig. 6: Output of the annotation process. Top: ECG and
R-peaks (left-pointing yellow triangles); Center: beat detector
signal, xDET , with annotated reference and interpolated peaks
(downward-pointing and upward-pointing green triangles,
respectively); Bottom: SCG and annotated reference peaks
(grey bullets)

Once the heartbeat events are discovered, SCG annotation is
performed. In order to do so, a window is extracted from xSCG

around each beat (in this application context, the window
length is set to 500 ms). Within such window, the template
xPROTO (extracted at calibration phase) is best-aligned to
the signal xSCG by maximizing a cross-correlation metric.
Finally, annotation of SCG local minima is performed on
a basis of minimum distance from the prototype’s fiducial
points. During annotation, it is possible that the algorithm is
not able to match all reference points: nonetheless, the best
guesses are logged, and information of such partial match
is stored too. In this way, the algorithm is more resilient,
and gracefully handles non-ideal matches. The process of
annotation is reported as pseudo-code in Algorithm 2.

III. RESULTS AND DISCUSSION

Before discussing the results in details, it is worth
delineating the scope of the present study, which aims
at designing and testing specific solutions suitable for
supporting A&HA policies. More specifically, this work is
framed into a more general vision, aimed at integrating into
current prevention practices tools for continuous monitoring
of behavioral and clinical signs. Within this context,
inexpensiveness, usability and low intrusivity are of the utmost
importance. Suitable trade-offs should therefore be sought
for, possibly differing from high-performance, fully-featured
clinical instruments. In particular, the current implementation
looks forward to an embedded solution, in which multiple
indicators will be assessed through the very same hardware

TABLE I: Results of fully-automated SCG annotation

Record
ID

Sens
ALL

Sens
FULL

Prec
ALL

Prec
FULL

R2

ALL
R2

FULL
1 77.5 64.0 96.6 95.9 0.666 0.988
2 91.0 86.1 100.0 100.0 0.995 0.994
3 92.7 80.9 100.0 100.0 0.968 0.963
4 80.4 79.7 100.0 100.0 0.934 0.935
5 98.1 98.1 100.0 100.0 0.996 0.996
6 83.5 80.0 100.0 100.0 0.963 0.961
7 86.5 86.5 91.8 91.8 0.938 0.938
8 94.3 94.3 97.8 97.8 0.932 0.932
9 91.6 91.6 100.0 100.0 0.996 0.996

10 95.5 95.5 100.0 100.0 0.996 0.996
11 100.0 100.0 100.0 100.0 0.994 0.994
12 95.6 89.5 97.3 97.1 0.899 0.982
13 97.4 97.4 100.0 100.0 0.996 0.996
14 96.0 96.0 100.0 100.0 0.998 0.998
15 90.4 90.4 100.0 100.0 0.99 0.99

Mean 91.4 88.7 98.9 98.8 0.951 0.977
Std 6.4 9.2 2.2 2.3 0.082 0.024

device: eventually, the accelerometer sensor will be shared
between heart and physical activity monitoring, carried out
through a low-cost microcontroller platform. Constraints
in power consumption and computational resources have
therefore been taken into account in devising the overall
strategy. For instance, a relatively low sampling frequency
(100 Hz, namely) has been considered. This, of course,
limits the accuracy when measuring short time intervals,
e.g. when evaluating PPT for blood pressure monitoring
or when investigating specific, punctual rhythm anomalies.
Nevertheless, the tool is not meant to substitute clinical-grade
diagnostic instruments, but instead to discover trends and
anomalies evaluated over a much longer time scale, which
makes instant defects less significant. For the same reason,
testing has been carried out on a healthy population, to address
prevention strategies. Of course, evaluating the effectiveness
of the proposed approach in terms of health outcomes would
have required a much larger and longer trial: here, a functional,
proof-of-concept validation is only given. The procedures
for SCG annotation was applied in a completely automated
framework, without any need of user intervention in setting
parameters.

An example of output that the system produces is shown
in Fig. 6. The top panel represents the filtered ECG signal,
whose R peaks have been annotated (right-pointing yellow
triangles). Immediately below, the detection signal xDET is
plotted: as reference, the R peaks are also reported. It can
be noticed that the proposed method detects three reference
beats (downward-pointing green triangles), and is able to
correctly interpolate a missing one (the third, marked with
an upward-pointing green triangle). Such information is then
used to annotate the original SCG signal, shown in the bottom
panel. Fiducial points are correctly identified (grey bullets),
according to the extracted prototype in Fig 5.

In order to assess the performance of the proposed
methodology, three different metrics are monitored:

• Sensitivity (or True Positive Rate), i.e. percentage of
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correctly identified heartbeats (compared to ECG):

Sens. =
TruePositives

TruePositives+ FalseNegatives
(4)

• Precision, defined as:

Prec. =
TruePositives

TruePositives+ FalsePositives
(5)

• Coefficient of variation (R2 score) between beat-to-beat
intervals computed from ECG and SCG (taking one of
its fiducial point as reference):

R2 = 1−
∑

i

(
tECGi − tECG

)2∑
i

(
tECGi − tSCGi

)2 , (6)

where tECGi is the i-th beat-to-beat interval computed
from ECG, tSCGi the SCG analogous, tECG is the
average ECG beat-to-beat interval.

The R2 metric, in particular, allows to assess the agreement
between measures performed using SCG and the ECG gold
standard, under the assumption of normal, non-aberrant beats:
the good agreement shown allows for functionally validating
the approach with reference to the aimed application target
(namely, long-term monitoring in A&HA). Individual R2,
precision and sensitivity scores, achieved in each session, are
reported, for completeness’ sake, in Table I; results are shown
in two different split conditions:

• ALL: all matched SCG patterns, i.e. partial and full
matches

• FULL: only fully matched SCG patterns
On average, sensitivity scores of 88.7% and 91.4% were

observed, for the FULL and ALL conditions, respectively: such
difference in performance, due to more stringent requirements
for a full match, is statistically significant (p ≈ 0.02), as
highlighted by a paired single-sided Student test. Such scores
are fairly comparable with other studies: in [35], for instance, a
higher sensitivity figure (99%) is reported from measurements
taken in lying positions and discarding approximately 6.6%
of data, affected from motion artifacts. I.e., such sensitivity
is achieved on 93.4% of data, therefore missing some beats
as well. In the present work, instead, measurement are taken
in sitting position (again to match the aimed application
scenario), which is known to yield more contaminations than
lying position [36]. Furthermore, no data is actually discarded
at all, so that missing beats are mostly correlated to minor
motion artifacts coming from sitting position. Taking into
account such metric differences, performance figures well
compares indeed. Furthermore, even though the annotation
algorithm misses a beat, it logs such information: the previous
beat-to-beat intervals are used to recognize anomalous values,
due to a beat being skipped. Missing a beat every now and
then does not jeopardize HR and HRV long-term monitoring:
nevertheless, if missing a beat may imply losing relevant
information (due to specific medical conditions) an increase
in missing beat rate can be detected to trigger the caregiver
attention and call for more accurate medical analysis. On
the other hand, in terms of precision, the proposed method
achieves high scores for both ALL and FULL conditions

Fig. 7: Bland-Altman plot of all acquisitions. Mean difference
(µdiff ) and standard deviation (σdiff ) are reported, along
with the 95% confidence interval of the mean µdiff . Note
the different scale in x and y axes.

Fig. 8: Distribution of errors, normalized to the sampling
period TS . Over 92% of errors lies within ±1TS , and the
95% HDPI is ±2TS .

(without significant differences). Approximately, just 1% of
identified peaks are, indeed, false positives: this may imply that
detected ectopic (premature) beats are, indeed, actual beats.

Fig. 7 shows Bland-Altman plots relative to SCG-ECG
beat-to-beat interval comparison. In such plot, the difference
between two measures is displayed, with respect to their
average: ideal agreement should look like all observations
falling onto a straight horizontal line (the geometrical locus
of the average of measures). The observed mean in difference
µdiff is approximately 0.3 ms, whereas its standard deviation
σdiff is 19.9 ms). These results were statistically analyzed; in
particular, by applying Student-t statistics, it is estimated that
the 95% confidence interval of E{µdiff} is [-1.4 ms - 0.7 ms]:
this implies a negligible bias error between the ECG and



8

Fig. 9: Population-wide correlation plot between ECG (x-axis)
and SCG (y-axis) beat-to-beat intervals. In red, the ideal line
representing perfect match; in blue, the actual observed values.

SCG measurements. As far as σdiff is concerned, it is worth
remarking that, in terms of sampling period (i.e. TS = 10 ms),
its value corresponds to approximately 2 samples; furthermore,
analysis of the distribution of such errors highlighted the
presence of heavy tails that slightly inflate the σdiff observed
values. In particular, over 92% of errors lie within ±1TS ,
whereas the 95% Highest Probability Density Interval (HDPI)
is ±2TS . This finding is shown in Fig. 8, reporting an
histogram approximation of such errors ∆t, normalized to TS
(and zoomed within ±6TS for clarity’s sake). Therefore errors
are, in the vast majority, quite contained in terms of normalized
time units.

Finally, a good average R2 score is achieved in both
ALL and FULL conditions (0.951 and 0.977, respectively, by
averaging all different acquisitions). Despite slightly better
results for the FULL condition, statistical analysis (paired,
single-sided Student test) does not highlight any significant
difference between the two (p ≈ 0.12), indicating good
overall performance. High R2 scores mean good agreement
and linearity between the two measures performed with ECG
and SCG. A population-wide correlation plot, obtained by
considering all inter-beats intervals, is shown in Fig. 9 (for
the FULL condition): a value of 0.986 is observed. Such
results are in line with recent works on public datasets [37].
In this case too, it is worth remarking that, with respect to
mentioned studies, similar quality is attained in a somehow
more challenging condition, due to 1) the limitations coming
from the low-cost and low-power constraints perspectively
accounted for and, 2), the test condition here referring to a
sitting position, which is more prone to artifacts than supine
lying case.

IV. CONCLUSIONS

This paper presented a fully automated procedure for
acquiring SCG traces and for recognizing relevant heart

patterns. The approach targets long-term monitoring in
Active and Healthy Aging scenarios: inherent inexpensiveness,
usability and low intrusivity constraints are accounted for,
while the approach is not meant to replace established medical
devices, but to complement them instead. The procedure
adapts itself to different users, by performing a preliminary
calibration step, where information from ECG and SCG
can be merged to derive detailed annotation parameters, if
needed. Apart from such an optional, initial calibration phase,
the system is fully self-consistent and no concurrent ECG
acquisition is further needed. Analysis of SCG waveforms is
broken down to two distinct phases. In the first one, a suitably
engineered signal, based on second order derivatives of the
SCG, is exploited to coarsely locate heartbeat events. The
second phase makes use of such information and performs
actual annotation of SCG data, by comparing instants close
to the detected heartbeats to a prototype, extracted during
calibration.

The reliability of this annotation was assessed over
different acquisition sessions by inspecting three main metrics:
sensitivity (i.e. percentage of correctly identified heartbeats,
compared to ECG), precision (i.e. impact of false positives
on truly detected beats) and R2 (i.e. linearity between
beat-to-beat measurements as computed by ECG and SCG).
Results show very good performance: overall, nearly 90% of
heartbeats are correctly detected, on average, with minimal
false positives. Linearity between ECG and SCG-computed
beat-to-beat intervals is extremely high (R2 > 0.95, on
average, and R2 > 0.97, by considering fully matched
samples only), indicating good agreement between the two
measurement methods. SCG can thus be used as a reliable
HR alternative, and favorably compares with other methods,
such as PPG in [38]. Furthermore, SCG information can be
profitably fused with other sources: if used in combination
with ECG (as in the calibration setup) the system is able
to measure other relevant quantities, including Pre-Ejection
Period, Left Ventricle Ejection Time: all such quantities are
not measurable by other complementary techniques, such as
PPG.

Another perspective advantage of monitoring SCG is
that the same accelerometer sensor can be exploited for
different purposes, with no further acquisition burden:
for instance, physical activity intensity could be assessed
[39], or gait quality parameters could be estimated. The
approach is therefore quite promising, in view of more
comprehensive, multidimensional behavioral monitoring in
AAL environments.
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