
Citation: Bellingeri, M.; Bevacqua, D.;

Scotognella, F.; Cassi, D. The Critical

Role of Networks to Describe Disease

Spreading Dynamics in Social

Systems: A Perspective. Mathematics

2024, 12, 792. https://doi.org/

10.3390/math12060792

Academic Editors: Andrey V. Andreev

and Victor B. Kazantsev

Received: 6 February 2024

Revised: 4 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

The Critical Role of Networks to Describe Disease Spreading
Dynamics in Social Systems: A Perspective
Michele Bellingeri 1,2,* , Daniele Bevacqua 3, Francesco Scotognella 4 and Davide Cassi 1,2

1 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze,
7/A, 43124 Parma, Italy; davide.cassi@unipr.it

2 Istituto Nazione di Fisica Nucleare (INFN), Gruppo Collegato di Parma, Parco Area delle Scienze, 7/A,
43124 Parma, Italy

3 PSH, UR 1115, INRAE, Domaine Saint-Paul, 228 Route de l’Aérodrome, 84914 Avignon, France;
daniele.bevacqua@inrae.fr

4 Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129 Torino, Italy; francesco.scotognella@polito.it

* Correspondence: michele.bellingeri@unipr.it

Abstract: This review underscores the critical significance of incorporating networks science in
epidemiology. Classic mathematical compartmental models (CMs) employed to describe epidemic
spreading may fail to capture the intricacies of real disease dynamics. Rooted in the mean-field
assumption, CMs oversimplify by assuming that every individual has the potential to “infect” any
other, neglecting the inherent complexity of underlying network structures. Since social interactions
follow a networked pattern with specific links between individuals based on social behaviors, joining
classic CMs and network science in epidemiology becomes essential for a more authentic portrayal
of epidemic spreading. This review delves into noteworthy research studies that, from various
perspectives, elucidate how the synergy between networks and CMs can enhance the accuracy of
epidemic descriptions. In conclusion, we explore research prospects aimed at further elevating the
integration of networks within the realm of epidemiology, recognizing its pivotal role in refining our
understanding of disease dynamics.
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1. Introduction

Classic compartmental models (CMs) describing epidemic spreading assume that
any individual in the infective compartment can “infect” any other in the susceptible
compartment [1–3]. This assumption, called the mean-field approximation, ignores the
network effects in favor of analytical tractability [2]. However, social interactions do
not randomly occur. They are structured along social links between specific individuals
based on social interactions, e.g., love, friendship, work, etc. CMs, including explicit
representations of network topologies, have been advocated for improving classical CMs
since the early 2000s [3,4].

In the last two decades, the research has recognized the importance of networks in
epidemiology, and this has led to relevant contributions, such as the finding that the vacci-
nation thresholds strongly depend on network topology [1] or that a network community
structure, i.e., the presence of groups of nodes/individuals strongly connected among them
in real social networks, has a significant impact on disease dynamics [5].

CMs have proven to be valuable tools in studying disease spread, providing a good
approximation of reality. They can be implemented with relatively low data collection costs.
For this reason, in the event of a new epidemic outbreak, when data are scarce and there is
an urgent need to predict epidemic dynamics, CMs serve as a useful initial analysis tool.
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During the COVID-19 pandemic crisis, CMs have mainly been used to predict the
macroscopic dynamics of infections and deaths and to assess different policies to curb the
pace of the person-to-person contagion dynamic [4]. For example, the famous study by
Ferguson et al. [6], which was the basis of the first containment measures to halt COVID-
19 spreading, analyzed the epidemic dynamic using a simple Susceptible–Infectious–
Recovered (SIR) model, neglecting the social network topological structure. Kissler et al. [7]
used an ordinary differential equation mathematical analysis adapted from a Susceptible–
Exposed–Infectious–Recovered (SEIR) model to simulate the transmission of COVID-19
and the hospital care capacity in the United States.

Following the initial outbreak of the epidemic, as more comprehensive data on epi-
demic spread become available, particularly concerning the structure of the social network
through which the epidemic spreads, compartmental models can be integrated with com-
plex network science, offering a more accurate description of the epidemic phenomenon.

Other research studies implemented CMs on networks in predicting the spread of
COVID-19 and analyzing the effect of non-pharmaceutical interventions (NPIs) to halt
epidemic spreading. Nishi et al. [8] used a network simulation of a Susceptible–Exposed–
Infectious–Recovered (SEIR) model to investigate two network intervention strategies
for mitigating the spread of transmission while maintaining economic activities. They
swapped links in social networks to create distinct subgroups of individuals (for instance,
organizing customer groups to visit the grocery store either in the morning or afternoon).
This approach indicates the potential to mitigate the spread of the COVID-19 epidemic
while sustaining economic activities. Bellingeri et al. [9] showed how link removal (LR)
in social networks may be a useful tool to model different aspects of social distancing
to curb COVID-19 spreading. Firth et al. [10] simulated control strategies for COVID-19
transmission in a real-world social network generated from high-resolution empirical GPS
data. Their findings revealed that tracing the contacts of contacts led to a more significant
reduction in the size of simulated outbreaks compared to tracing only direct contacts.
Chung and Chew [11] implemented a SEIR model to study the outbreak of COVID-19 in
Singapore using the concept of a multiplex network. A multiplex network (MN) is a type of
complex network that consists of multiple layers indicating different types of connections.
Chung and Chew [11] used MNs to differentiate between social interactions that happen
in households and workplaces. Their findings demonstrated that utilizing a multiplex-
network framework to depict social contacts offers increased adaptability for modeling
various forms of social interaction. This approach proves invaluable for simulating and
assessing strategies aimed at social exclusion for epidemic management [11].

Here, we comment on research manuscripts with classic, significant, or interesting
insights explaining how coupling networks and CMs may improve the description of
epidemic spreading. Then, we discuss the research perspective for further enhancing
network use in epidemiology.

1.1. Epidemic Spreading in Scale-Free Networks

About twenty years ago, Pastor-Satorras and Vespignani [12] published a classic re-
search paper showing that scale-free (SF) networks unveil the absence of an epidemic
threshold and the persistence of infections at whatever spreading rate the epidemic pos-
sesses. They perform large-scale simulations and analytical analyses by describing the
spreading process with the Susceptible–Infected–Susceptible (SIS) compartmental model
on SF networks. Formally, a scale-free network is a network presenting a power-law
distribution of the node degree (number of direct neighbors to the node), i.e., the node
degree distribution follows a decaying function of the form P(k) ∼ k−γ, with few nodes
of a very large degree. In general terms, scale-free networks are characterized by large
hubs (hyperconnected nodes) [13]. Simulating an SIS model on SF networks, for whatever
spreading pace the authors set for the spreading dynamic, the epidemic can persist and
infect a significant portion of network nodes [12]. This result emphasized to the scientific
community the role of network topology in epidemic modeling and the importance of
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accounting for network structure in describing spreading in real complex networks. The
authors outlined how these results are particularly important to model epidemic spreading
on the Internet and the world-wide-web system, which are technological networks showing
a typical scale-free connectivity [12].

1.2. Spreading, Node Clustering Coefficient, and Node Assortativity

CMs assume that epidemic transmission passes through interactions occurring ran-
domly in groups, with all individuals potentially interacting with all other individuals at an
equal rate [14]. However, social interactions among individuals do not occur randomly, and
nodes in real social networks unveil preferential ways of connecting with other nodes, mak-
ing non-random peculiar structural features [15,16]. Network science uses mathematical
approaches to describe these structural features of real social networks.

The network clustering coefficient is an indicator that counts node triplets in the
network. A triplet (or triangle) is a set of three nodes. A closed triplet is a full network of
three nodes, i.e., a set of three nodes in which a link connects each node with the others. In
other words, a triplet is three nodes connected by either two (open triplet) or three (closed
triplet) links.

The “local clustering coefficient” ci of node i is defined as

ci =
∆clo

i

∆tot
i

(1)

where ∆clo
i is the number of closed triplets centered on node i, and ∆tot

i is the total number
of triplets (both open and closed) centered on node i [17]. The node clustering coefficient is
also named node transitivity [16,17]. Node transitivity is related to the binary transitive
relation in mathematics, stating that a set X is transitive if, for all elements a, b, c in X,
whenever a relates to b and b to c, then a also relates to c. In network science terms, we can
say that a network is transitive whether, for the connected node pairs (i, j) and (j, z), likely,
nodes i and z are also connected.

Computing the triplets over the whole network, we can define the binary global
clustering coefficient by generalizing Equation (1):

C =
∆clo

∆tot (2)

where ∆clo is the number of closed triplets, and ∆tot is the total number of triplets (both
open and closed) in the network [17].

Calculating the clustering coefficient is the simplest method to investigate the presence
of node communities in the network, i.e., node communities are groups of nodes that
are densely connected among them. The clustering coefficient evaluates the local group
cohesiveness accounting for the fraction of connected neighbors, and for this, it evaluates
the tendency of network nodes to form communities. In other words, it measures the
magnitude to which nodes tend to form strongly connected communities characterized
by a higher density of links than the average probability of links randomly drawn among
nodes [18,19]. Figure 1A depicts a toy model network with a lower clustering coefficient,
and Figure 1B shows a network with a higher clustering coefficient.

Assortativity is a network structure indicator that evaluates to what extent nodes in a
network associate with other nodes in the network, whether of similar sort or of opposing
sort. Generally, the assortativity of a network is determined by the degree of the nodes in
the network [20]. The notion of assortativity was introduced by Newman [21] and has been
widely used in network science for many different applications [20].

The node degree assortativity r is defined as

r =
1
σ2

q
∑j,k∈N jk

(
ejk − qjqk

)
(3)
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where σq is the standard deviation of the excess degree distribution; ejk is the fraction of
links connecting nodes of degree j and k; and qj and qk are the excess degrees of nodes of
degree j and k. In other terms, degree assortativity is a measure of its degree correlation,
describing how nodes in the network associate based on their number of connections. In
Figure 1C we show a disassortative network in which higher-degree nodes tend to be
connected preferentially with lower-degree nodes. On the opposite side, in Figure 1D, we
draw an assortative network in which nodes of higher degrees are connected preferentially
with nodes of higher degrees, and, therefore, the nodes of lower degrees are more likely
to relate to other lower-degree nodes. Social networks are typically thought to be distinct
from other networks in being assortative (possessing positive degree correlations); well-
connected individuals associate with other well-connected individuals, and less-connected
individuals associate with each other [22].
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Figure 1. Node clustering. (A) Toy model network with a lower clustering coefficient (one closed
triplet) vs. (B) network with a higher clustering coefficient (four closed triplets). Links of closed
triplets are in red. Node assortativity. (C) A disassortative network in which nodes of higher degree
(more links) are connected preferentially with lower-degree nodes. (D) Assortative network in
which nodes of higher degree are connected preferentially with nodes of higher degree and nodes of
lower degree are connected preferentially with lower-degree nodes. Network community structure.
(E) Random network that does not present a community structure. (F) Network with a strong
community structure (node color indicates nodes belonging to the same community); this network
comprises four clearly separated communities.
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The node degree assortativity is an essential concept in epidemiology since it can affect
the spread of disease [23].

Badham and Stocker [23] investigate how node degree assortativity and clustering
coefficient affect the spread of the SIR epidemic. They built model networks using an
algorithm to tune node degree assortativity and clustering coefficient. To incorporate a
real-world social network structure, the authors used a degree distribution based on the
number of friends in a friendship social network of young children [24]. To evaluate the
extent of the epidemic spreading, the authors account for the final size (as a proportion of
nodes infected at the end of the simulation) and whether an epidemic occurred (at least
25 nodes ever become infected, representing at least some secondary infections).

They found no consistent trend in epidemic proportion related to either the degree
assortativity or the clustering coefficient. However, low epidemic occurrence is associated
with a high value of either feature.

Further, the authors discovered that the final size of the epidemic decreases when the
assortativity or clustering coefficient increases. This means the final number of infected
nodes would be lower if connected nodes/individuals are preferentially connected with
nodes of similar degrees.

Based on their results, Badham and Stocker [23] stated that the structural properties
identified by social network researchers are relevant for epidemiology, and systematic
research is necessary to shed light on the potential size of the effect of the network epi-
demic spreading.

Volz et al. [25] conducted mathematical and numerical analyses of the SIR model,
investigating the effect of node clustering over the epidemic spreading entity on networks.
They found that in most cases, node clustering is correlated with a lower final extent of the
spreading, i.e., networks with a higher clustering presented a lower number of infected
individuals at the end of the SIR simulations. The finding of Volz et al. [25] corroborates
the results of Badham and Stocker [23] by outlining the importance of considering the
structural features of the networks when the aim is to predict the epidemic spreading. It
is important for network interventions to halt epidemics, such as concerning the vacci-
nation of individuals [26] or performing social distancing [9], to consider the extent of
node clustering.

1.3. Spreading and Community Structure

Real social networks show marked patterns of community structure; that is, social
networks present groups of nodes/individuals that are more connected among them [27].
In Figure 1E, we depict a random network that does not present a community structure;
at the opposite, in Figure 1F, we show a network with a strong community structure. The
presence of communities of individuals highly connected among them may change the
epidemic spreading dynamics. Salathè and Jones [5] investigated the spread of disease in
networks with community structure. They simulated SIR epidemic dynamics over both real
and model networks. The authors assembled model networks with community structure
by joining different subnetworks with randomly drawn edges. Then, they correlated
the epidemic spreading pace with the modularity coefficient Q [28], which evaluated the
magnitude of the community structure of the network.

The network modularity Q measures how good the division of two node communities
is or how separated the different node communities are from each other [28].

The modularity indicator Q is defined as

Q =
1

2L∑i,j (aij −
kik j

2L
)δ(cicj) (4)

where L is the total number of links in the network; aij is the element i, j of the adjacency
matrix, equal to 1 if nodes i and j are connected, and 0 otherwise; ki, and k j are the degrees
of nodes i and j, respectively; ci, and cj are the modules (or community) of nodes i and j,
respectively; and δ(x, y) is 1 if x = y, and 0 otherwise. The modularity Q represents the
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fraction of the links that fall within the given community minus the expected fraction if links
are drawn at random. Positive Q indicates that the number of links within communities
exceeds the randomly expected number by chance; the maximum possible value of Q is
1; nonzero values indicate deviations from randomness; and values around 0.3 or more
usually indicate good divisions.

Salathè and Jones [5] found that community structure has a major impact on disease
dynamics peculiarly; in networks with a strong community structure, an infected individ-
ual is more likely to infect members of the same community than members outside the
community. Therefore, local outbreaks may be extinguished in a network with a strong
community structure before spreading to other communities.

Further, Salathè and Jones [5] investigated how individuals’ immunization (vaccina-
tion) curbs the epidemic’s spread. Vaccination corresponds to removing nodes or setting
nodes in a recovered (not infectious) state [29–31]. Salathè and Jones [5] showed that
in networks with a strong community structure, immunization interventions targeted at
individuals bridging different communities are more effective than those simply target-
ing highly connected individuals [5]. These results have implications for the design of
control strategies.

1.4. Effective Network Size (ENS)

Transposing the mean-field approach of the classic CM epidemic dynamics to a net-
work model, one should use a “complete network” in which all nodes/individuals interact
with each other.

In this spirit, McCabe and Nunn [14] compare the SI/SIR spreading pace of (i) complete
networks, (ii) Erdős-Rényi (ER) random networks, and (iii) real primate networks of the
same size (number of nodes). The ER random network is a classic model for generating
a random network with only two parameters, i.e., the number of nodes (N) and a fixed
probability (p) for links being present or absent, independently of the other links.

The primate networks are empirically observed networks of social interactions among
primates (Pan troglodytes), and they are valuable frameworks for investigating disease
spreading in nature.

The authors use the “outbreak duration”, i.e., the number of days until the simulation
ended, i.e., when all the individuals were recovered and/or infected, as a proxy of the
spreading pace.

They find that outbreak durations of simulations on ER networks are more variable
than those on complete networks, whereas they show similar mean durations of disease
spread. This result indicates that including a simple structural feature, such as removing
a fraction of the possible link/interactions, as passing from a complete network to an
ER network, can increase the variability of the outbreak duration. On the other hand,
real primate networks show a longer outbreak duration concerning a complete network,
suggesting how the mean-field approach overestimates the spreading pace.

Bearing on these results, the authors propose a measure to account for such het-
erogeneity, “effective network size” (ENS), which refers to the size of a complete network
(i.e., unstructured, where all individuals interact with all others equally) that corresponds
to the outbreak characteristics of a given heterogeneous, structured network. The ENS of
real primate networks are always higher than their real network size, meaning that the
CMs with infection probability parameter values of the real network will overestimate the
pace of the epidemic spreading. In Figure 2A–C, we explain the rationale of the McCabe
and Nunn [10] analyses.

The article has excellent merit in showing in a simple way how to assume that the
mean-field interaction may produce an erroneous description of the disease spreading in
real social networks.
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Figure 2. The effective network size. (A) A hypothetical real network over which a disease can
spread; (B) the complete network underlying the mean-field approach at the base of the classic CMs,
in which every node interacts with each other. The authors simulated the spread of epidemics via an
SIR-type model with the same infectious probability over the real (A) and the complete network of
the same size (B). The complete network shows a higher pace of the disease spreading, resulting in a
shorter outbreak duration. Starting from the real network in (A), to obtain a similar SIR spreading
pace measured by the outbreak duration, we must consider a complete network of larger size, such
as the one depicted in (C). On the other hand, to produce the same spreading pace in the real (A) and
the corresponding mean-field approach complete network (B), we must assume different infection
probabilities over the network links, decreasing the infection probability in the complete network.
Assuming the complete network in (C) as the complete network corresponding to the outbreak
characteristics of the real network in (A), its number of nodes is the “effective network size” (ENS) of
the real network in (A) [14]. Node distance and the pace of the epidemic spreading. (D) The chain
network of N = 9 nodes; (E) the star network of N = 9 nodes. The two model networks have the
same number of links L, i.e., L = N − 1 = 8, and, for this, the same average node degree k. The
two network models are limit structures showing very different distances among nodes. The chain
network is much longer than the star network (average node distance d = 1.8 for the star and d = 3.3
for the chain network). Consequently, the chain network will show a lower epidemic spreading pace.

1.5. The Case of the COVID-19 Spreading

A recent paper by Thurner et al. [2] adopts a network approach to investigate the
spread of the COVID-19 epidemic. The authors point out that traditional CM epidemiologi-
cal models cannot explain how the COVID-19 infection curves for many countries reveal a
remarkable linear growth over extended periods. Using the salient real network features
and an SIR model, the authors explain that linear growth can emerge naturally in real social
networks. Traditional CMs typically ignore the structure of real contact networks that are
essential in the characteristic spreading dynamics of COVID-19.

The authors consider structural features of empirical social contact networks, including
node degree heterogeneity (heterogeneity in the number of social links), the fact that people
tend to live in small groups (families or communities), and bridge links connecting distant
groups (such as work and leisure links/relations). They show that in these realistic social
network structures, a critical number of social contacts (Dc) exists for any given transmission
rate, below which linear growth and low infection prevalence must occur.
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Upon calibrating the SIR model to empirical estimates of the COVID-19 transmission
rate and the number of days individuals are contagious, the authors found Dc∼7.2, i.e., the
node degree indicating the number of social contact links should be above 7.2 to produce
a super linear epidemic growth. Realistic contact networks show a node degree of about
five, and lockdown measures would reduce the social interactions to household size
(∼2.5). Therefore, the real social contact networks may reproduce the empirical infection
curves with significant precision without additional model assumptions or fine-tuning
of parameters.

The probability of observing linear growth with a standard CM is practically zero. For
this, Thurner et al. [2] question the applicability of standard CMs to describe the COVID-19
containment phase. Further, the effect NPIs, like national lockdowns, can be modeled
with a remarkable degree of precision by coupling a proper network approach to standard
epidemiological CMs.

1.6. Predict Epidemic Spreading in Real-World Social Networks

Bellingeri et al. [32] investigated the effect of the network structure on the spread of
the epidemic. They simulate SIR spreading over a dataset of 50 real-world complex systems
from different fields of science.

To model the effect of the network structure on the epidemic spreading, the authors
considered 40 different network structure indexes (NSIs) to test which were the best predic-
tors of the SIR model epidemic spreading. The NSIs covered the relevant network structural
features, such as community structure, link density, node distance, node assortativity, etc.

They found that the “average node distance”, or a derived notion such as the “average
normalized node closeness”, is the best predictor of the initial spreading pace. The “dis-
tance” duv between nodes u and v is the minimum length of a path joining them, i.e., the
minimum number of links to travel between the nodes. The average node distance for
undirected networks is defined as

d =
2

N(N − 1)∑u,v∈N,u ̸=v duv (5)

The average node distance d measures the mean number of links to travel along the
shortest path among node pairs in the network [33]. The authors find that the higher the
value of d, the lower the spreading pace.

Further, indexes of “topological complexity” of the network that consider both the
node degree and the node distance are the best predictors of both the epidemic peak’s
value and the spreading’s final extent. The k/d index, as the ratio of the average node
degree k (i.e., the average number of links per node) and the average node distance k, was
introduced in mathematical graph theory to evaluate the topological complexity of the
network [34]. The BB index, which is a derivation of the k/d index using the farness at the
place of the node distance, produced the best fitting of the SIR epidemic peak and total
number of infected individuals at the end of the epidemic.

A very important point is that Bellingeri and colleagues’ research [32] outlines that the
most usual NSI evaluating the connectivity level of the network, such as the average node
degree k, returns a scarce prediction of the network spreading for all the three spreading
indicators adopted in the study. Network structures with the same average node degree
and, for this, the same connectivity level may show very different epidemic spreading
paces (see Figure 2D,E).

The authors point out that most of the NPIs implemented to curb the SARS-Cov-2
epidemic follow the rationale of reducing social interactions, which is equivalent to de-
creasing the number of social network links. Nonetheless, the study by Bellingeri et al. [32]
unveils that considering the distance among nodes is more important than focusing on their
connectivity level to predict network spreading. These findings suggest that performing
a reliable social network disease-spreading model is necessary to account for the node
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distance. Therefore, implementing NPIs to space out the nodes/individuals, i.e., increasing
the node distance in the network, would be a more effective strategy to halt the epidemic.

2. Discussion

Coupling classic CMs and networks in epidemiology is fundamental to performing
more realistic and more accurate epidemic spreading descriptions. Insights and findings
from the studies we review here demonstrate that the sole use of CMs to describe disease
spreading may produce an erroneous modeling of the disease dynamics. We outline how
CMs may underestimate the real “outbreak duration” [14], fail to fit the linear growth of
the empirical disease spreading [2], and neglect the critical network structural features to
forecast epidemic spreading [32]. We are then convinced that future research needs to make
significant efforts to enhance the use of network science in epidemiology.

CMs are simpler tools for describing disease spreading, and they require a reduced
amount of empirical information. Building real social network structures is challenging
for field research, requiring time, money, and sample efforts. For this reason, the classic
CMs may hold an important role in urgent analyses to face a novel epidemic event. In fact,
during the COVID-19 pandemic, CMs have been largely used to predict the macroscopic
dynamics of infections and deaths and assess different NPIs that contain the microscopic
dynamics of person-to-person contagions [4]. However, CMs supporting policy decision-
making in the COVID-19 crisis ignored the consequences of not properly considering social
networks for intervention [4]. The lack of considering the network structure can be viewed
as a lack of reality. As shown by Thurner and colleagues [2], considering structural features
of empirical social contact networks, heterogeneity in the number of social links to the
nodes/individuals, the presence of small people groups with denser connectivity, and
bridge links connecting distant groups (such as work and leisure links/relations) may
unveil the linear growth of the COVID-19 epidemic.

Therefore, using networks in epidemiology must overcome the significant problem
of collecting empirical data about social interactions among individuals. In the last few
years, due to the need to face the COVID-19 pandemic, technological tools and several
methods have been improved (or developed) to reconstruct social interaction networks.
The new tools made available have allowed for the building of social networks in numerous
real environments of epidemic importance, such as schools, museums, and hospitals [10].
Among the essential tools to gather social contact interactions is the use of wearable
proximity sensors to characterize social contact patterns [35–37], the analysis of mobility
data to build social contact networks for epidemic spreading [38] and using phone data
to reconstruct the disease spreading network [39,40]. Using real-world networks seems
promising because recent technological progress has made collecting massive amounts of
social interaction data easier.

3. Conclusions

In conclusion, integrating classic compartmental models (CMs) with network science
in epidemiology is a crucial endeavor for a more accurate understanding of epidemic
spreading dynamics. The studies discussed in this article underscore the limitations of
relying solely on CMs, revealing instances where these models may inadequately capture
real-world scenarios.

The investigation into epidemic spreading in scale-free networks, as exemplified by
Pastor-Satorras and Vespignani’s seminal work [12], highlighted the pivotal role of network
topology in influencing disease dynamics. The interplay between spreading, node cluster-
ing coefficient, and node assortativity, as explored by Badham and Stocker [23], emphasized
the importance of considering non-random structural features in social networks for more
nuanced epidemic predictions.

Moreover, the examination of community structure by Salathè and Jones [5] demon-
strated its significant impact on disease dynamics, showcasing the potential for targeted
interventions within specific communities. The concept of effective network size (ENS), as



Mathematics 2024, 12, 792 10 of 11

introduced by McCabe and Nunn [14], further highlighted the need to move beyond mean-
field approaches, considering the heterogeneity inherent in real-world social networks.

Recent studies, such as those by Thurner et al. [2] and Bellingeri et al. [32], reinforced
the critical role of network structure in predicting epidemic spreading, particularly in the
context of the COVID-19 pandemic. The inadequacy of traditional CMs to explain the
observed linear growth of infections in real social networks underscores the necessity of
incorporating network features for more precise modeling of disease dynamics.

While CMs remain valuable for prompt analyses during novel epidemic events, the
collective findings advocate for a paradigm shift towards leveraging technological tools
and methodologies to gather empirical data on social interactions. The advancements
in wearable proximity sensors, mobility data analysis, and phone data utilization offer
promising avenues for reconstructing real-world networks, enhancing the reliability of
social network disease spreading models.

In light of these insights, it is evident that the future of epidemiological modeling
necessitates a more comprehensive integration of network science, ensuring that interven-
tions and policy decisions accurately account for the intricate interplay between infectious
diseases and the complex social structures in which they unfold.
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