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Abstract 

The ongoing decarbonization of the energy sector spurs to employ distributed generation 

and efficient load control approaches (demand side management). This work tackles the 

optimal operation of a Multi Energy System (MES) and thermal comfort management for 

buildings with an integrated approach. The dynamic thermal energy balance of the 

buildings is included in the Mixed Integer Linear Programming (MILP) scheduling 

problem formulation, as to exploit the heat capacity of buildings and increase the 

operational flexibility of the generators. The method is firstly applied to a single building 

served by different energy systems comprising renewable energy sources. Then, the 

methodology is further extended by also integrating the model of the district 

heating/cooling network. This method is tested in a group of 12 buildings of the Campus 

of University of Parma , featuring different thermal properties. By enabling a variation 

within ± 2°C around the indoor temperature setpoint and by optimizing water delivery 

temperature, it is possible to achieve savings on operating costs over the baseline  up to 

80%. Results show that the load shift capability of buildings plays a major role when 

thermal demand mismatches RES availability or low electricity price periods. Moreover, 

DHN can be exploited as an additional short-term heat storage by varying water delivery 

temperature profile.  

Keywords: Multi Energy Systems, demand-side management, MILP, district heating 

network 
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Parameters 

𝑐𝑒𝑙,𝑝𝑢𝑟𝑐ℎ,𝑡  Purchase electricity price 𝑞𝑇,𝑖 
Machine OAT curve 

coefficient 

𝑐𝑒𝑙,𝑠𝑎𝑙𝑒 ,𝑡  Sale electricity price 𝑅𝑈𝑖 Machine ramp-up limit 

𝑐𝑓𝑢𝑒𝑙  Fuel price 𝑆𝑗 
Surface covered by solar 

collectors 

𝐶𝑘 Building heat capacity 𝑇𝑒𝑥𝑡 ,𝑡 Outdoor air temperature 

𝑐𝑂&𝑀  O&M cost 𝑇𝐶𝐼𝑁 ,𝑘,𝑡  
Outlet temperature of the hot 

fluid 

𝑐𝑤 water heat capacity 𝑇𝐻𝐼𝑁,𝑘,𝑡  
Inlet temperature of the hot 

fluid 

𝐷𝑝  Pipe diameter 𝑇𝑚,𝑖 
Water average temperature of 

solar collectors 

𝐺𝑛𝑜𝑚  
Nominal solar irradiance of 

solar collectors 
𝑇𝑃𝐷,𝑘,𝑡  

Primary water delivery 
temperature 

𝐺𝑡  Solar irradiance 𝑇𝑃𝐷,𝑢𝑠𝑒𝑟 ,𝑘,𝑡  
Primary water delivery 

temperature (user side) 

𝑘1,𝑖 
Machine part-load curve 

coefficient 
𝑇𝑃𝑅 ,𝑘,𝑡  

Primary water return 

temperature 

𝑘2,𝑖 
Machine part-load curve 

coefficient 
𝑇𝑃𝑅 ,𝑢𝑠𝑒𝑟 ,𝑘,𝑡 

Primary water return 

temperature (user side) 

𝑘𝑝  Pipe heat transfer coefficient 𝑇𝑆𝐷,𝑘,𝑡  
Secondary water delivery 

temperature 

𝑖𝑛𝑚𝑎𝑥 ,𝑖 
Machine maximum power 

input 
𝑇𝑆𝐷,𝑢𝑠𝑒𝑟 ,𝑘,𝑡  

Secondary water delivery 
temperature (user side) 

𝑖𝑛𝑚𝑖𝑛 ,𝑖 Machine minimum power input 𝑇𝑆𝑅 ,𝑘,𝑡 
Secondary water return 

temperature 

�̇�𝑃,𝑘  Mass flow rate of primary loop 𝑇𝑆𝑅 ,𝑢𝑠𝑒𝑟 ,𝑘,𝑡  
Secondary water return 

temperature (user side) 

�̇�𝑆,𝑘 
Mass flow rate of secondary 

loop 
𝑇𝑈𝑇𝐴,𝑡  

Air forced ventilation 

temperature 

𝑚𝑇 ,𝑖 
Machine OAT curve 

coefficient 
𝑇∞ 

Temperature of pipe 

surroundings 

𝑚𝑐𝑝,𝑛𝑎𝑡,𝑘  Air infiltration heat capacity 𝑈𝐴𝑘 
Total thermal transmittance of 

the envelope 

𝑚𝑐𝑝,𝑓𝑜𝑟 ,𝑘  
Air forced ventilation heat 

capacity 
𝛥𝑡 MILP time discretization 

𝑄𝑖𝑟𝑟,𝑘,𝑡  Building solar gain 𝜀𝑘 
Heat exchanger nominal 

effectiveness 

𝑄𝑜𝑐𝑐,𝑘,𝑡 Building internal gain ρ𝑤  Water density 
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AC Absorption Chiller HP Heat Pump 

B0 Building 0 (ref.) ICE Internal Combustion Engine 

B1 Building 1 (higher heat capacity) LP Linear Programming 

B2 
Building 2 (higher glazed surface) 

MILP 
Mixed Integer Linear 
Programming 

CC 
Compression Chiller 

MINLP 
Mixed Integer Non Linear 
Programming 

CCHP 
Combined Cooling Heat and 
Power 

NG Natural Gas 

CHP Combined Heat and Power OAT Outdoor Air Temperature 

DCN District Cooling Network O&M Operation and Maintainance 

DHN District Heating Network TCM Thermal Comfort Management 

DP Dynamic Programming RES Renewable Energy Sources 

FS Fixed Setpoint W1 Week 1 (winter) 

GA Genetic Algorithm W2 Week 2 (spring) 

HX Heat Exchanger W3 Week 3 (summer) 

 

Sets Variables 

ℳ Set of dispatchable units 𝑒𝑙𝑝𝑢𝑟𝑐ℎ,𝑡 Electricity import from the grid 

𝒩𝒟 Set of non-dispatchable units 𝑒𝑙𝑠𝑎𝑙𝑒,𝑡  Electricity export from the grid  

𝒦 Set of buildings 𝑖𝑛𝑖 ,𝑡  
Machine input consumption 

rate 

𝒯 Set of timesteps 𝑝𝑖 ,𝑡 Machine output production rate 

Indexes 𝑄𝑘,𝑡 Heat supplied to the building 

i Generator 𝑇𝑘 ,𝑡 Building indoor temperature 

k Building 𝑧𝑖,𝑡  Binary commitment variable 

t Timestep Δ𝑖,𝑡  Binary start-up variable 

 

1. Introduction 

 

The energy transition towards more sustainable solutions requires the coordinated 

management of different energy resources and loads. Multi-energy systems (MESs) are 

considered a favourable route to integrate various energy vectors and activate synergies 

among them. MESs are multi-service and multi-fuel systems [1], where heat, cold, 

electricity and fuels interact with each other at different levels. They allow to achieve 

better performances compared to "traditional" systems, both from the environmental, 

technical and economic point of view [1]. Local energy production has to cope with the 

fluctuating availability of RES (Renewable Energy Sources) and therefore the need for 

flexible solutions is to be advocated. In this framework, the building sector represents a  

great opportunity, as thermal mass - readily available - can be exploited to shift thermal 
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loads. Moreover, buildings represent a  large fraction of final energy consumption, around 

40% in Europe and 32% globally [2]. More specifically, heating and cooling needs 

account for 55% and 30% of buildings energy consumption in EU, respectively in 

residential and in commercial sector [2].  

Due to the multiple possible synergies between the installed units and the large number 

of degree of freedom (units loads, units on/off and energy storage management), the 

operation of MESs calls for the development of systematic optimization approaches. 

From a mathematical point of view, the operation optimization problems can be 

formulated rigorously as nonconvex Mixed Integer Non Linear Programming (MINLP) 

because of the nonlinear effects of part-load operation on generator efficiency [3] as well 

as possible non-isothermal mixing occurring in water headers [4]. The introduction of 

binary variables becomes fundamental when start-up/shut-down operation is included. 

Nevertheless, MINLP problems (especially if nonconvex) are more computationally 

demanding, require considerably more computational time and may fail to find a feasible 

solution [5][4]. As a result, several studies have proposed optimization approaches based 

on either Mixed Integer Linear Programming (MILP) formulations (e.g. Brahman et 

al.[6], Buoro et al. [7]), Dynamic Programming (e.g., Gambarotta et al. [8] and Marano 

et. al [9]) metaheuristic algorithms (e.g., the genetic algorithm ofFang and Lahdelma [10], 

the neurodynamic-based optimization algorithm byHuang et al. [11]) and distributed 

control algorithms (e.g., the double-newton descent algorithm byYushuai et al. [12]). 

Among these, techniques based on MILP problem formulations appear to be the most 

promising due to the possibility of including all operational constraints (including 

ramping and start-up constraints), keep a good solution accuracy [4] [5] via proper 

linearization techniques, rely on very efficient commercially available MILP solvers (e.g., 

CPLEX , Gurobi) and feature global optimality guarantees on the obtained solution. 

However, most literature addressing the optimization of MES considers the thermal 

demand profile of buildings as an exogenous input to be met. Examples are the work of 

Sandou et al.[13], Bischi et al. [3], Moretti et al. [4][14], Fang and Lahdelma  [10] and 

Buoro et al. [7]. Sandou et al. [13] optimize the supply temperature and the scheduling of 

the units given a thermal input profile with Sequential Quadratic Programming (SQP), 

including constraints on heat exchangers of the DHN and thermal propagation delay in 

pipes. Bischi et al. [3] formulate the operational problem of the aggregated energy system 

as a MILP by adopting a piecewise linear approximation of the part -load performance 

maps of the units. Moretti et al. [14] extended the MILP to account for the uncertainty 

affecting the forecasts of heat and electricity demand as well as production from 
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renewable sources. Moretti at al. [4] further extend the MILP formulation to handle 

complex network arrangements with units generating hot water at different temperatures 

and stratified thermal storage systems. Fang and Lahdelma [10] develop a Genetic 

Algorithm to optimize the scheduling of distributed units, the delivery temperature and 

the mass flow rate of the DHN (District Heating Network), accounting for transport delay 

in pipes. Buoro et al. [7] formulate a multi-objective MILP to minimize total annual 

operating of a distributed cogeneration system with a solar thermal plant. Gambarotta et 

al. [8] develop a DP algorithm to minimize the overall primary energy consumption of 

many energy technologies serving a residential buildings, comprising photovoltaics 

panels (PV), thermal collectors, a  micro gas turbine, heat pumps, an energy storage and a 

boiler. The thermal power profile supplied to the buildings is fixed (input profile) and not 

optimized. This decoupling between the building heat demand and the MES operation 

does not allow the possibility of exploiting the building thermal capacity as a storage 

system , as pointed out in [15]. For this reason, a few works incorporate the building 

model in the operational optimization problem. Darivianakis et al. [16] formulate a robust 

predictive control linear program and adopt a bi-linear state-space model of the building. 

Baader et al. [17] propose a MILP formulation for the scheduling problem, including a 

representation of closed-loop process dynamics. To this end, they discretize the single 

state grey-box model of the building via collocation polynomials. Brahman et al. [6] 

address the home scheduling problem of a residential building through a MILP 

formulation. They introduce binary variables to state the on/off status of the energy 

system and household appliances, which can be curtailed or shifted. The thermal demand 

of the building is regarded as a flexible and they include in the formulation the single-

state grey box model of the building approximated to the forward difference. Nguyen and 

Le [18] tackle the LP home energy scheduling, by integrating a three state variables (air, 

envelope and internal mass temperature) model of the building. However, all these works 

neglect the transport dynamics of the pipes and the operation of heat exchanger of the 

district heating network. Guelpa et al. [19] aim at minimizing thermal peaks of a large 

scale district heating network with a Genetic Algorithm, by acting on the advanced start-

up of the heating system. In order to reduce the degrees of freedom of the problem, they 

defined a-priori maximum anticipation for each building, by clustering them according to 

the parameter τ (the ratio of the thermal capacity to thermal conductivity). Gu et al [20] 

addresses the optimal scheduling of a CHP and a wind farm, embedding the dynamic 

model of the buildings and of heat transmission across the pipes in the formulation . They 

formulate the problem as a MINLP which however does not model the effect of the heat 
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transfer temperature difference in the heat exchangers. Table 1 summarizes the main 

approaches proposed in literature for optimizing  the operation of MES and energy 

districts. s 

Table 1– Main approaches for optimizing the operation of energy districts and  multi energy systems.   

Ref
. 

Optimiz
ation 
techniqu
e 

Goal Optimized 
variables 

Key 
equations 

Applicatio
n 

Advantag
es 

Disadvantages 

[13
] 

NLP  Control Loads of 
units , DHN 
supply 
temperature
s and 
opening 
degree 
valves of 
DHN 

Thermal 
propagation 
delay in 
pipes, HX 
operation, 
aggregated 
production 
models 

2 DHN 
rings with 
6 
consumers 
supplied by 
2 
aggregated 
production 
sites  

Detailed 
DHN non-
linear 
dynamics 
and heat 
exchanger
s operation 

Heat capacity of 
buildings not 
exploited; 
aggregated 
model for 
production sites 
without 
considering units 
on/off operation 

[3] MILP  Operatio
n 

Scheduling 
of units  
(loads and 
on/off), 
managemen
t of heat 
storages 

Linearized 
perfomance 
maps, 
energy 
balances, 
units 
technical 
limits  

MES with 
combined 
cooling, 
heat and 
power 

Computati
onal load 

Heat capacity of 
buildings not 
exploited; DHN 
dynamics not 
included 

[4] MINLP/
MILP 

Operatio
n 

Scheduling 
of units, 
water mass 
flow rates 
and 
temperature
s, 
managemen
t of 
thermocline 

Linearized 
perfomance 
maps, 
energy and 
mass 
balances, 
units 
technical 
limits, non-
isothermal 
mixing in 
headers 

MES 
serving 
DHN  

It accounts 
for 
different 
delivery 
temperatur
es of units 
and 
parallel/ser
ies 
connection
s 

Heat capacity of 
buildings not 
exploited; more 
computational 
compared to 
energy flow 
models  

[10
] 

Simulatio
n-based 
optimizat
ion (GA 
+ DHN 
simulatio
n) 

Operatio
n 

 Supply 
temperature
s and mass 
flow rates 
of DHN 

Thermal 
propagation 
delay in 
pipes, non-
isothermal 
mixing 

Non-cyclic 
DHN with 
3  
consumers 
supplied by 
2 plants  

Detailed 
non-linear 
DHN 
dynamics 
and 
mixing 

Heat capacity of 
buildings is not 
exploited; no 
optimality 
guarantee; no 
optimization of 
units operation 

[19
] 

Simulatio
n-based 
optimizat
ion (GA 
+ DHN 
and 
building 
simulatio
n) 

Operatio
n 

Start-up 
time of the 
heating 
system 

Clusterizati
on of 
buildings, 
maximum 
anticipation 
constraint, 
thermal 
propagation 
delay in 
pipes, HX 
operation 

Large scale 
DHN 

No need 
for 
linearizati
on; 
application 
to very 
large scale 
DHN 

No optimality 
guarantee; no 
optimization of 
units operation 
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[20
] 

MINLP Operatio
n 

Scheduling 
of units, 
supply 
temperature
s of DHN, 
buildings 
indoor 
temperature
s 

Delay in 
pipes, non-
isothermal 
mixing, 
performanc
e maps of 
the units, 
single-state 
grey-box 
model of 
the 
buildings 

Non-cyclic 
DHN with 
24 thermal 
loads 
supplied by 
a CHP and 
a wind 
farm  

Detailed 
non-linear 
DHN 
dynamics 
and 
mixing 

No HX 
operation; no 
global optimality 
guarantees; 
computational 
load 

[18
] 

LP Control Loads of 
units, 
buildings 
temperature
s 

Three-state 
grey-box 
model of 
the 
buildings, 
comfort 
constraints 

Home 
energy 
manageme
nt for 
residential 
buildings 

Accuracy 
of the 
building 
model; 
computati
onal load 

No DHN 
dynamics and 
HX; 
performance 
maps and start-
ups of the units 
not modelled; 
calibration of 
more parameters 
of the building  

[15
] 

LP Control Load of 
units, 
buildings 
temperature
s 

Linearized 
bi-linear 
model of 
the 
buildings 
with states 
variables 
for every 
room, 
comfort 
constraints, 
linearized 
performanc
e maps of 
units 

Energy 
manageme
nt control 
of 
aggregated 
buildings 
supplied by 
an energy 
hub 

Accuracy 
of the 
building 
model; 
computati
onal load 

No DHN 
dynamics and 
HX; units on/off 
not optimized; 
calibration of 
more parameters 
of the building 
model 

[6] MILP Operatio
n 

Scheduling 
of units, 
buildings 
indoor 
temperature
s 

Single-state 
grey-box 
model of 
the 
buildings, 
comfort 
constraints, 
loads 
modelling 
(shiftable, 
active, 
flexible) 

Home 
energy 
scheduling 
of 
residential 
building 
with 
various 
type of 
loads 

Computati
onal load 

No DHN 
dynamics and 
HX operation, 
performance 
maps of the units 
not modelled 

[17
] 

MILP Control Scheduling 
of units, 
buildings 
indoor 
temperature
s 

Single-state 
grey-box 
model of 
the 
buildings, 
comfort 
constraints, 
linearized 
performanc
e map of 
units 

Energy 
manageme
nt control 
of an office 
building 
supplied by 
a HP 

Discretizat
ion with 
collocation 
polynomia
ls 

No DHN 
dynamics and 
HX operation  

[21
] 

Dynamic 
Program
ming 

Control Water mass 
flow rate, 
mixing 

Single-state 
grey-box 
model of 
the 

DHN of a 2 
buildings 
school 
complex 

No need 
for 
linearizati
on 

Decoupled 
multi-agent 
approach 
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temperature
 of DHN  

buildings, 
delay in 
pipes, HX 
operation, 
non-
isothermal 
mixing 

supplied by 
a boiler 

 

Although considered state-of-the art optimization approaches for MES operation, none of 

the previously mentioned works formulates the combined optimization of MES 

scheduling (including on/off), DHN operation (including heat excha ngers between 

primary and secondary loops) and thermal management of the buildings as a single Mixed 

Integer Linear Program (MILP). Compared to MINLP formulations, thanks to linearity 

of the problem and efficient commercially available solvers, MILP-based methods allows 

optimizing considerably longer time horizons and more complex systems (e.g., with more 

production units, buildings and branches of the DHN), as shown in [4] and [5]. This work 

aims at covering the above cited gap by proposing a novel MILP formulation including 

rigorously linearized models for the MES units, the dynamic thermal model of the 

building, and the dynamic thermal model of the DHN with related heat exchangers. The 

proposed MILP approach allows optimizing not only the operation of the MES units but 

also the profiles of DHN water delivery temperature, the thermal energy supplied to each 

building and the dynamic evolution of the indoor temperature. Compared to previous 

works based on MILP models (e.g., [3], [4], [12]), the flexibility provided by the heat 

capacity of the buildings allows for shifting energy consumption and a more economical 

operational planning for production units. The analysis is firstly conducted for single 

buildings for three representative weeks of the year, encompassing several MES designs 

and different thermal features of the building (thermal inertia and window surface). The 

model is also applied to the Campus of University of Parma, and the conventional 

management strategy, with given thermal profiles of buildings and of wa ter supply 

temperature, is compared to the proposed “thermal comfort management” (TCM). Under 

the latter strategy, the energy service company requires the users a certain degree of 

flexibility, in terms of indoor temperature variations within a quality band, and the profile 

of water delivery temperature of DHN is optimized.  

 

2. Methodology 

2.1 Problem statement 
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The general representation of the energy district under consideration is provided in  Figure 

1. It consists of a centralized multi-energy system that provides various energy services 

to radially arranged buildings. Thermal energy is delivered to end users through a district 

heating network, with primary and secondary circuits and different sub-stations. The key 

elements of the operation planning problem for this system are provided in Table 2.  

Table 2– Input data, decision variables, objective function and constraints of the optimal operation planning 

problem. 

Data Decision variables 

Set of dispatchable generation units ℳ, with 

performance curves and technical limits  

Scheduling and loads of dispatchable units  

Set of non-dispatchable units 𝒩𝒟  Amount of non-dispatchable production to be 

curtailed 

Set of buildings 𝒦, with defined thermal 

parameters  

Power exchanged with the grid 

District heating (or cooling) network with 

radial topology, comprising a primary and a 

secondary loop with fixed mass flow rate 

Heating or cooling power supplied to 

buildings 

Forecasted electricity prices, electric demand 

profile and occupancy in buildings  

Buildings indoor temperature 

Forecasted outdoor air temperature and 

irradiance 

Delivery and return temperatures of the 

primary and secondary circuits 

Objective function 

Operating costs 

Main constraints 

Dynamic thermal balance of the building Thermal comfort requirements  

Heating, cooling and electric balances  Limits on heat transfer in heat exchangers 

Technical limits of generating units Thermal propagation delay in pipes of DHN 
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Figure 1– General scheme of an energy district served by a Multi Energy System (MES) with radial DHN. 

 

2.2 Objective function 

The MILP scheduling problem aims at minimizing total operating costs, which include 

the cost of the fuel 𝑐𝑓𝑢𝑒𝑙  supplied to the generators ℳ𝑓𝑢𝑒𝑙 , operation and maintenance 

costs of controllable units ℳ and the net values of trades with the electric grid: 

∑ [  ∑ 𝑐𝑓𝑢𝑒𝑙 ⋅ 𝑖𝑛𝑖,𝑡 + 𝑖∈ℳ𝑓𝑢𝑒𝑙
∑ 𝑐𝑂𝑀,𝑖𝑖∈ℳ ⋅ 𝑧𝑖,𝑡 + (𝑐𝑒𝑙,𝑝𝑢𝑟𝑐ℎ,𝑡  ⋅  𝑒𝑙𝑝𝑢𝑟𝑐ℎ,𝑡 −𝑡∈𝒯

𝑐𝑒𝑙,𝑠𝑎𝑙𝑒,𝑡  ⋅ 𝑒𝑙𝑠𝑎𝑙𝑒,𝑡)]   ⋅ 𝛥𝑡       
(1) 

Where:  𝑐𝑒𝑙,𝑝𝑢𝑟𝑐ℎ,𝑡  and 𝑐𝑒𝑙,𝑠𝑎𝑙𝑒 ,𝑡  are time-varying price profiles for the purchase and sale 

of electricity and Δ𝑡 is the time discretization of the MILP. The variables involved in the 

objective function are the commitment binary variable of the generators 𝑧𝑖,𝑡 , the fuel input 

𝑖𝑛𝑖 ,𝑡  of the machines and the amount of electricity to be sold e𝑙𝑠𝑎𝑙𝑒,𝑡  or purchased 

e𝑙𝑝𝑢𝑟𝑐ℎ,𝑡  from the grid.  

2.3 Controllable units 

Electrical and thermal generators are classified on the basis of their controllability, where 

ℳ denotes dispatchable units and 𝒩𝒟 non-dispatchable ones. Controllable units must 

operate in compliance with technical limitations, such as minimum and maximum load 

allowed (2) minimum uptime (3) 

and ramp up limits 𝑅𝑈𝑖  at start-up (4) 

.  
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𝑧𝑖,𝑡 ⋅ 𝑖𝑛𝑚𝑖𝑛,𝑖 ≤ 𝑖𝑛𝑖,𝑡 ≤ 𝑧𝑖,𝑡 ⋅ 𝑖𝑛𝑚𝑎𝑥,𝑖,   ∀𝑖 ∈ ℳ ∀𝑡 (2) 

𝑧𝑖,𝑡 ≥ 𝑧𝑖,𝑡 − 𝑧𝑖,𝑡−1   ∀𝑖 ∈ ℳ, ∀𝑡 ∈ [1, 𝑇 − 𝑚], ∀𝑚 ∈ [0, 𝑚𝑖𝑛𝑈𝑇(𝑖)/𝛥𝑡] (3) 

 

𝑖𝑛𝑖 ,𝑡 ≤ 𝛥𝑖,𝑡 ⋅ 𝑅𝑈𝑖 + (1 − 𝛥𝑖 ,𝑡) ⋅ 𝑖𝑛𝑚𝑎𝑥,𝑖∀𝑖 ∈ ℳ∀𝑡 (4) 

 

Where: 𝑧𝑖,𝑡 ⋅is the unit commitment variable and Δ𝑖 ,𝑡 is a  binary variable to state whether 

the unit has been switched on at a  given timestep. The variable Δ𝑖 ,𝑡 , defined by a set of 

inequality constraints with respect to 𝒛𝒊,𝒕  [3], is essential for modelling the start-up 

penalty, which is regarded in this work as a reduction of the useful output of generators. 

In order to preserve model linearity, we linearized the part-load performance curves of 

the generating units, following the approach proposed by Zatti et al [22]. In this analysis, 

we overlooked the effect of DHN water delivery temperature variations on generators 

performance, but further extensions of the model could investigate the influence of this 

factor. Hence, the relationship between power output 𝑝𝑡 ,𝑖 and power input 𝑖𝑛𝑡 ,𝑖 is 

evaluated by Eq. (5) 

. 

𝑝𝑖,𝑡 = 𝑘1,𝑖 ⋅ 𝑖𝑛𝑖,𝑡 + 𝑘2,𝑖 ⋅ 𝑧𝑖,𝑡 
(5) 

 

Where the coefficients 𝑘1,𝑖  and 𝑘2,𝑖 are calculated with the best fit of data found in 

literature or commercially viable, with minor approximations (<5%). In particular, the 

coefficients of the heat pump and the boiler are directly derived from Zatti et al [22]. 

Meanwhile, the coefficients of the internal combustion engine are evaluated from [23],  

that of the compression chiller (CC) and the absorption chiller (AC) from respectively  

[24] and [25]. In the specific case of heat pumps and compression chillers, the effect of 

the outdoor air temperature is considered as a linear function whose value affect the 

different load rates independently [26].  For these units, the power output of Eq. (5) 

 is multiplied to the following expression: 

𝑓𝑖(𝑇𝑒𝑥𝑡) = (𝑚𝑇,𝑖 ⋅ 𝑇𝑒𝑥𝑡 + 𝑞𝑇,𝑖) 
(6) 

 

Where: 𝑚𝑇  and 𝑞𝑇  are calculated by fitting performance data found in [24] and [27]. The 

coefficients adopted for modelling off-design operation of generators are summarized in 

Table 3. 
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Table 3– Linearization coefficients for modelling energy generators performance curves  

  Type Output k1,i k2,i mT,i qT,i  Ref. 

Boiler NG Heat 0.976 -0.032 - - [22] 

HP Air cooled Heat 3.590 -0.080 0.019 0.805 [22] 

[27] 

ICE < 200 kWel 
(NG) 

Electricity 0.442 -32.04 - - [28] 

Heat 0.469 10.37 - - 

ICE 1500 - 

4000 kWel 
(NG) 

Electricity 0.490 -237.6 - - [22] 

Heat 0.439 -211.8 - - 

CC <150 

kWcool 

(Air 
cooled) 

Cooling 3.467 -0.347 -0.041 2.435 [29] 

[26] 

CC 700-1700 

kWcool 

(Air 
cooled) 

Cooling 4.802 -1.402 -0.031 2.059 [29] 

[24] 

AC 209-6138 
kWcool 

(Air 
cooled) 

Cooling 0.76 0 - - [25] 

 

2.4 Non-dispatchable units 

The production rate of non-dispatchable units, namely photovoltaics panels and solar 

thermal collectors, is evaluated by functions of forecasted outdoor air temperature 

Text,t  and solar irradiance 𝐺𝑡  as follows. The power output 𝑝𝑖 ,𝑡  of the units depends on the 

efficiency 𝜂i,t, the solar irradiance and the surface covered  𝑆𝑖, according to Eq. (7) 

  

𝑝𝑖,𝑡 = 𝜂𝑖,𝑡 ⋅ 𝐺𝑡 ⋅ 𝑆𝑖 
(7) 

 

The efficiency of solar thermal collectors is computed via Eq. (8) 

. 

𝜂𝑆𝑇,𝑡 = 𝜂0,𝑆𝑇 − 𝑎1,𝑆𝑇 ⋅
𝑇𝑚,𝑆𝑇 − 𝑇𝑒𝑥𝑡 ,𝑡

𝐺𝑛𝑜𝑚
− 𝑎2,𝑆𝑇 ⋅ (

𝑇𝑚,𝑆𝑇 − 𝑇𝑒𝑥𝑡 ,𝑡

𝐺𝑛𝑜𝑚

)
2

 
(8) 

 

Where: and 𝐺𝑛𝑜𝑚  state for nominal value of solar irradiance, while η0,𝑗, 𝑎1,𝑗  and 𝑎2,𝑗 are 

performance coefficients found in technical datasheet  [30]. The mean water temperature 

across the collectors Tm,ST is assumed to be constant over time, to guarantee a linear 

formulation suitable for the MILP model, and it is taken as equal to 50°C in the case 
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study. Given this low temperature, the heat produced by solar thermal collector is directly 

yielded to the secondary loop of the district heating network to pre-heat the water flowing 

in the sub-stations, as shown in Figure 2. In case of over-production, this heat can be 

dissipated to guarantee indoor thermal comfort to end users and to allow the feasibility of 

the model.  

Meanwhile, the efficiency of photovoltaics panels depends on the efficiency 𝜂0,PV in 

standard conditions (25°C, 1000 W/m 2, AM 1.5); the degradation temperature coefficient 

𝛾𝑇  and on the operating temperature of the cell 𝑇𝑐𝑒𝑙𝑙,𝑡, following Eq. (9) 

. 

𝜂𝑃𝑉,𝑡 = 𝜂0,𝑃𝑉 ⋅ (1 + 𝛾𝑃𝑉 ⋅ (𝑇𝑐𝑒𝑙𝑙,𝑡 − 𝑇𝑟𝑒𝑓)) 
(9) 

 

The operating temperature of the cell is a  function of outdoor air temperature and 

irradiance (see Eq. 2.10), by means of the parameters 𝑁𝑂𝐶𝑇 (Nominal Operating Cell 

Temperature) 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑟𝑒𝑓,𝑁𝑂𝐶𝑇. 

𝑇𝑐𝑒𝑙𝑙,𝑡 = 𝑇𝑒𝑥𝑡 ,𝑡 + (𝑁𝑂𝐶𝑇 − 𝑇𝑟𝑒𝑓,𝑁𝑂𝐶𝑇) ⋅
𝐺𝑡 ⋅ 1000

𝐺𝑁𝑂𝐶𝑇
 

(10) 

 

Figure 2 – General scheme of one branch of the DHN showing the primary loop. 

 

2.5 Building model 

Building simulation models can be classified into three categories: white-box, grey-box 

and black-box models. White-box models are physical-based approaches that describe in 

detail the complex energy dynamics of the system, black-box models are totally data-

driven (e.g., sampled profiles used as input for a machine learning algorithm or a best fit 

function) and grey-box models combines the aspects of both. Simplified grey box models 

are the most suitable for optimization and operation control since they need relatively 

short computation time and a restricted number of parameters [31]. The model adopted 
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in this work is a single state grey-box, derived from Gambarotta et al. [32], where the 

coefficients are found trough best-fit of TRNSYS white-box model: 

𝐶𝑘

𝑑𝑇𝑘

𝑑𝑡 
= 𝑈𝐴𝑘 ⋅ (𝑇𝑒𝑥𝑡 ,𝑡 − 𝑇𝑘,𝑡) + 𝑚𝑐𝑝,𝑛𝑎𝑡,𝑘 ⋅ (𝑇𝑒𝑥𝑡 ,𝑡 − 𝑇𝑘,𝑡) + 𝑚𝑐𝑝,𝑓𝑜𝑟,𝑘

⋅ (𝑇𝑈𝑇𝐴,𝑡 − 𝑇𝑘,𝑡) + 𝑄𝑖𝑟𝑟,𝑘,𝑡 + 𝑄𝑜𝑐𝑐,𝑘,𝑡 + 𝑄𝑘,𝑡 

(11) 

 

Where: 𝑇𝑘,𝑡  is indoor temperature, 𝑇𝑜𝑢𝑡 ,𝑡  is outdoor air temperature, 𝑇𝑈𝑇𝐴,𝑡  is the 

temperature of the air coming from the air treatment unit, 𝐶𝑘 is the total thermal capacity 

of the building [kJ/°C], UAk is the mean thermal transmittance of the envelope multiplied 

by its surface [kJ/h/°C], 𝑚𝑐𝑝,𝑛𝑎𝑡,𝑘  is the thermal capacity of the air infiltration [kJ/h/°C], 

𝑚𝑐𝑝,𝑓𝑜𝑟 ,𝑘  is the thermal capacity of the air forced ventilation [kJ/h/°C], Qirr,k,t and 

Qocc,k,t are respectively solar and internal gains, while 𝑄𝑘,𝑡  is heat supplied to end-users. 

In particular, 𝑇𝑘 ,𝑡 and 𝑄𝑘,𝑡 are the variables to be optimized by the model, in compliance 

with comfort requirements. The differential equation is discretized using forward finite 

difference:  

𝐶𝑘

𝑇𝑘,𝑡+1 − 𝑇𝑘,𝑡 

𝛥𝑡  
= 𝑈𝐴𝑘 ⋅ (𝑇𝑒𝑥𝑡,𝑡 − 𝑇𝑘,𝑡) + 𝑚𝑐𝑝,𝑛𝑎𝑡,𝑘 ⋅ (𝑇𝑒𝑥𝑡,𝑡 − 𝑇𝑘,𝑡) + 𝑚𝑐𝑝,𝑓𝑜𝑟,𝑘

⋅ (𝑇𝑈𝑇𝐴,𝑡 − 𝑇𝑘,𝑡) + 𝑄𝑖𝑟𝑟,𝑘,𝑡 + 𝑄𝑜𝑐𝑐,𝑘,𝑡 + 𝑄𝑘,𝑡  

(12) 

 

 

We compared this approximated solution for different Δ𝑡 values with the analytic one, 

found for some test input profiles of irradiance, occupancy and heat input. The absolute 

error in internal building temperature is below 0.1°C if Δ𝑡 is lower than 15 minutes. This 

error has been considered sufficiently low for the purposes of the planning optimization 

and therefore this time discretization is used for single building case study. As it will be 

explained further, the choice of time discretization for the energy district case study was 

driven by the heat propagation delay in pipes (i.e. the time resolution has to be sufficiently 

tight to capture this phenomena  within the model). For this reason, a time step of 7.5 

minutes was adopted.  

2.6 Building time constant 𝝉 

The general solution of the heat balance of the building (Eq. (13)without any thermal input 

(from the heating systems, internal or solar gains) can be written in the following form: 

𝜃 = 𝜃0 ⋅ 𝑒− 
𝑡
𝜏 

(13) 
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Where 𝜃 is the difference between indoor temperature and external temperature at any 

time step, while 𝜃0  corresponds to this difference at the initial condition. Hence, the time 

constant 𝜏 is the ratio of the heat capacity to building dispersions coefficient  and can be 

regarded as the time needed to the initial temperature difference 𝜃0  to be reduced by 

63.2%. An understanding of this behaviour is provided by Figure 3, depicting the 

temperature profile of 𝜃 over the time of two buildings featuring a time constant of 34 

hours and 158 hours, respectively. This time constant clearly plays a key role in the 

thermal dynamic behaviour of the building and the possibility of implementing thermal 

comfort management strategies.  

 

 

Figure 3 Temperature evolution of two buildings without additional thermal inputs (e.g. heating system, solar 
and internal gains), featuring a time constant of 34 h and 158 h. 

 

2.7 District heating/cooling network model 

The district heating/cooling network under consideration presents a radial topology with 

a centralized multi-energy system. The general representation of a branch of this network 

is depicted in Figure 2. Controllable thermal generators supply the primary loop, while 

the heat produced by solar thermal collectors (if present) is conveyed to the lower 

temperature secondary circuit to pre-heat the water. In the summer season, the network is 

used to transport cold water for cooling purposes.  
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The dynamic mathematical model of the DHN/DCN includes two types of constraints in order to address heat 

exchanger operation (Eq. (14)and (15)) and pipe thermal propagation delay (Eq. (16)), respectively. The 
main assumption of the model is that the DHN (or DCN) operates with constant mass flow rate, while water 
delivery temperature 𝑇𝑝

𝐷(𝑡) (equal for all buildings) can be regulated. This is a typical regulation mode used in 

district heating systems [20]. The input thermal power of each building can be decreased 
by adjusting the bypass valve of the heat exchanger in the sub-station. This valve regulates 
the flow rate of the fluid with minimum heat capacity rate, which is assumed to be always 
on the same side of the heat exchanger. Notably, with the nominal temperature differences 
between delivery and return that occur in the case study (see Section 3), the fluid with minimum thermal 
capacity is on the primary side during heating season and on the secondary side during the cooling season. In 
order to guarantee this condition on minimum heat capacity rate, we introduced the constraint expressed by 

Eq. (14) 

). Nevertheless, this constraint has proven to be non-binding in test cases. 

𝛥𝑇𝑚𝑖𝑛  ≥  𝛥𝑇𝑚𝑎𝑥 (14) 
 

Once the hypothesis on the minimum heat capacity rate is verified , the thermal power 

provided to each building k can be expressed as a linear function of the supply 

temperature of the DHN (see Eq. (15)). 

𝑄(𝑘, 𝑡) ≤ 𝜀𝑘 ⋅ 𝑐𝑤 ⋅ �̇�𝑚𝑖𝑛,𝑘 ⋅ (𝑇𝐻𝐼𝑁,𝑘,𝑡 − 𝑇𝐶𝐼𝑁,𝑘,𝑡) (15) 
 

Where: εkis nominal effectiveness of the counter flow heat exchanger, 𝑐𝑤 is heat capacity 

of water,  �̇�𝑚𝑖𝑛 ,𝑘  is the nominal mass flow rate of the fluid with minimum thermal 

capacity, THIN,k,t is the inlet temperature of the hot fluid and TCIN,k,t is the inlet 

temperature of the cold fluid.  

As for the delay in heat propagation:, we include a correlation between inlet T𝑡
𝐼𝑁 and 

outlet Tt
𝑂𝑈𝑇 temperature of the pipes, following the approach proposed by Dobos et al. 

[33]. The solution of the energy conservation equation in the pipes can be written as 

Eq.(16), assuming one dimensional flow and disregarding heat capacity of pipes and heat 

conduction in the axial direction. 

𝑇𝑂𝑈𝑇,𝑡 = 𝑇∞ + (𝑇𝐼𝑁,𝑡−1 − 𝑇∞) ⋅  (1 −  
4 ⋅ 𝑘𝑝

𝐷𝑝 ⋅ 𝑐𝑤 ⋅ 𝜌𝑤  
⋅  𝛥𝑡) (16) 

 

Where: Δ𝑡 is time delay, ρ𝑤  is water density, 𝑘𝑝  is the heat transfer coefficient between 

the pipes and the surroundings, 𝐷𝑝  is the pipe diameter, 𝑇∞ is the temperature of the 

material surrounding the pipes. This equation can be employed in the MILP model as 

long as the time discretization is sufficiently tight to capture the time delay in heat 

propagation (i.e. the time resolution has to be lower than the time the water needs to reach 

the closest building from the power plant). For this purpose, we considered a time 

resolution of 7.5 minutes in the case study. 
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2.8 Energy and comfort management strategies 

In this work, the following three management strategies are considered and compared. 

1. Reference management strategy: In the reference management strategy, the 

thermal power supplied to the buildings is regulated to maintain a set point in 

occupancy hours (20°C ±0.2°C during the heating season, and 25°C ±0.2°C 

during the cooling season) and units are switched off in non-occupancy hours 

(other than the advance needed to meet the setpoint at the first timestep of the 

day). The water delivery temperature of district heating network is adjusted 

linearly with outdoor air temperatureThe operational planning of the units 

(boilers, CHP engines, etc) is optimized using the MILP mode. Since the thermal 

power supplied to each building is not an optimization variable but fixed a -priori 

(no comfort management), this reference strategy is equivalent to applying the 

MES scheduling optimization approach originally proposed by Bischi et al. [3]. 

2. The “thermal comfort management (TCM) strategy”: the end users of the 

buildings of the university are willing to participate a thermal comfort 

management program. Generally, the user who participates to demand side 

programs faces two types of discomfort: one due to timing, which occurs in 

household appliances, and the other linked to undesirable energy states (i.e. level 

of thermal comfort). In the present analysis, we consider only temperature 

dependence of users’ comfort and the humidity is assumed to be controlled 

consequently by the air treatment unit. Comfort in mathematical modelling can 

be addressed by means of limit values to be met, or by penalties on deviation 

from the target condition to be included in the objective function with an 

appropriate weight. However, the inclusion of the comfort dimension in the 

objective function is limited by the subjectivity of the weight estimation [34]. 

Hence, we envisage a quality band of ±2°C around the setpoint (18 °C to 22 °C 

in the heating season and 23 °C to 27 °C in the cooling season), which is accepted 

a-priori by the users, and ASHRAE standards [35] constraints on ramps and 

drifts (Table 4) ensure smooth temperature variations. These constraints on 

comfort are imposed only in occupancy hours, while the building temperatures 

are not bound to meet any quality ranges in the rest of the day. Moreover, in the 

optimizations of energy district, water delivery temperature can vary and it can 

be used as a further source of flexibility. More specifically, we set an upper 

bound for the heating season (up to 90°C) and a lower bound for the cooling 

season (down to 7°C), while the limit in the other direction is driven by the 
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operation of the heat exchanger. As for the secondary circuit, we set the delivery 

temperature equal to the nominal value in occupancy hours to reduce the 

computational burden of the optimizations. This assumption can be made 

because the system shows already a degree of freedom to adjust heat supplied to 

the buildings, namely the bypass valve of the heat exchanger. Hence, in the TCM 

strategy, the building indoor temperatures, the thermal power supplied to each 

building and the DHN water temperatures (delivery and return) are included 

among the variables of the scheduling MILP (together with the commitment and 

load variables of the units). Given all of these degrees of freedom, the algorithm 

can either decide to reduce the heat requirements of buildings or to store heat in 

their mass (i.e. when there is availability of renewable sources or cogenerated 

heat).  

3.  The “Fixed Setpoint” (FS) strategy: it is an intermediate scenario, defined to 

assess to what extent the heat capacity of buildings and of the DHN can be 

exploited without the involvement of end-users. Thus, the profile of indoor 

temperature can be optimized only in non-occupancy hours, while water 

delivery temperature of the DHN as well as the operation of the units (boilers, 

CHP engines, etc) are optimized over the entire time horizon. 

The main features of the operating strategies considered are summarized in Table 5Table 

4.  

Table 4 – ASHRAE Limits on temperature drifts and ramps [35] 

Time Period 0.25 h 0.5 h 1 h 2 h 4 h 

𝚫𝐓 1.1°C 1.7°C 2.2°C 2.8°C 3.3°C 

  



20   

 

Table 5– Fixed versus optimized variables in three operating strategies  

 

Indoor 

temperature  non 
occupancy  

Indoor temperature 
occupancy 

Water delivery 

temperature  
(energy district) 

Operation of MES units 

(boilers, CHP engines, 
etc) 

Ref FIXED FIXED FIXED OPTIMIZED 

FS 
OPTIMIZED 

(unconstrained) 
FIXED 

OPTIMIZED (u.b. = 
90°C DHN; l.b. = 7°C 

DCN) 

OPTIMIZED 

TC
M 

OPTIMIZED 
(unconstrained) 

OPTIMIZED (±2°C) 

OPTIMIZED ( u.b. = 

90°C DHN; ; l.b.  = 
7°C DCN) 

OPTIMIZED 

 

3. Case study  

The presented model is applied to two different levels of spatial aggregation: firstly, we 

considered a single building not served by any district heating network but directly 

supplied by locally installed units, then the perspective is extended to several buildings 

located across a DHN. The optimizations have been formulated with Pyomo and the 

MILP has been solved with Gurobi solver [36]. To provide a broad applicability of the 

model, each optimization was carried out for three weeks of the year (representative of 

winter, mid-season and summer) and several different system architectures, described in 

detail in the following section. Regardless the operating strategy, thermal comfort 

requirements must be respected in all buildings from Monday to Friday from 8 a.m. to 6 

p.m. The profiles of exogenous data used for the optimizations are depicted in Figure 4, 

for three different weeks of the yea r. The electrical demand generally spikes in the middle 

of the day, while a base load always occurs due to server’s energy requirements. In all 

scenarios, the purchase price of electricity is the tri-hour tariff of non-domestic users in 

Italian protected market [37], while the sale price is provided by GME historical data  

[38]. It is worth to mention that the purchase price of natural gas is considered as constant 

over the time (40 €/MWh) and is derived from [39] on the basis of yearly average 

consumption of the university campus.  
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Figure 4 – Exogenous data profile from Saturday to Friday for three different weeks of the year (W1=winter; 

W2=spring; W3=summer). 

 

3.1 MES designs 

To provide an understanding of the effect of the thermal comfort management on MES 

operation and to potential savings in manifold applications, we extend the analysis to 

different technologies, summarized in Table 6.  

Firstly, we applied the model to the current design of the energy system of the Campus 

of University of Parma, comprising boilers and compression chillers (CC). This 

configuration, referred to Design 1 (D1), is representative of the most traditional and 

widespread technology of DHN and DCN. Hence, we envisage a CCHP (Combined 

Cooling Heat and Power) energy system (Design 2), where the integration of the building 

thermal model in the optimization algorithm can unlock potential synergies among 

electric and thermal vectors. Design 3 (D3) comprises solar thermal collectors within the 

generation portfolio, while Design 4 (D4) encompasses photovoltaics panels, which can 

possibly feed the heat pump when the production outstrips the electricity demand of 

buildings. The choice of these two MES architecture was driven by the willing to 

investigate the role of buildings’ load shifting capability in presence of renewable energy 

generation, as it might help to overcome the daily mismatch between supply and demand, 

which represents a major challenge especially in mid-season operation. Moreover, in 

order to respond to the current trend of fostering renewables, we envisage D3+ and D4+ 
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scenarios, with high penetration of RES production (i.e. the roof surface employed is 

doubled). 

The size of the units of each configuration are summarized in Table 6. The sizing criteria 

are the same for both single building and university campus application, but clearly the 

size of the system is scaled properly on the basis of the thermal requirements of the end-

user. These criteria are as follows. As before mentioned, the first configuration (D1) is 

the current energy system supplying heat and cooling to the campus. Meanwhile, the 

internal combustion engine (ICE) employed in D2 covers 25% of heat peak, and the 

absorption chiller (AC) is sized accordingly. The ICE is undersized to avoid heat wasting 

in presence of an economic boost, while the residual demand is met by some auxiliary 

boilers and chillers. In design D3, solar thermal panels (ST) coupled with AC cover 50% 

of heat and cooling demand over the year, considering average efficiencies and 

irradiances. PV panels of D4 covers 25% of electricity demand over the year, while the 

HP meet half of the heat peak. 
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Table 6 – MES designs 

 Description Technology 
Size  

(Single building) 

Size  
(University 
Campus) 

D1 
Current 

design 

Boiler 1050 kWth 2 x 7500 kWth 

CC 400 kWcool 4 x 1700 kWcool 

D2 
CCHP based 

design 

Boiler 1050 kWth 
3 x 4000 kWth; 1 x 

3000 kWth 

ICE 150 kWel 2700 kWel 

CC 400 kWcool 4 x 1700 kWcool 

AC 160 kWcool 2000 kWcool 

D3 
ST based 
design 

Boiler 1050 kWth 3 x 4000 kWth 

ST 125 kWth 1600 kWth 

CC 400 kWcool 4 x 1700 kWcool 

AC 95 kWcool 1200 kWcool 

D3+ 

ST based 

design (with 
high RES 

penetration) 

Boiler 1050 kWth 
3 x 4000 kWth; 1 x 

3000 kWth 

ST 300 kWth 3200 kWth 

CC 400 kWcool 4 x 1700 kWcool 

AC 190 kWcool 2400 kWcool 

D4 
PV based 

design 

Boiler 2 x 530 kWth 3 x 4000 kWth 

HP 530 kWth 6000 kWth 

PV 195 kWel 2500 kWel 

CC 400 kWcool 4 x 1700 kWcool 

D4+ 

PV based 
design (with 

high RES 

penetration) 

Boiler 2 x 530 kWth 3 x 4000 kWth 

HP 530 kWth 6000 kWth 

PV 195 kWel 5000 kWel 

CC 400 kWcool 4 x 1700 kWcool 

 

 

3.2 Buildings and distribution system features 

Single building 

The building under investigation, here referred to B0, is a two-floor building of Campus 

of University of Parma, with surface/volume of 53% and time-constant τ (defined in 2.4) 

of 34 hours. Optimizations are also performed for two fictitious buildings featuring one 

different thermal property (respectively inertia and window surface) with respect to B0: 

B1, representing a heavy building with τ of 158 h, and B2, featuring a larger glazed 

surface (the triple of B0). These buildings thermal properties, summarized in Table 7, 
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have been chosen so that they are representative of the diversity of the buildings of the 

university campus.  

Table 7 – Buildings construction parameters  

 
𝛕 

[h ]  
𝑪𝒌 

[kWh/°C] 
UA 

[kW/°C] 

𝒎𝒄𝒑,𝒌
𝒏𝒂𝒕 

[kW/°C] 

𝒎𝒄𝒑,𝒌
𝒇𝒐𝒓𝒄𝒆

 

[kW/°C] 

Window 
surface 

[m2] 
B0 34 282.5 6.89 1.52 7.62 55 
B1 158 1328.5 6.89 1.52 7.62 55 
B2 34 282.5 6.89 1.52 7.62 146 

 

University campus  

The energy district of the Campus of the University of Parma includes 12 buildings with 

different thermal properties, which will influence the optimal indoor temperature 

evolution. Indeed, the area to volume ratio of the buildings varies from 33% to 55%, 

whereas the time-constant ranges from 34 h to 158 h. The DHN presents a radial topology 

with buildings fairly equidistant from the power plant (450 m) and the water flows in the 

primary loop with an average speed of 1 m/s. The design delivery and return temperatures 

of the DHN primary loop are 90 °C and 55 °C, while 50 °C (delivery) and 40°C (return) 

for the secondary loop. When operating in the cooling mode (summer season), the 

delivery and return temperatures of the primary loop are 7 °C and 12 °C respectively, 

while 9°C and 17°C in the secondary loop. It is worth noting that in the heating mode the 

flow with larger heat capacity rate (product of mass flow rate and specific heat capacity) 

is the secondary loop, while it becomes the primary loop in the cooling mode. This change 

is considered by the heat exchanger model presented in Section 2.7   

4. Results  

In this section, the main results of the test cases are analyzed, in terms of the unit 

commitment, buildings and DHN temperature profiles. For each MES configuration, the 

advantages of TCM (and of the intermediate FS) are compared with the reference 

strategy, first at single building level and then the focus is shifted to the energy district. 

The analysis also provides an insight into the different thermal behavior of buildings with 

diverse construction properties. In particular, the outcomes of single-building 

optimizations are firstly discussed for the reference building B0, and then they are 

compared with that of the buildings B1 and B2, featuring respectively a higher time 

constant and a larger glazed area. 

The comparison is carried out from both a  technical and an economic perspective and the 

main highlights of the effect of the management strategies are summarized in Table 8,  in 
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terms of generators performances, savings on total operating costs and renewable energy 

exploitation. A more detailed picture of operational cost savings (Table 9) is provided at 

the end of the section, encompassing all optimized scenarios.  

 

Table 8 – Comparison of generators performances, operating cost and renewable exploitation of the three 
management strategies (Ref, FS and CM) for the most relevant scenarios of the case study (W1 = winter, W2 = 
spring, W3 = summer). 

 D1 D2 D3 D4+ 

 𝜼 boiler 
(W1) 

COP CC 
(W3) 

Average 
purchase 

price 
[€/MWhel] 

(W3) 

Operating 
cost [€/w] 

(W1) 

Operating 
cost [€/w] 

(W3) 

% ST 
dissipated 

(W2) 

% extra 
PV sold 

(W2) 

B0 

Ref 88.1% 3.3 151 3875 4769 74% 73% 

FS 88.1% 3.5 148 2821 4530 27% 58% 

CM 92.1% 3.8 138 2707 4266 1% 34% 

B1 

Ref 92.0% 3.6 150 3872 4725 47% 70% 

FS 92.0% 3.7 143 2793 4482 20% 29% 

CM 93.7% 4.3 127 2664 4208 1% 19% 

Campus 

Ref 91.4% 3.4 150 46586 61232 82% 84% 

FS 93.0% 3.7 146 26829 49165 32% 39% 

CM 93.2% 4.2 136 26600 38776 8% 38% 

 

Using a standard laptop computer (Intel i7-5500U @ 2.40 GHz, 8 GB RAM), solving the 

single-building cases over one week time horizon with 15 minutes of time steps need a 

computational time of less than 5 minutes, while solving the campus case study over one 

week and a time step of 7.5 minutes needs approximately 5 hours. This computational 

times are good for the large size of the MILP problems: as an example, the campus case 

study with D1 winter configuration features 250160 continuous variables, 6725 binary 

variables and 384059 constraints. An important time saving can be obtained by shortening 

the time horizon modelled in the MILP: if the optimization horizon is shortened to three 

days (minimum to exploit the heat capacity of the buildings), solving the campus case 

study takes only 20 minutes. 

 
DESIGN 1 
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Single building 

Design 1 represents the most traditional solution adopted to provide cooling and heating 

services to buildings. With this MES configuration (Figure 5) , TCM takes advantage of 

the heat capacity of buildings to enhance machines performance, notably exploiting the 

lower interval of the comfort range in winter (week W1) and the entire range in summer 

(week W3).  

 

Figure 5. Indoor temperature profiles (Saturday-Friday) of the building B0, with the reference Ref (black-
dashed), intermediate FS (blue) and thermal comfort management TCM (red) strategy. The profiles refer to 
MES configuration D1 during winter week W1 (Fig. A) and summer week W3 (Fig. B).  

 

Hence, TCM reduces the switching on/off and the operation at partial loads of the boiler, 

improving its mean efficiency from 88.1% in B0-Ref to 92.1% in B0-TCM (Table 8). 

The algorithm advances the chiller operation and overcools the buildings down to 23°C 

in the early morning, to benefit from COP improvement at lower external temperatures 

and to buy cheaper electricity. Indeed, mean COP improves from 3.3 in B0-Ref to 3.8 in 

B0-TCM, while average electricity price decreases from 151 €/MWh to 138 €/MWh 

(Table 8). The intermediate strategy FS (in which heat capacity of buildings is exploited 

only in non-occupancy hours) has no effect on boiler commitment, while the advance of 

compression chiller startup slightly improves mean COP (to 3.5 in B0-FS) and decreases 

mean electricity purchase price (to 148 €/MWh  in B0-FS). From an economic 

perspective, in B0-TCM total operating costs (machines consumption + O&M) are 

reduced in winter by 14.5% and in summer by 30.6% (Table 9). Obviously, a  fraction of 
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these savings is imputable to lower heating/cooling requirements of the building (due to 

decrease/increase of indoor temperature). When comparing the three buildings considered 

(see Table 8 and Table 9) in it can be noticed that building B1 (with larger time constant) 

shows higher savings (up to 56%) and larger average COP (equal to 4.3) with the TCM 

strategy in the summer mode. This difference between buildings occurs in all scenarios 

where shifting production plays a pivotal role in the optimization and a n understanding 

of this behavior will be provided in the discussion of design D3 results. 

 

University campus 

In the case study of the university campus, the optimization of water delivery temperature 
reduces the heat losses across the distribution system. Nevertheless, they represent only a small fraction of 
heat produced by generators, since the pipes are considered as well-insulated, and the estimated heat losses in 
the benchmark might be lower using a slightly different OAT function. A more remarkable advantage of the 
optimization is that heat can be stored and released in the short term in the distribution system by adjusting 

water delivery temperature. The amount of this storable energy depends on the heat capacity of the 
distribution network and on the range of temperature available. As the heat capacity of the distribution system 
represents only a small fraction (2%) of that of the buildings, the role of allowable temperature variation is of 
major importance. Consequently, the flexibility provided by the distribution system differs significantly 
between the winter and the summer case, as water primary delivery temperature of DHN can vary between 
90°C and slightly above the temperature of the secondary loop (50°C), while in DCN this interval is only of 

few degrees. This different behaviour characterizing the DHN and the DCN can be noticed in 

 

Figure 6 and Figure 7, where the profiles of the thermal power produced by the generators 

and that delivered to the buildings by fan-coil units are depicted (together with the 
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evolution of primary delivery temperature). A temporal decoupling between heat 

production and consumption occurs in FS and TCM strategies, thanks to the variation of 

DHN water delivery temperature, allowing for machine efficiency improvement. 

Meanwhile, the load shifting capability provided by DCN is very limited and the profiles 

of production and consumption are very similar over time.  

 

Figure 6 - Daily profiles of heat produced by generators (orange), heat delivered to the buildings by the fan-coil 
units (blue), delivery temperature (black) of the primary loop of the DHN, with three different strategies, namely 
reference Ref (Fig. A), intermediate FS (Fig. B) and thermal comfort management TCM (Fig. C). The profiles 
refer to MES configuration D1 in a winter day (week W1)  
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Figure 7 - Daily profiles of cooling power produced by generators (orange), cooling delivered to the buildings 
by the fan-coil units (blue), delivery temperature (black) of the primary loop of the DCN, with three different 
strategies, namely reference Ref (Fig. A), intermediate FS (Fig. B) and thermal comfort management TCM (Fig. 
C). The profiles refer to MES configuration D1 in a summer day (week W3). 

 

The comparison of the three strategies is provided by Table 8. The only optimization of 

DHN water delivery temperature (FS) is sufficient to improve machines performance in 

and the further possibility to store heat in building mass does not provide any benefit from 

a technical point of view in winter. Conversely, the employment of heat capacity of 

buildings (TCM) in summer enhances the mean COP of chillers from 3.4 (Ref) to 4.2 and 

reduces average electricity purchase price from 150 (Ref) to 136 €/MWh, while with FS 

these values are of 3.7. and 146 €/MWh, respectively.  

 

DESIGN 2 

Single building 
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Design 2 is CCHP configuration, where the engine is under sized with respect to heating and cooling 
requirements. It might be representative of situations in which heat produced by the engine can never be 
dissipated, i.e. in the attempt to participate to white certificate market (but the effect of possible incentives is 
not taken into account in this analysis, so not to lose generality). In the optimized strategies, both TCM and 
FS, the engine follows the electrical load to maximize the self-produced electricity (Errore. L'origine 
riferimento non è stata trovata.), which would be otherwise purchased at expensive tariff from the national 

grid, and the building is heated (or cooled) accordingly (

  

Figure 8).  

  

Figure 8. Indoor temperature weekly profiles (Saturday-Friday) of the building B0, with the reference Ref 
(black-dashed), intermediate FS (blue) and thermal comfort management TCM (red) strategy. The profiles refer 
to MES configuration D2 during winter week W1 (Fig. A) and summer week W3 (Fig. B).  
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Figure 9 – Daily profile of the unit commitment and the grid exchange of the building B0, with the reference 
Ref (Fig. A), intermediate FS (Fig. B) and thermal comfort management TCM (Fig. C) strategy. The profiles 
refer to MES configuration D2 during winter week W1. 

 

 

The ICE, although undersized, meets the entire thermal demand without the auxiliary 

boiler (Errore. L'origine riferimento non è stata trovata.), since it runs continuously 

even in non-occupancy hours following the electrical base load. Despite the increase of 

energy delivered to the building, operating costs (including the net exchange with the 

grid) are significantly reduced in winter by 27% in B0-FS and 30% in B0-TCM (Table 

8). In this case, the flexibility provided by the inclusion of the building model in the MILP 

algorithm (rather considering thermal demand as exogenous) is remarkably exploited also 

in non-occupancy hours. Nevertheless, this result is strictly related to the shape of the 

electrical demand profile under investigation and this consideration might not be valid in 

different situations. The difference in savings between buildings are negligible. 

 

University campus 

The optimization of the energy district management, similarly to single-building test 

cases, aims at increasing self-produced electricity by the engine. To this end, the 

algorithm can shape the profile of water delivery temperature of the DHN. The electricity 
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bought from the grid is therefore reduced with FS and TCM (in winter) and decreasing 

operating costs by respectively 42.4% and 42.9% compared to the benchmark (Table 8).  

 

DESIGN 3 

Single building 

Design D3 features solar thermal collectors coupled with an absorption chiller (plus 

auxiliary boiler and CC). Under this MES architecture, TCM strategy results particularly 

interesting when RES availability mismatches thermal demand. As a matter of fact, in 

spring scenario, the optimal indoor temperature of the building hits a peak in the middle 

of the day and then it decreases, thus reducing from 74% (B0-Ref) to 1% (B0-TCM) the 

amount of dissipated ST production and decreasing total operating costs (fuel + O&M) 

by 40.8%. These savings are more pronounced in the building B1, as it can be noticed in 

Table 9. Indeed, the higher time constant characterizing this building affects the 

temperature profile, which is generally smoother than in B0 and B2 (Figure 10), and this 

allows to shift more the production without jeopardizing users comfort.  

 

Figure 10. Indoor temperature weekly profiles (Saturday-Friday) of the buildings B0 (red), B1 (green) and B2 
(purple), with thermal comfort management TCM strategy. The profiles refer to MES configuration D3 in spring 
week W2. 

 

University campus 

The optimization of primary water delivery temperature has no effect on the exploitation 

of solar production, since the collectors directly supply the secondary loop of the 

buildings and, as before mentioned, we set delivery temperature of the secondary loop 

equal to the nominal value in occupancy hours. This assumption is mainly driven by the 

concern to reduce the computational time, considering that in any case heat transferred to 

buildings can be regulated by means of the bypass valve. Therefore, given these 

assumptions, the role of the heat capacity of buildings is of major importance. Indeed, 
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when there is abundancy of ST production (i.e. mid-season) TCM allows to save 61.5% 

on fuel and O&M in spring scenario, decreasing the percentage of dissipated RES 

production from 82% to 8% (see Table 8). In the intermediate strategy FS, costs are 

reduced by 30.0% thanks to the possibility to store ST heat produced in non-occupancy 

hours (i.e. during weekends) in buildings thermal mass, which would be otherwise 

dissipated in benchmark scenario. 

 

DESIGN 4 

Single building 

Design D4 features a heat pump with an auxiliary boiler, photovoltaics panels and a 

compression chiller. In winter, the heat pump is rarely employed, because of COP 

reduction with external temperatures. Thus, the considerations of design D1 are also valid 

for this MES configuration. Nevertheless, it is worth to analyse the employment of TCM 

when PV outstrips electrical demand, such as in spring scenario when large PV power is 

installed (D4+). In this case, with TCM, indoor temperature of the building rises in the 

middle of the day and therefore a greater fraction of the excess PV production – 66% in 

B0-TCM instead of 27% in B0-Ref (Table 8)– can be supplied to HP instead of being 

sold (at low price) to the grid. This positively affects operating costs which are reduced 

by 8.4% in B0-TCM, reaching 14.6% in B1-TCM. Meanwhile, costs reduction of the 

intermediate strategy FS (in the order of magnitude of 3% in B0) are related to the 

possibility to use the surplus of PV production occurring at the weekend to overheat the 

buildings, since the indoor temperature is free to vary in non-occupancy hours.  

 

University Campus 

Similarly to single-building optimizations, the flexibility provided by the heat capacity of 

the system (both DHN and buildings) is effective to overcome the issue of daily mismatch 

between RES availability and thermal demand.  
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Figure 11 depicts the unit commitment of thermal generators and the evolution of DHN 

supply temperature in the three management strategies, under D4+ spring scenario. The 

optimized delivery temperature rises in the presence of RES, when PV production 

supplies the HP, while it drops in the rest of the day. As a result, the share of excess PV 

production sold to the grid (at low price) is reduced from 84% in the reference strategy to 

39% with FS and 38% with TCM. Hence, given the assumptions in this case study about 

the allowable range of the delivery temperature, renewable sources exploitation can be 

notably increased by only optimizing water delivery temperature. Figure 12 highlights 

the different thermal behavior of two buildings of the campus, featuring a high and a low 

time constant. It is possible to notice that TCM exploits the entire quality band (both 

upward and downward) available in occupancy hours, but temperature variations are 

more pronounced in building with low τ. Total operating costs are positively affected by 

the optimization and, as shown in Table 9, the savings of TCM compared to the reference 

scenario are 21.6% in D4+-spring, while costs reduction of FS are of 4.6%. 
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Figure 11. Unit commitment and DHN delivery temperature weekly profiles (Saturday-Friday), with three 
different strategies, namely reference Ref (Fig. A), intermediate FS (Fig. B), and thermal comfort management 
TCM (Fig. C). The profiles refer to MES configuration D4+ in spring week W2 . 

 

 

Figure 12. Indoor temperature weekly profiles (Saturday-Friday) of two reference buildings of the university 

campus featuring a high (Fig. A) and a low time constant τ (Fig. B), with reference Ref (black-dashed), 
intermediate FS (blue) and thermal comfort management TCM (red) strategy. The profiles refer to MES 
configuration D4+ during spring week W2.  
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Table 9 – Total operating costs variation of strategies FS and TCM with respect to the reference strategy (Ref) 
in building B0, B1 and B2 and in the university campus, for various MES configurations and weeks of the year 
(W1=winter; W2=spring; W3=summer). 

  B0 B1 B2 
University 
Campus 

Design Week FS TCM FS TCM FS TCM FS TCM 

D1 

W1 0% -14.5% 0% -18.3% 0% -16.3% -2.6% -14.4% 

W2 0% -35.6% 0% -32.1% 0% -36.0% -27.5% -48.0% 

W3 -4.4% -30.6% -5.3% -56.4% -3.8% -21.9% -6.1% -26.4% 

D2 

W1 -27.2% -30.1% -27.9% -31.2% -26.4% -29.8% -42.4% -42.9% 

W2 -17.3% -22.4% -17.1% -23.3% -17.4% -21.0% -31.3% -40.5% 

W3 -5.0% -10.6% -5.1% -10.9% -8.2% -18.3% -19.7% -36.7% 

D3 

W1 -1.7% -18.0% -3.7% -21.4% -0.9% -17.9% -15.0% -26.4% 

W2 -5.5% -40.8% -10.5% -48.2% -6.4% -44.0% -30.0% -61.5% 

W3 -9.1% -52.5% -15.7% -80.2% -4.5% -31.2% -20.1% -44.9% 

D3+ 

W1 -2.0% -21.0% -3.2% -21.6% -2.1% -20.8% -5.5% -21.9% 

W2 -12.5% -53.8% -23.7% -82.1% -17.3% -60.2% -20.1% -44.9% 

W3 -20.5% -74.1% -43.9% -83.6% -16.9% -53.6% -37.4% -67.2% 

D4 

W1 0% -2.1% 0.0% -4.0% 0% -2.3% -0.3% -2.8% 

W2 0% -2.8% 0.0% -4.9% 0% -2.7% -4.4% -19.9% 

W3 0% -2.9% 0% -5.5% 0% -2.8% -3.3% -7.6% 

D4+ 

W1 0% -2.3% 0.0% -3.9% 0% -2.4% -0.3% -2.8% 

W2 -2.9% -8.4% -7.4% -14.6% -2.9% -5.8% -4.6% -21.6% 

W3 -0.9% -5.4% -2.1% -9.1% -1.7% -5.3% -1.7% -7.6% 

 

5.  Conclusions and future works 

This work tackles the optimization of the operation planning of a Multi Energy System 

and thermal comfort management in buildings. A linearized thermal model of the building 

is included in the MILP formulation, so that the thermal demand of buildings becomes a 

variable to optimize, together with the evolution of their indoor temperature, the 

commitment and the load variables of the energy generators.  

The proposed method is firstly applied to single building test cases encompassing a wide 

range of possible applications in terms of thermal features of the building (thermal inertia 

and window surface) and design of the energy system supplying heating, cooling and 

electricity (solar panels, boiler, heat pumps, internal combustion engines). At this stage 
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of the analysis, the building is supposed to be served by locally installed units without a 

centralized district heating network.  

The advantage of optimizing also thermal comfort in addition to the operation of the 

generation units is determined by comparing the reference management strategy of Parma 

University Campus with the so-called “thermal comfort management” (TCM). In this 

scenario, the energy service company requires the users to accept a variation of ±2°C 

around the setpoint. The possibility to exploit the heat capacity of buildings improves 

overall performance and reduces operating costs. In particular, thermal comfort 

management has proven to be a viable option for increasing renewable energy 

exploitation, when the production mismatches the demand, and for shifting production to 

low electricity price periods. The building with higher time constant (defined in 2.4) 

exhibits smoother temperature fluctuations and thermal comfort management allows for 

greater savings in this type of buildings especially when the optimization leverages on 

production shifting. In combined heat and power (and cooling) configurations,  the 

embedding of building model in the MILP formulation enables a more flexible operation 

of the internal combustion engine. Considered the shape of the electrical load of the case 

study, the optimal solution for the engine is to follow the electric load and heat (or cool) 

buildings accordingly.  

To assess the extent to which the heat capacity of buildings can be exploited without the 

involvement of end-users, we compared thermal comfort management with an 

intermediate management strategy, "Fixed Setpoint" (FS), in which indoor temperature 

profile of buildings is only optimized during non-occupancy hours. The results show that, 

given the shape of the electric load of the case study under investigation(Figure 8), the 

fixed setpoint strategy significantly reduces the operating costs in presence of an internal 

combustion engine, because it allows the generator to follow electrical demand when 

buildings are not occupied. Meanwhile, the thermal comfort management strategy allows 

optimizing also the performance of the machines and the exploitation of renewables.  

Subsequently, the methodology is further extended to apply the model to an energy 

district. In this framework, a simplified linear representation of the district heating 

network is included to account for the delay in heat propagation and optimize the 

operation of the generators with higher accuracy. This method is implemented on the 

Campus of University of Parma (over different multi energy system designs), where water 

delivery temperature is currently adjusted as a  linear function of outdoor air temperature. 

We compare this reference management with the two proposed strategies, FS and TCM, 

which can rely on an additional source of flexibility, namely the water delivery 
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temperature. Indeed, energy can be stored/released in the short term in the district heating 

network by increasing/decreasing this temperature. The amount of the “storable energy” 

depends on the heat capacity of the distribution network, which is approximately 2% of 

that of the buildings, and on the available temperature interval to the optimization. As a 

result, given the assumptions on the allowable water temperature variation of the case 

study, the optimization of the flow temperature can improve the performance of the 

generators and the use of renewable energy in district heating network, while this is not 

the case in district cooling network, where water delivery temperature is less free to vary.  

The proposed MILP method appears to be an interesting option not only for operational 

planning, but also to manage comfort in buildings and it could be integrated into rolling 

horizon algorithms today used for optimizing the energy management strategy of multi-

energy systems and energy districts. Further extensions of the methodology might involve 

more detailed models of the buildings and thermal energy comfort, as well as extending 

the optimization formulation to deal with forecast uncertainty. Moreover, the 

performance curves of the machines can be refined to include the effect of delivery 

temperature variation. 
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