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A B S T R A C T   

Metamaterials with structure-dominated properties provide a new way to design structures to obtain desired 
performance. To achieve a wide range of applications, on-demand tunable metamaterials would fulfill various 
and changing needs. The design of on-demand tunable metamaterials requires a higher-level understanding of 
the relationship between the properties of the metamaterials and the geometrical parameters, which in many 
cases are complicated and implicit. With the advancement of machine learning and evolutionary methods, it 
becomes possible to design on-demand tunable metamaterials. This paper designs on-demand tunable acoustic 
metamaterials for noise attenuation at varying frequencies by employing a genetic algorithm based neural 
network method. The C-shaped acoustic metamaterials with slidable shells are combined with the specifically 
designed tri-stable origami-inspired metamaterials to realize the on-demand tunable structure. Experiments were 
conducted and showed that the designed tunable metamaterials exhibited desired characteristics in different 
targeting frequency ranges. The present general methodology is expected to provide a route for on-demand 
tunable design while exploring more possibilities for the application of metamaterials.   

1. Introduction 

Metamaterials are structure-dominated materials with properties 
beyond the natural existing materials [1–5] that offer opportunities for 
designing new structures with uniquely desirable properties or that meet 
specific demands. A challenge in most metamaterials is that their 
properties typically remain unchanged even after fabrication [6,7], 
making it difficult to meet varying and various demands, which is the 
main limitation for the present metamaterials. To overcome this limi
tation, researchers have explored the use of smart materials to dynam
ically change the physical properties of these metamaterials under 
external stimuli [8–12], thus broadening the applications of meta
materials. Even more appealing, user-specific on-demand tunability of
fers metamaterials the ability to alter their properties based on different 
scenarios, thus enhancing their flexibility for various applications. The 
design of on-demand tunable metamaterials requires a higher-level 
understanding of how the properties of the metamaterials vary based 

on different parameters (e.g., structures or material properties) and the 
sensitivity of these parameters to properties. 

For certain metamaterials, the relationship between the geometry 
parameters and physical properties can be obtained using analytical or 
semi-analytical means [13,14]. For example, the stiffness of a type of 
mechanical metamaterial, namely curved crease origami-based meta
materials, can be analytically determined based on a mathematical 
model [15], which enables the rapid and accurate determination of the 
parameters that need to be tuned for specific applications. However, for 
most metamaterials, their properties, such as band structures for 
acoustic metamaterials that relate to noise attenuation [16,17], vibra
tion isolation [18,19], and acoustic cloaking [20,21], are usually ob
tained by solving a series of differential equations [22,23]. This in turn 
poses a challenge for correlating the property with structural parame
ters. Machine learning, such as neutral network methods, are considered 
powerful alternatives that can be used for obtaining nonlinear and im
plicit relationships among multiple parameters and their desired 
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properties in complex systems [24–33] across a range of applications 
[34,35]. However, from a practical perspective, machine learning 
methods alone may not be enough for designing on-demand tunable 
metamaterials. This is because too many tunable geometrical parame
ters without any practical constraints would significantly increase the 
difficulty of implementation and their on-demand tunability. Therefore, 
for the design of on-demand metamaterials, ideally, we would like to 
identify one combination of a few parameters, particularly those that 
strongly influence the properties and form the design space. However, 
when these parameters are in a continuous parametric space, and not 
take distinct, yet discrete values, searching the entire parametric space 
becomes impossible; under these circumstances, evolutionary methods 
[36–39] seem a more appropriate solution. Finally, simple and elegant 
tuning mechanisms would be important to achieve practical on-demand 
tunable metamaterials. Since mechanical metamaterials possess char
acteristics to change their geometrical structure without the constraint 
of specific material systems, delicate structural design, with the assis
tance of other different metamaterials, may provide helpful solutions to 
achieve desired tunable functionalities. 

In recent years, the design of on-demand tunable acoustic meta
materials has been highly desired (2). Acoustic metamaterials can 
manipulate the propagation of sound waves by designing geometry 
parameters [40–43], providing an effective way to attenuate the noise at 
target frequencies. For an example, the C-shaped structures were 
designed as tunable Helmholtz resonators to absorb noise at various 
frequencies [44–46]. Alternatively, the acoustic metamaterials with 
periodically distributed lattice scatters (phononic crystals) give rise to 
acoustic dispersions and band structures in which the acoustic waves are 
forbidden by the bandgaps in specific frequency spectrums [47–49]. 
However, the narrow width of the bandgap itself is seen as limiting its 
effective application range [50]. To achieve a larger effective frequency 
range for noise attenuation, machine learning, combined with genetic 
algorithm (GA), is considered an optimal approach for the design of on- 

demand tunable acoustic metamaterials. 
In this work, we begin by stating the problems associated with on- 

demand tunable design as a first step to clarifying the expected perfor
mance goal. Then we move to the next step, namely, an explanation of 
the general data-driven methodology, including key steps, as follows: 1) 
determining the appropriate structure parameters, 2) constructing the 
neural network model using data generated from the finite element 
simulations, 3) performing sensitivity analysis using more data derived 
from the neural network model to identify key parameters with greatest 
influence, and 4) conducting GA to evolve to the desired metamaterials. 
For the implementation of the tunability, we use an origami pattern, 
namely Kresling-inspired mechanical metamaterials, which are 
designed to achieve the transformation between different structures. To 
verify the evolved on-demand tunable acoustic metamaterials that have 
our desired properties, we conducted experiments for testing acoustic 
performance. The results indicated that the designed tunable acoustic 
metamaterial achieved high-efficient noise attenuation performance for 
different target frequencies as expected. 

2. Statement of problem 

Generally, the acoustic metamaterials consisting of multiple fixed C- 
shaped layers (Fig. 1a) can only achieve acceptable noise attenuation 
performance at certain frequency ranges [47,48]. The cross-sectional 
view of the double-layer C-shaped acoustic metamaterial unit lists 
eight structural parameters for the outer and inner layers, including the 
radii R1 and R2, the thicknesses T1 and T2, the opening widths w1 and w2, 
and the rotation angles of the openings α1 and α2, with subscripts “1″ for 
outer and “2” for inner layers, respectively (Detailed diagram in Sup
porting Information Fig. S1). For the structure shown in Fig. 1a, finite 
element simulations (details in COMSOL model are provided in the 
Methods part) were conducted to calculate the transmission loss (TL) in 
the specific decibel values (dB) within the frequency range of 0 to 3.5 

Fig. 1. Machine learning guided design of on-demand tunable acoustic metamaterials. (a) Schematic of untunable acoustic metamaterials. (b) The trans
mission loss (TL) curves and band structures for the acoustic metamaterials. (c) The acoustic pressure level of this acoustic metamaterial at 1,000 Hz and 2,800 Hz. 
(d) Acoustic metamaterials with the ability to tune structures with time. (e) Tuning all parameters to achieve different targets with ML methods. (f) Tuning one 
combination of parameters to achieve different targets with ML methods and optimization algorithm. 
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kHz range, as shown in the top panel of Fig. 1b (the material properties 
can be seen in Table S1). It is confirmed that noise attenuation is only 
effective within specific frequency ranges, which can be explained by 
the bandgap structure of a phononic crystal (bottom panel of Fig. 1b). 
Additionally, this phenomenon was corroborated by the spatial distri
bution of the sound pressure field, where nearly 60 dB is attenuated at 
1,000 Hz and less than 10 dB is attenuated at 2,800 Hz (Fig. 1c), as 
indicated by the pink arrows in Fig. 1b. Furthermore, by performing 
additional calculations for different geometric structures, it was found 
that the geometries significantly influence the bandgap structure (de
tails in Figs. S2-S3). The finite width of the bandgap significantly limits 
the frequency range for noise reduction. Given that the noise frequency 
always changes over time, it was expected that the acoustic meta
materials would be tuned to match the varying noises under different 
scenarios (Fig. 1d). Generally, in order to meet different targets, certain 
design parameters are required to be changed to cover specific fre
quency ranges. However, since it would be tedious (even with the ma
chine learning (ML) method) and difficult to operate all the parameters 
in the practical sense (as shown in Fig. 1e), we hypothesized that by 
combining the optimization algorithms, we could achieve the same goal 
by simply tuning one single combination of parameters (see Fig. 1f). As 
such, this requires identifying a single combination of parameters as a 
first step. Once this was completed, we then focused on structural design 
to arrive at the intended tunable properties for enabling real-time 
tunability. In this work, we have employed a general data-driven 
methodology incorporated with GA to design a tunable acoustic meta
material that covers broad and specific frequency ranges using band 
structures as the concerned property. 

3. A general data-driven methodology to design acoustic 
metamaterials 

The primary objective of this section is to establish the relationship 
between geometric structural parameters and noise attenuation perfor
mance, including preparation of input parameters, output parameters, 
and training of the neural network (NN). An important criterion is that 
the design of tunability needs to be balanced with the requirements of 
the tunable range and feasibility of implementation. To ensure conve
nience for installation and ventilation purposes, the radii of the outer 
and inner layers R1 and R2 are fixed, and the gaps between the neigh
boring metamaterial structure units are considered. The double layer C- 
shaped unit structure is described by six adjustable parameters, i.e., T1, 
T2, d1, d2, α1, and α2, which can be tuned through structural changes 
(here d1 = w1/R1, d2 = w2/R2, d1 and d2 are opening width parameters). 
C-shaped structures are then generated by randomly seeding between 
the lower and upper limits of these six parameters. Fig. 2a shows the 
distribution of the six parameters; the vertical axis is number of counts, 
and the total count for each parameter is 28,800, 80 % is assigned as the 
training set and the remaining 20 % is the testing set for the subsequent 
NN model. The selection of 28,800 as our dataset size is a result of 
careful deliberation on model performance, empirical evidence from 
similar studies [51], and the practicalities of computational resources. 
The utilization of high-quality datasets plays a crucial role in enhancing 
the quality of subsequent neural networks. These data are acceptably 
distributed within the practical ranges. Then an individual set from each 
parameter is randomly picked without replacement to form the corre
sponding acoustic metamaterial (e.g., see the star in yellow, the dot in 
blue and square in grey in Fig. 2b and their corresponding C-shaped 
structures); thus 28,800C-shaped structures were randomly generated. 
This was then followed by the generation of output data. 

The band structure is a good representation to study the noise 
attenuation performance, given its two merits, namely low computation 
cost, and concise expression of the bandgap information (i.e., a starting 
and an ending point for one band) instead of an entire TL curve. 
Calculated using COMSOL Multiphysics 5.6, we obtained the band 
structures of 28,800C-shaped structures. Each band structure was then 

characterized by 10 values to describe the first five bandgaps, e.g., B1 
(starting point of the first bandgap) to B10 (ending point of the fifth 
bandgap), shown in Fig. 2b. An NN model containing 6 hidden layers 
(details in Methods) was then trained to reveal the relationship between 
the geometry parameters (a total of 6 × 28,800 data as the input layer) 
and bandgap structure (a total of 10 × 28,800 data as the output layer), 
as shown in Fig. 2c. To demonstrate the validity of the NN model, Fig. 2d 
shows the bandgap positions (i.e., B1 to B10) predicted by the trained NN 
basically collapsing with that from the finite element simulations, with 
average relative error of about 2.08 %, indicating trustable predict
ability using the trained NN model. Now the bandgaps can be predicted 
by the NN model once the geometry of the C-shaped acoustic meta
materials is given, which is much more efficient than the finite element 
simulation. 

During the application process, however, tuning six parameters to 
match varying demands can prove to be cumbersome and even practi
cally impossible to implement. For this reason, we employ sensitivity 
analysis, which helps in identifying efficient tunable parameters. 
Furthermore, we used generated data from the trained NN model, to 
conduct the sensitivity analysis [52] for identifying the most sensitive 
parameters among the six parameters selected. The sensitivity score is 
defined as [52] 

Si = Vxi [Ex∼i (B|xi ) ]/V(B) (1)  

where B with dimension 1 × 3,000 is a binary array, digitalizing the 
bandgap information from 1 to 3,000 Hz, with 1 for within a bandgap 
and 0 for outside of a bandgap, given a set of parameters xi (i.e., “|xi” 
with xi being T1, T2, d1, d2, α1, and α2), Ex∼i is the expectation over all 
possible values of parameters (i.e., xi) while keeping the ith parameter 
fixed, and Vxi is the variance. The sensitivity score ranges from 0 to 1 
with 1 for the strongest sensitivity. The results shown in Fig. 2e indicate 
that the opening width d1 and the rotation angles of the openings α1 of 
the outer layer have stronger effects on the bandgap position compared 
with the remaining four parameters. For possible values of d1 and α1, 
Fig. 2f shows the bandgap probability, arrived at by fixing the four pa
rameters (T1, T2, d2 and α2) and only varying d1 and α1, in which one can 
observe that bandgaps would exist above 430 Hz with some frequencies 
having higher probability (e.g., close to 100 % around 1,800 Hz) and 
some having lower probability (e.g., about 50 % around 520 Hz). 

To fully leverage the advantages of adjustable structures and 
enhance the noise attenuation performance, it is desirable to make 
appropriate structural adjustments based on the external noise using 
optimization algorithms. At present, GA is utilized to evolve the meta
materials by changing d1 and α1 to achieve the desired performance that 
is evaluated by the trained NN model. The performance is measured by 
the following fitness function, 

f = max{Z⋅B}/|Z| (2)  

where B is the same one-dimensional array describing the band struc
tures for given xi = (d1, α1), and Z is a one-dimensional array indicating 
the target noise frequency range with 0 for outside the targeted range 
and 1 for inside the range (Fig. 2g). Thus, when the fitness function f 
reaches 1, the bandgap would totally cover the targeted frequency 
range. GA is then applied to evolve the structure of the metamaterials 
using this fitness function f. The flowchart of this method can be found in 
Fig. S4. 

4. Design and experimental verification of on-demand tunable 
metamaterials 

Given that noise with frequencies below 3,000 Hz is one of the 
common types of noise in daily life [53], including traffic, mechanical 
and construction noise, we applied the method developed in Section 3 to 
design three tunable acoustic metamaterials to cover three different 
frequency ranges, 500 Hz to 1,400 Hz, 1,400 Hz to 2,200 Hz, and 2,200 
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Fig. 2. Data-driven methodology to design on-demand tunable acoustic metamaterials. (a) Data preparation for α1, α2, d1, d2, T1 and T2. (b) The band 
structures for three structures. (c) The neural network used for prediction of band structures. (d) The comparison of bandgap positions between the prediction by NN 
and the finite element simulation. (e) Sensitivity analysis for six structural variables. (f) The bandgap probability in 0 ~ 3 k Hz range. (g) The schematic of the fitness 
function for GA. 
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Hz to 3,000 Hz, respectively. Fig. 3a-c show the evolution process of 
fitness function f, targeting the aforementioned three frequency ranges. 
The fitness function f reached 1 after 60 generations, indicating that the 
bandgaps can cover the target frequency ranges. Based on Eq. (2), the 
design parameters for different target frequency ranges are obtained as 
α1 = 4◦ and d1 = 1.51, α1 = 175◦ and d1 = 1.95, α1 = 95◦ and d1 = 0.94 
(the detailed structure parameters are given in Table S2) and the cor
responding three optimized metamaterial units are shown in the Fig. 3d, 
which are referred as mode I, mode II and mode III. Intuitively, rotation 
is an efficient way to tune the structure, but it may not necessarily meet 
the adjustment requirements of the parameter d1. Ideally, it is desired to 
find a method that only involves rotation to adjust both the opening 
width parameter d1 and rotation angles of the openings α1. Considering 
that the sensitivity of the layer thickness T1 is weak, the outer layer of C- 
shaped structures is modified to consist of two overlapped slidable shells 
to realize tunability, as shown in Fig. 3e-3f (detailed structure of Mode I 

shown in Fig. S5). We then use finite element simulations to demon
strate that although layer thickness T1 changes during the switching of 
different modes, the band structures of the original mode I structure 
with fixed shell (Fig. 3d) and the corresponding one with slidable shells 
(Fig. 3e) are almost identical (Fig. 3g). Additionally, the TL curves 
(Fig. S6) and acoustic pressure level results (Fig. S7) provide further 
evidence that making the optimal structures with slidable shells is 
reasonable. 

Now we address the method of switching between different modes. 
In addition to using electric motors to transform among the three 
discrete modes, which is controlled through accurate programming, we 
present a novel and cost-effective solution to switch between different 
modes. Kresling pattern-inspired metamaterials [54,55] enable stable 
state transition between the deployed and collapsed states by rotating at 
different angles in both clockwise and counterclockwise directions. As 
shown in Fig. 3h, the shell tied on the upper panel of the Kresling- 

Fig. 3. The implementation of on-demand tunable acoustic metamaterials. (a)-(c) Evolution process of three metamaterial units by GA and NN. (d) Cross- 
sectional structures of optimized structures with fixed shells targeting the three frequency ranges. (e) Cross-sectional structures of the three modes in (d) with 
slidable shells. (f) The three-dimensional structure of metamaterial unit with fixed and slidable shells. (g) The band structures comparison between the modes with 
fixed and slidable shells. (h) The Kresling-inspired metamaterials can reach the collapsed state by rotating clockwise and counterclockwise. (i) The upper and lower 
Kresling-inspired metamaterials to form the transformation device. (j) The three modes realized by the transformation devices. 
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inspired truss structure can transfer to different positions when the panel 
is rotated clockwise (blue arrow) and counterclockwise (red arrow) di
rections. Therefore, each of the Kresling-inspired structures have three 
stable states, one for deployed state and two for collapsed states by 
rotating clockwise and counterclockwise. As shown in Fig. 3i, there are 
two Kresling pattern-inspired truss structures with the top one control
ling one sliding outer layer and the bottom for another sliding outer 
layer. By employing two tri-table Kresling pattern-inspired structures to 
control the two sliding shells on the outer layer, we are able to achieve 
transition among three states. Thus, by properly designing the param
eters of the Kresling-inspired structures, transformation takes place from 
mode II to mode I, and mode II to mode III. The detailed design, pa
rameters, and components for building the Kresling pattern-inspired 
truss structures are provided in supporting information (Figs. S8-S9, 
Table S3-S5). By clockwise rotating both the top and bottom Kresling- 
inspired structures by 116◦ and 22◦, respectively, mode II (Fig. 3j, 
middle) transfers to mode I (Fig. 3j, left). This process can be seen in 
Movie S1. Through counterclockwise rotation of the top and bottom 
Kresling-inspired structures by 89◦ and 134◦, respectively, mode II 
transfers to mode III (Fig. 3j, right), shown in Movie S2. 

To verify the noise attenuation performance at targeted frequency 
ranges, acoustic testing was conducted. The photograph of the experi
ment setup is shown in Fig. 4a (details in Methods). The acoustic 
metamaterials measure 1.8 m in height and are placed in the middle of a 
semi-anechoic chamber. The acoustic signals were measured for 
different modes, and the TL curves were plotted shown in Fig. 4b to 4d. 
The sound in the targeted frequency ranges were selectively attenuated, 
for the purpose of verifying that the designed acoustic metamaterials 
achieve on-demand tunability by sliding the shells. The trends of the TL 
curves for both the simulations and experiments also coalesce very well. 
Discrepancy between experiments and simulations may occur due to 
factors, such as manufacturing errors and slight differences in experi
mental setup and two-dimensional simulation models. The effective TL 
between frequencies f1 and f2 defined as [7] 

∫ f
f1 TLdf/(f2 − f1) is used to 

quantify the acoustic performance. As shown in Fig. 4e, as the design 
expects, mode I has the highest effective TL of between 500 Hz and 
1,400 Hz (i.e., 33.4 dB for simulation and 26.6 dB for experiment as 
indicated in blue arrows), closely followed by mode II, which has the 
highest effective TL for its desired frequency range, and mode III, which 
prevails over the other two modes, ranging between 2,200 Hz to 3,000 
Hz. During the installation of our system, a gap is likely to form between 
the fixed shell and the slidable shell. To understand how this gap affects 
noise attenuation, we conducted simulations to analyze the transmission 
loss curve with the presence of a gap in three different modes. The 
outcomes of these simulations are depicted in Fig. S10. Our findings 
suggest that the gap between the fixed and slidable shells has a marginal 
impact on the system’s noise attenuation performance. 

5. The extensibility of tunable acoustic metamaterials. 

The selected three acoustic metamaterials can be placed in series to 
cover a wide and tunable frequency range for noise attenuation. The 
noise attenuation performance of the combination of the two modes is 
shown in Fig. 5. The photographic experimental setups are shown in 
Fig. 5a. To verify their performance, the transmission loss was simulated 
and experimentally measured using modes I and II with three layers 
each (see the planar layout of this combination in Fig. 5b). The results 
(Fig. 5c) clearly show that TL in the desired frequency range is 
enhanced, with effective TL of 33 dB for experiments, compared with 
that for the individual modes, i.e., 26.6 dB (mode I) and 18.39 dB (mode 
II) for 500 Hz to 1,400 Hz, and 24.8 dB (mode I) and 28.6 dB (mode II) 
for 1,400 Hz to 2,200 Hz. Fig. 5f is the simulated acoustic pressure level 
for mode I and mode II combinations at 700 Hz and 2,200 Hz. Similar 
combinations can be performed for modes II and III to cover higher 
frequency ranges (Fig. 5d, 5e and 5 g). It should be emphasized that 

since these acoustic metamaterials are tunable, modes I, II, and III are 
interchangeable by simply sliding the shells. Depending on the appli
cation scenario, these metamaterials can be tuned for a narrow range (i. 
e., individual modes) or a combined range (i.e., mixed modes), which 
then fully utilizes the merit of being readily tunable. Since the Kresling- 
based tunable system at the bottom of the C-shaped structure are mainly 
made of rods that would allow for the sound wave propagation when 
this structure is deployed, to decouple this effect from the acoustic 
performance, we didn’t include the Kresling-based tunable system in the 
acoustic test. For practical applications, Kresling-inspired units would be 
encapsulated in customized boxes at the bottom of the sound barrier, 
which will not compromise the noise attenuation performance of the 
sound barrier. 

In addition, there still needs many efforts to explore a stable and low- 
cost driving method to operate the Kresling-inspired structure. A 
promising method involves integrating airbags within the Kresling- 
inspired unit. Controlling the amount of air inflation and deflation can 
trigger the switching between different modes. This method is cost- 
effective, but facing the synchronization problem due to the pneu
matic delay, which is suitable to the application scenarios where the 
frequency range of external noise changes slowly. In this case, the 
requirement for synchronization in the sound barrier is relatively low. 
When the frequency range of external noise changes quickly, the electric 
motor can be used for each Kresling-inspired unit, achieving synchro
nized adjustments becomes possible. 

6. Conclusion 

In this study, we presented an NN combined with GA-based method 
to design on-demand C-shaped tunable acoustic metamaterials for noise 
attenuation. The relationship between geometric dimensions and 
bandgap was determined using NN. Using parameter sensitivity anal
ysis, we identified that the opening width and rotation angles of the 
openings were critical factors, and by manipulating their combination 
we can attenuate noise with different frequencies. By combining NN 
with GA, the structures of the acoustic metamaterials corresponding to 
different given frequency ranges were also determined. Three modes 
were identified for three frequency ranges. Furthermore, slidable shells 
were designed for the outer layer of the C-shaped tunable acoustic 
metamaterials, and a Kresling-inspired mechanical metamaterial with a 
tri-stable state was developed to control rotation and enable switching 
among three modes, thereby achieving noise attenuation at various 
frequencies. The designed tunable acoustic metamaterials were vali
dated through experimental measurements showing good agreement 
between theory and practice. It is thus believed that the present general 
methodology would provide a route for well-regulated on-demand 
tunable design. Furthermore, its integration with other active compo
nents and controls would lead to new engineering improvements. 

7. Methods 

Experimental setup: 3 × 16 units (3 rows, each row with 16 units) 
are arranged to measure the acoustic attenuation performance. The 
metamaterials are fabricated by PVC pipes. The size of each unit is 100 
mm (length) × l00 mm (width) × 1,800 mm (height). The power 
amplifier (Sound Blaster X7, Creative) was used to amplify the input 
signal. The loud speaker (HI-VIRESEARC W11905472, HiVi Acoustics 
Inc.) was connected to convert the electrical signals into acoustic signals. 
The microphone (AWA14423, HangZhou Aihua Instruments Co., Ltd) is 
able to detect the acoustic signals with an open circuit sensitivity of 
48.97 mV/Pa. The sound source is white noise. The acoustic experiment 
was conducted in a semi-anechoic chamber. The distance between the 
acoustic source and the acoustic metamaterials was 0.7 m, and the 
distance between the microphone and the acoustic metamaterials was 
0.7 m. 

Rationales of the selection of six parameters: 
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Fig. 4. Experimental verification of on-demand tunable acoustic metamaterials. (a) The experiment setup. (b)-(d) The experimental measurements and 
simulations of TL curves for mode I, mode II, and mode III. (e) The calculating effective TL from experimental and simulated data for three modes under three 
targeted frequencies. 
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The lower and upper limits of the six parameters (α1, α2, T1, T2, d1, 
d2) are mainly determined by the application requirements and material 
processing:  

(1) The selection for the opening angle (α1, α2) ranges from 0 to 360 
degrees to cover the entire circumference.  

(2) The selection of the thickness for the C-shaped shell (T1, T2) 
balances overall weight and structural stability. For a sound 
barrier standing 1.8 m tall, using very thin C-shaped shells could 
compromise stability, especially during movement. Conversely, 
shells that are too thick would significantly increase the overall 
weight, making it challenging to adjust and tune the structure 
effectively. We found that a shell thickness ranging between 1.5 
mm and 2.7 mm offers an optimal balance, providing both sta
bility and ease of tuning in our experiments. Additionally, we 

opted for PVC pipes to fabricate these C-shaped shells, as PVC 
pipes within this thickness range are readily available in the 
market. This choice not only meets our structural requirements 
but also helps in reducing the experimental costs. 

(3) The ranges for the opening width parameters (d1, d2) are set be
tween 0.6 and 2.0, with the corresponding opening central angles 
ranging from 35◦ to 180◦. This design consideration is twofold. 
Firstly, it is essential to keep the central angle of the opening 
below 180◦. Doing so ensures the formation of an effective cavity 
that is conducive to noise absorption. Secondly, the minimum 
central angle is set above 35◦, taking into account practical as
pects such as the ease of installation and operational efficiency 
during sample fabrication. These parameters are carefully chosen 
to optimize the structural design for maximum noise absorption 
while maintaining practicality in construction and use. 

Fig. 5. Noise attenuation performance of two-modes combination. (a) Photographic experiment setups. (b) Planar layout of combination of mode I and Mode II. 
(c) The TL curves of combination of mode I and mode II. (d) Planar layout of combination of mode III and mode II. (e) The TL curves of combination of mode III and 
mode II. (f) Simulated acoustic pressure level for combination of mode I and mode II at 700 Hz and 2,200 Hz. (g) Simulated acoustic pressure level for combination of 
mode III and mode II at 1,200 Hz and 3,000 Hz. 
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Details in the COMSOL model: 
The COMSOL model schematic is shown in Fig. S11. In Fig. S11a, 

the computational model for the bandgap structure is depicted, utilizing 
the Pressure Acoustics physical field and the Frequency Domain module 
for an eigenfrequency study. Considering only vertically incident noise 
on the sound barrier, periodic boundary conditions are applied to 
boundaries B and D, while continuous boundary conditions are set for 
boundaries A and C. Fig. S11b illustrates the model employed for 
calculating transmission loss. It also utilizes the Pressure Acoustics and 
Frequency Domain modules, focusing on frequency domain analysis. To 
closely replicate the experimental setup, a grid comprising 3 × 16 
structural units is used. The yellow region in the model represents the 
background pressure field, while the purple region denotes the perfectly 
matched layer (PML). The PML is crucial as it simulates a non-reflecting 
infinite domain, with its external boundary acting as a sound hard 
boundary. The specific model parameters employed in these simulations 
are detailed in Table S1. 

Construction of NN model: The fully connected neural network 
(NN) contains one input layer, six hidden layers and one output layer. 
The training process of the NN was implemented using TensorFlow 
(v2.10.0). The number of neuron nodes of the six hidden layers was set 
as 2n, with n = 4 to 9 (the node number for the first hidden layer was 24, 
for the second hidden layer was 25…for the sixth hidden layer was 29). 
Because the input layer has 6 nodes and the output layer has 10 nodes, 
there are 1,024 learnable parameters for the NN training in total. The 
ReLU (Rectified Linear Unit) activation function for the hidden layers 
was applied to introduce nonlinearity. For the output layer, since the 
results of the physical problems in this study are non-negative, the ReLU 
activation function was employed to obtain the predicted outcomes. We 
used the TensorFlow (v2.11.0) framework to implement the NN model. 
To evaluate the discrepancy between the model’s predictions and the 
actual values, mean squared error (MSE) was used as the loss function. 
The Adam optimizer with adaptive learning rate was selected as the 
optimizer. The NN was trained based on a CPU core (Intel Core i9-12900 
KS) and a GPU (NVIDIA GeForce RTX 3080 Ti), which took 27.6 mins. 

Methods for GA optimization: The population was set at 30 for 
each generation, which means the NN would be invoked 30 times for 
predicting the band structures for each generation. Starting from a 
generation containing randomly selected 30 individuals, each individual 
was evaluated by the fitness function and then underwent crossover and 
mutation. The evolution process of GA stopped when the generations 
reached 100. The crossover fraction was set as 0.9 and the mutation 
probability was 0.1. The GA optimization process was performed by 
Python 3.10. 

Design and fabrication of the transformation device of the three 
modes: Two Kresling-inspired metamaterials were combined together 
to achieve the rotation of the two shells of the outer layer. Each Kresling- 
inspired metamaterial consisted of two panels (upper panel and lower 
panel), 10 hollow pillars, and elastic strings. The panels were made of 
PLA using 3D printing. The hollow pillars were fabricated with stainless 
steel with a diameter of two millimeters; elastic strings were put inside 
the hollow pillars to connect the upper and lower panels. 
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Theoretical study on dispersion relations of chiral acoustic metamaterials 
considering mass-rotation, Eur. J. Mech. - A/solids 100 (2023), https://doi.org/ 
10.1016/j.euromechsol.2023.105005. 

[20] A. Colombi, P. Roux, S. Guenneau, M. Rupin, Directional cloaking of flexural waves 
in a plate with a locally resonant metamaterial, J. Acoust. Soc. Am. 137 (4) (2015) 
1783–1789, https://doi.org/10.1121/1.4915004. 

[21] Y. Huang, X. Lu, G. Liang, Z. Xu, Pentamodal property and acoustic band gaps of 
pentamode metamaterials with different cross-section shapes, Phys. Lett. A 380 
(13) (2016) 1334–1338, https://doi.org/10.1016/j.physleta.2016.01.041. 

[22] M.S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, B. Djafari-Rouhani, Theory 
of acoustic band structure of periodic elastic composites, Phys. Rev. B 49 (4) 
(1994) 2313–2322, https://doi.org/10.1103/physrevb.49.2313. 

[23] P. Gao, A. Climente, J. Sánchez-Dehesa, L. Wu, Single-phase metamaterial plates 
for broadband vibration suppression at low frequencies, J. Sound Vib. 444 (2019) 
108–126, https://doi.org/10.1016/j.jsv.2018.12.022. 

[24] C. Kim, R. Batra, L. Chen, H. Tran, R. Ramprasad, Polymer design using genetic 
algorithm and machine learning, Comp. Mater. Sci. 186 (2021) 110067, https:// 
doi.org/10.1016/j.commatsci.2020.110067. 

[25] F. Liu, X. Jiang, X. Wang, L. Wang, Machine learning-based design and 
optimization of curved beams for multistable structures and metamaterials, 
Extreme Mech. Lett. 41 (2020) 101002, https://doi.org/10.1016/j. 
eml.2020.101002. 

[26] K. Guo, Z. Yang, C.-H. Yu, M.J. Buehler, Artificial intelligence and machine 
learning in design of mechanical materials, Mater. Horizons 8 (4) (2021) 
1153–1172, https://doi.org/10.1039/d0mh01451f. 

[27] M.A. Bessa, P. Glowacki, M. Houlder, Bayesian Machine Learning in Metamaterial 
Design: Fragile Becomes Supercompressible, Adv. Mater. 31 (48) (2019) e1904845. 

[28] C. Wang, H. Fu, L. Jiang, D. Xue, J. Xie, A property-oriented design strategy for 
high performance copper alloys via machine learning, npj Comput, Mater. 5 (2019) 
1–8, https://doi.org/10.1038/s41524-019-0227-7. 

[29] G.M. Coli, E. Boattini, L. Filion, M. Dijkstra, Inverse design of soft materials via a 
deep learning–based evolutionary strategy, Sci. Adv. (2022), https://doi.org/ 
10.1126/sciadv.abj6731. 

[30] R. Guo, Y. Fang, Z. Wang, A. Libanori, X. Xiao, D. Wan, X. Cui, S. Sang, W. Zhang, 
H. Zhang, J. Chen, Deep learning assisted body area triboelectric hydrogel sensor 
network for infant care, Adv Funct. Mater. (2022) 2204803, https://doi.org/ 
10.1002/adfm.202204803. 

[31] T.W. Liu, C.T. Chan, R.T. Wu, Deep-Learning-Based Acoustic Metamaterial Design 
for Attenuating Structure-Borne Noise in Auditory Frequency Bands, Mater. 16 (5) 
(2023), https://doi.org/10.3390/ma16051879. 

[32] M. Fathidoost, Y. Yang, M. Oechsner, B.-X. Xu, Data-driven thermal and 
percolation analyses of 3D composite structures with interface resistance, Mater. 
Des. 227 (2023) 111746, https://doi.org/10.1016/j.matdes.2023.111746. 

[33] H. Zhang, Y. Wang, H. Zhao, K. Lu, D. Yu, J. Wen, Accelerated topological design of 
metaporous materials of broadband sound absorption performance by generative 
adversarial networks, Mater. Des. 207 (2021) 109855, https://doi.org/10.1016/j. 
matdes.2021.109855. 

[34] T.-W. Rih-Teng Wu, M.R. Liu, Jahanshahi, Fabio Semperlotti. Design of one- 
dimensional acoustic metamaterials using machine learning and cell 
concatenation, Struct. Multidiscipl. Optim. (2021), https://doi.org/10.1007/ 
s00158-020-02819-6. 

[35] A. Bacigalupo, G. Gnecco, M. Lepidi, L. Gambarotta, Machine-learning techniques 
for the optimal design of acoustic metamaterials, J. Optim. Theory Appl. 187 (3) 
(2019) 630–653, https://doi.org/10.1007/s10957-019-01614-8. 

[36] L. Wu, L. Liu, Y. Wang, Z. Zhai, H. Zhuang, D. Krishnaraju, Q. Wang, H. Jiang, 
A machine learning-based method to design modular metamaterials, Extreme 
Mech. Lett. 36 (2020) 100657, https://doi.org/10.1016/j.eml.2020.100657. 

[37] X. He, H.-W. Dong, Z. Ren, S.-D. Zhao, K. Wang, Y. Hu, P. Xiang, Y. Li, M. Chen, 
D. Fang, Inverse-designed single-phase elastic metasurfaces for underwater 
acoustic vortex beams, J. Mech. Phys. Solids 174 (2023), https://doi.org/10.1016/ 
j.jmps.2023.105247. 

[38] Z. Liu, H.-W. Dong, G.-L. Yu, L. Cheng, Achieving ultra-broadband and ultra-low- 
frequency surface wave bandgaps in seismic metamaterials through topology 
optimization, Compos. Struct. 295 (2022), https://doi.org/10.1016/j. 
compstruct.2022.115863. 

[39] D.F. Cook, C.T. Ragasdale, R.L. Major, Combining a neural network with a genetic 
algorithm for process parameter optimization, Eng. Appl. Artif. Intell. 13 (2000). 

[40] N. Gao, H. Yu, J. Liu, J. Deng, Q. Huang, D. Chen, G. Pan, Experimental 
investigation of composite metamaterial for underwater sound absorption, Appl. 
Acoust. 211 (2023), https://doi.org/10.1016/j.apacoust.2023.109466. 

[41] N. Gao, J. Wu, K. Lu, H. Zhong, Hybrid composite meta-porous structure for 
improving and broadening sound absorption, Mech. Syst. Signal Process. 154 
(2021), https://doi.org/10.1016/j.ymssp.2020.107504. 

[42] Z. Zhou, S. Huang, D. Li, J. Zhu, Y. Li, Broadband impedance modulation via non- 
local acoustic metamaterials, Natl. Sci. Rev. 9 (8) (2022), https://doi.org/10.1093/ 
nsr/nwab171. 

[43] M. Yang, S. Chen, C. Fu, P. Sheng, Optimal sound-absorbing structures, Mater. 
Horizons 4 (4) (2017) 673–680, https://doi.org/10.1039/c7mh00129k. 

[44] Z.-X. Xu, H.-Y. Meng, A. Chen, J. Yang, B. Liang, J.-C. Cheng, Tunable low- 
frequency and broadband acoustic metamaterial absorber, J. Appl. Phys. 129 (9) 
(2021), https://doi.org/10.1063/5.0038940. 

[45] X. Wu, C. Fu, X. Li, Y. Meng, Y. Gao, J. Tian, L. Wang, Y. Huang, Z. Yang, W. Wen, 
Low-frequency tunable acoustic absorber based on split tube resonators, Appl. 
Phys. Lett. 109 (4) (2016), https://doi.org/10.1063/1.4959959. 

[46] A. Chen, Z.-X. Xu, B. Zheng, J. Yang, B. Liang, J.-C. Cheng, Machine learning- 
assisted low-frequency and broadband sound absorber with coherently coupled 
weak resonances, Appl. Phys. Lett. 120 (3) (2022), https://doi.org/10.1063/ 
5.0071036. 

[47] D.P. Elford, L. Chalmers, F.V. Kusmartsev, G.M. Swallowe, Matryoshka locally 
resonant sonic crystal, J. Acoust. Soc. Am. 130 (5) (2011) 2746–2755, https://doi. 
org/10.1121/1.3643818. 

[48] X. Hu, C.T. Chan, J. Zi, Two-dimensional sonic crystals with Helmholtz resonators, 
Phys. Rev. E. 71 (5 Pt 2) (2005) 055601, https://doi.org/10.1103/ 
PhysRevE.71.055601. 
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