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The relaxed energy of fractional Sobolev maps
with values into the circle

Domenico Mucci

Abstract. We deal with the weak sequential density of smooth maps in the fractional Sobolev classes of W s,p

maps in high dimension domains and with values into the circle. When s is lower than one, using interpolation

theory we introduce a natural energy in terms of optimal extensions on suitable weighted Sobolev spaces. The

relaxation problem is then discussed in terms of Cartesian currents. When sp = 1, the energy gap in the relaxed

functional is always finite and is given by the minimal connection of the singularities times an energy weight,

obtained through a minimum problem for one dimensional W 1/p,p maps with degree one. When sp > 1, instead,

concentration on codimension one sets needs unbounded energy. We finally treat the case where s is greater than

one, obtaining an almost complete picture.

Keywords: fractional Sobolev spaces; weighted Sobolev spaces; relaxation; singularities; minimal con-
nections; Cartesian currents.

AMS classification codes: 49Q20; 46E35; 28A75.

Introduction

In this paper, we deal with the weak sequential density property of smooth maps in the fractional Sobolev
class W s,p(Bn,S1), where Bn is the unit ball in Rn, S1 the unit circle in R2, s > 0, and 1 < p <∞.

In case 0 < s < 1, the fractional Sobolev space W s,p(Bn) is given by the Lp-functions u : Bn → R
with finite Gagliardo seminorm

|u|ps,p :=

∫
Bn

∫
Bn

|u(x)− u(y)|p

|x− y|n+sp
dx dy .

It is Banach space when equipped with the norm ‖u‖s,p := ‖u‖Lp + |u|s,p. When s > 1 is not integer,
denoting by m and σ the integer and fractional part of s, respectively, the space W s,p(Bn) is given
by the Sobolev functions u ∈ Wm,p(Bn) such that the Gagliardo seminorm |Dmu|σ,p is finite, where
Dmu is the tensor of the m-th order weak derivatives of u. It is again a Banach space when normed
by ‖u‖s,p := ‖u‖Wm,p + |Dmu|σ,p. Finally, W s,p(Bn,R2) is the space of functions u : Bn → R2 with
components in W s,p(Bn).

Denoting by
S1 := {y ∈ R2 : |y| = 1}

the unit circle centered at the origin in the target space, we thus let

W s,p(Bn,S1) := {u ∈W s,p(Bn,R2) : |u(x)| = 1 for a.e. x ∈ Bn} .

The problem of strong W s,p-density of smooth maps u : B̄n → S1 in W s,p(Bn,S1) is completely
settled:

Theorem 0.1 The class C∞(B̄n,S1) is dense in W s,p(Bn,S1) in low dimension n = 1 for any s and p,
and, when n ≥ 2, if and only if sp < 1 or sp ≥ 2.

When sp < 1, the statement readily follows from the existence of a lifting in W s,p(Bn), see [5], through
a density argument, see [6].

When s ≥ 1 and sp ≥ 2, a similar argument based on existence of suitable liftings, see [11], and on a
convolution argument, see [10], applies.
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When sp > n, strong density of smooth maps follows from the embedding of W s,p(Bn) in the class
C0(Bn), and when sp = n (or in low dimension n = 1 for any s and p) from the embedding in the class
VMO of functions with vanishing mean oscillation. In these cases, in fact, one may apply an argument
that goes back to [29] and is based on an approximation by convolutions with a smooth kernel, followed
by a projection onto S1. Therefore, such an argument works for more general target manifolds Y through
the Nash embedding theorem.

When 0 < s < 1 and 2 ≤ sp < n, Theorem 0.1 is proved by Brezis-Mironescu in [12], and it
is essentially based on two facts. Firstly, the authors introduce the class Rs,p(Bn,S1) of maps u in
W s,p(Bn,S1) which are smooth (continuous) outside a singular set Σu given by a finite union of (n −
[sp] − 1)-manifolds of Bn, where [sp] denotes the integer part of sp. For example, Σu is a finite set of
points when n = 2 and sp = 1. Extending results that go back to [4, 3] for Sobolev maps in W 1,p(Bn,Y),
they in fact prove:

Theorem 0.2 Every map in W s,p(Bn,S1) is the strong limit of a sequence in Rs,p(Bn,S1).

Secondly, since the high order homotopy groups of S1 are all trivial, πi(S1) ' 0 for i ≥ 2 integer, they
are able to remove the singular set Σu of maps in Rs,p, when [sp] ≥ 2.

The first homotopy group π1(S1) ' Z being non-trivial, counterexamples to the strong density of
smooth maps exist when n ≥ 2 and the integer part of sp is equal to one.

Example 0.3 For n = 2, the map u(x) = x/|x| belongs to W s,p(B2,S1) if 1 ≤ sp < 2, and u has degree
one around the origin. On the other hand, smooth maps in C∞(B2,S1) have degree zero around the
origin, and the degree is continuous w.r.t. the strong convergence in W s,p, when 1 ≤ sp < 2. Therefore,
the map u cannot be the strong W s,p limit of a sequence {uh} ⊂ C∞(B2,S1). If n ≥ 3, a similar
counterexample is given by the map u(x) = (x1, x2)/|(x1, x2)|, see e.g. [12].

Denoting by W s,p
S (Bn,S1) the strong closure of C∞(Bn,S1) in the W s,p-norm, and assuming n ≥ 2,

we thus have:
W s,p
S (Bn,S1) = W s,p(Bn,S1) ⇐⇒ sp < 1 or sp ≥ 2 (0.1)

whereas
W s,p
S (Bn,S1) (W s,p(Bn,S1) ⇐⇒ 1 ≤ sp < 2 and n ≥ 2 .

However, in [13] it is defined a distributional Jacobian Ju of maps u ∈W s,p(Bn,S1) that characterizes
the obstruction to the strong approximation by smooth maps: namely, the strong closure of C∞(Bn,S1)
in the W s,p-norm agrees with the class of maps u ∈W s,p(Bn,S1) such that Ju = 0.

In this paper, we deal with the problem of weak sequential density of smooth maps in any dimension
n ≥ 2. More precisely, when strong density fails to hold, we ask if for every u ∈W s,p(Bn,S1) one can find
a sequence {uh} ⊂ C∞(Bn,S1) strongly converging to u in Lp(Bn,R2) and such that suph |uh|s,p <∞.

The answer is negative in case 1 < sp < 2, the counterexample being given by maps u ∈W s,p(Bn,S1)
with non-zero Jacobian Ju, see [8].

In the relevant case sp = 1, the latter problem is completely settled for s = 1/2 and p = 2, i.e., in the
class W 1/2,2(Bn,S1). In that framework, in fact, using that functions in W 1/2,2(Bn) identify the traces
of the Sobolev space W 1,2(Bn × (0,+∞)), the distributional Jacobian Ju was defined by Hang-Lin [25],
and actually in any dimension n ≥ 2 it can be written by means of homological arguments, see [23]. For
maps in W 1/2,2(Bn,S1), in fact, the explicit formula for the relaxed energy was obtained in [23], using
tools from Geometric Measure Theory.

In this paper, we solve the problem in case 0 < s < 1 and p > 1. To this purpose, we introduce on
the class W s,p(Bn,S1) a natural energy u 7→ Es,p(u), see (0.5) below. When s = 1/2 and p = 2, a case
already considered in [18, 23], the energy E1/2,2(u) is given by the Dirichlet integral

∫
|DU |2 dx dt of the

harmonic extension U : Bn × (0, 1)→ R2 of u. We then analyze the corresponding relaxed energy (0.6).
Some more notation is in order.

0.1 The energy

For γ ∈ R and p > 1, we denote by W 1,p
γ (Bn×(0,+∞)) the weighted Sobolev space given by the functions

U ∈ Lp(Bn× (0,+∞)) which are approximately differentiable a.e. and with approximate gradient DU a

2



measurable function satisfying∫
Ω×(0,+∞)

tγ |DU(x, t)|p dx dt <∞ , Ω = Bn . (0.2)

Assume now 0 < s < 1. By interpolation theory, see e.g. [27], it turns out that the fractional Sobolev
space W s,p(Bn) agrees with the Besov space Bsp,p(B

n), and hence with the class of traces u(x) = U(x, 0)
on t = 0 of functions U in W 1,p

γ (Bn × (0,+∞)), where

γ = γ(s, p) := p(1− s)− 1 , p > 1 , 0 < s < 1 . (0.3)

Note that when s = 1− 1/p, one has γ = 0 and W 1−1/p,p(Bn) agrees with the class of traces on t = 0
of the Sobolev space W 1,p(Bn × (0,+∞)).

A particular case of our interest is when sp = 1, so that γ = p − 2. In fact, since the Gagliardo
seminorm becomes

|u|p1/p,p =

∫
Bn

∫
Bn

|u(x)− u(y)|p

|x− y|n+1
dx dy ,

it turns out that in any dimension n, the class of bounded functions in W 1/p,p(Bn) is continuously
embedded in W 1/q,q(Bn), for each 1 < p < q. Moreover, in low dimension n = 1, when Ω = R and
sp = 1, the energy (0.2) is scale invariant for any p > 1.

Denote by W 1,p
γ (Cn+1,R2), where Cn+1 the (n+ 1)-dimensional cylinder

Cn+1 := Bn × (0, 1) ,

the class of functions U = (U1, U2) : Cn+1 → R2 with components U j in W 1,p
γ (Cn+1), and consider the

energy

Epγ(s,p)(U) :=

∫
Cn+1

tγ(s,p)|DU(x, t)|p dx dt , γ(s, p) := p(1− s)− 1 . (0.4)

For any bounded function u ∈W s,p(Bn,R2) ∩ L∞(Bn,R2), we let

U := Ext(u)

denote a bounded function that minimizes the energy Epγ(s,p)(U) among all U ∈ W 1,p
γ(s,p)(C

n+1,R2) ∩
L∞(Cn+1,R2) such that U(x, 0) = u(x) on Bn × {0} in the sense of the traces.

Such a minimizer exists and is smooth inside Cn+1, by the convexity of the functional U 7→ Epγ(s,p)(U).

Moreover, if u ∈W s,p(Bn,S1), by a projection argument we may assume Ext(u) : Cn+1 → D2, where

D2 := {y ∈ R2 : |y| ≤ 1}

is the unit disk in the target space. In addition, see [27], if {uh} is a sequence in W s,p(Bn,R2) ∩
L∞(Bn,R2) converging a.e. in Bn to a function u ∈ W s,p(Bn,R2) ∩ L∞(Bn,R2), it turns out that the
strong convergence uh → u in W s,p(Bn,R2) is equivalent to the convergence uh → u in Lp(Bn,R2) joined
with the energy convergence

lim
h→∞

Epγ(s,p)(Ext(uh)) = Epγ(s,p)(Ext(u)) .

When 0 < s < 1, it is then natural to introduce on the class of maps u ∈W s,p(Bn,S1) the W s,p-energy

Es,p(u) := Epγ(s,p)(U) , U = Extu : Cn+1 → D2 (0.5)

where Epγ(s,p)(U) is given by (0.4). In the same spirit as for Lebesgue’s relaxed area, we correspondingly

introduce the relaxed energy

Ẽs,p(u) := inf
{

lim inf
h→∞

Es,p(uh) | {uh} ⊂ C∞(Bn,S1),

uh → u strongly in Lp(Bn,R2)
}
.

(0.6)

In fact, a map u ∈ W s,p(Bn,S1) belong to the W s,p weak sequential closure of smooth maps in

C∞(Bn,S1) if and only if it has finite relaxed energy, Ẽs,p(u) <∞.
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0.2 The current of the singularities

Assume now sp = 1. In that case, we rewrite the distributional Jacobian Ju from [13], that carries the
relevant information on the singularities of u, in terms of an (n−2)-dimensional current P(u) ∈ Dn−2(Bn),
see Definition 3.1.

In dimension n = 2, the distribution P(u) agrees with the extension of the distributional determinant
T : W 1/p,p(B2,S1)→W 1,∞(B2,R)∗ by Bourgain-Brezis-Mironescu [7].

We show that for every u in W 1/p,p(Bn,S1), the current P(u) is an integral flat chain, i.e., that there
exists an integer multiplicity (say i.m.) rectifiable current L ∈ Rn−1(Bn) satisfying (∂L) Bn = P(u).

Such a property holds true when p = 2 as a consequence of the coarea formula first considered by
Almgren-Browder-Lieb [1], see [23]. In fact, extensions of maps in W 1/2,2(Bn,S1) belong to the Sobolev
space W 1,2(Cn+1,R2).

Therefore, when 1 < p < 2, by the continuous embedding of the classW 1/p,p(Bn,S1) intoW 1/2,2(Bn,S1),
the integral flat chain P(u) is automatically defined for all maps u ∈W 1/p,p(Bn,S1).

If p > 2, there exist maps u ∈ W 1/p,p(Bn,S1) such that ‖u‖1/2,2 = ∞, and hence the latter direct
argument fails to hold. Notwithstanding, we are able to treat the case p > 2 by means of a new coarea
formula, whose proof is based on some relevant estimates due to Bourgain-Brezis-Mironescu [7].

0.3 The energy gap

On account of property (0.1), it turns out that the energy gap

Gs,p(u) := Ẽs,p(u)− Es,p(u) (0.7)

can be non-zero only if 1 ≤ sp < 2 and n ≥ 2.
In this paper, we show that the energy gap G1/p,p(u) in (0.7) is always finite in the classW 1/p,p(Bn,S1),

for any p > 1. More precisely, for any u ∈W 1/p,p(Bn,S1) we have:

G1/p,p(u) = 0 ⇐⇒ P(u) = 0 .

In addition, when P(u) 6= 0, we obtain the explicit formula:

G1/p,p(u) = Ep ·mi,Bn(P(u)) <∞ ∀u ∈W 1/p,p(Bn,S1) , ∀n ≥ 2 , p > 1 . (0.8)

In equation (0.8), the term mi,Bn(P(u)) denotes the minimal integral connection of the singularity
P(u), i.e., the mass M(L) of the minimal i.m. rectifiable current L ∈ Rn−1(Bn) satisfying (∂L) Bn =
P(u).

If e.g. n = 2 and u ∈ R1/p,p(B
2,S1), letting Σu = {x1, . . . , xm} and denoting by di ∈ Z the degree

of u at xi, the minimal connection of the singular set Σu is the mass-minimizing current L ∈ R1(B2)
satisfying (∂L) B2 =

∑m
i=1 di · δxi , where δx is the unit Dirac mass at the point x ∈ B2.

Moreover, the positive constant Ep in formula (0.8) is given by the energy infimum of degree one maps
in W 1/p,p(R,S1). When p = 2, in [23, 28] we in fact obtained that E2 = 2π, that is equal to the Dirichlet
energy

∫
|DU |2 of the harmonic map from the half-space to R2 whose trace agrees with the inverse of

the stereographic map from S1 onto R, see Appendix A.
Note that formula (0.8) implies that every map in W 1/p,p(Bn,S1) belongs to the W 1/p,p-weak sequential

closure of smooth maps in C∞(Bn,S1).

0.4 Other results and open questions

In case sp > 1, the cited results from [13] yield the existence of maps u ∈ W s,p(Bn,S1) with non-zero
distributional Jacobian Ju and for which Gs,p(u) = +∞.

When n ≥ 2, 0 < s < 1, p > 1, and 1 < sp < 2, in this paper we obtain:

Ẽs,p(u) =

{
Es,p(u) if P(u) = 0
+∞ if P(u) 6= 0

∀u ∈W s,p(Bn,S1) . (0.9)
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Therefore, differently from the case sp = 1, where energy concentration only occurs on codimension
one sets and with a finite amount of energy, when sp > 1, in presence of non-trivial singularities the
relaxed energy blows up.

In particular, when n ≥ 2, 0 < s < 1, and p > 1, with sp ≥ 1, by our results we conclude that:

W s,p
S (Bn,S1) = {u ∈W s,p(Bn,S1) | P(u) = 0} . (0.10)

It thus remains to consider the ranges of s and p for which the strong density of smooth maps fails
to hold, see Theorem 0.1, but s > 1. In this case, we have a partial result: if 1 < p < 2, 1 < s < 2,
1 < sp < 2, n ≥ 2, and u ∈ W s,p(Bn,S1) is such that there exists a sequence {uh} ⊂ C∞(Bn,S1)
converging a.e. to u and with equibounded W s,p-norms, suph ‖uh‖s,p <∞, then one has P(u) = 0.

We expect that the converse implication holds. However, when s > 1, our definition of energy (0.5)
does not make sense.

Coming back to [27], we recall that when 1 < s < 2, the class W s,p(Bn) is given by the traces on
t = 0 of Sobolev functions U in W 1,p(Bn×(0,+∞)) with approximate second gradient D2U a measurable
function satisfying ∫

Bn×(0,+∞)

tγ |D2U(x, t)|p dx dt <∞ , γ = p(2− s)− 1 .

Similarly as before, one may thus introduce on maps u ∈W s,p(Bn,S1) the energy Es,p(u) as e.g.

Es,p(u) :=

∫
Cn+1

tp(2−s)−1|D2U(x, t)|p dx dt <∞ , U = Ext(u) . (0.11)

A positive answer to the following Open Question would imply the validity of formula (0.10) for any
p > 1 and s > 0, with 1 ≤ sp < 2.

Open Question: Let 1 < p < 2, 1 < sp < 2, 1 < s < 2, and n ≥ 2. If u ∈ W s,p(Bn,S1) satisfies
condition P(u) = 0, then there exists a sequence {uh} ⊂ C∞(Bn,S1) converging to u a.e. and such that
Es,p(uh) → Es,p(u), where the energy is given by (0.11) and Ext(u) is an energy minimizer among the
smooth maps U from Cn+1 to D2 with trace on t = 0 equal to u.

For the sake of brevity, the case of maps with prescribed boundary values is not treated in this paper:
it can be readily discussed by making straightforward modifications as e.g. in [23]. Finally, in the case
s = 1, the relaxation problem of Sobolev maps in W 1,p(Bn,S1) is treated in [24].

0.5 Content of the paper

In Sec. 1, we use some estimates taken from [7] to find a suitable extension of maps in W 1/p,p(Bn,S1)
with finite mapping area, Proposition 1.1, which yields to the validity of a suitable coarea formula,
Theorem 1.2.

In Sec. 2, we recall some notation from Geometric Measure Theory and introduce the class of Cartesian
currents cart1/p,p(Bn×S1), for which we establish a closure-compactness property, Theorem 2.5. Roughly
speaking, a current T in cart1/p,p(Bn × S1) takes the form:

T = Gu + L× [[ S1 ]] (0.12)

where Gu is the current carried by the graph of some map u ∈ W 1/p,p(Bn,S1) and L ∈ Rn−1(Bn) is
an i.m. rectifiable current in such a way that ∂T = 0 on compactly supported smooth (n − 1)-forms in
Bn × S1. In low dimension n = 1, we then discuss a notion of degree in our context, by extending the
definition given in [7] for maps g ∈W 1/p,p(S1,S1).

In Sec. 3, we introduce the (n− 2)-current of the singularities P(u), showing that it is an integral flat
chain, Proposition 3.7. For this purpose, we take advantage of Theorem 0.2 by Brezis-Mironescu [12].
Note that when n ≥ 2, for a current T in cart1/p,p(Bn × S1) as in (0.12), the null boundary condition of
T is equivalent to the equality (∂L) Bn = −P(u), whereas it is automatically satisfied when n = 1.

In Sec. 4, we deal with the factor Ep in the energy gap formula (0.8), showing that for any p > 1 and
any fixed integer d ∈ Z, the energy infimum among all maps in W 1/p,p(R,S1) with degree d is equal to
|d| · Ep, Proposition 4.3.
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In Sec. 5, we introduce a suitable functional T 7→ E1/p,p(T ) on Cartesian currents, see (5.1), that

agrees with the energy E1/p,p(u) in case of graphs of “smooth” maps u ∈ W 1/p,p(Bn,S1), see (0.5). Our
functional turns out to be lower semicontinuous along weakly converging sequences of smooth graphs,
Theorem 5.1.

In Sec. 6, we provide in low dimension n = 2 the approximation of dipoles for W 1/p,p-maps with
values in S1, Theorem 6.4. Our Proposition 6.5 is in accordance with the case N = 1 of [7, Thm. 2.4],
where the authors analyzed the dipole problem for maps in WN/p,p(SN+1,SN ). We also show how to
remove homologically trivial point singularities, Proposition 6.1.

In Sec. 7, we prove for any p > 1 and n ≥ 2 a strong density result for our class of Cartesian currents.
Namely, in Theorem 7.1 we show that for every T in cart1/p,p(Bn × S1) we can find a smooth sequence
{uh} in C∞(Bn,S1) such that Guh ⇀ T weakly in Dn(Bn × S1) and E1/p,p(uh)→ E1/p,p(T ).

We briefly sketch here its proof. On account of Proposition 3.7 and of Federer’s strong polyhedral
approximation theorem [14], we are able to reduce to the case where the current T takes the form (0.12)
for some map u ∈ R1/p,p(B

n,S1), where the current L ∈ Rn−1(Bn) is a finite sum of pairwise disjoint
oriented polyhedral (n − 1)-chains. In order to approximate the (n − 1)-dimensional “dipoles”, in high
dimension n ≥ 3 we apply Proposition 7.3, that is proved in Appendix B. Finally, in order to remove
the (n− 2)-dimensional singular set, in high dimension n ≥ 3 we apply Proposition 7.4, that is proved in
Appendix C. In the easier case n = 2, we directly apply Theorem 6.4 and Proposition 6.1.

In Sec. 8, we first collect the closure-compactness properties for the class of Cartesian currents
cart1/p,p(Bn × S1), Theorem 8.1, extending results proved in [23] when p = 2. In Theorem 8.2, we
obtain the explicit formula (0.8) for the energy gap (0.7). Its proof is based on our main results previ-
ously stated: Proposition 3.7 and Theorems 2.5, 5.1, and 7.1. In Theorem 8.4, we prove formula (0.9).
Finally, in Corollary 8.6, we prove the cited partial result for the case 1 < p < 2, 1 < s < 2, 1 < sp < 2,
and n ≥ 2.

1 Coarea formula

In this section, we find a coarea formula for a suitable extension of maps in W 1/p,p(Bn,S1). To this
purpose, we make use of some relevant estimates obtained by Bourgain-Brezis-Mironescu in [7].

1.1 A relevant estimate

Let u ∈ W 1/p,p(Bn,S1), and let U ∈ W 1,p
p−2(Cn+1,D2) be the harmonic extension of u to Cn+1 :=

Bn × (0, 1), where n ≥ 1 is integer and p > 1 real. Following [7, Lemma 1.2], we denote

G := {(x, t) ∈ Cn+1 : |U(x, t)| ≤ 1/2}

and we let d : Bn →]0, 1/2] be the function such that d(x) := 1/2 if |U(x, t)| ≥ 1/2 for each t ∈ (0, 1/2),
and

d(x) := min{t ∈ (0, 1/2) : |U(x, t)| ≤ 1/2}
otherwise. Using that |DU(x, t)| ≤ c/t for some absolute constant c, for any exponent α > 1 one has∫

G

|DU(x, t)|α dx dt ≤ c
∫
Bn

(∫ 1

d(x)

t−α dt
)
dx ≤ C

∫
Bn

1

d(x)α−1
dx .

In a similar way to the case α = 2, using that t > d(x) if (x, t) ∈ G, for each p > 1 we estimate∫
G

tp−2|DU(x, t)|p dx dt ≤
∫
G

C

t2
dx dt ≤ C

∫
Bn

1

d(x)
dx (1.1)

where C = C(n, p). Moreover, as in [7, Lemma 1.3], since U ∈ W 2/p,p(Bn × I,R2), where I = (0, 1/2),
using the embedding of W 2/p,p(I) in the Hölder class C0,1/p(I), it turns out that for a.e. x ∈ Bn the
function ϕx(t) := U(x, t) belongs to W 2/p,p(I,R2), whence to C0,1/p(I,R2), so that we have:

1

2
≤ |ϕx(d(x))− ϕx(0)| ≤ C d(x)1/p‖ϕx‖C0,1/p(I) ≤ C d(x)1/p ‖ϕx‖W 2/p,p(I,R2)
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and hence
1

d(x)
≤ C ‖ϕx‖pW 2/p,p(I)

.

Therefore, using the inequality on Besov-type spaces∫
Bn
‖ϕx‖pW 2/p,p(I,R2)

dx =

∫
Bn
‖U(x, ·)‖p

W 2/p,p(I,R2)
dx

≤ C ‖U‖p
W 2/p,p(Cn+1,R2)

≤ C ‖u‖p
W 1/p,p(Bn,R2)

by (1.1) one gets the estimate∫
G

tp−2|DU(x, t)|p dx dt ≤ C1

∫
Bn

1

d(x)
dx ≤ C2

∫
Cn+1

tp−2|DU(x, t)|p dx dt (1.2)

for some positive constants C1, C2 only depending on n and p.

In the sequel, we choose a smooth function Φ : R2 → D2 such that Φ(y) = y/|y| if |y| ≥ 1/2, where
y = (y1, y2), and Φ is a bi-Lipschitz map from {y : |y| ≤ 1/2} to D2.

Setting V := Φ ◦ U , we clearly have:

|DV (x, t)| ≤ C1 |DU(x, t)| ∀ (x, t) ∈ Cn+1 ,
|DU(x, t)| ≤ C2 |DV (x, t)| ∀ (x, t) ∈ G . (1.3)

Denote now by V #(dy1∧dy2) the 2-form in Cn+1 given by the pull-back by V of the 2-form dy1∧dy2.
One has

|V #(dy1 ∧ dy2)| = JV (1.4)

where JV is the Jacobian of the map V , so that JV (x, t)2 is the sum of the square of the 2× 2 minors of
the gradient matrix DV (x, t). Therefore, by the area formula one has JV (x, t) = 0 if (x, t) 6∈ G, whereas
by the parallelogram inequality one gets the general estimate JV (x, t) ≤ Cn |DV (x, t)|2.

These are the main facts that led Bourgain-Brezis-Mironescu [7] to obtain the estimate

|deg g| ≤ Cp ‖g‖p1/p,p ∀ p > 1

on the degree deg g of maps g ∈W 1/p,p(S1,S1). In dimension n = 2, they also build up for any p > 1 the
unique extension T : W 1/p,p(S2,S1) → W 1,∞(S2,R)∗ of the distributional determinant T (g) = Det(∇g)
of maps g ∈W 1/p,p(S2,S1) ∩W 1,2, obtaining the estimate

|〈T (g), ζ〉| ≤ Cp ‖g‖p1/p,p · ‖∇ζ‖L∞ ∀ ζ ∈W 1,∞(S2)

for any g ∈W 1/p,p(S2,S1). Extending previous facts from the easier case p = 2, they also prove for every
p > 1 and g ∈W 1/p,p(S2,S1) the existence of two sequences (Pi), (Ni) ⊂ S2 such that

T (g) = π ·
∑
i

(δPi − δNi) ,
∑
i

|Pi −Ni| ≤ Cp ‖g‖p1/p,p .

1.2 Coarea formula

With the previous notation, we similarly obtain in any dimension n ≥ 1 the following estimate:

Proposition 1.1 Let u ∈W 1/p,p(Bn,S1) for some p > 1. Then we have:∫
Cn+1

|V #(dy1 ∧ dy2)| dx dt ≤ C
∫
Cn+1

tp−2 |DU(x, t)|p dx dt (1.5)

for some real constant C > 0 only depending on n, p.

7



Proof: By the previous facts, inequality (1.5) readily follows when p = 2, and hence for 1 < p < 2, by
the continuous embedding W 1/p,p(Bn,S1) ⊂W 1/2,2(Bn,S1). When p > 2, letting α = α(p) = 2(p−2)/p,
by the Hölder inequality with exponents q = p/2 and q′ = p/(p− 2) we get:∫

G

|DV (x, t)|2 dx dt ≤ C

∫
G

(tα |DU(x, t)|2) t−α dx dt

≤ C
(∫

G

tp−2|DU(x, t)|p dx dt
)2/p(∫

G

t−2 dx dt
)(p−2)/p

where by (1.1) and (1.2) we can estimate(∫
G

t−2 dx dt
)(p−2)/p

≤ C2

(∫
Cn+1

tp−2|DU(x, t)|p dx dt
)(p−2)/p

.

Since by (1.3) and (1.4)∫
Cn+1

|V #(dy1 ∧ dy2)| dx dt =

∫
G

JV (x, t) dx dt ≤ C
∫
G

|DV (x, t)|2 dx dt

the assertion readily follows. �

We thus obtain the validity of the coarea formula in the sense of Almgren-Browder-Lieb [1]:

Theorem 1.2 Let n ≥ 1 and p > 1. Denote by Hn−1 the (n − 1)-dimensional Hausdorff measure. For
every map u ∈W 1/p,p(Bn,S1), there exists a smooth extension V ∈W 1,p

p−2(Cn+1,D2) and a regular value

y ∈ D2 for V such that

Hn−1(V −1({y})) ≤ C
∫
Cn+1

tp−2|DU(x, t)|p dx dt (1.6)

for some real constant C only depending on n and p.

Proof: Choose V := Φ ◦ U , where U ∈W 1,p
p−2(Cn+1,D2) is the harmonic extension of u. We have∫

D2

Hn−1(V −1({y})) dH2(y) =

∫
Cn+1

JV (x, t) dx dt =

∫
Cn+1

|V #(dy1 ∧ dy2)| dx dt

and hence we can find a regular value y ∈ D2 such that

Hn−1(V −1({y})) ≤ 1

π
·
∫
Cn+1

|V #(dy1 ∧ dy2)| dx dt .

The assertion follows from Proposition 1.1. �

2 Cartesian currents and degree

In this section, we recall some notation from Geometric Measure Theory and introduce the class of
Cartesian currents cart1/p,p(Bn×S1), for which we establish a closure-compactness property, Theorem 2.5.
In low dimension n = 1, we then discuss a notion of degree in our context, by extending the definition
given in [7] for maps g ∈W 1/p,p(S1,S1).

2.1 Rectifiable currents

Let 0 ≤ k ≤ N be integer and let Ω ⊂ RN be an open set. The space Dk(Ω) of k-currents in Ω is the
strong dual of the space Dk(Ω) of compactly supported smooth k-forms. The weak convergence Th ⇀ T
in Dk(Ω) is defined by duality through the formula

lim
h→∞

Th(ω) = T (ω) , ∀ω ∈ Dk(Ω) .
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The mass of a current T ∈ Dk(Ω) is defined by

M(T ) := sup{T (ω) | ω ∈ Dk(Ω), ‖ω‖ ≤ 1}

where ‖ω‖ is the comass norm of ω. Therefore, the mass functional is lower semicontinuous w.r.t. the
weak convergence. The boundary of a current T in Dk(Ω), when k ≥ 1, is defined by duality as

∂T (η) := T (dη) , ∀ η ∈ Dk−1(Ω) ,

yielding to a current ∂T in Dk−1(Ω).
A current T ∈ Dk(Ω) is called integer multiplicity (say i.m.) rectifiable in Rk(Ω) if one has

T (ω) =

∫
M
θ 〈ω, ξ〉 dHk ∀ω ∈ Dk(Ω) ,

where Hk is the k-dimensional Hausdorff measure,M is a countably k-rectifiable set of Ω, with Hk(M) <
∞, the Hk M-measurable function ξ :M→ ΛkRN gives for Hk-a.e. z ∈M a unit simple k-vector ξ(z)
that provides an orientation to the approximate tangent k-space to M at z, and θ is an integer valued,
Hk M-summable, and non-negative multiplicity function. Therefore, one has M(T ) =

∫
M θ dHk <∞.

We also denote by

setT := {z ∈M | θ(z) ∈ N+} (2.1)

the set of points in M with positive density.
If e.g. M is an oriented k-submanifold of Ω with finite k-volume, the linear functional ω 7→

∫
M ω on

Dk(Ω) defines a current [[M ]] in Rk(Ω) with finite mass equal to Hk(M). We address to [30] or [?] for
further details on GMT tools.

In particular, when Ω = A × Rm, where A ⊂ Rk is a bounded domain, and M = Gv is the graph of
a Lipschitz function v : A → Rm, the k-current Gv = [[Gv ]] carried by the graph of v acts on k-forms
ω ∈ Dk(A× Rm) as

Gv(ω) = (Id ./ v)#[[A ]](ω) :=

∫
A

(Id ./ v)#ω

where (Id ./ v)#ω is the pull-back of ω through the graph map (Id ./ v)(x) := (x, v(x)). For example, if
ω = γ ∧ ψ ∈ Dk(A× Rm), where γ ∈ Dk−h(A), ψ ∈ Dh(Rm), and 0 ≤ h ≤ min{k,m}, then

Gv(γ ∧ ψ) =

∫
A

(Id ./ v)#(γ ∧ ψ) =

∫
A

γ ∧ v#ψ . (2.2)

By the area formula, one then computes

M(Gv) =

∫
A

JId./v(x) dx = Hk(Gv)

where JId./v is the Jacobian of the graph map. If e.g. k ≥ m = 2, one has

JId./v =
√

1 + |Dv|2 + |M2(Dv)|2

where |M2(Dv)|2 is the sum of the square of the 2 × 2 minors of the gradient matrix Dv, so that
|M2(Dv)| = Jv and in particular |M2(Dv)| = |detDv| if k = 2, see e.g. [?].

Example 2.1 If U is a Sobolev map in W 1,2(Cn+1,R2), the (n + 1)-current GU in Cn+1 × R2 carried
by its graph is defined (in an approximate sense) by GU := (Id ./ U)#[[ Cn+1 ]], compare [?]. Actually,
GU has finite mass and is an i.m. rectifiable current in Rn+1(Cn+1 × R2). In fact, by the area formula
and the parallelogram inequality we get the bound

M(GU ) =

∫
Cn+1

JId./U dz ≤ c
(

1 +

∫
Cn+1

|DU |2 dz
)
<∞
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for some absolute constant c > 0, not depending on U . We also have

∂GU (η) = 0 ∀ η ∈ Dn(Cn+1 × R2),

a property that reads as the null-boundary condition

(∂GU ) Cn+1 × R2 = 0 . (2.3)

In fact, equation (2.3) is readily checked if U is smooth, by Stokes’ theorem, and it is preserved by the
weak convergence GUh ⇀ GU as currents, that holds true by dominated convergence if Uh → U strongly
in W 1,2(Cn+1,R2). Then, a standard density argument applies to infer (2.3).

By Proposition 1.1, we are able to extend the previous features to our setting, as follows.

Proposition 2.2 Let u ∈W 1/p,p(Bn,S1), where p > 1, and let V := Φ ◦U , where U ∈W 1,p
p−2(Cn+1,D2)

is the harmonic extension of u. Then the current GV is i.m. rectifiable in Rn+1(Cn+1 ×R2), with finite
mass bounded by

M(GV ) =

∫
Cn+1

JId./V dz ≤ c
(

1 +

∫
Cn+1

tp−2|DU(x, t)|p dz
)

(2.4)

for some constant c > 0, not depending on u. Moreover, the null-boundary condition (2.3) holds true,
with U = V .

Proof: The continuous embedding W 1,p
p−2(Cn+1,R2) ⊂ W 1,1(Cn+1,R2) holds for any p > 1. In fact,

letting α = (p− 2)/p, by the Hölder inequality with exponents p and p′ = p/(p− 1) we get:∫
Cn+1

|DU(z)| dz =

∫
Cn+1

(tα |DU(x, t)|) t−α dx dt

≤
(∫

Cn+1

tp−2|DU(x, t)|p dx dt
)1/p(∫

Cn+1

t−αp/(p−1) dx dt
)(p−1)/p

<∞

as −αp/(p−1) = (2−p)/(p−1) > −1. Recalling that |V #(dy1∧dy2)| = |M2(DV )| and |DV | ≤ C |DU |,
the mass estimate (2.4) follows from (1.5). Finally, similarly to the W 1,2 case in Example 2.1, the null
boundary condition (2.3) is readily checked by a standard density argument, on account of the mass
estimate (2.4) and of the dominated convergence theorem. �

Due to the previous facts, similarly to the case p = 2 analyzed in [18, 22], we are able to introduce a
good notion of current Gu carried by the graph of a map u ∈W 1/p,p(Bn,S1).

Definition 2.3 To any map u ∈W 1/p,p(Bn,S1) we associate an n-current Gu in Dn(Bn×S1) by setting

Gu := (−1)n−1(∂GV ) ((Bn × {0})× R2) on Dn(Bn × S1) , (2.5)

where V := Φ ◦ U and U ∈W 1,p
p−2(Cn+1,D2) is the harmonic extension of u.

In formula (2.5), the boundary ∂GV is seen by extending the action of the current GV to forms in
Dn+1(Rn+1 × R2). By Federer’s support theorem [14], we in fact infer that the current Gu actually
belongs to the class Dn(Bn × S1). Note however that in general Gu is not i.m. rectifiable, even in low
dimension n = 2, and fails to satisfy the null-boundary condition (∂Gu) Bn × S1 = 0.

Remark 2.4 In case n = 1, property (∂Gu) B1 × S1 = 0 holds true as a consequence of the strong
density of smooth maps, see Theorem 0.1.

2.2 Cartesian currents

Following [?, 23], we introduce for any p > 1 and n ≥ 1 the class of Cartesian currents cart1/p,p(Bn×S1).
They are given by the currents T in Dn(Bn × S1) that decompose as

T = GuT + LT × [[ S1 ]] (2.6)
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for some uT ∈W 1/p,p(Bn,S1) and LT ∈ Rn−1(Bn), and that satisfy the null-boundary condition

(∂T ) Bn × S1 = 0 . (2.7)

Note that equation (2.7) is automatically satisfied when n = 1, see Remark 2.4. Moreover, in general
a current T in cart1/p,p(Bn × S1) fails to have bounded mass and to be i.m. rectifiable current in
Rn(Bn × S1), if e.g. uT 6∈W 1,1(Bn,R2). However, the following compactness property holds:

Theorem 2.5 Let {uh} ⊂ C∞(Bn,S1) be such that suph E1/p,p(uh) < ∞ for some p > 1. Then, there

exists a Cartesian current T ∈ cart1/p,p(Bn×S1) as in (2.6) such that, possibly passing to a not relabeled
subsequence, Guh ⇀ T weakly in Dn(Bn × S1) and uh → uT in Lp(Bn,R2).

Proof: Let Vh := Φ ◦ Uh, where Uh ∈ W 1,p
p−2(Cn+1,D2) is the harmonic extension of uh. According to

Definition 2.3, the current Guh satisfies the slicing formula in (2.5), with u = uh and V = Vh.

Following [23], we now define a suitable map Wh : C̃n+1 → S2, where C̃n+1 := Bn × (−1, 1) and
S2 := {y ∈ R3 : |y| = 1} is the unit sphere. Denoting by S2

± := {y ∈ S2 : ±y3 ≥ 0} the upper and lower
half-spheres, we consider a couple of bi-Lipschitz maps Φ± : D2 → S2

± such that Φ±|S1(z) = (z, 0), define

Wh(x, t) :=

{
Φ+ ◦ Vh(x, t) if t ≥ 0
Φ− ◦ Vh(x,−t) if t ≤ 0

x ∈ Bn ,

and denote GWh
∈ Dn+1(C̃n+1 × S2) the current carried by the graph of Wh. According to (0.4), we

shall thus work with the energy W 7→ Epp−2(W ) :=
∫
C̃n+1 |t|p−2|DW |p dx dt.

Since suph E1/p,p(uh) <∞, by the mass estimate (2.4) we infer that

sup
h

M(GWh
) ≤ C · sup

h
Epp−2(Wh) <∞ ,

whence {GWh
} is a sequence of i.m. rectifiable currents in Rn+1(C̃n+1 × S2) with equibounded masses.

Furthermore, by smoothness of Wh, Stokes’ theorem implies the validity of the null-boundary condition:

(∂GWh
) C̃n+1 × S2 = 0 ∀h .

Therefore, by Federer-Fleming’s closure theorem [16], a subsequence of {GWh
} weakly converges in

Dn+1(C̃n+1 × S2) to an i.m. rectifiable current T̃ ∈ Rn+1(C̃n+1 × S2) satisfying (∂T̃ ) C̃n+1 × S2 = 0.

Arguing as in [17], by the rectifiable slices theorem [31] it turns out that T̃ = GW +L× [[ S2 ]] for some

function W ∈ W 1,1(C̃n+1,S2), with Jacobian JId./W in L1(C̃n+1), and some i.m. rectifiable current

L ∈ Rn−1(C̃n+1). Therefore, T̃ is a Cartesian current in the class cart(C̃n+1 × S2), see [?].

Since moreover Wh → W in Lp(C̃n+1,R2), by lower semicontinuity of the energy W 7→ Epp−2(W )

it turns out that, in an obvious sense, W ∈ W 1,p
p−2(C̃n+1,S2). Also, using that Wh(x, 0) = uh(x), a

further subsequence of {uh} strongly converges in Lp(Bn,R2) to some map u ∈ Lp(Bn,S1), whence we
get W (x, 0) = u(x) in the sense of the traces and definitely u ∈W 1/p,p(Bn,S1).

Furthermore, by the definition of Wh, it turns out that the current L is supported in the closure of
Bn × {0}. Therefore, on account of equation (2.5), where u = uh and V = Vh, by a slicing argument we
infer that the current T = Gu + L× [[ S1 ]] satisfies the null-boundary condition (2.7).

In conclusion, T belongs to the class cart1/p,p(Bn×S1) and actually Guh ⇀ T weakly in Dn(Bn×S1),
as required. �

2.3 Degree

For p > 1, denote now by W 1/p,p(R,S1) the class of locally summable maps u : R → S1 such that
u(x)− Pu ∈ Lp(R,R2) for some point Pu ∈ S1, and |u|1/p,p <∞, where

|u|p1/p,p :=

∫
R

∫
R

|u(x)− u(y)|p

|x− y|2
dx dy <∞ .
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The class W 1/p,p(R,S1) is equipped with the norm ‖u− Pu‖Lp + |u|1/p,p .

We define the degree of a map u in W 1/p,p(R,S1) through the formula

deg u :=
1

π

∫
R2

+

V #(dy1 ∧ dy2) (2.8)

where R2
+ := {(x, t) ∈ R2 | t > 0} denotes the upper half plane, U ∈ W 1,p

p−2(R2
+,D2) is the harmonic

extension of u, and V := Φ ◦ U . We have:

Proposition 2.6 The degree of maps in W 1/p,p(R,S1) is strongly continuous. Moreover, deg u ∈ Z for
each u ∈W 1/p,p(R,S1).

Proof: Let u ∈ W 1/p,p(R,S1). Arguing as in the proof of Proposition 1.1, we can find a real constant
Cp > 0 depending on p, such that∫

R2
+

|V #(dy1 ∧ dy2)| dx dt ≤ Cp
∫
R2

+

tp−2 |DU(x, t)|p dx dt .

Let {uh} ⊂ W 1/p,p(R,S1) be such that uh → u strongly in W 1/p,p(R,R2). For each h, denote Vh :=
Φ ◦ Uh, where Uh ∈ W 1,p

p−2(R2
+,D2) is the harmonic extension of uh. The strong convergence uh → u

in W 1/p,p(R,R2) implies the strong convergence Vh → V in W 1,p
p−2(R2

+,R2). Therefore, by the above
estimate, the dominated convergence theorem yields

lim
h→∞

∫
R2

+

V #
h (dy1 ∧ dy2) =

∫
R2

+

V #(dy1 ∧ dy2)

whence deg uh → deg u. Since moreover n = 1, there exists a sequence {uh} ⊂ C1(R,S1) such that
uh → u strongly in W 1/p,p(R,R2). By means of a cut-off argument, we readily find a smooth map
Wh : R2 → D2 and a point Ph ∈ S1 such that Wh(x, t)− Ph has compact support contained in R2

+, and∫
R2

+

|W#
h (dy1 ∧ dy2)− V #

h (dy1 ∧ dy2)| dx dt < 1

2
, ∀h .

It is then readily checked that ∫
R2

+

W#
h (dy1 ∧ dy2) = dh · π

for some dh ∈ Z. Therefore, we get deg uh = dh for each h, whence deg u ∈ Z, as deg uh → deg u. �

As in Definition 2.3, with n = 1, if u ∈ W 1/p,p(R,S1) we can define the 1-current Gu in D1(R × S1)
by setting

Gu := (∂GV ) ((R× {0})× R2) on D1(R× S1) .

Actually, using a cut-off argument on the function V , and arguing essentially as in the proof of
Proposition 3.2 below, it can be checked that

deg u =
1

π
Gu(π#

2 ωS1) , (2.9)

where ωS1 is the 1-form defined in (3.1), and π2 : R × R2 → R2 is the orthogonal projection onto the
second factor.

Remark 2.7 Due to the bubbling phenomenon (cf. [?, p. 324]), the degree fails to be continuous w.r.t.
the weak sequential convergence in W 1/p,p. It suffices to consider a sequence {uh} ⊂ C1(R,S1) with
suph ‖uh‖1/p,p < ∞, deg uh = 1 for each h, and such that uh → P a.e., but Guh ⇀ GP + δ0 × [[ S1 ]] in
D1(R× S1), where GP is the graph current of the constant map equal to some P ∈ S1.
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3 Singularities and minimal connections

In this section, we describe in any dimension n ≥ 2 the singular set of maps u ∈W 1/p,p(Bn,S1) in terms
of homological tools. Namely, by means of the coarea formula, Theorem 1.2, we build up an (n − 2)-
dimensional integral flat chain P(u) ∈ Dn−2(Bn) that in dimension n = 2 agrees with the extension
T : W 1/p,p(B2,S1)→W 1,∞(B2,R)∗ of the distributional determinant by Bourgain-Brezis-Mironescu [7].

3.1 Singularities

Let ωS1 be the normalized volume 1-form in S1

ωS1 :=
1

2π

(
y1dy2 − y2dy1

)
, (3.1)

so that [[ S1 ]](ωS1) =
∫
S1 ωS1 = 1. Moreover, let π1 : A × R2 → A and π2 : A × R2 → R2 denote the

orthogonal projections onto the two factors, where A = Bn or A = Cn+1.

Definition 3.1 The singularities of a map u in W 1/p,p(Bn,S1), where p > 1, are represented by the
(n− 2)-dimensional current P(u) in Dn−2(Bn)

P(u)(φ) := ∂Gu(π#
1 φ ∧ π

#
2 ωS1) , φ ∈ Dn−2(Bn)

where Gu is given by Definition 2.3.

We write explicitly the action of P(u), recovering in the case p = 2 the definition of singularities
introduced by Hang-Lin [25]. For this purpose, following [23], we choose a smooth decreasing cut-off
function η : [0, 1]→ [0, 1] such that η(t) = 1 for t ∈ [0, 1/4] and η(t) = 0 for t ∈ [3/4, 1], and for any form

φ ∈ Dk(Bn) we denote by φ̃ the k-form in Cn+1 given by φ̃ := φ ∧ η.

Proposition 3.2 For every u ∈W 1/p,p(Bn,S1) and φ ∈ Dn−2(Bn), we have

P(u)(φ) =
1

π

∫
Cn+1

dφ̃ ∧ V #(dy1 ∧ dy2) ,

where the extension V is chosen as in Definition 2.3.

Proof: Since dπ#
2 ωS1 = π#

2 dωS1 = 0, as ωS1 is a closed 1-form in S1, then

P(u)(φ) = Gu(dπ#
1 φ ∧ π

#
2 ωS1) = Gu(π#

1 dφ ∧ π
#
2 ωS1) .

Denote by ω̂S1 a 1-form in D1(R2) that agrees with the right-hand side of (3.1) on D2. By the definition
(2.5), using that V satisfies the null-boundary condition (2.3) we have

∂GV (π#
1 dφ̃ ∧ π

#
2 ω̂S1) = (−1)n−1Gu(π#

1 (dxφ̃+ dtφ̃)|t=0 ∧ π#
2 ωS1)

= (−1)n−1Gu(π#
1 dφ ∧ π

#
2 ωS1) .

We thus obtain:
P(u)(φ) = (−1)n−1∂GV (π#

1 dφ̃ ∧ π
#
2 ω̂S1)

= GV (π#
1 dφ̃ ∧ dπ

#
2 ω̂S1) = GV (π#

1 dφ̃ ∧ π
#
2 dω̂S1) .

(3.2)

Therefore, it suffices to observe that since V (Cn+1) ⊂ D2, then

V # dω̂S1 =
1

π
V #(dy1 ∧ dy2)

and recall the action (2.2) of the current GV , on account of Proposition 2.2. �
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3.2 Cartesian maps

By the previous notation, it turns out that a map u ∈W 1/p,p(Bn,S1) has zero homological singularities,
that is, it satisfies P(u) = 0, if and only if the current Gu associated to its graph has no inner boundary,
i.e.,

∂Gu = 0 on Dn−1(Bn × S1) . (3.3)

For that reason, we give the following

Definition 3.3 Let n ≥ 1 and p > 1. A map u ∈ W 1/p,p(Bn,S1) is said to be a Cartesian map in
cart1/p,p(Bn,S1) if the current Gu satisfies the null-boundary condition (3.3).

Note that the strong convergence uh → u in W 1/p,p(Bn,R2) yields the weak convergence Guh ⇀ Gu
in Dn(Bn × S1). Therefore, in low dimension n = 1 we get the equality

W 1/p,p(B1,S1) = cart1/p,p(B1,S1)

by the strong density of smooth maps, whereas in high dimension, clearly

W 1/p,p(Bn,S1) ( cart1/p,p(Bn,S1) ∀n ≥ 2 .

When n ≥ 2, condition P(uh) = 0 clearly holds true if uh : Bn → S1 is smooth, say Lipschitz, and the
null-boundary condition (3.3) is preserved by the weak convergence Guh ⇀ Gu in Dn(Bn × S1), which
implies the weak convergence P(uh) ⇀ P(u) in Dn−2(Bn). Therefore, we readily obtain that

W
1/p,p
S (Bn,S1) ⊂ cart1/p,p(Bn,S1)

where, we recall, W
1/p,p
S (Bn,S1) denotes the strong closure of smooth maps u ∈ C∞(Bn,S1) in the

W 1/p,p-norm.

Example 3.4 Coming back to Example 0.3, the map u(x) = x/|x| belongs to W s,p(B2,S1) if 1 ≤ sp < 2.
Following [?, Sec. 4.2.5], we have:

(∂Gu) (B2 × S1) = −δ0 × [[ S1 ]]

where 0 is the origin in R2. Therefore, on account of Definition 3.1 we infer that P(u) = −δ0.
If n ≥ 3, the map u(x) = (x1, x2)/|(x1, x2)| belongs to W s,p(Bn,S1) if 1 ≤ sp < 2, and this time

(∂Gu) (Bn × S1) = −[[ ∆ ]]× [[ S1 ]]

where the (n − 2)-disk ∆ := {x ∈ Bn | (x1, x2) = (0, 0)} is oriented by e3 ∧ · · · ∧ en, {ei}ni=1 being the
canonical basis in Rn. As a consequence, we get P(u) = −[[ ∆ ]].

Instead, an example of Cartesian map according to Definition 3.3 is given e.g. by the content of [12,
Lemma 5]. Taking in fact

u(x) := (cosψ(x), sinψ(x)) , ψ : Bn \ {0} → R , ψ(x) :=
1

|x|α

it turns out that u ∈ W s,p(Bn,S1) for every 0 < s < 1 and p > 1 with 1 ≤ sp < n, provided that
0 < α < (n − sp)/sp. Therefore, if 0 < α < n − 1, where n ≥ 2, we have u ∈ W 1/p,p(Bn,S1) for
every p > 1. Now, letting uh = (cosψh, sinψh), where ψh(x) := max{ψ(x), h} and h ∈ N+, we infer
that {uh} ⊂W 1/p,p(Bn,S1) is a sequence of Lipschitz maps strongly converging to u in W 1/p,p(Bn,R2).
Using that P(uh) = 0 for each h, we infer that P(u) = 0, whence u ∈ cart1/p,p(Bn,S1) for any p > 1.

In Corollary 8.3, we shall prove the equality

W
1/p,p
S (Bn,S1) = cart1/p,p(Bn,S1) ∀n ≥ 2 , ∀ p > 1

so that for every map u ∈W 1/p,p(Bn,S1),

u ∈W 1/p,p
S (Bn,S1) ⇐⇒ P(u) = 0 .

Moreover, we shall see that when u 6∈ W
1/p,p
S (Bn,S1), the energy gap G1/p,p(u) in the relaxation

process, see (0.7), is given by the minimal integral connection of the singularity P(u) times a constant
weight Ep only depending on the exponent p > 1, with E2 = 2π in the easier case p = 2.
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3.3 Real and integral mass

Let 0 ≤ k ≤ n− 2 be integers. Recall from [?]:

Definition 3.5 For any current Γ ∈ Dk(Bn), we denote by

mr,Bn(Γ) := inf{M(D) | D ∈ Dk+1(Bn) , (∂D) Bn = Γ}
mi,Bn(Γ) := inf{M(L) | L ∈ Rk+1(Bn) , (∂L) Bn = Γ}

the real mass and integral mass of Γ relative to Bn, respectively.

In case mi,Bn(Γ) <∞, an i.m. rectifiable current L ∈ Rk+1(Bn) is an integral minimal connection for
the mass of Γ allowing connections to the boundary of Bn, if (∂L) Bn = Γ and M(L) = mi,Bn(Γ). In
general, one has mr,Bn(Γ) ≤ mi,Bn(Γ). However, by Federer’s theorem [15], for k = 0, or by Hardt-Pitts’
result [26], when k = n− 2, if mi,Bn(Γ) <∞ one has

mr,Bn(Γ) = mi,Bn(Γ) .

Following [23], we now introduce for every u ∈W 1/p,p(Bn,S1) the current D(u) ∈ Dn−1(Bn) given by

D(u)(γ) := GV (π#
1 γ̃ ∧ π

#
2 dω̂S1) , γ ∈ Dn−1(Bn) , (3.4)

where the extension V is chosen as in Definition 2.3 and the (n− 1)-form γ̃ in Cn+1 is given as above by
γ̃ := γ ∧ η. Since we have

M(D(u)) ≤
∫
Cn+1

|V #(dy1 ∧ dy2)| dx dt ,

by Proposition 1.1 we infer that D(u) has finite mass, namely:

M(D(u)) ≤ C
∫
Cn+1

tp−2 |DU(x, t)|p dx dt (3.5)

for some real constant C > 0 only depending on n and p.
Furthermore, on account of formula (3.2), in Proposition 3.2 we have actually obtained that

P(u) = (∂D(u)) Bn .

Therefore, P(u) is an (n− 2)-dimensional real flat chain, and

mr,Bn(P(u)) ≤M(D(u)) <∞ .

3.4 Minimal integral connection

By means of the coarea formula, Theorem 1.2, we now obtain that if u ∈ R1/p,p(B
n,S1), the current

P(u) of the singularities is an integral flat chain. In dimension n = 2, since u has a finite singular set,
the latter property implies that P(u) is a finite sum of Dirac masses.

Proposition 3.6 Let u ∈ R1/p,p(B
n,S1), where n ≥ 2 and p > 1. Then there exists L ∈ Rn−1(Bn) with

M(L) <∞ such that P(u) = (∂L) Bn.

Proof: Choose a regular value y ∈ D2 of the extension V ∈ W 1,p
p−2(Cn+1,D2) such that (1.6) holds, so

thatM := V −1({y}) is a countably (n−1)-rectifiable set of Cn+1. Consider the current L̃ ∈ Dn−1(Cn+1)
given by

L̃(ω) :=

∫
M
〈ω, ξ〉 dHn−1, ω ∈ Dn−1(Cn+1)

where ξ := η/|η| and η is the (n− 1)-vector η := ∗V #(dy1 ∧ dy2), where ∗ is the Hodge operator in Rn+1.
Therefore, when n = 2 the 1-vector field η agrees with the D-field introduced by Brezis-Coron-Lieb [9].
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Since ξ is an orienting unit (n − 1)-vector field of the approximate tangent (n − 1)-space to M at

Hn−1 M-a.e. z ∈ Cn+1, it turns out that L̃ is i.m. rectifiable in Rn−1(Cn+1), with finite mass bounded
by the right-hand side of formula (1.6). In addition, by (2.5) and Definition 3.1 it turns out that

(∂L̃) (Bn × {0}) = P(u) .

It then suffices to take L equal to the push forward of L̃ through the orthogonal projection of Cn+1 onto
Bn × {0}. �

We now recall that any map u in W 1/p,p(Bn,S1) is the strong limit of a sequence {uh} in the class
R1/p,p(B

n,S1), see Theorem 0.2. Arguing as e.g. in [?, Sec. 4.2.5], we in fact prove the following:

Proposition 3.7 For any n ≥ 2 and p > 1, let u ∈ W 1/p,p(Bn,S1) and {uh} ⊂ R1/p,p(B
n,S1) be such

that uh → u strongly in W 1/p,p(Bn,R2). Then

(i) M(D(u)− D(uh))→ 0 as h→∞;

(ii) there exists L ∈ Rn−1(Bn) such that P(u) = (∂L) Bn;

(iii) if Luh,u denotes an i.m. rectifiable current of least mass in Rn−1(Bn) such that

(∂Luh,u) Bn = P(u)− P(uh) , (3.6)

then M(Luh,u)→ 0 as h→∞.

Proof: Since mi,Bn(P(uh)) <∞, for every h there exists an i.m. rectifiable current Lh ∈ Rn−1(Bn) such
that P(uh) = (∂Lh) Bn and mi,Bn(P(uh)) = M(Lh). By the bound (3.5), since the strong convergence

of uh → u is equivalent to the strong convergence of Uh → U in W 1,p
p−2(Cn+1,R2), using the dominated

convergence theorem we obtain property (i). Therefore, possibly passing to a (not relabeled) subsequence
we may and do assume that

mr,Bn(P(uh+1)− P(uh)) ≤ 2−h ∀h ∈ N

and again that
P(uh+1)− P(uh) = (∂L̃h) Bn ,

where L̃h is an integral minimal connection of P(uh+1)− P(uh). Therefore, by Hardt-Pitts’ result [26]

M(L̃h) = mi,Bn(P(uh+1)− P(uh)) = mr,Bn(P(uh+1)− P(uh)) ≤ 2−h .

Therefore, the current L := L0 +
∑∞
h=0 L̃h is i.m. rectifiable in Rn−1(Bn), whereas due to the weak

convergence P(uh) ⇀ P(u) in Dn−2(Bn), we get

(∂L) Bn = (∂L0) Bn +

∞∑
h=0

(∂L̃h) Bn

= P(u0) +

∞∑
h=0

(
P(uh+1)− P(uh)

)
= P(u) .

We thus obtain property (ii), whereas property (iii) readily follows. �

Remark 3.8 If n = 2, and replacing B2 with S2, our definition of singular set P(g) ∈ D0(S2) of maps
g ∈W 1/p,p(S2,S1) agrees essentially with the extension T : W 1/p,p(S2,S1)→W 1,∞(S2,R)∗ of the distri-
butional determinant Det(∇g) by Bourgain-Brezis-Mironescu [7]. Therefore, if e.g. u ∈ W 1/p,p(B2,S1)
is constant in a neighborhood of ∂B2, arguing as in [7] for the case of maps in W 1/p,p(S2,S1), we obtain
the existence of two sequences (Pi), (Ni) ⊂ B2 such that

P(u) =

∞∑
i=1

(δPi − δNi) , mi(P(u)) =

∞∑
i=1

|Pi −Ni| <∞
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where the integral mass of the integral flat chain P(u) ∈ D0(B2) is given by

mi(P(u)) := min{M(L) | L ∈ R1(B2), ∂L = P(u)} .

For our purposes, we finally point out the following:

Remark 3.9 Let T ∈ cart1/p,p(Bn × S1), so that (2.6) holds. It is readily checked that

(2.7) holds ⇐⇒ P(uT ) = −(∂LT ) Bn . (3.7)

Therefore, on account of property (ii) in Proposition 3.7, it turns out that the class of Cartesian currents
with underlying map uT equal to u

T 1/p,p
u := {T ∈ cart1/p,p(Bn × S1) | uT = u in (2.6)} (3.8)

is non-empty, for every u ∈W 1/p,p(Bn × S1) and p > 1.

4 Energy concentration

In this section, we discuss a minimum problem that turns out to be strictly related to the energy con-
centration phenomenon in the relaxation process on the class W 1/p,p(Bn,S1).

4.1 A minimum problem

For any p > 1, denote

Fp := {u ∈W 1/p,p(R,S1) | deg u = 1}

see (2.8) and Proposition 2.6, and define

Ep := inf{E1/p,p(u,R) | u ∈ Fp} (4.1)

where, similarly as above, for any u ∈W 1/p,p(R,S1) we let

E1/p,p(u,R) := Epp−2(U,R2
+) =

∫
R2

+

tp−2 |DU(x, t)|p dx dt <∞ , U := Ext(u) ,

Ext(u) being the energy minimizer among all functions U ∈ W 1,p
p−2(R2

+,D2) such that U(x, 0) = u(x) on
R× {0} in the sense of the traces.

Remark 4.1 The energy functional U 7→ Epp−2(U,R2
+) is scale-invariant for each p > 1. More precisely,

if U(r)(x, t) := U(rx, rt), where U = Ext(u) for some map u ∈ W 1/p,p(R,S1), then the trace u(r) of

U(r) on t = 0 belongs to W 1/p,p(R,S1), and Epp−2(U(r),R2
+) = Epp−2(U,R2

+) for each r > 0, whence
U(r) = Ext(u(r)).

By convexity of the integrand, the functional u 7→ E1/p,p(u,R) is sequentially weakly lower semicon-
tinuous in Fp. However, the class Fp is not closed w.r.t. the weak convergence, see Remark 2.7, so that
(a part from the case p = 2, see Appendix A) we expect that the minimum in (4.1) fails to be attained.
Notwithstanding, we have:

Proposition 4.2 For every p > 1, the energy infimum (4.1) is a real positive constant Ep > 0.

Proof: Arguing as in the proof of Proposition 1.1 in the case n = 1, but this time with R2
+ instead of

C2, for every p > 1 and u ∈W 1/p,p(R,S1) we get the estimate∫
R2

+

|V #(dy1 ∧ dy2)| dx dt ≤ Cp
∫
R2

+

tp−2 |DU(x, t)|p dx dt
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for some real constant Cp > 0 only depending on p. On account of definition (2.8), this yields that

π ≤
∣∣∣∫

R2
+

V #(dy1 ∧ dy2)
∣∣∣ ≤ Cp · E1/p,p(u,R)

for each u ∈ Fp, whence Ep ≥ π/Cp > 0, as required. �

When p = 2, in Example A.1 from the first appendix we compute the weight E2 = 2π. Therefore,
extending the result obtained in [23] in the case p = 2, the explicit formula for the relaxed energy (0.6)
is expected to be:

Ẽ1/p,p(u) = E1/p,p(u) + Ep ·mi,Bn(P(u)) <∞

for every u ∈W 1/p,p(Bn,S1), n ≥ 2, and p > 1. This property will be proved in Theorem 8.2 below.

4.2 Energy minimum with fixed degree

In the sequel, for each map u ∈ W 1/p,p(R,S1) and each open set A ⊂ R, we define the energy of u on A
by means of the restriction u|A, i.e.,

E1/p,p(u,A) := Epp−2(U,A× (0, 1))

=

∫
A×(0,1)

tp−2|DU(x, t)|p dx dt , U = Ext(u|A) ,
(4.2)

where Ext(u|A) is the energy minimizer among all maps U ∈ W 1,p
p−2(A × (0, 1),R2) ∩ L∞(A × (0, 1),R2)

such that U(x, 0) = u(x) on A× {0}. Note that in general E1/p,p(u,A) ≤ Epp−2(Ext(u), A× (0, 1)), where

Ext(u) is the energy minimizer in W 1,p
p−2(R2

+,D2), so that E1/p,p(u,R) := Epp−2(Ext(u),R2
+).

Recalling the definition (2.8), Proposition 2.6, and (4.1), we now prove:

Proposition 4.3 For any p > 1 and d ∈ Z, we have

inf{E1/p,p(u,R) | u ∈ Fp(d)} = |d| · Ep (4.3)

where Fp(d) := {u ∈W 1/p,p(R,S1) | deg u = d}.

Proof: We prove in two steps the inequalities “≤” and “≥” in (4.3), where the case d ∈ {0, 1,−1}
trivially follows, whence it clearly suffices to consider the case d ∈ N+, with d ≥ 2.

Step 1: the inequality “≤”. Let PS := (0,−1), the “south pole” in S1. We make use of the following

Lemma 4.4 For each ε > 0, we can find a map uε ∈ W 1/p,p(R,S1) such that uε(x) = PS if |x| ≥ 1,
deg uε = 1, and E1/p,p(uε,R) ≤ Ep + ε.

Proof: Let u ∈ Fp = Fp(1) be such that E1/p,p(u,R) < Ep + ε/2. Since u − Pu ∈ Lp(R,R2) for some
Pu ∈ S1, by left composition with a rotation in the target space we can choose Pu = PS . Let now
U = Ext(u), and for each h ∈ N+ define

Uh(x, t) = φ(|(x, t)| − h)U(x, t) + (1− φ(|(x, t)| − h)) · PS

for some smooth decreasing cut-off function φ : R → R with φ(ρ) = 1 for ρ ≤ 0 and φ(ρ) = 0 for ρ ≥ 1.
We have that Uh → U strongly in W 1,p

p−2(R2
+,R2), whence for h sufficiently large we get

|Epp−2(Uh,R2
+)− Epp−2(U,R2

+)| < ε/2 .

By scale invariance of the energy, Remark 4.1, it suffices to define uε(x) = uh(x/(h+ 1)) for h large. �

Now, by gluing together d “copies” of the map uε from Lemma 4.4, i.e., by letting uε,d(x) = uε(x+2i)
if x ∈ (2i, 2i+1) for i = 0, . . . , d−1, and uε,d(x) = PS elsewhere in R, we find a map u ∈ Fp(d) satisfying
E1/p,p(uε,d,R) ≤ d · Ep + d · ε. Therefore, inequality “≤” in (4.3) follows by letting ε→ 0.
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Step 2: the inequality “≥”. Assume by contradiction that there exists u ∈ Fp(d) such that

E1/p,p(u,R) = (Ep − η) d (4.4)

for some constant η > 0. By a density argument, a truncation procedure as in the previous lemma, by
scale invariance of the energy, and by using a left composition with a rotation, we may and do assume
that u ∈ C∞(R,S1) with u(x) ≡ PS for |x| ≥ 1. Let C = u−1({PS}) and A = R \ C, so that A is a
bounded open subset in B1.

Let {Aj} denote the (at most countable) family of connected components (open intervals) of A. For
each j, we let uj denote the function equal to u on Aj and to PS on R \Aj . We have uj ∈W 1/p,p(R,S1),
whence the degree dj ∈ Z of uj is well-defined, and by (2.9) we readily infer that

∑
j dj = d.

We now see that dj ∈ {0,−1,+1} for each j. Since in fact uj ≡ PS in R \Aj and uj(x) 6= PS for each
x ∈ Aj , it cannot happen that |dj | ≥ 2, otherwise for topological reasons the continuous map uj should
cover the whole circle S1 at least once outside Aj , a contradiction.

We thus may assume (after a relabeling) that dj = 1 and hence uj ∈ Fp for each for j = 1, . . . , d.

Using that E1/p,p(u,R) ≥
∑d
j=1 E1/p,p(uj ,R), by (4.4) we find for some j = 1, . . . , d

E1/p,p(uj ,R) ≤ 1

d
E1/p,p(u,R) = Ep − η , η > 0

so that by (4.1) we get contradiction in the formula (4.4), as required. �

5 A lower semicontinuous energy on currents

In this section, we introduce a functional T 7→ E1/p,p(T ) on Cartesian currents that agrees with the

energy E1/p,p(u) if T = Gu for some map u ∈ cart1/p,p(Bn,S1), see (5.1). Our functional turns out to be
lower semicontinuous along weakly converging sequences of smooth graphs, Theorem 5.1.

For any p > 1, if T ∈ cart1/p,p(Bn × S1) as in (2.6), we define

E1/p,p(T ) := E1/p,p(uT ) + Ep ·M(LT ) if T = GuT + LT × [[ S1 ]] (5.1)

where Ep > 0 is the real constant given by (4.1). The localized energy on open sets A ⊂ Bn is

E1/p,p(T,A) := E1/p,p(u,A) + Ep ·M(L A) , u = uT , L = LT

where E1/p,p(u,A) is defined again by (4.2), the function Ext(u|A) being the energy minimizer among all

maps U ∈W 1,p
p−2(A× (0, 1),R2)∩L∞(A× (0, 1),R2) such that U(x, 0) = u(x) on A×{0}. We recall that

in general Epp−2(Ext(u), A × (0, 1)) ≥ E1/p,p(u,A), and that if A1, A2 are pairwise disjoint open sets in
Bn

E1/p,p(u,A1 ∪A2) ≥ E1/p,p(u,A1) + E1/p,p(u,A2) , A1 ∩A2 = ∅ . (5.2)

The following lower semicontinuity property holds true for any p > 1 and in any dimension n.

Theorem 5.1 Let T ∈ cart1/p,p(Bn × S1). Let {uh} ⊂ C∞(Bn,S1) be such that suph E1/p,p(uh) < ∞,
Guh ⇀ T weakly in Dn(Bn × S1), and uh → uT in Lp(Bn,R2). Then we have:

E1/p,p(T ) ≤ lim inf
h→∞

E1/p,p(uh) . (5.3)

Proof: We divide the proof in three steps. In Step 1, we first consider the case of low dimension n = 1.
In Step 2, we deal with the case n = 2, using a dimension reduction argument and Step 1. In Step 3, we
treat the case of high dimension n ≥ 3 by induction.

Step 1: the case n = 1. If T ∈ cart1/p,p(B1 × S1), in formula (2.6) we have L = LT ∈ R0(B1), hence L
is a finite sum of Dirac masses with integer weight, namely

L =

m∑
i=1

di δxi , M(L) =

m∑
i=1

|di| (5.4)
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where the xi’s are distinct points in B1 and di ∈ Z \ {0} for each i. Choose a family of open intervals
{Ai | i = 1, . . . ,m}, each Ai centered at the point xi, with pairwise disjoint closures Ai which are also
well contained in B1. Due to the continuous embedding of W 1/p,p(B1,S1) in the class VMO, see e.g. [7],
for each ε > 0 we can select each Ai small enough in such a way that:

i) the map uT has small oscillation on each Ai and small energy, namely:

E1/p,p(uT , Ai) < ε/m;

ii) for i = 1, . . . ,m, we can find a map vi ∈W 1/p,p(R,S1) such that

‖vi‖W 1/p,p(R\Ai,R2) + ‖uT − vi‖W 1/p,p(Ai,R2) <
ε

m
;

iii) setting Ω = B1 \
⋃
{Ai | i = 1, . . . ,m}, we have

E1/p,p(uT ) ≤ E1/p,p(uT ,Ω) +

m∑
i=1

E1/p,p(uT , Ai) + ε ;

iv) on account of Proposition 4.3, if ε > 0 is small enough, then deg vi = 0 for each i.

By lower semicontinuity of the energy u 7→ E1/p,p(u,Ω), we thus get

lim inf
h→∞

E1/p,p(uh,Ω) ≥ E1/p,p(uT ,Ω)

≥ E1/p,p(uT )−
m∑
i=1

E1/p,p(u,Ai)− ε ≥ E1/p,p(uT )− 2ε .
(5.5)

Now, for each i we have that Guh (Ai×S1) ⇀ GuT (Ai×S1)+di δxi in D1(Ai×S1). Moreover, using
that {uh} has equibounded energy, for h large enough we can find a smooth function vh(i) ∈W 1/p,p(R,S1)
such that

‖uh − vh(i)‖W 1/p,p(Ai,R2) ≤ ah , ‖vi − vh(i)‖W 1/p,p(R\Ai,R2) ≤ ah

where ah → 0. This yields that Gvh(i) ⇀ Gvi + di δxi in D1(R× S1).
On account of (2.9), and using that deg vi = 0, we thus infer that deg(vh(i))→ di as h→∞, whence

Proposition 4.3 yields that for h large E1/p,p(vh(i),R) ≥ Ep · |di|, and therefore:

E1/p,p(uh, Ai) ≥ Ep · |di| − ε/m ∀ i = 1, . . . ,m . (5.6)

By the estimates (5.5) and (5.6), using that by (5.2)

E1/p,p(uh) ≥ E1/p,p(uh,Ω) +

m∑
i=1

E1/p,p(uh, Ai) ∀h

we thus get

lim inf
h→∞

E1/p,p(uh) ≥ E1/p,p(uT ) + Ep ·
m∑
i=1

|di| − 3ε

and hence, letting ε→ 0, the lower semicontinuity inequality (5.3) follows on account of (5.1) and (5.4).
Finally, the inequality

lim inf
h→∞

E1/p,p(uh, A) ≥ E1/p,p(T,A)

is similarly obtained for any open subset A ⊂ B1.

Step 2: the case n = 2. Denote for simplicity uT := u∞, Th := Guh , T∞ := Gu∞ + LT × S1, and let
N := N ∪ {∞}.
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Choose a direction ν ∈ S1
+ := {x ∈ R2 : |x| = 1, x1 ≥ 0}, denote by πν the 1-D space spanned by

ν, and fix an orienting unit vector τ(ν) of the 1-D subspace of R2 orthogonal to πν . For any non-empty
and open subset A of B2, denote by Aν the orthogonal projection of A onto πν , and for any y ∈ Aν

Aνy := {z ∈ R | y ν + z τ(ν) ∈ A}

the (non-empty) section of A corresponding to y. Accordingly, for any function uh : A → S1 and any
y ∈ Aν , the sliced function (uh)νy : Aνy → S1 is defined by

(uh)νy(z) := uh(y ν + z τ(ν)) , h ∈ N.

Taking Ω := B2, for any h ∈ N the 1-dimensional slice (cf. [?, Sec. 2.2.5])

(Th)νy := Th (Ωνy × S1)

defines a Cartesian current in cart1/p,p(Ωνy × S1) for H1-a.e. y ∈ Ων , and

(Th)νy = G(uh)νy
, (T∞)νy = G(u∞)νy

+ (LT Ωνy)× [[ S1 ]] .

Moreover, by the definition (5.1), the energy of the sliced current (Th)νy is given for L1-a.e. y ∈ Aν by

E1/p,p((Th)νy , A
ν
y) := E1/p,p((uh)νy , A

ν
y) ∀h ∈ N

E1/p,p((T∞)νy , A
ν
y) := E1/p,p((u∞)νy , A

ν
y) + Ep ·M(LT Aνy) .

Therefore, setting

E1/p,p(Th, A; ν) :=

∫
πν

E1/p,p((Th)νy , A
ν
y) dy , h ∈ N (5.7)

by the inequalities

E1/p,p(uh, A) ≥
∫
Aν

E1/p,p((uh)νy , A
ν
y) dy ∀h ∈ N ,

M(LT A) ≥
∫
Aν

M(LT Aνy) dy ,

we infer that
E1/p,p(Th, A) ≥ E1/p,p(Th, A; ν) ∀h ∈ N . (5.8)

Moreover, using that

lim
h→∞

∫
πν

∫
Aνy

|(uh)νy − (u∞)νy |p dz dy = lim
h→∞

∫
A

|uh − u∞|p dx = 0

we can find a strictly increasing sequence {h(k)} ⊂ N such that

lim inf
h→∞

E1/p,p(Th, A; ν) = lim
k→∞

E1/p,p(Th(k), A; ν)

and the sliced currents (Th(k))
ν
y converge to (T∞)νy weakly in D1(Aνy × S1) as k →∞, for H1-a.e. y ∈ πν .

By Step 1, we thus have for any such y

lim inf
k→∞

E1/p,p((Th(k))
ν
y , A

ν
y) ≥ E1/p,p((T∞)νy , A

ν
y) . (5.9)

Integrating both sides of (5.9) on πν , using Fatou’s lemma, (5.7), and (5.8) we thus get for any ν ∈ S1
+

lim inf
h→∞

E1/p,p(Th, A) ≥ lim inf
k→∞

E1/p,p(Th(k), A; ν) ≥ E1/p,p(T∞, A; ν) . (5.10)

Consider now the Radon measure

λ := L3 C3 + θH1 (setLT × {0})
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where θ is the density function of the i.m. rectifiable current LT ∈ R1(B2) corresponding to the weak
limit current T , and setLT is the 1-rectifiable subset of B2 given by the points with positive density θ,
see (2.1).

Let {ν(i)}i ⊂ S1
+ be a countable dense sequence. Setting for (x, t) ∈ Bn × J , where J := [0, 1],

ϕi(x, t) :=

 tp−2|DExt(u∞)ν
(i)

y (x, t)|p if (x, t) ∈ C3 \ (setLT × {0}) ,
x = y ν(i) + z τ(ν(i))

Ep if x ∈ setLT , t = 0

we obtain for each i and each open set A ⊂ B2 :

E1/p,p(T∞, A; ν(i)) =

∫
A×J

ϕi dλ . (5.11)

By (5.2) and by the superadditivity of the lim inf operator, using (5.10) and (5.11) we thus get

lim inf
h→∞

E1/p,p(Th) ≥
∑
i

lim inf
h→∞

E1/p,p(Th, Ai)

≥
∑
i

E1/p,p(T∞, A; ν(i)) =
∑
i

∫
Ai×J

ϕi dλ
(5.12)

for any finite family of pairwise disjoint open sets Ai ⊂ B2. We now recall that by [2, Lemma 2.35]∫
B2×J

sup
i∈N

ϕi dλ = sup

{∑
i∈I

∫
Ai×J

ϕi dλ

}
where the supremum is taken over all finite sets of indices I ⊂ N and all families {Ai}i∈I of pairwise
disjoint open sets with compact closure in B2. By (5.12), we then conclude that

lim inf
h→∞

E1/p,p(uh) = lim inf
h→∞

E1/p,p(Th) ≥
∫
B2×J

sup
i∈N

ϕi dλ = E1/p,p(T∞) .

Finally, the inequality
lim inf
h→∞

E1/p,p(uh, A) ≥ E1/p,p(T∞, A)

is similarly obtained for any open subset A ⊂ B2, as required.

Step 3: the case n ≥ 3. Arguing as e.g. in the proof of [2, Thm. 5.4], we apply a reduction argument to
the case n− 1 in a similar way to Step 2, and an induction argument on the dimension n. We omit any
further detail. �

6 Approximate dipoles

In this section, we provide in low dimension n = 2 the approximation of dipoles for W 1/p,p-maps with
values in S1, see [9, 19], and [?, Sec. 4.2.3]. Using an argument similar to [23], we first show how to
remove homologically trivial point singularities in dimension n = 2.

6.1 Removing point singularities

If p > 1, 0 < s < 1, and 1 ≤ sp < 2, by the continuous embedding W s,p(Bn,S1) ⊂ W 1/p,p(Bn,S1), it
turns out that Definitions 2.3 and 3.1 concerning the graph current Gu and the singularity P(u) extend
to maps u ∈W s,p(Bn,S1). We have:

Proposition 6.1 Let p > 1, 0 < s < 1, and 1 ≤ sp < 2. Let u ∈ Rs,p(B2,S1) be such that P(u) = 0,
so that (3.3) holds, with n = 2. Then there exists a sequence of smooth maps {uh} ⊂ C∞(B2,S1) which
converges to u strongly in W s,p.
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Proof: Since we use a local argument, we may assume that u has only one singularity at the origin, i.e.,
u ∈ C∞(B2 \ {0},S1). For 0 < r < 1, we denote

Qr := B3
r ∩C3 , Fr := Qr ∩ (B2 × {0}) ,

∂+Qr := ∂B3
r ∩ {z = (x, t) ∈ C3 | t > 0} .

Let U = Ext(u) ∈ W 1,p
γ(s,p)(C

3,R2), where γ(s, p) is given by (0.3). According to (0.4), for any Borel set

Ω ⊂ C3 we let

Epγ(s,p)(U,Ω) :=

∫
Ω

tγ(s,p)|DU(x, t)|p dx dt , γ = γ(s, p) := p(1− s)− 1 .

Given ε > 0, let 0 < R = R(ε)� 1 be such that Epγ(s,p)(U,QR) ≤ ε. Since

Epγ(s,p)(U,QR \QR/2) =

∫ R

R/2

dr

∫
∂+Qr

tγ(s,p)|DU |p dH2 ,

there exists r = rε ∈ [R/2, R] such that

Epγ(s,p)(U, ∂
+Qr) :=

∫
∂+Qr

tγ(s,p)|DU |p dH2 ≤ 4

R
Epγ(s,p)(U,QR \QR/2) ≤ 4ε

R
. (6.1)

In order to remove the singularity of u, we have to show that

{w ∈W s,p(B2
r ,R2) ∩ C0(B̄2

r ,S1) | w|∂B2
r

= u|∂B2
r
} 6= ∅ , (6.2)

i.e., that u|∂B2
r

is homotopic to a constant map in S1. Since the first homotopy group π1(S1) ' Z is

commutative, it suffices to show that d u|∂B2
r

#ωS1 = 0. This property holds true since by condition (3.3)
we get: ∫

∂B2
r

u|∂B2
r

#ωS1 = Gu|∂B2
r
(π#

2 ωS1) = ∂Gu|B2
r
(π#

2 ωS1)

= Gu|B2
r
(dπ#

2 ωS1) = Gu|B2
r
(π#

2 dωS1) = 0 .
(6.3)

As a consequence, there exists a smooth extension ur : B2
r → S1 of u|∂B2

r
with finite W s,p-norm.

Let Vr : Qr → D2 be a minimizer of the energy V 7→ Epγ(s,p)(V,Qr) among the maps in W 1,p
γ(s,p)(Qr,R

2)

satisfying the boundary conditions {
V = U on ∂+Qr
V = ur on Fr .

Let 0 < δ < r to be fixed later. Define Ur : C3 → D2 by

Ur(z) :=


Vr

(
r

δ
z

)
if |z| ≤ δ

U

(
r
z

|z|

)
if δ ≤ |z| ≤ r

U(z) if |z| ≥ r

so that Ur ∈W 1,p
γ(s,p)(C

3,R2) is continuous and with trace ur(x) := Ur(x, 0) in W s,p(B2,S1). We have

Epγ(s,p)(Ur, Qδ) =
(δ
r

)2−sp
Epγ(s,p)(Vr, Qr) .

Moreover, as in the case s = 1/2 and p = 2, we can estimate

Epγ(s,p)(Ur, Qr \Qδ) ≤ c r E
p
γ(s,p)(U, ∂

+Qr) (6.4)
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for some absolute constant c > 0. Therefore, by (6.1), using that r < R, and taking δ = δ(ε) sufficiently
small, since 2− sp > 0 we get:

Epγ(s,p)(Ur) ≤ E
p
γ(s,p)(U) + 4cε+

(δ
r

)2−sp
Epγ(s,p)(Vr, Qr) ≤ E

p
γ(s,p)(U) + (4c+ 1) ε .

Letting ε → 0 we infer that Urε → U in W 1,p
γ(s,p)(C

3,R2) and finally that urε → u in W s,p(B2,R2), with

urε ∈ W s,p(B2,S1) continuous. By a standard argument as e.g. in [29], we finally approximate urε by
smooth functions in C∞(B2,S1), as required. �

6.2 The dipole construction

We now restrict to the case sp = 1, where we adapt some results from [21], to which we refer for further
details. To fix the notation, let a+, a− ∈ B2 and let L ∈ R1(B2) be the 1-current integration over the
segment joining a− to a+, with mass M(L) = l := |a+ − a−| ∈ (0, 1), oriented so that the boundary
∂L = δa+ − δa− . We assume for simplicity

a+ := (l, 0) , a− := (0, 0) .

Also, if P ∈ S1, we let GP denote the current carried by the graph of the map equal to P on B2.
In the sequel we also denote D2 := {(x, t) ∈ R2 | x2 + t2 < 1} and

B+ := D̄2 ∩ C2 , ∂+B := ∂D2 ∩ {(x, t) ∈ C2 | t > 0} ,
J := ∂B+ \ ∂+B = [−1, 1]× {0} .

We first notice that by Lemma 4.4, taking a left composition with a rotation, we readily obtain:

Proposition 6.2 For every P ∈ S1, there exists a family {fPε }ε>0 of Lipschitz functions fPε : B+ → D2

such that fPε|∂+B ≡ P , fPε (J) ⊂ S1, fPε#[[B+ ]] = [[D2 ]], fPε#[[ J ]] = [[ S1 ]], and

E1/p,p(fPε , B+) ≤ Ep +
ε

2
.

In Lemma 6.3, we extend a result proved in [21] when p = 2. For 0 < δ < 1 and 0 < m ≤ 1, let

ϕmδ (y) := min{my,m(l − y), δ} , 0 ≤ y ≤ l .

Consider the map φmδ : (0, l)×B+ → C3

φmδ (z) :=
(
x1, ϕ

m
δ (x1)x2, ϕ

m
δ (x1)t

)
, z = (x1, x2, t)

and define
Ωmδ := φmδ ((0, l)×B+)

= {(x1, x2, t) ∈ C3 | (x2)2 + t2 < ϕmδ (x1)2 , 0 < x1 < l} .

Lemma 6.3 Let V : (0, l)×B+ → R2 be a W 1,p
p−2 function and let

V mδ (z) := V ◦ (φmδ )
−1

(z) , z ∈ Ωmδ .

Then there exists an absolute constant c > 0 such that∫
Ωmδ

tp−2|DV mδ |p dz ≤
∫

(0,l)×B+

tp−2|D(x2,t)V |
p dz + c δp

∫
(0,l)×B+

tp−2|Dx1V |2 dz

+ cmp

∫
((0,δ/m)∪(l−δ/m,l))×B+

tp−2|D(x2,t)V |
p dz .

(6.5)

Proof: It suffices to note that with s = ϕmδ (x1)t, then

sp−2|detDφmδ (φmδ (x, t))| = tp−2ϕmδ (x1)p .

We then argue by a change of variables as in the case p = 2 considered in [?, Sec. 4.2.3]. �
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6.3 Approximate dipoles

Theorem 6.4 For every P ∈ S1, there exists a sequence of maps {uh} ⊂ C1(B2 \{a−, a+},S1) such that
Guh ⇀ GP + L× S1 weakly in D2(B2 × S1), and

E1/p,p(uh)→ l · Ep , l := |a+ − a−| .

Proof: For ε > 0 small, first define Wε : (0, l) × B+ → R2 by Wε(x1, x2, t) := fPε (x2, t), where fPε is
given by Proposition 6.2, so that Wε is Lipschitz-continuous. Then apply Lemma 6.3 with V := Wε and
m = 1, to obtain a map Wε,δ := Wε ◦ (φ1

δ)
−1. Finally set

Uε(z) :=

{
Wε,δ(z) if z ∈ Ω1

δ

P otherwise ,

so that Uε belongs to Liploc(C3 \ {a−, a+},R2), the trace uε(x) := Uε(x, 0) belongs to W 1/p,p(B2,S1),
and by (6.5)

l · Ep ≤ Epp−2(Uε) ≤ l · Epp−2(fPε , B
+) +

ε

2
if δ is sufficiently small in dependence of ε and of the Lipschitz constant of Wε. Letting uh = uεh with
εh ↘ 0, the assertion follows from Proposition 6.2, on account of a convolution argument. �

6.4 The dipole problem

The function uε in Theorem 6.4 has degree deg(uε, a±) = ±1, where the degree is defined in the classical
sense by taking the restriction of uε to small circles around the singularities a±. Equivalently, according
to Example 3.4 we have: P(uε) = −δa+ + δa− . As a consequence, we readily obtain:

Proposition 6.5 For p > 1, let Gp be the class of maps u ∈ W 1/p,p(R2,S1) which are smooth outside
the points a± and such that deg(u, a±) = ±1. Then

inf{E1/p,p(u,R2) | u ∈ Gp} = l · Ep , l = |a+ − a−| .

Proof: Inequality “≤” follows from Theorem 6.4, extending uε as the constant function P on R2 \B2.
On the other hand, for every u ∈ Gp and for a.e. x1 ∈ (0, l), the restriction ux1

(y) := u(x1, y) is a map
in W 1/p,p(R,S1) with degree one, whence E1/p,p(ux1 ,R) ≥ Ep, by (4.1). Integrating on y ∈ (0, l), we get

E1/p,p(u,R2) ≥
∫ l

0

E1/p,p(ux1 ,R) dx1 ≥ l · Ep

which yields the inequality “≥”. �

Proposition 6.5 is in accordance with the case N = 1 of [7, Thm. 2.4], where the authors analyzed the
dipole problem for maps in WN/p,p(SN+1,SN ).

7 Approximation by smooth graphs

In this section, and in the appendices B and C, we prove the following strong density result:

Theorem 7.1 Let n ≥ 2 and p > 1. For every T ∈ cart1/p,p(Bn× S1), there exists a sequence of smooth
maps {uh} in C∞(Bn,S1) such that Guh ⇀ T weakly in Dn(Bn × S1) and

lim
h→∞

E1/p,p(uh) = E1/p,p(T ) .

Proof: We make use of a readaptation of the proof for the case p = 2 taken from [23], in the simpler
case where the target space is the circle S1. We divide the proof in four steps.

Step 1: Reduction to finite mass singularities. Let T ∈ cart1/p,p(Bn × S1), so that (2.6) holds and hence
P(uT ) = −(∂LT ) Bn, see (3.7). By Proposition 3.7, we readily infer:
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Lemma 7.2 There exists a sequence {uh} in R1/p,p(B
n,S1) strongly converging to u = uT in W 1/p,p(Bn,R2)

and such that, if Luh,u is given by (3.6), then the current

Th := Guh + (Luh,u + LT )× S1

belongs to cart1/p,p(Bn × S1), all the boundary masses M(∂(Luh,u + LT )) are finite, Th ⇀ T weakly in
Dn(Bn × S1), and E1/p,p(Th)→ E1/p,p(T ) as h→∞.

As a consequence, we can assume that uT ∈ R1/p,p(B
n,S1) and that P(uT ) has finite mass, whence

T = GuT +L× [[ S1 ]], where L ∈ Rn−1(Bn) satisfies (∂L) Bn = −P(uT ). Therefore, by Federer’s bound-
ary rectifiability theorem [14], we infer that the boundary current ∂L is i.m. rectifiable in Rn−2(Bn).

Step 2: Approximation by polyhedral chains. We can thus write L =
∑m
q=1 Lq where the Lq’s are integral

(n− 1)-currents in Bn with pairwise disjoint supports. Using Federer’s strong polyhedral approximation
theorem [14], for every ε > 0 and q = 1, . . . ,m we find an integral polyhedral (n − 1)-chain P εq with
support contained in a small neighborhood of radius c ε of the support of the Lq’s, and a function
Uε ∈ C1(Cn+1,R2), with trace uε(x) := Uε(x, 0) ∈ R1/p,p(B

n,S1), such that if

Tε := Guε +

m∑
q=1

P εq × S1 ,

then Tε ∈ cart1/p,p(Bn × S1), Tε converges weakly in Dn(Bn × S1) to T as ε→ 0, and

E1/p,p(Tε) = E1/p,p(uε) + Ep ·
m∑
q=1

M(P εq )→ E1/p,p(uT ) + Ep ·M(L) = E1/p,p(T ) .

Moreover, since the Lq’s have disjoint supports, we may and do choose the polyhedral chains P εq in such
a way that for every small ε > 0 they have pairwise disjoint supports contained in Bn, and uε is locally
Lipschitz on Bn \

⋃m
q=1 spt ∂P εq , i.e., outside the (n− 2)-skeleton of each P εq . Also, possibly dividing the

simplices of a triangulation of P εq , we may and do assume that every polyhedral (n− 1)-chain P εq is the
union of a finite number of oriented (n− 1)-simplices ∆ which only intersect at the boundary points.

Step 3: Approximate dipoles. In dimension n = 2, we apply Proposition 6.2. In high dimension n ≥ 3,
we apply Proposition 7.3, that is proved in Appendix B. For this purpose, we fix some notation.

For n ≥ 3, let ∆ be the (n− 1)-simplex in Bn given by the convex hull

∆ := coh({0Rn , l e1, l e2, . . . , l en−1}) , 0 < l < 1 , (7.1)

(e1, . . . , en) being the standard basis in Rn. Denote by

z = (x, t) = (x̃, xn, t) , x̃ = (x1, . . . , xn−1)

a generic point z in Cn+1. Also, for δ > 0 and 0 < m� 1, we let

ϕmδ (y) := min{my, δ} , y ≥ 0 ,

we denote by
y(x̃) := dist(x̃, ∂∆)

the distance of x̃ from the boundary of the (n− 1)-simplex ∆, and we set

φmδ (z) :=
(
x̃, ϕmδ (y(x̃))xn, ϕ

m
δ (y(x̃))t

)
so that if

Ωmδ := φmδ (∆×B+) , B+ := {(xn, t) ∈ B2 | t > 0} ,

then Ωmδ is a small “neighbor” of the (n− 1)-simplex ∆× {0} in Cn+1.
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Proposition 7.3 Let U ∈ W 1,p
p−2(Cn+1,R2) be a map which is smooth in the interior of Ωm0

δ0
, for some

fixed small m0, δ0 > 0, and such that the trace u(x) := U(x, 0) belongs to W 1/p,p(Bn,S1). Then for every
ε > 0, 0 < δ < δ0, and 0 < m < m0, there exists a map Uε : Cn+1 → R2 with trace uε(x) := Uε(x, 0)
in W 1/p,p(Bn,S1) such that Uε is smooth in the closure of Ωmδ , except for the (n − 2)-skeleton of a
triangulation of ∆. Moreover, Guε ⇀ Gu + [[ ∆ ]]× [[ S1 ]] weakly in Dn(Bn × S1) as ε→ 0, and

E1/p,p(uε) ≤ E1/p,p(u) + Ep · Hn−1(∆) + ε . (7.2)

Once we have applied Proposition 6.2, when n = 2, or Proposition 7.3, when n ≥ 3, in order to
approximate the dipoles Pq × S1, by a diagonal argument we find a sequence {uε} in R1/p,p(B

n × S1)
whose graphs Guε weakly converge to T in Dn(Bn × S1), with E1/p,p(Guε) → E1/p,p(T ). Moreover, by
the construction it turns out that uε is smooth except on a singular set Σε of Bn given by the (n − 2)-
skeleton of a triangulation of the union of the polyhedral (n− 1)-chains Pq, and that P(uε) = 0, i.e., uε
is a Cartesian map in cart1/p,p(Bn,S1).

Step 4: Removing the singularities. We remove the (n−2)-dimensional singular set Σε. In low dimension
n = 2 we apply Proposition 6.1, whereas in high dimension n ≥ 3 we make use of the following variant
of a result from [23], that is proved in Appendix C.

Proposition 7.4 Under the previous hypotheses, for ε > 0 small enough there exists a sequence of

smooth maps {u(ε)
h } ⊂ C∞(Bn,S1) which converges to uε strongly in W 1/p,p(Bn,R2) as h→∞.

The proof of Theorem 7.1 is then completed by a diagonal argument. �

8 Relaxed energy

In this section, we provide in any dimension n ≥ 2 the explicit formula for the relaxed energy (0.6) in
the class W s,p(Bn,S1) for any 0 < s < 1 and p > 1. We then give a partial result concerning for the case
1 < s < 2. Recalling that in dimension n ≥ 2 we have W s,p

S (Bn,S1) = W s,p(Bn,S1) if and only if sp < 1
or sp ≥ 2, see Theorem 0.1, in the sequel we assume 1 ≤ sp < 2 and p > 1, by firstly considering the case
s = 1/p, Theorem 8.2, where we apply previous results proved in this paper.

For the sake of completeness, we first collect some properties concerning the class cart1/p,p(Bn × S1)
from Definition 3.3, which were already proved in [23] when p = 2

8.1 Cartesian currents

Using Theorems 2.5, 5.1, and 7.1, we obtain:

Theorem 8.1 Let n ≥ 2 and p > 1. Then:

i) for every T ∈ cart1/p,p(Bn × S1) there exists a smooth sequence {uh} ⊂ C∞(Bn,S1) such that
uh → uT strongly in Lp(Bn,R2), Guh ⇀ T weakly in Dn(Bn × S1), and E1/p,p(uh)→ E1/p,p(T );

ii) the class cart1/p,p(Bn×S1) is closed along weakly converging sequences of currents with equibounded
energies;

iii) the functional T 7→ E1/p,p(T ) is sequentially lower semicontinuous in the class cart1/p,p(Bn × S1).

Proof: Property i) is Theorem 7.1. As to property ii), assume that {Th} ⊂ cart1/p,p(Bn×S1) is such that

suphE1/p,p(Th) <∞. By applying Theorem 7.1, for each h we find a sequence {v(h)
k } ⊂ C∞(Bn,S1) such

that G
v
(h)
k

⇀ Th weakly in Dn(Bn × S1) and E1/p,p(v
(h)
k )→ E1/p,p(Th) as k →∞. Letting vh := v

(h)
h , we

have suph E1/p,p(vh) < ∞, whence by Theorem 2.5 a (not relabeled) subsequence is such that Gvh ⇀ T

weakly in Dn(Bn × S1) to some T ∈ cart1/p,p(Bn × S1). We now recall that the weak convergence
restricted to currents in Rn(Bn × S1) with no inner boundary is metrizable, being equivalent to the flat
metric convergence, see [30, Thm. 31.2]. Therefore, by a diagonal argument we find a subsequence of
{Th} weakly converging to T .
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As to property iii), assume now that {Th} ⊂ cart1/p,p(Bn × S1) satisfies suphE1/p,p(Th) < ∞ and

Th ⇀ T for some T ∈ cart1/p,p(Bn × S1). As before, we find a sequence {vh} ⊂ C∞(Bn,S1) such that
Gvh ⇀ T weakly in Dn(Bn × S1) and

lim inf
h→∞

E1/p,p(vh) ≤ lim inf
h→∞

E1/p,p(Th) .

On account of Theorem 5.1, we thus get

E1/p,p(T ) ≤ lim inf
h→∞

E1/p,p(Th) .

We omit any further detail. �

8.2 An explicit formula

Assume now sp = 1 and p > 1. The following theorem implies that every map in W 1/p,p(Bn,S1) belongs
to the W 1/p,p-weak sequential closure of smooth maps in C∞(Bn,S1).

Theorem 8.2 Let n ≥ 2 and p > 1. For every u ∈W 1/p,p(Bn,S1) the relaxed energy Ẽ1/p,p(u) is finite,
and we have:

Ẽ1/p,p(u) = E1/p,p(u) + Ep ·mi,Bn(P(u)) <∞

where Ep > 0 is given by the minimum problem (4.1), and mi,Bn(P(u)) is the integral mass relative to
Bn of the current P(u) ∈ Dn−2(Bn) of the singularities of u, see Definitions 3.1 and 3.5.

Proof: We claim that for every u ∈W 1/p,p(Bn,S1)

Ẽ1/p,p(u) = inf{E1/p,p(T ) | T ∈ T 1/p,p
u } <∞ (8.1)

where the class T 1/p,p
u of Cartesian currents with underlying function u is defined in (3.8).

In fact, we already know that the class T 1/p,p
u is non-empty, see Remark 3.9, whereas by Theorem 7.1,

for any T ∈ T 1/p,p
u we can find a smooth sequence {uh} ⊂ C∞(Bn,S1) such that Guh ⇀ T weakly in

Dn(Bn × S1) and E1/p,p(uh) → E1/p,p(T ). Since uh → uT in Lp(Bn,R2) and uT = u, we infer that the

inequality “≤” holds in (8.1), and hence that Ẽ1/p,p(u) <∞.
On the other hand, if {uh} ⊂ C∞(Bn,S1) satisfies suph E1/p,p(uh) < ∞, and uh → u in Lp(Bn,R2),

by Theorem 2.5 we find a (not relabeled) subsequence such that Guh ⇀ T weakly in Dn(Bn × S1) to

some T ∈ T 1/p,p
u . By Theorem 5.1, we have that E1/p,p(T ) ≤ lim infh E1/p,p(uh), whence the inequality

“≥” holds too in (8.1).
Now, using again Proposition 3.7, we know that P(u) is an integral flat chain in Dn−2(Bn), whence

there exists Lu ∈ Rn−2(Bn) such that

(∂Lu) Bn = −P(u) and M(Lu) = mi,Bn(P(u)) .

Setting then Tu := Gu+Lu× [[ S1 ]], by (3.7) we infer that the null-boundary condition (2.7) holds, whence

by (2.6) it turns out that Tu ∈ T 1/p,p
u . By the definition in (5.1) we thus get

inf{E1/p,p(T ) | T ∈ T 1/p,p
u } = E1/p,p(Tu) = E1/p,p(u) + Ep ·M(Lu)

which implies the explicit formula for Ẽ1/p,p(u), on account of (8.1). �

Coming back to Definition 3.3, we thus readily obtain:

Corollary 8.3 For any p > 1, we have:

W
1/p,p
S (Bn,S1) = cart1/p,p(Bn,S1) ∀n ≥ 2 .
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8.3 The case 0 < s < 1, 1 < sp < 2

In these ranges of s and p, the strong density of smooth maps fails to hold, see Theorem 0.1. Since
sp > 1, by the continuous embedding W s,p(Bn,S1) ⊂ W s,1/s(Bn,S1), both the graph current Gu in
Dn(Bn×S1) and the singular set P(u), an integral flat chain in Dn−2(Bn), are well defined for each map
u ∈W s,p(Bn,S1) .

However, differently to the scale invariance property for the case sp = 1, see Remark 4.1, letting
γ(s, p) as in (0.3), if U ∈W 1,p

γ(s,p)(R
2
+,R2) and U(r)(x, t) := U(rx, rt) we get

Epγ(s,p)(U(r),R2
+) = rsp−1Epγ(s,p)(U,R

2
+) ∀ r > 0 .

Therefore, since sp > 1 we have Epγ(s,p)(U(r),R2
+)→ 0 as r → 0+.

On account of Theorem 8.2, by the above facts we infer that the relaxed energy Ẽs,p(u) is finite if and
only if P(u) = 0, in which case it agrees with the energy Es,p(u). More precisely, we have:

Theorem 8.4 Let n ≥ 2, 0 < s < 1, and p > 1, with 1 < sp < 2. Then for every u ∈W s,p(Bn,S1)

Ẽs,p(u) =

{
Es,p(u) if P(u) = 0
+∞ if P(u) 6= 0 .

Proof: The implication
P(u) = 0 =⇒ Ẽs,p(u) = Es,p(u) <∞

is a consequence of the following approximation result:

Proposition 8.5 With the values of s, p, and n as in Theorem 8.4, if u ∈W s,p(Bn,S1) satisfies P(u) =
0, there exists a sequence {uh} ⊂ C∞(Bn,S1) such that uh → u in Lp(Bn,R2) and Es,p(uh)→ Es,p(u) as
h→∞.

Proof: Since Gu ∈ cart1/p,p(Bn × S1), arguing as in Steps 1–2 of the proof of Theorem 7.1 we find a
sequence of maps uε satisfying P(uε) = 0, which are smooth except on a singular set Σε of Bn given by
the (n− 2)-skeleton of a finite triangulation in Bn, and with uε → u strongly in W s,p(Bn,R2) as ε→ 0.
We then apply Proposition C.1 from Appendix C, in high dimension n ≥ 3, or argue in a way similar to
Proposition 6.2, when n = 2, in order to remove the homologically trivial singularities. Further details
are omitted. �

Conversely, we now show that

Ẽs,p(u) <∞ =⇒ P(u) = 0 .

Let {uh} ⊂ C∞(Bn,S1) be such that suph Es,p(uh) < ∞ and uh → u in Lp(Bn,R2). Since by the
continuous embedding suph E1/p,p(uh) < ∞ and u ∈ W 1/p,p(Bn,S1), by Theorem 2.5 we find a (not

relabeled) subsequence such that Guh ⇀ T weakly in Dn(Bn × S1) to some T ∈ T 1/p,p
u .

Assume by contradiction that P(u) 6= 0. Then, T = Gu + L × [[ S1 ]] for some L ∈ Rn−1(Bn) with
positive mass, M(L) > 0. Therefore, if L := setL is the set of points of positive density for L, see (2.1),
we have Hn−1(L) > 0.

For Hn−1-a.e. x ∈ L, we denote by Ix the line segment given by the intersection of Bn with the
straight line of Rn containing x and orthogonal to the approximate tangent (n − 1)-space to L at x.
Then, by a slicing argument, the 1-dimensional restriction of Guh to Ix × S1 yields (possibly passing to
a subsequence) a sequence of graphs of smooth maps uh|Ix : Ix → S1 with equibounded Es,p-energies.
Moreover, denoting by

U
(x)
h := Ext(uh|Ix) : Ix × (0, 1)→ R2

the extension of uh|Ix in W 1,p
γ(s,p)(Ix × (0, 1),R2), where γ(s, p) is given by (0.3), we have

sup
h

∫
Ix×(0,1)

tγ(s,p)|DU (x)
h (y, t)|p dy dt = C <∞ .
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Therefore, using that tp−2 = tsp−1 · tγ(s,p), for 0 < r < 1 we estimate∫
Ix×(0,r)

tp−2|DU (x)
h (y, t)|p dy dt ≤ rsp−1

∫
Ix×(0,r)

tγ(s,p)|DU (x)
h (y, t)|p dy dt ≤ C rsp−1 (8.2)

for any h, where C rsp−1 → 0 as r → 0+, since sp > 1.
On the other hand, by a slicing argument, we can find a neighborhood Jx of x in Ix such that the 1-

currents Guh|Ix (Jx×S1) have to converge near the point x to the current Gu|Ix (Jx×S1)+σ δx×[[ S1 ]],
where σ ∈ Z \ {0} agrees (up to the sign) with the density of the current L at x. Therefore, by lower
semicontinuity, Theorem 5.1, we have

lim inf
h→∞

E1/p,p(uh|Ix , Ix) ≥ Ep > 0 (8.3)

where Ep is given by (4.1). Since (8.3) is in contradiction with (8.2), we must have M(L) = 0, which
yields P(u) = 0, by (3.7), as required. �

8.4 The case 1 < s < 2, 1 < sp < 2

These are the ranges of s and p for which the strong density of smooth maps fails to hold, see Theorem 0.1,
but s > 1. Even if our definition of energy (0.5), with Epγ(s,p)(U) given by (0.4), does not make sense, we

obtain a partial result:

Corollary 8.6 Let u ∈ W s,p(Bn,S1), where 1 < p < 2, 1 < s < 2, 1 < sp < 2, and n ≥ 2. Assume that
there exists a sequence {uh} ⊂ C∞(Bn,S1) converging a.e. to u and such that suph ‖uh‖s,p <∞. Then,
P(u) = 0.

Proof: Since sp > 1, we have already seen that the current Gu and the singular set P(u) are well defined.
This time, by means of a Gagliardo-Nirenberg type inequality, see [5, Appendix D], the continuous
embedding W s,p(Bn,S1) ⊂ W r,q(Bn,S1) holds for any 0 < r < 1 and q > p such that rq = sp, with

‖u‖r,q ≤ C ‖u‖r/ss,p . This yields that suph Er,q(uh) <∞, whence u has finite relaxed energy, Ẽr,q(u) <∞.
Since rq > 1 and 0 < r < 1, by Theorem 8.4 we conclude that P(u) = 0. �

Appendix A Harmonic maps

The Euler-Lagrange system associated to the minimum problem (4.1) reads as

div(|tDU(x, t)|p−2DU) = 0 , (x, t) ∈ R2
+

and finding the energy minimum Ep in (4.1) is a difficult task. However, when p = 2 we reduce to the
harmonic map equation ∆U(x, t) = 0 and one has E2 = 2π, an energy minimizer u2 ∈ W 1/2,2(R,S1)
being given by the trace on t = 0 of the function U2 : R2

+ → D2

U2(x, t) :=
( 2

x2 + (t+ 1)2
x,

1− (x2 + t2)

x2 + (t+ 1)2

)
,

see (A.1), that is by the inverse u2 of the stereographic map σ : S1 → R from the south pole PS = (0,−1).

Example A.1 Let p = 2. By the parallelogram inequality, 2|detG| ≤ |G|2 for each G ∈ R2×2 and
hence, using that U(Ω) = D2 if u ∈ F2 is smooth, by the area formula we get the energy lower bound

E2(U,R2
+) =

∫
R2

+

|DU(x, t)|2 dx dt ≥ 2

∫
R2

+

|detDU(x, t)|2 dx dt ≥ 2π .
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Therefore, by a density argument we infer that E2 ≥ 2π. Following [28], consider now the complex map

h(z) :=
1− iz̄
z̄ − i

, z ∈ C \ {−i} .

It is readily checked that h is a biholomorphic map between the half-space H := {z ∈ C | Im z > 0} and
the unit disc E := {z ∈ C : |z| < 1}, and that h(z)→ −i as |z| → +∞. Setting z = x+ it for x ∈ R and
t > 0, we have h(z) = f(x, t) + i g(x, t), where

f(x, t) :=
2x

∆(x, t)
, g(x, t) :=

1− (x2 + t2)

∆(x, t)
, ∆ = ∆(x, t) := x2 + (t+ 1)2 .

Therefore, the following Cauchy-Riemann equations are satisfied:

f,x = −g,t =
2

∆(x, t)2

(
(t+ 1)2 − x2

)
, f,t = g,x =

4x(t+ 1)

∆(x, t)2
.

In particular, the mapping U2(x, t) := (f, g)(x, t) is conformal, i.e.,

〈DiU2, DjU2〉R2 = δij
4

∆2
∀ (x, t) ∈ R2

+ , 1 ≤ i ≤ j ≤ 2 .

Therefore, one has |DU2|2 = 2|detDU2| for each (x, t) ∈ R2
+, and since U2 : R2

+ → D is bijective

E2
0 (U2,R2

+) =

∫
R2

+

|DU2(x, t)|2 dx dt = 2

∫
R2

+

|detDU2(x, t)| dx dt = 2π .

Finally, the trace u2 : R→ S1

u2(x) := U2(x, 0) =
( 2x

1 + x2
,

1− x2

1 + x2

)
, x ∈ R (A.1)

satisfies deg u2 = 1, whence u2 ∈ F2 and definitely E2 = 2π.

Appendix B Approximate dipoles

In this appendix we give the proof of Proposition 7.3. It is a readaptation of the proof of [23, Prop. 7.3]
for the case p = 2, in the simpler situation where the target manifold is the unit circle S1.
Proof: [Proof of Proposition 7.3] Recall that n ≥ 3. Let ψ be a bi-Lipschitz homeomorphism of Bn

which takes the (n− 1)-simplex ∆ given by (7.1) onto the (n− 1)-disk D × {0} of diameter l, where

D := {x̃ ∈ Rn−1 : |x̃| ≤ l/2} ,

with Lipschitz constants
Lipψ ≤ K , Lipψ−1 ≤ K , (B.1)

where K = K(n) does not depend on l, but possibly on the distance of ∆ from ∂Bn. Also, let V :
Cn+1 → R2 be given by

V (z) := U ◦Ψ−1(z) , Ψ(z) = Ψ(x, t) := (ψ(x), t) .

Denoting 0 = (0, 0) ∈ R2, we finally set

Ωρ := {z ∈ Cn+1 | dist(z, ∂D × {0}) < ρ} ,
∂+Ωρ := {z ∈ Cn+1 | dist(z, ∂D × {0}) = ρ} ,

where ρ > 0, fix 0 < R < l/2, and denote by p : ΩR → ∂D×{0} the nearest point projection, so that for
every z ∈ ΩR

|z − p(z)| = dist(z, ∂D × {0}) .
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By applying the coarea formula w.r.t. “cylindrical type” coordinates defined around the (n−2)-sphere
∂D × {0}, since property∫

ΩR

tp−2|DV |p dz =

∫ R

0

dρ

∫
∂+Ωρ

tp−2|DV |p dHn <∞

yields

lim inf
ρ→0+

ρ

∫
∂+Ωρ

tp−2|DV |2 dHn = 0 ,

we can choose a small radius r > 0 and replace V on Ωr by the map

Vr(z) := V
(
p(z) + r

z − p(z)
|z − p(z)|

)
(B.2)

so that as in (6.4) we estimate

Epp−2(Vr,Ωr) ≤ cn · r
∫
∂+Ωr

tp−2|DV |p dHn = O(r) (B.3)

where O(rj)→ 0 along a sequence rj ↘ 0.

We now define Ω̃mδ := φ̃mδ (D ×B+), where for z = (x̃, xn, t) we let

φ̃mδ (z) := (x̃, ϕmδ (ỹ(x̃))xn, ϕ
m
δ (ỹ(x̃))t) , ỹ(x̃) := dist(x̃, ∂D) .

Moreover, setting rδ,m := δ

√
1 +m2

m
we define

Km
δ :=

{
z ∈ Cn+1 | 0 < dist(z, ∂D × {0}) < rδ,m ,

0 < ỹ(x̃) < δ/m ,
√
xn2 + t2 < m · ỹ(x̃)

}
and note that if rδ,m < r, by (B.2) it turns out that the restriction of V to Km

δ does not depend on the
distance of z from ∂D × {0}.

We now wish that the following conditions hold true:

(i) V maps Km
δ into a set of diameter ε;

(ii) V maps Ω̃mδ into a set of diameter ε.

If it is not the case, we let {∆i}c(n)
i=1 be a barycentric-type subdivision of ∆ into smaller simplices of

side l/2, whose number c(n) only depends on n, starting from the 1-faces of ∆. Moreover, possibly slightly
moving the centers of the 1-faces of ∆, without loss of generality we can assume that the restriction of
V to each k-face of ∆i has finite E1/p,p-energy, for every k = 2, . . . , n and every i. We then apply the
previous construction to each ∆i, where K, see (B.1), is an upper bound for the Lipschitz constants of
the homeomorphisms of Bn which map ∆i onto Di, the (n− 1)-disk of diameter l/2, for every i.

If V does not satisfy conditions (i) and (ii) on the sets Km
δ,i and Ωmδ,i corresponding to Di, we start

again with the previous procedure, by taking a barycentric subdivision of ∆i as above.
Note that V is smooth on the interior of Ωmδ , for δ and m sufficiently small, and, by paying a small

amount of energy, we can assume that V does not depend on the distance of z from ∂Di on Km
δ,i. We then

infer that the conditions (i) and (ii) above are obtained after a finite number of barycentric subdivisions,
by first taking 0 < m = m(ε) � 1 and then δ = δ(m, r) > 0 small. Therefore, in the sequel we omit to
write the index i corresponding to the simplex ∆i of the given (finite) subdivision of ∆.

Let now Wε : D ×B+ → RN be given by

Wε(x̃, xn, t) := fPε (xn, t) (B.4)
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where fPε is given by Proposition 6.2 in correspondence to the point P := U(x) for some given x ∈ int(∆).
Setting

Φε(z) := Wε ◦ (φ̃mδ )
−1

(z) , z ∈ Ω̃mδ

arguing as in Theorem 6.4 and (B.3) we estimate

Epp−2(Φε, Ω̃
m
δ ) ≤ Hn−1(∆) · Epp−2(fPε , B

+) +
ε

2µK2

if we choose δ = δ(Wε, ε,m,K, µ) sufficiently small. Here, µ is the finite number of the ∆i’s obtained in
the previous subdivision of ∆. We now introduce the cylindrical coordinates

z = (x̃, xn, t) = F (ρ, θ, x̃) := (x̃, ρ cos θ, ρ sin θ) , ρ > 0, θ ∈ [0, π]

so that ρ =
√
xn2 + t2, denote

Ŵ (ρ, θ, x̃) := W (F (ρ, θ, x̃))

and define Vε : Ω̃mδ → R2 by

V̂ε(ρ, θ, x̃) :=

 Φ̂ε(2ρ, θ, ỹ) if 0 ≤ ρ < ϕmδ (ỹ)/2

Ψ̂m
δ (ρ, θ, ỹ) if ϕmδ (ỹ)/2 ≤ ρ < ϕmδ (ỹ)

for all θ ∈ [0, π] and x̃ ∈ int(∆), where ỹ = ỹ(x̃) := dist(x̃, ∂D) and

Ψ̂m
δ (ρ, θ, ỹ) :=

(
2ρ

ϕmδ (ỹ)
− 1

)
· V̂ (ϕmδ (ỹ), θ, ỹ) +

(
2− 2ρ

ϕmδ (ỹ)

)
· P .

We also extend Vε ≡ V outside Ω̃mδ . By conditions (i) and (ii) above we thus estimate

Epp−2(Vε, Ω̃
m
δ ) ≤ Hn−1(∆) · (Ep + 4ε2) +

ε

2µK2
. (B.5)

We finally define
Uε(z) := Vε ◦Ψ(z) .

Possibly repeating the argument for each simplex ∆i of the given subdivision of ∆, by (B.5) and (B.1)
we estimate

Epp−2(Uε) ≤ Epp−2(U) +Hn−1(∆) · (Ep + 4K2ε2) +
ε

2

so that (7.2) follows for ε > 0 small. �

Appendix C Removing homologically trivial singularities

In this appendix, we give the proof of Proposition 7.4 by taking s = 1/p in Proposition C.1 below. As
before, it is a readaptation of the proof of [23, Prop. 7.4] for the case s = 1/2 and p = 2, in the simpler
case where the target manifold is the unit circle S1.

Proposition C.1 Let n ≥ 3, p > 1, and 0 < s < 1 be such that 1 ≤ sp < 2, and let uε ∈ Rs,p(Bn × S1)
be smooth except on a singular set Σε of Bn given by the (n− 2)-skeleton of a triangulation of the union
of polyhedral (n − 1)-chains Pq, q = 1, . . . ,m. If P(uε) = 0, there exists a sequence of smooth maps

{u(ε)
h } ⊂ C∞(Bn,S1) which converges to uε strongly in W s,p(Bn,R2).

Proof: Let Uε : Bn×] − 1, 1[→ D2 be given by Uε(x, t) := (Extuε)(x, t) if t > 0, and Uε(x, t) :=
(Extuε)(x,−t) if t < 0. In the proof, we shall then work with the energy

U 7→ Epγ(s,p)(U) :=

∫
Bn×]−1,1[

|t|γ(s,p)|DU(x, t)|p dx dt
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where γ(s, p) is given by (0.3). For m ∈ N∗ and a ∈ [1/4m, 3/4m]n+1, we denote by Lm = Lm(a) the
grid of Rn+1

Lm := a+
⋃

z∈Zn+1

1

m
· z

and by L(k+1)
m the family of all the (k + 1)-faces Q of the (n+ 1)-cubes of Lm which intersect the n-disk

Bn × {0}, for k = 1, . . . , n. Moreover, we let F (k)
m denote the set of k-faces F obtained by intersecting

the (k + 1)-faces Q of L(k+1)
m with the n-disk Bn × {0}, i.e.,

F = Q ∩ (Bn × {0}) . (C.1)

We finally set
Gm := Bn×]− 10m−1, 10m−1[ .

Similarly to [22], we may and do choose a = a(m,Uε) so that the following conditions hold:

(i) for every k = 1, . . . n− 1, the restriction of Uε to every (k + 1)-face of L(k+1)
m is a W 1,p

γ(s,p) function;

(ii) there exists an absolute constant c > 0 such that

Epγ(s,p)(Uε,∪L
(k+1)
m ) ≤ cmn−k Epγ(s,p)(Uε, Gm) ∀ k = 1, . . . , n− 1 . (C.2)

Moreover, recalling that n ≥ 3, since the singular set Σε is given by the (n− 2)-skeleton of some fixed
triangulation of the Pq’s, by a slicing argument, for m sufficiently large we can also require that

(iii) Σε does not intersect the 1-faces of F (1)
m ;

(iv) every 2-face F of F (2)
m intersects Σε at almost one interior point pF ∈ int(F ), which does not belong

to the (n− 3)-skeleton of the triangulation of the polyhedral (n− 1)-chains Pq ;

(v) the restriction uε|F of uε to any 2-face F of F (2)
m is continuous, possibly except at the point pF ;

(vi) in this case, if pF ∈ sptPq, we have

∂Guε|F F × S1 = 0 on D1(F × S1) . (C.3)

As a consequence, arguing as in (6.3), by (C.3) we infer that

{w ∈W s,p(F,R2) ∩ C0(F,S1) | w|∂F = uε|∂F } 6= ∅ (C.4)

holds true for every 2-face F of F (2)
m .

In order to remove the singular set Σε of uε, we make use of an argument taken from [22]. To

this aim, at the 1st step we set U
(ε)
m ≡ Uε on ∪L(2)

m . We then argue by induction on the dimension

k = 2, . . . , n and, at the kth step, we set U
(ε)
m ≡ Uε on every Q ∈ L(k+1)

m which does not intersect the

n-disk Bn × {0}. Moreover, we define U
(ε)
m on every Q ∈ L(k+1)

m which intersects Bn × {0} by means

of a “cone” construction starting from the restriction U
(ε)
m|∂Q of U

(ε)
m to the boundary ∂Q. To do this, if

F ∈ F (k)
m is given by (C.1), it suffices to require that the trace ϕF of U

(ε)
m|∂Q on the boundary of F has a

continuous extension ΦF ∈W s,p(F,S1).
Note that at the 2nd step, this last condition is given by (C.4). In order to extend this condition to

the case k ≥ 3, for every k ≥ 2 at the kth step we first modify the definition of u
(ε)
m (x) := U

(ε)
m (x, 0) on

F (k)
m in a suitable way (see the kth step of the proof of Theorem 2 on p. 457 of [22] for further details).

We secondly extend U
(ε)
m to every Q ∈ L(k+1)

m in a continuous way, so that its trace u
(ε)
m belongs to

W s,p(F,S1) and

Epγ(s,p)(U
(ε)
m , Q) ≤ c

m
Epγ(s,p)(Uε, ∂Q) . (C.5)

34



More precisely, let vQ : Q→ R2 be defined by vQ(z) = v±Q(z) if z ∈ Q±, where

Q± := {z = (x, t) ∈ Q | ±t ≥ 0}

and v±Q : Q± → R2 is the solution of the minimum problem for the energy
∫
Q±
|t|γ(s,p)|DV (x, t)|p dx dt

with boundary condition {
v±Q = U

(ε)
m on ∂Q± ∩ {(x, t) | ±t > 0}

v±Q = ΦF on F

where ΦF : F → S1 is a continuous W s,p-extension of the boundary datum ϕF (x) := U
(ε)
m|∂Q(x, 0).

Assuming e.g. that the center of Q is the origin 0Rn+1 , we define U
(ε)
m on Q by setting, for 0 < δ � 1/2m,

U (ε)
m (z) :=


vQ

( z

2mδ

)
if ‖z‖ ≤ δ

U
(ε)
m

( z

2m‖z‖

)
if δ ≤ ‖z‖ ≤ 1

2m

z ∈ Q

where ‖z‖ := supi |zi| if z = (z1, . . . , zn+1), so that ‖z‖ = 1/2m if z ∈ ∂Q. Therefore, we have:

Epγ(s,p)(U
(ε)
m , {‖z‖ < δ}) ≤ (2mδ)n−spEpγ(s,p)(vQ, {‖z‖ < 1/2m})

where n− sp > 0. A similar definition works in the general case, so that (C.5) holds true and u
(ε)
m (x) :=

U
(ε)
m (x, 0) belongs to W s,p(F,S1).

Repeating the argument for k = 2, . . . , n, using (C.5) we estimate

Epγ(s,p)(U
(ε)
m ,∪L(n+1)

m ) ≤ C(n)

n−1∑
k=1

1

mn−k E
p
γ(s,p)(Uε,L

(k+1)
m )

and hence, by (C.2), we obtain

Epγ(s,p)(U
(ε)
m ,∪L(n+1)

m ) ≤ C(n) Epγ(s,p)(Uε, Gm)→ 0

as m→ +∞, since |Gm| → 0. We finally set U
(ε)
m = Uε on Cn+1 \ ∪L(n+1)

m , as required. �
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