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The Enhanced Gaussian Noise Model extended to
Polarization-dependent Loss

Paolo Serena, Member, IEEE, Chiara Lasagni, Student Member, IEEE, and Alberto Bononi, Senior Member, IEEE

Abstract—We show how to extend the enhanced Gaussian noise
(EGN) model to account for polarization-dependent loss (PDL)
of optical devices placed along a fiber-optic link. We provide
a comprehensive theory highlighting the relationships between
the time, frequency, and polarization domains in the presence of
fiber nonlinear Kerr effect and amplified spontaneous emission.
We double-check the new model with split-step Fourier method
(SSFM) simulations showing very good accuracy. The model
can be efficiently exploited to estimate low values of outage
probabilities induced by PDL with computational times orders of
magnitude faster than the SSFM, thus opening new opportunities
in the design of optical communication links.

Index Terms—Polarization-dependent loss (PDL), Gaussian-
noise (GN) model, enhanced-GN (EGN) model.

I. INTRODUCTION

POLARIZATION-dependent loss (PDL) expresses the de-
pendence of the loss of an optical device on the state

of polarization of the input electromagnetic field [1]. PDL
induces crosstalk between the polarization tributaries and an
unequal loss of energy, which are particularly detrimental in
polarization-division multiplexing (PDM) transmissions. Con-
trary to chromatic dispersion and polarization-mode dispersion
(PMD), the non-unitary PDL distortion cannot be removed
without a penalty even by the best detector [2], [3].

Although typical optical fibers show negligible PDL, PDL
may be relevant in optical devices, such as the Erbium-
doped fiber amplifiers (EDFA) and inside the wavelength
selective switches (WSS) of reconfigurable optical add/drop
multiplexers (ROADM) [4].

The axes of maximum/minimum PDL fluctuate randomly
over times much longer than the coded data block duration,
thus making the optical channel stochastic and non-ergodic.
Hence the analysis with PDL should not focus on the average
performance, such as the average signal-to-noise ratio (SNR),
but rather on the statistics of the SNR. Of particular concern is
the outage probability, i.e., the probability that the SNR falls
below a given threshold. Because of the random fluctuations,
the problem of estimating such a probability is particularly
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challenging, especially in numerical simulations where low
outage values call for many time-consuming simulations, but
also in experiments where collecting many observations may
require a huge amount of resources to save and post-process
the results.

Such difficulties stimulated the development of theoretical
models for quick estimation of the PDL effects. Most of the
literature focused on the interplay between PDL and ampli-
fied spontaneous emission (ASE) noise in the linear regime.
Remarkable results have been provided by Gisin [5], who
found the statistics of the resulting PDL after concatenation of
many devices, and by Mecozzi and Shtaif [6] that investigated
the asymptotic properties of PDL showing its Maxwellian
statistics when expressed in dB. The implications of the
interplay PDL-ASE on the SNR have been investigated by
the same authors in [7] and by Shtaif in [8]. The implications
of PDL on the channel capacity has been investigated by Nafta
et al. in [3]. A quaternion approach to analytically investigate
PDL has been proposed by Karlsson and Petersson in [9].

The interplay between PDL and the fiber nonlinear Kerr
effect received much less analytical attention, and most of
the literature focused on numerical/experimental investigations
[10]–[17]. Such investigations showed contrasting results,
since PDL showed limited interaction with the Kerr effect in
[14] while a non-negligible interaction has been pointed out,
for instance, in [12], [15].

In modern optical communication systems, it is customary
to analyze the performance of the link by employing perturba-
tive models because of their simplicity. Among the available
models in the literature, particular attention has been captured
by the Gaussian noise (GN) model [18] and its advanced
version, the enhanced Gaussian noise (EGN) model [19], [20],
also referred to as nonlinear interference noise (NLIN) model
[21]. Such models showed excellent accuracy in a wide range
of optical links, with savings in computational time of more
than an order of magnitude compared with traditional models,
such as the split-step Fourier method (SSFM).

We extended the scalar theory of the GN model by including
polarization effects in [22], and first included PDL in the GN
model framework in [23] for a quick estimation of the prob-
ability density function (PDF) of the nonlinear interference
(NLI).

In this work, besides providing a novel mathematical for-
malism to cope with PDL in the GN model, we show how to
account for PDL even in the EGN model. The general theory
will be double-checked against SSFM simulations.

The resulting PDL-EGN theory extends the standard EGN
model when fixed PDL elements are inserted along the link,
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thus providing the NLI variance for a given PDL sequence.
The advantages of using the new model as well as some
interesting implications, such as the scaling of the outage
probability with power, will be discussed.

The paper is organized as follows: in Section II we show
the main theory, based on some results provided in the
Appendices; in Section III we validate the model. Finally, in
Section IV we draw our main conclusions.

II. PDL-EXTENDED EGN MODEL

We adopt the following bra-ket notation

|Ã(ω)〉 ,
[
Ãx(ω)

Ãy(ω)

]
, 〈Ã(ω)| ,

[
Ã∗x(ω), Ã∗y(ω)

]
where Ãx,y(ω) indicate the Fourier transform of the two
polarization tributaries of the transmitted electric field, with
ω the angular frequency.

Under a first-order perturbative approximation, the received
electric field |ÃR(ω)〉 can be related to the transmitted one
|Ã(ω)〉 by [24]:

|ÃR(ω)〉 ≈ T(z, ω)
(
|Ã(ω)〉+ |w̃(ω)〉+ |ñ(ω)〉

)
(1)

with |w̃(ω)〉 and |ñ(ω)〉 the ASE noise and the signal NLI,
respectively, and T(z, ω) a 2 × 2 matrix accounting for all
linear impairments from input to coordinate z. Such a matrix
can be separated into a scalar and a polarization-dependent
contribution:

T(z, ω) = eϑ(z,ω)U(z)

ϑ(z, ω) , −
∫ z

0

(
α(ξ)

2
+ jβ(ξ, ω)

)
dξ (2)

with α the fiber attenuation and β the imaginary part of the
propagation constant. In this work, we focus on a matrix U ac-
counting only for a frequency-independent PDL accumulated
up to coordinate z. We assume lumped PDL (e.g., WSS and
EDFA) at coordinates zp : p = 0, . . . , N − 1, with z0 = 0
and N the total number of PDL blocks. Each PDL element
is followed by a flat constant-gain amplifier recovering the
average power loss of PDL1, such that the matrix U depends
on the kth device at coordinate zk ≤ z with PDL matrix Mk

by [1]:

U(z) = MpMp−1 · · ·M0, zp < z < zp+1

Mk , W†
k

[ √
1 + Γk 0

0
√

1− Γk

]
Wk (3)

where † indicates transpose-conjugate, the Wk are matrices
uniformly distributed in the set of the 2 × 2 unitary random
matrices (Haar matrices), while Γk defines the PDL ρk by
ρk , (1 + Γk) / (1− Γk). The PDL is usually expressed in
dB by 10 log10(ρk).

In the case of many identically distributed PDL elements,
the resulting PDL of the link, expressed in dB, follows a

1This is typical of terrestrial EDFAs that rely on photodiodes and feedback
algorithms that can be calibrated to control the output power (after removing
the expected, calibrated, ASE contribution).

Maxwellian distribution [6] with an average value scaling with√
N .
Matrix Wk is statistically independent of matrix Wn, with

k 6= n. Such matrices are slowly varying in time compared
to the symbol timing, hence while each polarization tributary
preserves its average power while crossing the generic PDL
element, each PDM data-block experiences a power imbalance
between polarization tributaries. In absence of noise, such an
imbalance can be removed at the receiver side by performing
linear equalization, for instance by the zero-forcing equalizer
T−1(z, ω). However, in the general case, PDL remains both
in the ASE and the NLI. Fig. 1 sketches the idea for ASE.
In this work, we assume Wk a random variable, thus time-
independent.

Fig. 1. Sketch of the effects experienced by the signal |A〉 and the ASE |w〉
along propagation. The zero-forcing equalization assumption is equivalent to a
round-trip propagation of the signal, thus returning equal to itself at reception.
However, ASE follows an incomplete round-trip, resulting in PDL.

After linear equalization, the received ASE |w̃(ω)〉 is related
to the ASE |w̃m(ω)〉 emitted by in-line amplifiers at coordinate
zm by:

|w̃(ω)〉 =

M∑
m=1

M−1
0 M−1

1 · · ·M
−1
m−1 |w̃m(ω)〉 . (4)

with M the number of amplifiers. For instance, concerning
Fig. 1 referred to an ideal source, i.e., M0 = I with I the
identity matrix, we have:

|w̃(ω)〉 = |w̃1(ω)〉+ M−1
1 |w̃2(ω)〉+ M−1

1 M−1
2 |w̃3(ω)〉

= |w̃1(ω)〉+ U(z1)−1 |w̃2(ω)〉+ U(z2)−1 |w̃3(ω)〉 . (5)

In Appendix A we show that the NLI takes the expression:

|ñ(ω)〉 = −j
∫∫ ∞
−∞

N−1∑
p=0

ηp(ω, ω1, ω2)×

〈Ã(ω + ω1 + ω2)|P(zp)|Ã(ω + ω2)〉 |Ã(ω + ω1)〉 dω1

2π

dω2

2π
(6)

with ηp the kernel of the optical fiber in the segment
[zp, zp+1], and P(zp) , U†(zp)U(zp). Please note that,
without PDL, P = I. Eq. (6) clearly shows the four-wave
mixing (FWM) process generating the NLI.

Both the NLI and the ASE accumulate linearly with the
propagation distance, both being additive under the model
assumptions. Moreover, by comparing (4) and (6), we ob-
serve that after zero-forcing equalization they both depend
on the PDL accumulated before their generation. However,
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such a dependence follows completely different relationships.
In particular, the quadratic dependence on the entries of
matrix U(zp) in the NLI is expected to induce larger random
fluctuations of the SNR compared to the linear dependence in
the ASE case.

We now introduce a discrete-time channel model relating the
transmitted/received data symbol [24]. We assume |A(t)〉 is a
wavelength division multiplex (WDM) of linearly modulated
digital signals:

|A(t)〉 =

∞∑
n=−∞

# channels∑
h=1

∑
k∈(x,y)

anhkph(t− nTh)ejΩht |k〉 (7)

where anhk is the digital symbol (e.g., quadrature amplitude
modulation, QAM) at time n, WDM channel-index h, and
polarization k; ph(t− nTh) is the supporting pulse at the nth
symbol time of duration Th and modulated at carrier frequency
Ωh. We find it useful to compact the notation by calling an
the generic (scalar) information symbol per (time, frequency,
polarization) channel use, where the vector n should be read
as:

n = [n1, n2, n3] . (8)
time frequency

polarization

We will refer to an as an atom of the source information. This
way, by adopting signal-space representation concepts, eq. (7)
in the Fourier domain can be written as:

|Ã(ω)〉 =
∑
n

an |G̃n(ω)〉 (9)

where
∑

n stands for all summations in (7) and the basis
functions are:

|G̃n(ω)〉 , p̃n2(ω − Ωn2)e−j(ω−Ωn2
)n1Tn2 |n3〉 .

We assume the detector performs demodulation, matched
filtering, zero-forcing equalization, sampling, and average
carrier phase recovery. In our framework, demodulation,
matched filtering, and sampling correspond to the inner prod-
uct
∫∞
−∞ 〈G̃i(ω)|Ã(ω)〉 dω

2π . In particular, such operation results
in ai in absence of impairments when using orthonormal
basis functions, such as root-raised cosine pulses with non-
overlapping spectrum among channels:∑

n

an

∫ ∞
−∞
〈G̃i(ω)|G̃n(ω)〉 dω

2π
= ai . (10)

By following similar steps as [24], [25], from (1) we get the
following discrete-time channel model relating the transmitted
atom ai to the received one ui:

ui = ai + wi + ni

where wi and ni are the sampled ASE and NLI, respectively:

wi =

∫ ∞
−∞
〈G̃i(ω)|w̃(ω)〉 dω

2π

ni = −j
∑

k,m,n

a∗kamanXkmni . (11)

Xkmni is a tensor weighting the four-atom mixing (FAM) at
the symbol level:

Xkmni =

N−1∑
p=0

∫∫∫ ∞
−∞

ηp(ω, ω1, ω2)

× 〈G̃k(ω + ω1 + ω2)|P(zp)|G̃m(ω + ω2)〉

× 〈G̃i(ω)|G̃n(ω + ω1)〉 dω1

2π

dω2

2π

dω
2π

=

N−1∑
p=0

Pk3m3
(zp)δi3n3

Skmni(zp) (12)

where the δ indicates Kronecker’s delta, and in the final
identity of (12) we expanded the tensor in terms of the tensor
Skmni weighting the FWM interaction at the scalar level:

Skmni(zp) ,
∫∫∫ ∞

−∞
ηp(ω, ω1, ω2)×

G̃∗k(ω+ω1+ω2)G̃m(ω+ω2)G̃∗i (ω)G̃n(ω+ω1)
dω1

2π

dω2

2π

dω
2π

(13)

where G̃n(ω) is defined in implicit form by |G̃n(ω)〉 ,
G̃n(ω) |n3〉. It is worth noting that in the special, yet relevant,
case of a homogeneous link in absence of PDL, the summation∑
p in (12) can be closed with some advantage for numerical

purposes and simplicity.
We now evaluate the covariance of ASE and NLI atoms

when acting alone.

A. ASE variance

The PDL impact on ASE has been investigated in several
papers in the literature [9], [8], [10], [1], whose main results
we now rephrase in our notation.

By definition, the variance of the ASE atom i is σ2
ASE =

E[wiw
∗
i ], with E indicating expectation. We evaluate it focus-

ing on a link with independent and identically distributed ASE
sources, hence with [26, p. 418]:

E [|w̃m(ω)〉 〈w̃p(µ)|] =
N0

2
δ(ω − µ)δmpI (14)

where the two δ indicate Dirac/Kronecker’s delta, respectively,
while N0 is the one-sided, dual-polarization, power spectral
density (PSD) of ASE per amplifier. N0 is related to the noise
figure F and the gain G by N0 = hνFG, with h Planck’s
constant and ν carrier frequency.

Let B be the noise equivalent bandwidth of the receiver. By
using (4) and the orthogonality property (10) in (14) we have
for the generic i3 ∈ (x, y):

σ2
ASE,i3 =

N0B

2

M∑
p=1

P−1
i3i3

(zp) (15)

with M the number of optical amplifiers in the link. Please
note that the matrices P(zp) and hence their elements
Pi3j3(zp) are not independent but related by the concatenation
rule of PDL [9].

With PDL, and in absence of joint FEC and equalization,
it is more interesting to deal with the SNR per polarization,
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because of the asymmetrical behavior of noise power. With
reference to the generic polarization i:

SNRiASE =
Si
σ2

ASE,i

=
SNRiASE(PDL=0)
1
M

∑M
p=1 P

−1
ii (zp)

, i ∈ (x, y) (16)

where Si is the signal power on polarization i and
SNRiASE(PDL=0) = Si/

(
N0MB

2

)
. The denominator of (16),

equal to the span-average of P−1
ii , is the random PDL loss/gain

per polarization.

B. NLI variance

The FWM process underpinning the NLI is formally iden-
tical to the scalar case, with just a different weighting tensor.
However, some symmetries cease to hold, hence the master
theorem at the heart of the EGN model (see Appendix B) must
be properly generalized by taking care of such a novelty. We
observe the following symmetries in indexing:

Xkmni = X ∗mkin, (always)
Xkmni = Xknmi, (no PDL) . (17)

The breakdown of the last symmetry induces a small modifi-
cation in the master theorem as detailed in Appendix B.

With such ingredients, after carrier phase estimation the
variance of the NLI atom n′i, σ

2
NLI = E[n′in

′∗
i ], can be found by

plugging (12) into the master theorem (28). Such a variance
can be split into the GN, fourth-order noise (FON) [24], and
higher-order noise (HON) [19]–[21] contributions:

σ2
NLI = σ2

GN + σ2
FON + σ2

HON︸ ︷︷ ︸
EGN correction

.

We now analyze the contributions for independent and iden-
tically distributed data symbols. The result depends on the
statistical cumulants of the symbols [20], which are related to
the main moments µn , E[|ak|n] by:

κ1 = µ2

κ2 = µ4 − 2µ2
2

κ3 = µ6 − 9µ4µ2 + 12µ3
2 .

1) GN term: As outlined in Appendix B, the GN contribu-
tion to the variance of polarization i3 ∈ (x, y) is:

σ2
GN = κ3

1

∑
k,m,n

Xkmni (X ∗kmni + X ∗knmi)

= κ3
1

∑
k,m,n

δi3n3

N−1∑
p,`=0

Skmni(zp)S∗kmni(z`)

×
(
Pk3m3

(zp)P
∗
k3m3

(z`) + δi3m3
Pk3m3

(zp)P
∗
k3n3

(z`)
)

where we used (12). Such a result can be easily generalized
to the spatial-covariance matrix. We introduce the 2 × 2 GN
covariance matrix between the polarizations, KGN : K (GN)

i3j3
=

E[n
′

in
′∗
j ], i1,2 = j1,2, (i3, j3) ∈ (x, y), which takes the

elegant form [23]:

KGN ,

[
var (NLI(GN)

x ) cov
(
NLI(GN)

x ,NLI(GN)

y

)
cov

(
NLI(GN)

x ,NLI(GN)

y

)
var
(
NLI(GN)

y

) ]
=

N−1∑
p,`=0

ρGN(p, `)
(

Tr
[
P(zp)P

†(z`)
]
I + P(zp)P

†(z`)
)
(18)

where ρGN(p, `) ,
∑
Skmni(zp)S∗kmni(z`), with the summa-

tions limited to the temporal and frequency indexes, is the
scalar cross-correlation between the NLI accumulated in trunk
p and trunk `, while Tr indicates the trace of a matrix. It is
worth noting that in absence of PDL we have [24], [21]:

σ2
GN(no PDL) =

N−1∑
p,`=0

ρGN(p, `) =

# channels∑
h,r,s=1

∫∫∫ ∞
−∞
|η(ω, ω1, ω2)|2

×
∣∣∣P̃ ∗i (ω − Ωi)

∣∣∣2 ∣∣∣P̃ ∗h (ω + ω1 + ω2 − Ωh)
∣∣∣2

×
∣∣∣P̃s(ω + ω2 − Ωs)

∣∣∣2 ∣∣∣P̃r(ω + ω1 − Ωr)
∣∣∣2 dω

2π

dω1

2π

dω2

2π
.

(19)

where the term η is the fiber-kernel of the entire link, see Ap-
pendix A. We also observe that, since without PDL P(zp) = I
for each p, it is KGN = 3I [20].

The right-hand side in (19) is well known in the literature,
see, e.g., [24]. The main contribution of this work is that eq.
(18) generalizes the scalar result (19) to the case with PDL. We
note that now we need to know all trunk cross-correlations,
while in the scalar case such information was not required.
However, the matrix of elements ρGN(p, `) is a Toeplitz matrix,
hence it can be calculated in a short simulation (preload),
usually of the order of seconds, for instance with the algorithm
[21]. Once ρGN is available, the PDL statistics can be evaluated
very quickly by computing the matrix in (18).

The SNR of the generic polarization i finally is [18]:

SNRiGN =
1

K (GN)
ii S2

i

, i ∈ (x, y) (20)

which, contrary to ASE, cannot be expressed in closed-form
in terms of the SNR without PDL.

2) FON terms: The FON variance of polarization i3 ∈
(x, y) is derived in Appendix B, here repeated for convenience:

σ2
FON = κ2κ1

∑
k,n

(
|Xkkni + Xknki|2 + |Xnkki|2

)
. (21)

In Appendix B we label the first absolute value in (21) by F4
and the second by Q4. With similar steps done for the GN
counterpart, we introduce the FON covariance matrix KFON

between spatial coordinates. After inserting (12) in (21) we
obtain:

KFON =

N−1∑
p,`=0

(
ρF4(p, `)F(zp, z`) + ρQ4(p, `)Q(zp, z`)

)
where ρF4(p, `) ,

∑
Skkni(zp)S∗kkni(z`) and ρQ4(p, `) ,∑

Snkki(zp)S∗nkki(z`), with the summations limited to the
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temporal and frequency indexes, are the scalar cross-
correlations between the two kinds of FON (see Appendix B)
accumulated in trunk p and trunk `. They can be evaluated
with the scalar EGN model [21], [19], [20].

Matrices F and Q are the novelty introduced by PDL. They
have the following entries:

F11 = 4P11(zp)P
∗
11(z`) + P22(zp)P

∗
22(z`) + P12(zp)P

∗
12(z`)

F12 = P22(zp)P
∗
21(z`) + P12(zp)P

∗
11(z`)

F21 = P11(zp)P
∗
12(z`) + P21(zp)P

∗
22(z`)

F22 = 4P22(zp)P
∗
22(z`) + P11(zp)P

∗
11(z`) + P21(zp)P

∗
21(z`)

while matrix Q:

Q11 = P11(zp)P
∗
11(z`) + P21(zp)P

∗
21(z`)

Q12 = Q21 = 0

Q22 = P22(zp)P
∗
22(z`) + P12(zp)P

∗
12(z`) .

Please note that in absence of PDL we have F = 5I and
Q = I, as expected [20]. It is worth noting that in dispersive
optical links the dominant FON term is usually the one related
to the F4 term, for the same reasons observed without PDL
[20].

3) HON term: The HON is a sixth order term, labeled by
Q6 in Appendix B. Such a term occurs only when all the six
atoms joining the NLI covariance are identical. We have:

σ2
HON = κ3

∑
n

|Xnnni|2 .

We introduce a HON covariance matrix KHON between spatial
coordinates obtaining:

KHON =

N−1∑
p,`=0

ρQ6(p, `)H(zp, z`)

with ρQ6 the scalar HON cross-correlation between trunk p and
trunk `, while matrix H has entries:

Hii = Pii(zp)P
∗
ii(z`), i = 1, 2

Hij = 0, i 6= j .

Please note that in absence of PDL we have H = I. In most
of the optical links, the HON term is dominated by the FON
term.

Finally, the SNR associated to the NLI is:

SNRiNLI =
1

(K (GN)
ii +K (FON)

ii +K (HON)
ii )S2

i

, i ∈ (x, y)

while the overall SNR, by neglecting ASE-NLI interaction,
follows the usual concatenation rule:

1

SNRi
=

1

SNRiASE

+
1

SNRiNLI

. (22)

III. NUMERICAL VALIDATION

We checked the proposed model against SSFM based sim-
ulations. Common parameters to all simulations are the pulse
types, i.e., root-raised cosine pulses with roll-off 0.01 sent
at 49 Gbaud, the channel spacing, 50 GHz, and the optical
fibers, i.e., single-mode fibers (SMF) having length 100 km,

dispersion D = 17 ps/nm/km, attenuation α = 0.2 dB/km,
nonlinear coefficient γ = 1.26 1/W/km without PMD. The
channel under test (CUT) is in any case the central channel
of the WDM.

Since the inclusion of PDL in the NLI is the main novelty
of this work, in a first test we focused on the above system
without ASE. The WDM was made of 11×50 GHz channels,
PDM-modulated with lasers having state of polarization (SOP)
randomly chosen on the Poincaré sphere. We used Gaussian
distributed symbols, i.e., the capacity-achieving modulation
format for the additive white Gaussian noise (AWGN) channel.
In this case, the EGN model degenerates into the GN model
[23].

PDL was included at each amplifier with a value of
0.5 dB. The residual dispersion per span was either 30
ps/nm (dispersion-managed, DM30) or absent (dispersion-
uncompensated, DU). In any case, full dispersion compensa-
tion was implemented at the receiver input after propagation
over 10 or 20 spans.

The link was simulated by the SSFM and compared with
the prediction of the PDL-EGN model. In the PDL-EGN
matched filtering, zero-forcing PDL equalization and carrier
phase estimator (CPE) are implicit in the model. On the other
hand, in the SSFM case we implemented matched filtering
followed by a 1-tap zero-forcing equalizer, and by a CPE
recovering the average phase induced by the fibers.

We estimated the PDF of the received SNR by Monte Carlo
simulations over the PDL seeds, both with SSFM runs and
with the PDL-EGN model. In the SSFM case, we used 1000
different random PDL realizations. For each realization, we
varied the random state of polarization of the channel lasers
as well. The SSFM symmetric-step was chosen according
to the local-error criterion with a first step accumulating a
FWM phase of 20 rad [27]. The number of symbols was
65536, sufficiently high to capture the largest walk-off among
channels and to have a negligible error from the Monte Carlo
estimation [15]. In the PDL-EGN, besides the Monte Carlo
iterations over the PDL seeds, we numerically solved the
frequency integrals by another Monte Carlo sampling.
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Fig. 2. Estimate of the PDF of the SNR per polarization by SSFM
simulations (triangles for DM30, circles for DU) and the corresponding
(almost overlapped) PDL-GN PDFs (solid lines).

Fig. 2 depicts the estimate of the PDF of the SNR per
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polarization by SSFM (symbols) and the PDL-GN model (eq.
(20), lines). We investigated two links lengths, 10 and 20
spans. In order to compare the two links, we plotted the PDFs
versus the SNR offset from its mean. For each link, the mean
SNR of SSFM simulations was within 0.1 dB of that from the
PDL-GN model.

We observe an excellent fit at both distances, thus con-
firming the validity of the proposed model. For the sake of
completeness, we also repeated the DU curve at 10 spans with
a relevant fiber PMD of 0.32 ps/

√
km [4]. Even if not reported

here to avoid confusion, the curve was slightly narrower but
almost overlapped to the one without PMD, thus suggesting
that the SOP decorrelation induced by fiber PMD is masked by
the decorrelation induced by channel walk-off in such a link.
A similar result has also been observed in the experiment of
[13]. In particular, we note that dispersion management does
not affect the PDF shape, while it strongly impacts the average
value because of strongly different correlations of the NLI
among spans.
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Fig. 3. PDF estimate of the SNR per polarization by the PDL-EGN (solid line)
and SSFM (symbols). 32× 100 km SMF link with star-8QAM- modulation
format, with different PDL between EDFA and ROADM.

In a second test, we investigated a more realistic distribution
of PDL along the optical link. We thus focused on a 3200
km network scenario where the CUT, besides being added
and dropped by ROADMs, crosses ROADMs placed every 4
spans. Within each ROADM working in bypass mode, two
WSS were crossed. The PDL was 0.1 dB within EDFAs and
0.4 dB within the WSS, respectively [16]. Fig. 4 sketches the
link.

The modulation format was PDM-star 8QAM, for a total
of 21 channels. In this setup we included ASE, with a noise
figure of 5 dB per amplifier. It is worth noting that with
ideal equalization the last drop impacts equally ASE, NLI,
and signal, hence with no implications on the statistics.

The PDF estimated by the PDL-EGN and by SSFM at
power 1 dBm per channel maximizing the SNR is reported
in Fig. 3. Again, we observe a good match between the two
models. Even if not shown in the figure, we observed a bias
of 0.1 dB by the PDL-EGN model.

Having tested the validity of the model, we applied it to
estimate the outage probability, here defined as the proba-
bility that the SNR falls below the threshold of 10.56 dB,

Fig. 4. Network under investigation. 3200 km.

corresponding to a Q-factor of 6.5 dB. At such a threshold
the achievable information rate of a symbol-by-symbol star-
8QAM detector in AWGN is 2.84 bits/symbol. Since the loss
to the nominal 3 bits/symbol carried out by the modulation
format is 0.16 bits/symbol, the transmission is expected to be
feasible with realistic forward-error correcting (FEC) codes.
Moreover, since the Shannon capacity at such threshold is
3.63 bits/symbol, the modulation format is a good candidate
for transmission over 3200 km.
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Fig. 5. Top: mean SNR per polarization vs. power. Bottom: outage probability
@ Q-factor = 6.5 dB. All curves with the proposed model with only ASE
or NLI (dashed lines) or with both ASE and NLI (solid lines). Star-8QAM
32×100 km SMF link with different PDL between EDFA and ROADM, see
text.

Fig. 5(bottom) reports the outage probability versus
launched power per channel, and for reference Fig. 5(top) also
shows the mean SNR per polarization versus the same power
for the sake of comparison. Several interesting observations
can be drawn from Fig. 5. First, we observe that the minimum
outage probability is 3·10−4, a non-negligible value indicating
the importance of including PDL in link design. Second, the
best power for the mean SNR does not coincide with the best
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power for the outage probability, with a gap of 0.4 dB. This
is strictly related to the nonlinear relation between the outage
probability and the SNR. Third, it is interesting to compare the
slope of the asymptotes in the ASE-dominated regime (linear
regime) and the NLI-dominated regime (nonlinear regime). In
the mean SNR curve, we observe a slope of +1 dB/dB in the
linear regime and -2 dB/dB in the nonlinear regime. A factor
2 in absolute terms between the two slopes is well known
and related to the scaling properties of the ASE and the NLI
variance [28]. Quite surprisingly, we still observe a factor 2
between the slopes of the asymptotes on the outage probability
graphs. Such an observation can be very useful for quickly
scaling the outage probability with power.

In Fig. 6 we compare the individual contributions of ASE
and NLI to SNR statistics. We set the power to 2 dBm,
i.e., where the two effects yield the same average variance.
Symbols indicate SSFM simulations. We observe that, in this
setup, the PDF of the ASE-only case is slightly larger than
that of the NLI-only case, although the average values are
similar. Most important, the ASE-only and the NLI-only PDFs
have different shapes, hence the NLI cannot be treated as an
equivalent extra-ASE distributed along the link.
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Fig. 6. Individual contribution of ASE and NLI to the PDF by using the
proposed PDL-EGN model (solid line) and SSFM simulations (circles: ASE,
triangles: NLI). Power 2 dBm.

It is worth noting that if instead of plotting the per-
polarization SNR PDF, we plot the PDF of the overall PDM
SNR, as usually done in the literature, we obtain a sharply
different behavior, as depicted in Fig. 7 with the PDL-
EGN model. The PDM SNR, or simply SNR, is defined as
SNR = (Sx + Sy)/(σ2

x + σ2
y), with σ2

x,y the variance of the
noise under investigation. The reason for the differences is
related to the antithetic impact of PDL on the x and y ASE
variances, which is not manifested by SPM- and XPM-like
contributions that operate through a common scalar nonlinear
phase on both polarizations [15]. Hence, treating NLI as much
as ASE, i.e., as an AWGN term that adds incoherently along
the link, is inappropriate in the presence of PDL.

It is interesting to compare the computational times of the
PDL-EGN model and the SSFM. As a reference, an SSFM
simulation, with step set-up as in [27], took 1 day to run
125 PDL seeds on a cluster using INTEL XEON E5- 2683v4
2.1GHz 32 cores central processing units (CPU) with 128 GB

of RAM and NVIDIA Tesla P100 graphics processing unit
(GPU). The same seeds have been simulated in a fraction
of second with the PDL-EGN, plus an overhead for the
computation of the span cross-correlations of the order of
seconds for the PDL-GN and few minutes for the PDL-EGN.
Not surprisingly, with the EGN we were able to simulate 106

PDL seeds, while with SSFM only 103.
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Fig. 7. Estimate of the PDF of the PDM SNR usually adopted in the literature
by the proposed PDL-EGN model. Same setup of Fig. 6.

As a final comparison, we tested the impact of the mod-
ulation format. The link is the same as Fig. 6 with both
ASE and NLI. The resulting PDF is shown in Fig. 8 for
different modulation formats. We observe that the GN model
underestimates the average value of the other modulation
formats [18], with a mismatch up to 0.77 dB w.r.t. the QPSK
curve. However, the differences between PDF shapes are
smaller. For instance, the lowest SNR that we estimated in
the GN case is 0.65 dB smaller than the average value, while
for QPSK, by using the same random seeds, we estimated a
smaller value by 0.8 dB.

10 10.5 11 11.5

SNR  [dB]

10-4

10-2

100

P
D

F
 e

s
ti

m
a

te

16QAM

8QAM star

QPSK

GN

Fig. 8. Same setup of Fig. 6 with ASE and NLI, for different modulation
formats.

IV. CONCLUSIONS

We extended the EGN model to include PDL. The extension
forced us to rework the whole EGN theory, yielding a formally
compact master equation based on tensors able to span the
time, frequency and polarization axes. With the new model,
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it is possible to estimate the statistics of the SNR in the
nonlinear regime by exploring very rare events. Our results
show that the NLI interplay with PDL follows a different
behavior than the one experienced by ASE and thus needs
a proper description. Besides this aspect, probably the main
advantage of the novel model relies on its extremely fast
computational time compared to standard algorithms, such
as the SSFM. For instance, we investigated 1000 different
optical links with random PDL in a fraction of second after
a pre-processing of the order of seconds to minutes. Such
times are inaccessible to SSFM simulations. The model can
now be used to include a frequency-independent PDL in the
design of optical links without allocating empirical margins as
usually done. This way, it is possible to perform the design
optimizing the system outage probability instead of the average
performance.

APPENDIX A
NONLINEAR INTERFERENCE

In the absence of polarization-mode dispersion, the optical
propagation within an optical fiber is well described by the
Manakov equation. A first-order perturbative solution of the
Manakov equation is [24], [18], [21], [20]:

|A(z, t)〉 ' eLz |A(0, t)〉+

∫ z

0

eL(z−ξ)N
(
eLξ |A(0, t)〉

)
dξ .

(23)
where the operator L accounts for linear effects while N for
nonlinear effects, respectively. L is best defined in the fre-
quency domain by its Fourier transform F

{
eLz
}
, eϑ(z,ω),

with ϑ accounting for attenuation and dispersion, see (2). N
is best described in the time domain t, taking the following
expression in absence of the Raman effect:

N , −jγ 8

9
〈A(z, t)|A(z, t)〉 |A(z, t)〉 .

The integral in (23) defines the NLI whose physical inter-
pretation is simple: the NLI is additive along distance, and its
generic contribution generated at coordinate ξ depends on the
unperturbed signal up to that coordinate and experiences only
linear effects up to the end [20]. If we factor out eLz and apply
zero-forcing equalization, i.e., concatenation with the inverse
e−Lz , the received signal |AR〉 is:

|AR〉 ' |A(0, t)〉+

∫ z

0

e−LξN
(
eLξ |A(0, t)〉

)
dξ . (24)

which further suggests interpreting the NLI as an infinite
summation of echoes.

The Fourier transform |ñ(ω)〉 of the NLI in (24) is:

|ñ(ω)〉 = −j
∫∫ ∞
−∞

η(ω, ω1, ω2)×

〈Ã(ω + ω1 + ω2)|Ã(ω + ω2)〉 |Ã(ω + ω1)〉 dω1

2π

dω2

2π

with the kernel of the optical link in (0, z) given by:

η(ω, ω1, ω2) ,

8

9
γ

∫ z

0

eϑ(ξ,ω+ω1)+ϑ(ξ,ω+ω2)+ϑ∗(ξ,ω+ω1+ω2)−ϑ(ξ,ω)dξ . (25)

It is worth noting that for optical fibers with constant param-
eters the integral in ξ can be given in closed form [18].

Inserting a frequency-independent PDL in the model cor-
responds to applying the substitutions eLξ → eLξU(z) and
e−Lξ → e−LξU−1(z), with U accounting for the cumulative
PDL up to coordinate z, as per (2). With lumped PDL the
matrix U is a staircase function in z, hence, it is convenient
breaking the integral in z into a summation of integrals
between consecutive PDL elements, i.e.,

∫ z
0
→

∑
p

∫ zp
zp−1

.
With such substitutions we finally get:

|ñ(ω)〉 = −j
∫∫ ∞
−∞

N−1∑
p=0

ηp(ω, ω1, ω2)×

〈Ã(ω + ω1 + ω2)|P(zp)|Ã(ω + ω2)〉 |Ã(ω + ω1)〉 dω1

2π

dω2

2π
(26)

where P(zp) , U†(zp)U(zp) and ηp can be evaluated as per
(25) but integrated over (zp, zp+1). If the source does not have
PDL, we simply set U(z0) = I at z0 = 0.

APPENDIX B
MASTER THEOREM

The key ingredient to perform a statistical analysis is the
variance of the NLI atom, i.e., E[|ni|2]:

E [nin
∗
i ] =

∑
E
[
a∗kamanala

∗
j a
∗
o

]
XkmniX ∗ljoi .

However, part of the NLI is compensated by digital signal-
processing at the receiver. At the simplest level, a basic
CPE removes the average phase ϕ, which, in the perturbative
framework, corresponds to work with the following NLI:

n′i = ni + jϕai . (27)

The real target is thus E[|n′i|2], which is given by the follow-
ing:

Theorem 1: Assume all the ak to be complex zero-mean
independent random variables with n-fold rotational symmetry
and n≥4. Then:

E [n′in
′∗
i ] =

∑
n

κ
(n)
3 |Xnnni|2

+
∑
k,n

κ
(k)
2 κ

(n)
1

(
|Xkkni + Xknki|2 + |Xnkki|2

)
+
∑

k,m,n

κ
(k)
1 κ

(n)
1 κ

(m)
1 Xkmni (X ∗kmni + X ∗knmi) (28)

with κ(k)
n the n-th order cumulant of data symbols at channel

use at time k1, frequency k2, and polarization k3.
Such a theorem is a generalization of the one provided in

[20]. It is worth noting that the main difference is the broken
degeneracy between the inner indexes of the tensor. For in-
stance, the last term X ∗kmni+X ∗knmi is equal to 2X ∗kmni in the
scalar case according to (17). The basic intuition behind (28) is
the following. Since the Kerr nonlinearity is cubic, the product
nin
∗
i depends on the product of six atoms. Only combinations

with an equal number of conjugate/non-conjugate pairs are
non-zero, as depicted in Fig. 9. Each combination is weighted
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by the corresponding symbol-cumulant [20]. Please note that
terms labeled with - in Fig. 9 correspond to the terms removed
by the CPE in (27) [22].

The indexing of the valid combinations yields the terms in
(28). Hence, for instance, the PDL-GN model reduces to the
last triple summation in (28).

k∗ m n l j∗ o∗

• • • • • • Q6
• • ◦ • • ◦ F4
• • ◦ • ◦ • F4
• ◦ • • • ◦ F4
• ◦ • • ◦ • F4
• • • ◦ • ◦ -
• • • ◦ ◦ • -
◦ • ◦ • • • -
◦ ◦ • • • • -
◦ • • ◦ • • Q4
• • ◦ M M ◦ -
• • ◦ M ◦ M -
• ◦ • M M ◦ -
• ◦ • M ◦ M -
• M ◦ • M ◦ GN
• M ◦ • ◦ M GN

Fig. 9. Valid combinations yielding non-zero E
[
a∗kamanala

∗
j a

∗
o

]
. For in-

stance, the second row indicates the combination (k=m= l= j) 6= (n=o).
The labels indicate sixth-order noise (Q6), two types of fourth-order noise
(F4 and Q4) and second-order noise, usually called GN contribution. A (-)
indicates a phase contribution that is removed by the CPE.

Although the master theorem reduces the number of sum-
mations, the final result (28) still depends on an infinite
summation over the discrete-time index. However, in the
special case of sinc pulses, such a summation can be dropped,
with significant simplifications, as already observed in [24],
[21], thanks to the Poisson summation formula:

∞∑
k=−∞

ejkωT =
2π

T

∞∑
k=−∞

δ

(
ω − 2πk

T

)
(29)

and the finite bandwidth of the pulses that can interact with
only one Dirac’s delta in such a summation. Instead of entering
the fine mathematical details of the proof, the next theorem
provides a short-rule for the simplifications:

Theorem 2: With sinc pulses ph(t) = sinc(t/T ), ∀h, all
summations in (28) over temporal indexes can be dropped.
For each drop, an integral in the corresponding tensor-product
XkmniX ∗ljoi can be dropped as well. The dropped integral can
be identified by solving a linear system obtained by equating
the arguments ψ of the |G̃k(ψ)〉 involved in the product owing
to the same atom.

Such a result is best explained by an example. Let us focus
on the particular GN-term G = XkmniX ∗kmni of (28) in the
scalar case. This term can be explicitly expanded following

(13) as:

G =

N−1∑
t,r=0

∫∫∫∫∫∫ ∞
−∞

ηt(ω, ω1, ω2)η∗r (µ, µ1, µ2)

× G̃∗k(ω + ω1 + ω2)G̃m(ω + ω2)G̃∗i (ω)G̃n(ω + ω1)

× G̃k(µ+ µ1 + µ2)G̃∗m(µ+ µ2)G̃i(µ)G̃∗n(µ+ µ1)

dω1

2π

dω2

2π

dω
2π

dµ1

2π

dµ2

2π

dµ
2π

.

Equating the arguments of equal atoms yields the following
linear system:

k → ω + ω1 + ω2 = µ1 + µ2 + µ

m → ω + ω2 = µ+ µ2

n → ω + ω1 = µ+ µ1

whose solution is ω1 = µ1, ω2 = µ2, ω = µ. We can thus
drop three integrals, for instance the ones with (µ, µ1, µ2), by
using the previous substitution.
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