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Mim-width and sim-width are among the most powerful graph width parameters, 
with sim-width more powerful than mim-width, which is in turn more powerful than 
clique-width. While several NP-hard graph problems become tractable for graph classes 
whose mim-width is bounded and quickly computable, no algorithmic applications of 
boundedness of sim-width are known. In Kang et al. (2017) [32], it is asked whether
Independent Set and 3-Colouring are NP-complete on graphs of sim-width at most 1. We 
observe that, for each k ∈N , List k-Colouring is polynomial-time solvable for graph classes 
whose sim-width is bounded and quickly computable. Moreover, we show that if the same 
holds for Independent Set, then Independent H-Packing is polynomial-time solvable for 
graph classes whose sim-width is bounded and quickly computable. This problem is a 
common generalisation of Independent Set, Induced Matching, Dissociation Set and k-

Separator.
We also make progress toward classifying the mim-width of (H1, H2)-free graphs in the 
case H1 is complete or edgeless. Our results solve some open problems in Brettell et al. 
(2022) [6].

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Over the last decades, graph width parameters have proven to be an extremely successful tool in algorithmic graph 
theory. Arguably the most important reason explaining the jump from computational hardness of a graph problem to 
tractability, after restricting the input to some graph class G , is that G has bounded “width”, for some width parameter 
p. That is, there exists a constant c such that, for each graph G ∈ G , p(G) ≤ c. A large number of width parameters have 
been introduced, and these parameters typically differ in strength. We say that a width parameter p dominates a width 
parameter q if there is a function f such that p(G) ≤ f (q(G)) for all graphs G . If p dominates q but q does not dominate p, 
then p is said to be more powerful than q. If both p and q dominate each other, then p and q are equivalent. For instance, the 
equivalent parameters boolean-width, clique-width, module-width, NLC-width and rank-width [8,37,26,38] are more power-
ful than the equivalent parameters branch-width, treewidth and mm-width [16,31,39,41] but less powerful than mim-width 
[41], which is less powerful than sim-width [32]. We also mention that the recently introduced tree-independence num-
ber [19] is more powerful than treewidth, less powerful than sim-width and incomparable with both clique-width and 
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mim-width (see Section 1.1). The tree-independence number of a graph G , denoted tree-α(G), is defined as the minimum in-
dependence number over all tree decompositions of G , where the independence number of a tree decomposition of G is 
the maximum independence number over all subgraphs of G induced by some bag of the tree decomposition.

In this paper, we focus on mim-width and sim-width, both defined using the framework of branch decompositions. A 
branch decomposition of a graph G is a pair (T , δ), where T is a subcubic tree and δ is a bijection from V (G) to the leaves of 
T . Every edge e ∈ E(T ) partitions the leaves of T into two classes, Le and Le , depending on which component of T − e they 
belong to. Hence, e induces a partition (Ae, Ae) of V (G), where δ(Ae) = Le and δ(Ae) = Le . We let G[Ae, Ae] denote the 
bipartite subgraph of G induced by the edges with one endpoint in Ae and the other in Ae . A matching F ⊆ E(G) of G is 
induced if there is no edge in G between vertices of different edges of F . We let cutmimG(Ae, Ae) denote the maximum size 
of an induced matching in G[Ae, Ae] and cutsimG(Ae, Ae) denote the maximum size of an induced matching between Ae
and Ae in G (equivalently, cutsimG(Ae, Ae) is the maximum size of an induced matching in G[Ae, Ae] such that in addition 
there are no edges in G between any two endpoints of matching edges that both belong to either Ae or Ae). The mim-width
of (T , δ), denoted mimwG(T , δ), is the maximum value of cutmimG(Ae, Ae) over all edges e ∈ E(T ) and the mim-width of 
G , denoted mimw(G), is the minimum value of mimwG(T , δ) over all branch decompositions (T , δ) of G . Similarly, the 
sim-width of (T , δ), denoted simwG(T , δ), is the maximum value of cutsimG(Ae, Ae) over all edges e ∈ E(T ) and the sim-
width of G , denoted simw(G), is the minimum value of simwG(T , δ) over all branch decompositions (T , δ) of G . Clearly, 
simw(G) ≤ mimw(G), for any graph G .

We now briefly review the algorithmic implications of boundedness of mim-width, sim-width and tree-independence 
number. We begin with a recent and remarkable meta-theorem provided by Bergougnoux et al. [3]. They showed that all 
problems expressible in A&C DN logic, an extension of existential MSO1 logic, can be solved in XP time parameterized by 
the mim-width of a given branch decomposition of the input graph. This result, which can be viewed as the mim-width 
analogue of the famous meta-theorems for treewidth [15] and clique-width [14], generalises essentially all the previously 
known XP algorithms parameterized by mim-width, as A&C DN logic captures both local and non-local problems. Just to 
name few problems falling into this framework, we have all Locally Checkable Vertex Subset and Vertex Partitioning prob-
lems [1,9], their distance versions [28] and their connectivity and acyclicity versions [2], Longest Induced Path and Induced 
Disjoint Paths [29], Feedback Vertex Set [30], Semitotal Dominating Set [20]. Boundedness of tree-independence number 
has interesting algorithmic implications as well. Dallard et al. [19] showed that, for any fixed finite set H of connected 
graphs, Maximum Weight Independent H-Packing, a common generalisation of Maximum Weight Independent Set and
Maximum Weight Induced Matching first defined in [10], can be solved in XP time parameterized by the independence 
number of a given tree decomposition of the input graph. They also showed that k-Clique and List k-Colouring admit 
linear-time algorithms for every graph class with bounded tree-independence number. This result holds more generally for 
every (tw, ω)-bounded graph class admitting a computable binding function, as shown by Chaplick and Zeman [11], where 
a graph class G is (tw, ω)-bounded if there exists a function f (called a binding function) such that the treewidth of any 
graph G ∈ G is at most f (ω(G)) and the same holds for all induced subgraphs of G . In [19], it was observed that in every 
graph class with bounded tree-independence number, the treewidth is bounded by an explicit polynomial function of the 
clique number, and hence bounded tree-independence number implies (tw, ω)-boundedness.

The trade-off of working with a more powerful width parameter is that, typically, fewer problems admit a polynomial-
time algorithm when the parameter is bounded. Consider, for example, mim-width and the more powerful sim-width.
Dominating Set is in XP parameterized by mim-width [9]. However, Dominating Set is NP-complete on chordal graphs, 
a class of graphs of sim-width at most 1 [32]. On the other hand, it is known that one can solve Independent Set and
3-Colouring in polynomial time on both chordal graphs and co-comparability graphs, two classes of sim-width at most 1, 
as shown by Kang et al. [32]. This led them to ask whether any of Independent Set and 3-Colouring is NP-complete on 
graphs of sim-width at most 1 [32, Question 2]. For convenience, we reformulate this question as follows:

Open Problem 1. Is any of Independent Set and 3-Colouring in XP parameterized by the sim-width of a given branch 
decomposition of the input graph?

To the best of our knowledge, no problem NP-complete on general graphs is known to be in XP parameterized by the 
sim-width of a given branch decomposition of the input graph.

In view of the discussion above, if we are interested in the computational complexity of a certain graph problem re-
stricted to a special graph class, it is useful to know whether the mim-width of the class is bounded or not and, in the 
case of a positive answer to Open Problem 1, the same is true for sim-width. A systematic study on the boundedness of 
mim-width for hereditary graph classes, comparable to similar studies on the boundedness of clique-width (see, e.g., [18]) 
and treewidth [35], was recently initiated in [6] (see also [5]). Recall that a graph class is hereditary if it is closed under 
vertex deletion. It is well known that hereditary graph classes are exactly those classes characterised by a (unique) set F of 
minimal forbidden induced subgraphs. If |F | = 1 or |F | = 2, we say that the hereditary graph class is monogenic or bigenic, 
respectively. In [6], boundedness or unboundedness of mim-width has been determined for all monogenic classes and a 
large number of bigenic classes.

In general, computing the mim-width is NP-hard, deciding if the mim-width is at most k is W[1]-hard when parame-
terized by k, and there is no polynomial-time algorithm for approximating the mim-width of a graph to within a constant 
factor of the optimal unless NP = ZPP [40]. Moreover, it remains a challenging open problem to obtain, for fixed k, a 
2
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polynomial-time algorithm for computing a branch decomposition with mim-width f (k) of a graph with mim-width k; 
a similar problem for sim-width is open as well (see, e.g., [27]). Therefore, in contrast to algorithms for graph classes of 
bounded treewidth or rank-width [4,26], algorithms for classes of bounded mim-width require a branch decomposition of 
constant mim-width as part of the input. Obtaining such branch decompositions in polynomial time has been shown possi-
ble for several special graph classes G (see, e.g., [1,6]). In this case, we say that the mim-width of G is quickly computable.

Mim-width has proven to be particularly effective in tackling colouring problems. For instance, Kwon [34] showed the 
following (see also [7]):

Theorem 1 (Kwon [34]). For every k ≥ 1, List k-Colouring is polynomial-time solvable for every graph class whose mim-width is 
bounded and quickly computable.

Notice however that Colouring (and hence List Colouring) is NP-complete for circular-arc graphs [21], a class of graphs 
of mim-width at most 2 and for which mim-width is quickly computable [1]. The complexity of k-Colouring restricted 
to H-free graphs has not yet been settled and there are infinitely many open cases when H is a linear forest, that is, a 
disjoint union of paths. An extensive body of work has been devoted to studying whether forbidding certain linear forests 
makes k-Colouring and its generalisation List k-Colouring easy. We refer to [23] for a survey and to [12,24,33] for updated 
summaries and briefly highlight below the connections with mim-width.

For r ≥ 1 and s ≥ 1, let Kr,s denote the complete bipartite graph with partition classes of size r and s. The 1-subdivision
of a graph G is the graph obtained from G by subdividing each edge exactly once. The 1-subdivision of K1,s is denoted by 
K 1

1,s; in particular K 1
1,2 = P5. Brettell et al. [7] showed that a number of known polynomial-time results for k-Colouring

and List k-Colouring on hereditary classes [12,17,22,25] can be obtained, and strengthened, by combining Theorem 1 with 
the following:

Theorem 2 (Brettell et al. [7]). For every r ≥ 1, s ≥ 1 and t ≥ 1, the mim-width of the class of (Kr, K 1
1,s, Pt)-free graphs is bounded 

and quickly computable.

The trivial but useful observation is that each yes-instance of List k-Colouring is Kk+1-free, and so we obtain that, for 
every k ≥ 1, s ≥ 1 and t ≥ 1, List k-Colouring is polynomial-time solvable for (K 1

1,s, Pt)-free graphs [7]. Hence, in the context 
of colouring problems on hereditary classes, it makes sense to investigate the mim-width of subclasses of Kr -free graphs. 
A first step is to consider the mim-width of (Kr, H)-free graphs, for some graph H . For any H such that the mim-width 
of (Kr, H)-free graphs is bounded and quickly computable, List k-Colouring is polynomial-time solvable for all k < r. More 
generally, for problems admitting polynomial-time algorithms when mim-width is bounded and quickly computable, we 
obtain XP algorithms parameterized by ω(G) when restricted to H-free graphs. For example, Chudnovsky et al. [13] showed 
that for P5-free graphs, there exists an nO (ω(G))-time algorithm for Max Partial H-Colouring (a common generalisation of
Maximum Independent Set and Odd Cycle Transversal which is polynomial-time solvable when mim-width is bounded and 
quickly computable). Theorem 2 allows to generalise this, although with a worse running time (see [7,13]).

From a merely structural point of view, the study of the mim-width of (Kr , H)-free graphs falls into the systematic study 
of the mim-width of bigenic classes mentioned above. For each r ≥ 4, Brettell et al. [6] completely classified the mim-width 
of the class of (Kr , H)-free graphs, except for one infinite family, and asked the following:

Open Problem 2 (Brettell et al. [6]). For each r ≥ 4, and for each t ≥ 0 and u ≥ 1 such that t +u ≥ 2, determine the (un)bound-
edness of mim-width of (Kr , t P2 + u P3)-free graphs.

Consider now the class of (r P1, H)-free graphs. If the mim-width of such a class is bounded and quickly computable, 
we obtain, for many problems, XP algorithms parameterized by α(G) for the class of H-free graphs. For r ≥ 5, Brettell 
et al. [6] completely classified the mim-width of the class of (r P1, H)-free graphs, except for one infinite family, and asked 
the following:

Open Problem 3 (Brettell et al. [6]). For each r ≥ 4, and for each s, t ≥ 2, determine the (un)boundedness of mim-width of 
(r P1, Ks,t + P1)-free graphs.

1.1. Our results

In this paper we observe that List k-Colouring is polynomial-time solvable for every graph class whose sim-width 
is bounded and quickly computable, thus answering in the positive one half of Open Problem 1. We also show that if
Independent Set is polynomial-time solvable for a given graph class whose sim-width is bounded and quickly computable, 
then the same is true for its generalisation Independent H-packing. Finally, we completely resolve Open Problem 3 and 
make considerable progress toward solving Open Problem 2.
3
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Fig. 1. The graph K4,4 + P1.

1.1.1. Algorithmic implications of boundedness of sim-width
Let us begin by discussing our results related to Open Problem 1. Let Kt � Kt be the graph obtained from 2Kt by adding 

a perfect matching and let Kt � St be the graph obtained from Kt � Kt by removing all the edges in one of the complete 
graphs. Combining Theorem 1 with [32, Proposition 4.2] stated below, we observe that List k-Colouring is in XP when 
parameterized by the sim-width of a given branch decomposition of the input graph.

Proposition 3 (see Proof of Proposition 4.2 in [32]). Let G be a graph with no induced subgraph isomorphic to Kt � Kt and Kt � St

and let (T , δ) be a branch decomposition of G with simwG(T , δ) = w. Then mimwG(T , δ) ≤ R(R(w + 1, t), R(t, t)).

Theorem 4. For every k ≥ 1, List k-Colouring is polynomial-time solvable for every graph class whose sim-width is bounded and 
quickly computable.

Proof. Given an instance consisting of a graph G and a k-list assignment L, together with a branch decomposition (T , δ)
of G with simwG(T , δ) = w , we proceed as follows. We check in polynomial time whether G contains a copy of Kk+1. 
If it does, then we have a no-instance. Otherwise, G is Kk+1-free. Then, by Proposition 3, (T , δ) has mim-width at most 
R(R(w + 1, k + 1), R(k + 1, k + 1)), and we simply apply Theorem 1. This concludes the proof. �

It is worth noticing that Theorem 4 does not really give wider applicability when compared to Theorem 1. Indeed, input 
graphs of List k-Colouring can always be assumed to be Kk+1-free and every subclass of Kk+1-free graphs has bounded 
sim-width if and only if it has bounded mim-width: This follows from Proposition 3 and the fact that simw(G) ≤ mimw(G)

for any graph G . Nevertheless, Theorem 4 has interesting consequences. Besides answering in the positive one half of Open 
Problem 1, it extends the result in [19] that List k-Colouring is polynomial-time solvable for every graph class whose 
tree-independence number is bounded and quickly computable. This is because of the following unpublished observation 
of Dallard, Krnc, Kwon, Milanič, Munaro and Štorgel, which is part of a work in progress and whose proof we sketch for 
convenience.

Lemma 5. Let G be a graph. Then simw(G) ≤ tree-α(G).

Proof sketch. Given a tree decomposition (F , {Bt}t∈V (F )) of G , the proof of Proposition 3.1 in [32] shows how to construct 
a branch decomposition (T , δ) of G such that, for each e ∈ E(T ), either NG(Ae) ∩ Ae or NG(Ae) ∩ Ae is contained in a bag 
in {Bt}t∈V (F ) . Consider then a tree decomposition (F , {Bt}t∈V (F )) of G with tree-independence number tree-α(G) and the 
corresponding branch decomposition (T , δ) of G satisfying the property above. Fix e ∈ E(T ) and suppose without loss of 
generality that NG(Ae) ∩ Ae ⊆ Bt , for some t ∈ V (F ). This implies that the independence number of G[NG (Ae) ∩ Ae] is 
at most tree-α(G) and so cutsimG(Ae, Ae) ≤ tree-α(G). Since this holds for every e ∈ E(T ), we have that simwG(T , δ) ≤
tree-α(G) and so simw(G) ≤ tree-α(G). �

Together with the fact that complete bipartite graphs have bounded sim-width (in fact, bounded clique-width) but 
unbounded tree-independence number [19], Lemma 5 implies that sim-width is more powerful than tree-independence 
number. Note also that graph classes of bounded sim-width are not necessarily (tw, ω)-bounded and so Theorem 4 cannot 
be deduced from the results in [11]. Indeed, it is easy to see that complete bipartite graphs, which have bounded sim-
width, are not (tw, ω)-bounded. However, we do not know whether a (tw, ω)-bounded graph class has necessarily bounded 
sim-width.

In Section 3, we show that a positive answer to the other half of Open Problem 1 would have important algorithmic 
implications for Maximum Weight Independent H-Packing, a problem studied for example in [10,19]. Before formulating 
it, we state some definitions and results. Let H be a set of connected graphs. Given a graph G , let HG be the set of all 
subgraphs of G isomorphic to a member of H. The H-graph of G , denoted H(G), is defined in [10] as follows: the vertex set 
is HG and two distinct subgraphs of G isomorphic to a member of H are adjacent if and only if they either have a vertex in 
common or there is an edge in G connecting them. Cameron and Hell [10] showed that, for any set H of connected graphs, 
4
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the H-graph of any chordal graph is chordal. Dallard et al. [19] generalised this by showing that mapping any graph G to 
its H-graph does not increase the tree-independence number. We show that this operation does not increase the sim-width 
either.

Theorem 6. Let H be a non-empty finite set of connected non-null graphs and let r be the maximum number of vertices of a graph 
in H. Let G be a graph and let (T , δ) be a branch decomposition of G. If |V (H(G))| > 1, then we can obtain in O (|V (G)|r+1) time a 
branch decomposition (T ′, δ′) of H(G) such that simwH(G)(T ′, δ′) ≤ simwG(T , δ).

Two subgraphs H1 and H2 of a graph G are independent if they are vertex-disjoint and no edge of G joins a vertex 
of H1 with a vertex of H2. An independent H-packing in G is a set of pairwise independent subgraphs from HG . Given a 
graph G , a weight function w : HG → Q+ on the subgraphs in HG , and an independent H-packing P in G , the weight of 
P is defined as 

∑
H∈P w(H). Given a graph G and a weight function w : HG → Q+ , the Maximum Weight Independent 

H-Packing problem asks to find an independent H-packing in G of maximum weight. If all subgraphs in HG have weight 
1, we obtain the special case Independent H-Packing. Maximum Weight Independent H-Packing is a common generalisa-
tion of several problems studied in the literature, including Maximum Weight Independent Set, Maximum Weight Induced 
Matching, Dissociation Set and k-Separator (we refer to [19] for a comprehensive literature review).

Cameron and Hell [10] showed that Independent H-packing is polynomial-time solvable, among others, for the follow-
ing graph classes: weakly chordal graphs and hence chordal graphs, AT-free graphs and hence co-comparability graphs, 
circular-arc graphs, circle graphs. Dallard et al. [19] showed that Maximum Weight Independent H-Packing is polynomial-
time solvable for every graph class whose tree-independence number is bounded and quickly computable. With the aid of 
Theorem 6, we show the following.

Corollary 7. Let H be a non-empty finite set of connected non-null graphs such that each graph in H has at most r vertices. Let G
be a graph class whose sim-width is bounded and quickly computable. If Maximum Weight Independent Set is polynomial-time 
solvable for G , then Maximum Weight Independent H-Packing is polynomial-time solvable for G . Similarly, if Independent Set is 
polynomial-time solvable for G , then Independent H-Packing is polynomial-time solvable for G .

1.1.2. Mim-width of (H1, H2)-free graphs
We now address the classification of (un)boundedness of mim-width of (H1, H2)-free graphs, where H1 is either r P1 or 

Kr .
In Section 4, we completely resolve Open Problem 3 by showing the following.

Theorem 8. Let r ≥ 3 and s, t ≥ 2 be integers. Then the mim-width of the class of (r P1, Ks,t + P1)-free graphs is bounded if and only 
if:

• r = 3 and one of s and t is at most 3;
• r = 4 and one of s and t is at most 2.

In all these cases, the mim-width is also quickly computable.

In Section 5, we finally address the case H1 = Kr , related to Open Problem 2, by showing the following two results.

Theorem 9. Let r ≥ 5 be an integer and let H = sP1 + t P2 + u P3 , for s, t, u ≥ 0. Then exactly one of the following holds:

• H ⊆i sP1 + t P2 , or H ⊆i sP1 + P3 , and the mim-width of the class of (Kr, H)-free graphs is bounded and quickly computable;
• H ⊇i P3 + P2 + P1 , and the mim-width of the class of (Kr, H)-free graphs is unbounded;
• H = 2P3 , or H = P3 + P2 .

Theorem 10. Let r = 4 and let H = sP1 + t P2 + u P3 , for s, t, u ≥ 0. Then exactly one of the following holds:

• H ⊆i sP1 + t P2 , or H ⊆i sP1 + P3 , and the mim-width of the class of (Kr, H)-free graphs is bounded and quickly computable;
• H ⊇i P3 + 2P2 + P1 , or 2P3 + P2 , and the mim-width of the class of (Kr, H)-free graphs is unbounded;
• H = P3 + 2P2 , or H = P3 + P2 + sP1 , or H = 2P3 + sP1 .

Our results are related to the class of u P3-free graphs. Recently, Hajebi et al. [24] showed that, for every u ≥ 1, List 
5-Colouring is polynomial-time solvable for u P3-free graphs. Since an instance of List 5-Colouring can always be assumed 
to be K6-free, in view of Theorem 4 an alternative approach to obtaining the aforementioned result might pass through 
studying the sim-width of (K6, u P3)-free graphs. Unfortunately, Theorem 9 readily shows that, with the possible exception 
of the case u = 2, this is not possible: For each u ≥ 3, the mim-width of (K6, u P3)-free graphs is unbounded and, by [32, 
Proposition 4.2], the same must be true for sim-width.
5
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2. Preliminaries

We consider only finite graphs G = (V , E) with no loops and no multiple edges. A graph is null if it has no vertices. For 
a vertex v ∈ V , the neighbourhood N(v) is the set of vertices adjacent to v in G . The degree d(v) of a vertex v ∈ V is the 
size |N(v)| of its neighbourhood. A graph is subcubic if every vertex has degree at most 3. For disjoint S, T ⊆ V , we say 
that S is complete to T if every vertex of S is adjacent to every vertex of T , and S is anticomplete to T if there are no edges 
between S and T . The distance from a vertex u to a vertex v in G is the length of a shortest path between u and v . A set 
S ⊆ V induces the subgraph G[S] = (S, {uv : u, v ∈ S, uv ∈ E}). If G ′ is an induced subgraph of G , we write G ′ ⊆i G . The 
complement of G is the graph G with vertex set V (G), such that uv ∈ E(G) if and only if uv /∈ E(G).

The k-subdivision of an edge uv in a graph replaces uv by k new vertices w1, . . . , wk with edges uw1, wk v and wi wi+1
for each i ∈ {1, . . . , k − 1}, i.e. the edge is replaced by a path of length k + 1. The disjoint union G + H of graphs G and H
has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). We denote the disjoint union of k copies of G by kG . For a graph 
H , a graph G is H-free if G has no induced subgraph isomorphic to H . For a set of graphs {H1, . . . , Hk}, a graph G is 
(H1, . . . , Hk)-free if G is Hi -free for every i ∈ {1, . . . , k}.

Let T be a tree and let v be a leaf of T . Let u be a vertex of degree at least 3 having shortest distance in T from v and 
let P be the v, u-path in T . The operation of trimming the leaf v consists in deleting from T the vertex set V (P ) \ {u}.

An independent set of a graph G is a set of pairwise non-adjacent vertices and the maximum size of an independent set 
of G is denoted by α(G). A clique of a graph G is a set of pairwise adjacent vertices and the maximum size of a clique of G
is denoted by ω(G). A matching of a graph is a set of edges with no shared endpoints.

The path and the complete graph on n vertices are denoted by Pn and Kn , respectively. A graph is r-partite, for r ≥ 2, if 
its vertex set admits a partition into r classes such that every edge has its endpoints in different classes. An r-partite graph 
in which every two vertices from different partition classes are adjacent is a complete r-partite graph and a 2-partite graph 
is also called bipartite. The complete bipartite graph with partition classes of size t and s is denoted by Kt,s . A graph is 
co-bipartite if it is the complement of a bipartite graph.

For � ≥ 1, an �-caterpillar is a subcubic tree T on 2� vertices with V (T ) = {s1, . . . , s�, t1, . . . , t�}, such that E(T ) = {siti :
1 ≤ i ≤ �} ∪ {si si+1 : 1 ≤ i ≤ � − 1}. The vertices t1, t2, . . . , t� are the leaves and the path s1s2 · · · s� is the backbone of the 
caterpillar.

A colouring of a graph G = (V , E) is a mapping c : V → {1, 2, . . .} that gives each vertex u ∈ V a colour c(u) in such a 
way that, for every two adjacent vertices u and v , we have that c(u) �= c(v). If for every u ∈ V we have c(u) ∈ {1, . . . , k}, 
then we say that c is a k-colouring of G . The Colouring problem is to decide whether a given graph G has a k-colouring for 
some given integer k ≥ 1. If k is fixed, that is, not part of the input, we call this the k-Colouring problem. It is well known 
that k-Colouring is NP-complete for each k ≥ 3. A generalisation of k-Colouring is the following. For an integer k ≥ 1, a 
k-list assignment of a graph G = (V , E) is a function L that assigns each vertex u ∈ V a list L(u) ⊆ {1, 2, . . . , k} of admissible
colours for u. A colouring c of G respects L if c(u) ∈ L(u) for every u ∈ V . For a fixed integer k ≥ 1, the List k-Colouring

problem is to decide whether a given graph G with a k-list assignment L admits a colouring that respects L. By setting 
L(u) = {1, . . . , k} for every u ∈ V , we obtain the k-Colouring problem.

3. Sim-width and independent packings

In this section we show Theorem 6 and Corollary 7. Let H be a finite set of connected non-null graphs. Given a graph 
G , let HG be the set of all subgraphs of G isomorphic to a member of H. Recall that the H-graph of G , denoted H(G), is 
defined as follows: the vertex set is HG and two distinct subgraphs of G isomorphic to a member of H are adjacent if and 
only if they either have a vertex in common or there is an edge in G connecting them. We begin by showing Theorem 6: 
mapping a graph G to its H-graph does not increase the sim-width.

Theorem 6. Let H be a non-empty finite set of connected non-null graphs and let r be the maximum number of vertices of a graph 
in H. Let G be a graph and let (T , δ) be a branch decomposition of G. If |V (H(G))| > 1, then we can obtain in O (|V (G)|r+1) time a 
branch decomposition (T ′, δ′) of H(G) such that simwH(G)(T ′, δ′) ≤ simwG(T , δ).

Proof. Observe that if G is edgeless, then H(G) is edgeless as well and the statement trivially holds. Therefore, we assume 
that G is not edgeless, and hence simwG(T , δ) ≥ 1.

Let H = {H1, . . . , Hn}. Let h be an arbitrary vertex of H(G). Hence, h corresponds to a subgraph of G isomorphic to Hi , 
for some i ∈ {1, . . . , n}. This means there exists a unique vertex set S(h) ⊆ V (G) such that |S(h)| = |V (Hi)| and G[S(h)]
contains a copy of Hi as a subgraph (S(h) is just the vertex set of the subgraph of G corresponding to h). We compute all 
S(h), for h ∈ H(G), in O (|V (G)|r) time as follows. We enumerate all O (|V (G)|r) subsets of vertices of G of size at most r. 
For each such set S and each H ∈ H with |S| vertices, we iterate over all |S|! ≤ r! = O (1) possible bijections g : V (H) → S . 
We then keep the subsets S for which one such bijection maps every pair of adjacent vertices in H to a pair of adjacent 
vertices in G[S]. We now arbitrarily order V (G) and let f (h) be the smallest vertex in S(h) with respect to this ordering. 
For v ∈ V (G), let F (v) = {h ∈ V (H(G)) : f (h) = v}. Note that F (v) is a clique in H(G). We can compute all sets F (v), for 
v ∈ V (G), in O (|V (G)| · |V (H(G))|) = O (|V (G)|r+1) time.
6
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Fig. 2. How to construct a branch decomposition (T ′, δ′) of H(G) from a branch decomposition (T , δ) of G . We distinguish vertices ti such that |F (vti )| = 0
(i = 2), |F (vti )| = 1 (i = 3) and |F (vti )| ≥ 2 (i = 1).

We are now ready to construct (T ′, δ′) from (T , δ) as follows (see Fig. 2). For each leaf t ∈ V (T ), we let vt = δ−1(t), 
and do the following. If F (vt) �= ∅, we distinguish two cases. Suppose first that |F (vt)| = 1. In this case, build a |F (vt)|-
caterpillar Ct and add the edge connecting the single vertex xt in the backbone of Ct with the node t . Suppose now that 
|F (vt)| ≥ 2. In this case, build a |F (vt)|-caterpillar Ct , subdivide an arbitrary edge of the backbone of Ct by adding a new 
vertex xt and add the edge xtt . Finally, if F (vt) = ∅, trim the leaf t of T , as defined in Section 2. Observe that, since 
|V (H(G))| > 1, either there exists a leaf t ∈ V (T ) such that |F (vt)| ≥ 2 or there exist at least two leaves t1, t2 ∈ V (T ) such 
that |F (vt1 )| ≥ 1 and |F (vt2 )| ≥ 1. This implies that each leaf t of T such that F (vt) = ∅ can be trimmed. Moreover, by 
definition, no new leaf is created after an application of trimming. Let T ′ be the tree obtained by the procedure above. 
Let δ′ be the map from V (H(G)) to the leaves of T ′ which restricted to F (vt) is an arbitrary bijection from F (vt) to the 
leaves of Ct . It is easy to see that (T ′, δ′) is a branch decomposition of H(G) and that it can be computed in O (|V (G)|2)
time.

We now show that simwH(G)(T ′, δ′) ≤ simwG(T , δ). Suppose that simwH(G)(T ′, δ′) = k. Since the statement is trivially 
true if k ≤ 1, we may assume k ≥ 2. Each e′ ∈ E(T ′) naturally induces a partition (Ae′ , Ae′) of V (H(G)). Consider e ∈
E(T ′) such that cutsimH(G)(Ae, Ae) = simwH(G)(T ′, δ′) = k. Then, there is a matching {x′

1 y′
1, . . . , x

′
k y′

k} of size k such that 
{x′

1, . . . , x
′
k} ⊆ Ae and {y′

1, . . . , y
′
k} ⊆ Ae are independent sets of H(G). Suppose first that e is an edge of Ct or the edge xtt , 

for some leaf t ∈ V (T ). Then, one of Ae and Ae is a subset of F (vt), where vt = δ−1(t). Since each F (vt) is a clique in H(G), 
we have that k ≤ 1. Hence, we may assume that e ∈ E(T ′) ∩ E(T ). Then, for any h ∈ V (H(G)), δ′(h) and δ( f (h)) belong to 
the same component of T ′ − e, and so e naturally induces a partition (Ae, Ae) of V (H(G)) and a partition (Be, Be) of V (G)

satisfying the following property: For any h ∈ V (H(G)), h ∈ Ae if and only if f (h) ∈ Be .
We claim that, for i �= j, S(x′

i) ∪ S(y′
i) and S(x′

j) ∪ S(y′
j) are disjoint and anticomplete in G . Indeed, suppose without 

loss of generality that S(x′
i) shares a vertex with either S(x′

j) or S(y′
j). Then, x′

i is adjacent to either x′
j or y′

j in H(G), a 
contradiction. Similarly, if there is an edge between S(x′

i) and either S(x′
j) or S(y′

j) in G , then x′
i is adjacent to either x′

j or 
y′

j in H(G), a contradiction again.
We now claim that G[S(x′

i) ∪ S(y′
i)] is connected. Since G[S(x′

i)] contains a copy of a connected graph Hs ∈ H, with 
|S(x′

i)| = |V (Hs)|, as a subgraph, we have that G[S(x′
i)] is connected. Similarly, G[S(y′

i)] is connected. Moreover, since x′
i is 

adjacent to y′
i , either S(x′

i) shares a vertex with S(y′
i) or there is an edge in G between S(x′

i) and S(y′
i). In either case we 

obtain that G[S(x′
i) ∪ S(y′

i)] is connected.
Therefore, for each i ∈ {1, . . . , k}, there is a path Pi in G[S(x′

i) ∪ S(y′
i)] from f (x′

i) to f (y′
i) in G , say Pi = v0 v1 · · · v�

where v0 = f (x′
i) and v� = f (y′

i). Since x′
i ∈ Ae and y′

i ∈ Ae , it follows that f (x′
i) ∈ Be and f (y′

i) ∈ Be . Since the path 
Pi must cross the cut (Be, Be) of G , there exists q ∈ {0, . . . , � − 1} such that vq ∈ Be and vq+1 ∈ Be . We let xi = vq and 
yi = vq+1. Clearly, xi yi ∈ E(G). We now claim that, for each i �= j, {xi, yi} and {x j, y j} are disjoint and anticomplete in G . 
This simply follows from the fact that, for p ∈ {i, j}, {xp, yp} ⊆ G[S(x′

p) ∪ S(y′
p)] and G[S(x′

i) ∪ S(y′
i)] and G[S(x′

j) ∪ S(y′
j)]

are disjoint and anticomplete in G .
Let now X = {x1, . . . , xk} and Y = {y1, . . . , yk}. By the previous paragraph, X ⊆ Be and Y ⊆ Be , X and Y are independent 

sets and G[X, Y ] ∼= kP2. Therefore, simwG(T , δ) ≥ cutsimG(Be, Be) ≥ k = simwH(G)(T ′, δ′). �
Recall that two subgraphs H1 and H2 of a graph G are independent if they are vertex-disjoint and no edge of G joins 

a vertex of H1 with a vertex of H2. An independent H-packing in G is a set of pairwise independent subgraphs from HG . 
Given a graph G , a weight function w : HG → Q+ on the subgraphs in HG , and an independent H-packing P in G , the 
weight of P is defined as the sum 

∑
H∈P w(H). Given a graph G and a weight function w : HG → Q+ , Maximum Weight 

Independent H-Packing is the problem of finding an independent H-packing in G of maximum weight. Besides Theorem 6, 
in order to show Corollary 7, we need the following two results.

Theorem 11 ([19]). Let H be a non-empty finite set of connected non-null graphs and let r be the maximum number of vertices of a 
graph in H. Then there exists an algorithm that takes as input a graph G and computes the graph H(G) in O (|V (G)|2r) time.
7
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Fig. 3. How to construct a branch decomposition (T ′, δ′) of G ′ from a branch decomposition (T , δ) of G , where G ′ is obtained from G by adding a leaf 
vertex u adjacent to v .

Observation 12 ([19]). Let H be a finite set of connected non-null graphs. Let G be a graph and let w : HG → Q+ . Let I be an 
independent set in H(G) of maximum weight with respect to the weight function w. Then I is an independent H-packing in G of 
maximum weight.

Corollary 7. Let H be a non-empty finite set of connected non-null graphs such that each graph in H has at most r vertices. Let G
be a graph class whose sim-width is bounded and quickly computable. If Maximum Weight Independent Set is polynomial-time 
solvable for G , then Maximum Weight Independent H-Packing is polynomial-time solvable for G . Similarly, if Independent Set is 
polynomial-time solvable for G , then Independent H-Packing is polynomial-time solvable for G .

Proof. Given the input graph G ∈ G , we compute in polynomial time a branch decomposition of G of sim-width at most 
k, for some integer k. We then compute H(G) in polynomial time using Theorem 11. If |V (H(G))| ≤ 1, we immediately 
conclude thanks to Observation 12. Otherwise, by Theorem 6, we compute in polynomial time a branch decomposition of 
H(G) of sim-width at most k. Finally, using the assumed algorithm, we compute in polynomial time a maximum-weight 
independent set in H(G) which, by Observation 12, is an independent H-packing in G of maximum weight. �
4. Mim-width of (r P1, Kt,s + P1)-free graphs

In this section we show the mim-width dichotomy for the class of (r P1, Kt,s + P1)-free graphs stated in Theorem 8. We 
begin by identifying the cases of bounded mim-width (Section 4.1) and then pass to the cases of unbounded mim-width 
(Section 4.2). These results are then combined to prove Theorem 8 (Section 4.3).

4.1. Boundedness results

In this section we show that, for each t ≥ 4, the mim-width of (3P1, K3,t + P1)-free graphs and the mim-width of 
(4P1, K2,t + P1)-free graphs are bounded and quickly computable (Theorems 16 and 19, respectively). The proofs are based 
on the following common strategy. We find t pairwise non-adjacent vertices v1, . . . vt in the input graph G (t = 2 in 
Theorem 16 and t = 3 in Theorem 19). We then obtain a partition of V (G) where one partition class is {v1, . . . , vt} and the 
remaining ones are the sets of private neighbours of subsets of {v1, . . . , vt} with respect to {v1, . . . , vt}. We finally construct 
an appropriate branch decomposition of G and use the following simple observation.

Observation 13. Let V 1, . . . , Vm be a partition of V (G) and let (T , δ) be a branch decomposition of G. Then,

mimwG(T , δ) = max
e∈E(T )

cutmimG(Ae, Ae) ≤ max
e∈E(T )

∑

1≤i, j≤m

cutmimG(Ae ∩ V i, Ae ∩ V j).

We will need two auxiliary results. The first one below is left as an easy exercise (see Fig. 3).

Lemma 14. Let G be a graph and let (T , δ) be a branch decomposition of G with mimwG(T , δ) ≤ k, with k ≥ 1. Let G ′ be the graph 
obtained from G by adding a vertex of degree at most 1. Then we can construct in O (1) time a branch decomposition (T ′, δ′) of G ′
with mimwG ′ (T ′, δ′) ≤ k.

The second one is essentially stated in the proof of [41, Corollary 3.7.4]. We provide its short proof for completeness.

Lemma 15 (Vatshelle [41]). Let G be a graph with |V (G)| > 1 and maximum degree at most 2. Then mimw(G) ≤ 2 and a branch 
decomposition (T , δ) of G with mimwG(T , δ) ≤ 2 can be constructed in O (n) time.

Proof. Suppose that G has k components, C1, . . . , Ck , where each Ci is a path or a cycle with vertex set {vi,1, . . . , vi,|Ci |}. 
For 1 < j < |Ci |, each vi, j is adjacent to vi, j−1 and vi, j+1 and, if Ci is a cycle, vi,1 is adjacent to v1,|Ci | . For each component 
Ci , we construct a |Ci |-caterpillar Ti with leaves �i,1, . . . , �i,|C | and subdivide an arbitrary edge of the backbone of Ti with 
i

8
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a new vertex ti , unless the backbone of Ti has size 1, in which case we let ti be the unique vertex of the backbone. We 
then construct a k-caterpillar T0 with leaves �0,1, . . . , �0,k . Let T be the subcubic tree obtained from the disjoint union of 
T0, T1, . . . , Tk by adding the edges �0,1t1, . . . , �0,ktk and, if k = 1, by additionally deleting V (T0). Let δ be the bijection from 
the vertices of G to the leaves of T given by δ(vi, j) = �i, j . Clearly, (T , δ) is a branch decomposition of G and it can be 
constructed in O (n) time.

We now show that mimwG(T , δ) ≤ 2. Let e ∈ E(T ) and consider the partition (Ae, Ae) of V (G) induced by e. Suppose 
first that e belongs to E(T0) or e = �0, jt j for some j. Then, for each component Ci of G , V (Ci) is fully contained in either 
Ae or Ae and so cutmimG(Ae, Ae) = 0. Suppose now that e belongs to the backbone of Ti , for some i > 0. Then, it is easy 
to see that there are at most two edges across the cut (Ae, Ae), from which cutmimG(Ae, Ae) ≤ 2. Suppose finally that e is 
incident to a leaf of T . Then cutmimG(Ae, Ae) = 1. These observations imply that mimwG(T , δ) ≤ 2. �

We can finally provide our two boundedness results. In both proofs, we make repeated implicit use of Ramsey’s theorem: 
there exists a least positive integer R(r, s) for which every graph with at least R(r, s) vertices either contains an independent 
set of size r or a clique of size s. Observe that, for r, s > 1, R(r, s) ≥ s.

Theorem 16. Let t ≥ 4 and let G be a (3P1, K3,t + P1)-free graph. Then mimw(G) < 5R(3, t) + 8t + 46 and a branch decomposition 
(T , δ) of G with mimwG(T , δ) < 5R(3, t) + 8t + 46 can be constructed in O (n2) time.

Proof. We assume that G contains two non-adjacent vertices va and vb , or else G is a complete graph and the statement 
is trivially true. Let Sz = {va, vb}. Since G is 3P1-free, all remaining vertices are adjacent to at least one of va and vb and 
we partition them into three classes Sa, Sb and Sab as follows: Sa is the set of vertices that are adjacent to va but not vb , 
Sb is the set of vertices that are adjacent to vb but not va and Sab is the set of vertices that are adjacent to both va and 
vb . Note that Sa is a clique, or else two non-adjacent vertices in Sa together with vb would induce a copy of 3P1. Similarly, 
Sb is a clique.

We now proceed to the construction of a branch decomposition of G by distinguishing two cases. We say that G is good
(w.r.t. {va, vb}) if every vertex in Sa has at most two neighbours in Sb and every vertex in Sb has at most two neighbours 
in Sa . Otherwise, we say that G is bad (w.r.t. {va, vb}).

Suppose first that G is good. Then, G[Sa, Sb] has maximum degree at most 2 and, if G[Sa, Sb] contains at least two 
vertices, Lemma 15 allows us to construct a branch decomposition (T1, δ1) of G[Sa, Sb] with mim-width at most 2. Let u be 
a leaf of T1 and let e be the edge of T1 incident to u. We subdivide e by introducing a new vertex x and obtain a new tree 
T ′

1. If however G[Sa, Sb] contains exactly one vertex, let x be this vertex. We now let � = |V (G) \ (Sa ∪ Sb)| and consider 
an �-caterpillar T2 (notice that � ≥ 2). We subdivide one of the edges of the backbone of T2 by introducing a new vertex y
and obtain a new tree T ′

2. Let δ2 be any bijection from V (G) \ (Sa ∪ Sb) to the set of leaves of T ′
2. We finally add the edge 

xy in order to obtain a subcubic tree T , unless G[Sa, Sb] is the null graph, in which case we let T = T ′
2. Clearly, the set of 

leaves L of T is the disjoint union of the set of leaves of T1 and the set of leaves of T2. Considering the map δ : V (G) → L
which coincides with δ1 when restricted to Sa ∪ Sb and with δ2 when restricted to V (G) \ (Sa ∪ Sb), we obtain a branch 
decomposition (T , δ) of G . If G is bad, we simply let (T , δ) be any branch decomposition of G .

The branch decomposition (T , δ) of G defined above can be constructed in O (n2) time. Indeed, we first find two non-
adjacent vertices va and vb in O (n2) time and check whether G[Sa, Sb] has maximum degree at most 2 in linear time. If so, 
G is good and we then construct (T , δ) in O (n) time thanks to Lemma 15. Otherwise, G is bad, and we trivially construct 
(T , δ) in linear time.

Claim 17. Let S P and S Q be subsets of vertices of G, not necessarily disjoint. If there exists a vertex that is complete to both S P and 
S Q , then cutmimG(Ae ∩ S P , Ae ∩ S Q ) < R(3, t) + 6, for any e ∈ E(T ).

Proof of Claim 17. Let v ∈ V (G) be complete to S P and S Q . Suppose, to the contrary, that cutmimG(Ae ∩ S P , Ae ∩ S Q ) ≥
R(3, t) + 6 for some e ∈ E(T ) and let {p1q1, . . . , pR(3,t)+6qR(3,t)+6} be an induced matching witnessing this, where 
{p1, . . . , pR(3,t)+6} ⊆ Ae ∩ S P and {q1, . . . , qR(3,t)+6} ⊆ Ae ∩ S Q . Since G is 3P1-free, {q1, . . . , qR(3,t)} contains a clique of 
size at least t . Without loss of generality, {q1, . . . , qt} induces such a clique. Observe now that {pR(3,t)+1, . . . , pR(3,t)+6} con-
tains a clique of size 3, as R(3, 3) = 6. Without loss of generality, {pR(3,t)+1, pR(3,t)+2, pR(3,t)+3} induces such a clique. But 
then we have that G[pR(3,t)+1, pR(3,t)+2, pR(3,t)+3, q1, q2, . . . , qt, v] ∼= K3,t + P1, a contradiction. �

Claim 18. Suppose that G is bad. Then cutmimG(Ae ∩ Sa, Ae ∩ Sb) < 4t and cutmimG(Ae ∩ Sb, Ae ∩ Sa) < 4t, for any e ∈ E(T ).

Proof of Claim 18. By symmetry, it is enough to show the first statement. Since G is bad, G[Sa, Sb] contains a vertex u
of degree at least 3. Without loss of generality, u ∈ Sa . Suppose, to the contrary, that cutmimG(Ae ∩ Sa, Ae ∩ Sb) ≥ 4t
for some e ∈ E(T ) and let {a1b1, . . . , a4tb4t} be an induced matching witnessing this, where {a1, . . . , a4t} ⊆ Ae ∩ Sa and 
{b1, . . . , b4t} ⊆ Ae ∩ Sb . Let v1, v2, v3 ∈ Sb be distinct neighbours of u ∈ Sa . Observe now that all except possibly t − 1
vertices in {a1, . . . , a4t} are adjacent to at least one of v1, v2, v3, or else there are t vertices in {a1, . . . , a4t}, say without loss 
9
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of generality a1, . . . , at , non-adjacent to any of v1, v2, v3 and so, since Sa and Sb are cliques, G[v1, v2, v3, a1, . . . , at, u] ∼=
K3,t + P1, a contradiction. Hence, there is a vertex in {v1, v2, v3} with at least t neighbours in {a1, . . . , a4t}, say without 
loss of generality v1 is adjacent to a1, . . . , at , and so G[bt+1, bt+2, bt+3, a1, . . . , at, v1] ∼= K3,t + P1, a contradiction. �

We can finally show that mimwG(T , δ) < 5R(3, t) + 8t + 46. Let D = {a, b, ab, z}. Since Sa, Sb, Sab, Sz is a partition of 
V (G), Observation 13 implies that

mimwG(T , δ) ≤ max
e∈E(T )

∑

i, j∈D

cutmimG(Ae ∩ Si, Ae ∩ S j).

It is then enough to estimate the terms in the sum. Since Sa and Sb are cliques, cutmimG(Ae ∩ Sa, Ae ∩ Sa) ≤ 1 and 
cutmimG(Ae ∩ Sb, Ae ∩ Sb) ≤ 1. Moreover, since va is complete to Sa and Sab , and vb is complete to Sb and Sab , Claim 17
implies that cutmimG(Ae ∩ Sa, Ae ∩ Sab), cutmimG(Ae ∩ Sb, Ae ∩ Sab), cutmimG(Ae ∩ Sab, Ae ∩ Sa), cutmimG(Ae ∩ Sab, Ae ∩
Sb), cutmimG(Ae ∩ Sab, Ae ∩ Sab) < R(3, t) +6. Observe now that, for any i ∈ D , cutmimG(Ae ∩ Sz, Ae ∩ Si) ≤ 2, cutmimG(Ae ∩
Si, Ae ∩ Sz) ≤ 2.

It remains to bound cutmimG(Ae ∩ Sa, Ae ∩ Sb) and cutmimG(Ae ∩ Sb, Ae ∩ Sa). If G is bad then, by Claim 18, 
cutmimG(Ae ∩ Sa, Ae ∩ Sb) < 4t and cutmimG(Ae ∩ Sb, Ae ∩ Sa) < 4t . If G is good, we proceed as follows. Suppose first 
that either e = xy or e ∈ E(T ′

2). Then all vertices of Sa and Sb belong to the same partition class of V (G) induced 
by e and so cutmimG(Ae ∩ Sa, Ae ∩ Sb) = cutmimG(Ae ∩ Sb, Ae ∩ Sa) = 0. Suppose finally that e ∈ E(T ′

1). Then e in-

duces a partition (A′
e, A′

e) of Sa ∪ Sb with respect to (T1, δ1), and (A′
e, A′

e) coincides with (Ae, Ae) restricted to Sa ∪ Sb . 
Consequently, cutmimG(Ae ∩ Sa, Ae ∩ Sb) = cutmimG(A′

e ∩ Sa, A′
e ∩ Sb) ≤ 2 as cutmimG(T1, δ1) ≤ 2. The same holds for 

cutmimG(Ae ∩ Sb, Ae ∩ Sa).
By the previous paragraphs, mimwG(T , δ) < 2 · 1 + 5 · (R(3, t) + 6) + 7 · 2 + 2 · 4t = 5R(3, t) + 8t + 46. �

Theorem 19. Let t ≥ 4 and let G be a (4P1, K2,t + P1)-free graph. Then mimw(G) < 43R(4, t) + 24t + 208 and a branch decompo-
sition (T , δ) of G with mimwG(T , δ) < 43R(4, t) + 24t + 214 can be computed in O (n3) time.

Proof. We assume that G contains three pairwise non-adjacent vertices va , vb and vc , or else G is 3P1-free and the 
statement follows from Theorem 16. Since G is 4P1-free, all remaining vertices are adjacent to at least one of va , vb and vc . 
For a subset α ⊆ {a, b, c}, let Sα = ∩i∈α N(vi) \ ∪ j∈{a,b,c}\α N(v j). In words, Sα is the set of private neighbours of {vi : i ∈ α}
with respect to {va, vb, vc}. Note that Sa , Sb and Sc are cliques, or else, for distinct i, j, k ∈ {a, b, c}, two non-adjacent 
vertices in Si together with v j and vk would induce a copy of 4P1. This fact will be repeatedly used in the claims below. 
For α, β ⊆ {a, b, c} and an integer s ≥ 1, we say that the vertex set Sα is 3s-almost-complete to the vertex set Sβ if there are 
at most two vertices in Sα non-adjacent to at least 3s vertices in Sβ .

Claim 20. Let p, q ∈ {a, b, c} with p �= q. If a vertex in S p is adjacent to at least two vertices in Sq, then Sq is 3t-almost-complete to 
S p .

Proof of Claim 20. Note that v p is complete to S p but anticomplete to Sq and vq is complete to Sq but anticomplete to S p . 
Suppose that x ∈ S p is adjacent to two distinct vertices y1 and y2 of Sq . Then {y1, y2} ∩ {vq} =∅.

We claim that there are at most t − 1 vertices in S p anticomplete to {y1, y2}. Indeed, if there are t vertices in S p

anticomplete to {y1, y2}, then these t vertices together with {x, y1, y2} induce a copy of K2,t + P1, as S p and Sq are cliques, 
a contradiction.

Let now y ∈ Sq be a vertex distinct from y1 and y2. We claim that y is anticomplete to at most t − 1 vertices in 
S p ∩ N(yi), for each i ∈ {1, 2}. Indeed, if there are t vertices in S p ∩ N(yi) anticomplete to y, then these t vertices together 
with {yi, vq, y} induce a copy of K2,t + P1, a contradiction.

Let A1 = S p ∩ N(y1), A2 = S p ∩ N(y2) and let y ∈ Sq be a vertex distinct from y1 and y2. Clearly, S p = A1 ∪ A2 ∪
(S p \ (A1 ∪ A2)). By the second paragraph, |S p \ (A1 ∪ A2)| ≤ t − 1 and so y is anticomplete to at most t − 1 vertices in 
S p \ (A1 ∪ A2). By the third paragraph, y is anticomplete to at most t − 1 vertices in A1 and at most t − 1 vertices in A2. 
Therefore, y is anticomplete to at most 3(t − 1) < 3t vertices in S p and so Sq is 3t-almost-complete to S p . �

We now proceed to the construction of a branch decomposition of G . Consider first the graph G1 with vertex set V (G1) =
Sa ∪ Sb ∪ Sc and edge set E(G1) = {uv : uv ∈ E(G), u ∈ Sα, v ∈ Sβ, α, β ∈ {a, b, c}, α �= β, Sα is not 3t-almost-complete to 
Sβ, Sβ is not 3t-almost complete to Sα}. We claim that each vertex v of G1 has degree at most 2. By symmetry, suppose 
that v ∈ Sa . By definition of G1, v has no neighbours in Sa . If Sb is 3t-almost-complete to Sa , then v has no neighbours in 
Sb . Otherwise, Sb is not 3t-almost-complete to Sa and, by Claim 20, v has at most one neighbour in Sb . Similarly, v has at 
most one neighbour in Sc . Therefore, G1 has maximum degree at most 2 and so, by Lemma 15, if G1 contains at least two 
vertices, then we can construct in O (n) time a branch decomposition (T1, δ1) of G1 with mimwG1 (T1, δ1) ≤ 2.

For x ∈ {a, b, c} and Y = {a, b, c} \ {x}, a vertex v ∈ SY is Sx-good if it has at most one neighbour in Sx , and Sx-bad
otherwise. Let S� be the set of vertices in SY that are Sx-bad. We now build a graph G2 as follows. Start with G2 = G1. 
Y

10
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For each x ∈ {a, b, c}, let Y = {a, b, c} \ {x}. For each vertex v ∈ SY , if v is Sx-good, then add v to V (G2) and, if v has a 
neighbour u in Sx , add uv to E(G2). In other words, we grow G1 by adding leaf vertices or isolated vertices.

Now, if G2 is the null graph, let T ′
2 be the null tree, and if G2 consists of one vertex, let T ′

2 be the tree with a single 
vertex r. Otherwise, G2 contains at least two vertices and, given (T1, δ1), we can construct a branch decomposition (T2, δ2)

of G2 with mimwG2 (T2, δ2) ≤ 2 in O (n) time thanks to Lemma 14, unless G1 contains at most one vertex, in which case 
G2 has maximum degree at most 1 and we let (T2, δ2) be any branch decomposition of G2. We then subdivide one of the 
edges of T2 by introducing a new vertex r to obtain a new tree T ′

2. Clearly, mimwG2 (T ′
2, δ2) = mimwG2 (T2, δ2) ≤ 2. Let now 

� = |V (G) \ V (G2)| and consider an �-caterpillar T3 (notice that � ≥ 3). Let δ3 be any bijection from V (G) \ V (G2) to the set 
of leaves of T3. We subdivide one of the edges of the backbone of T3 by introducing a new vertex s and obtain a new tree 
T ′

3. We finally add the edge rs in order to obtain a tree T . Observe that the set of leaves L of T is the disjoint union of the 
set of leaves L2 of T ′

2 and the set of leaves L3 of T ′
3. Considering the map δ which coincides with δi when restricted to Li

(for i = 2, 3), we obtain a branch decomposition (T , δ) of G .
We now analyse the running time to construct (T , δ). Finding three pairwise non-adjacent vertices va , vb and vc and 

computing Sα for each α ⊆ {a, b, c} can be done in O (n3) time. Checking for 3t-almost-completeness and constructing 
G1 can be done in O (n) time. Finding the Sx-good vertices and constructing G2 can be done in O (n) time. Therefore, 
constructing (T , δ) can be done in O (n3) time.

Claim 21. Let α, β ⊆ {a, b, c}. If Sα is 3t-almost-complete to Sβ , then cutmimG(Ae ∩ Sα, Ae ∩ Sβ) < 3t + 1 and cutmimG(Ae ∩
Sβ, Ae ∩ Sα) < 3t + 1, for any e ∈ E(T ).

Proof of Claim 21. Suppose that there exist Vα ⊆ Ae ∩ Sα and Vβ ⊆ Ae ∩ Sβ such that G[Vα, Vβ ] ∼= (3t +1)P2. Then, each of 
the 3t + 1 vertices in Vα is non-adjacent to at least 3t vertices in Vβ , contradicting the fact that Sα is 3t-almost-complete 
to Sβ . The proof of the other inequality is similar. �

Claim 22. Let x ∈ {a, b, c} and Y = {a, b, c} \ {x}. Then cutmimG(Ae ∩ Sx, Ae ∩ S�
Y ) < R(4, t) + t + 1 and cutmimG(Ae ∩ S�

Y , Ae ∩
Sx) < R(4, t) + t + 1, for any e ∈ E(T ).

Proof of Claim 22. We show the first inequality, the proof of the other being similar. Suppose, to the contrary, that there 
exists e ∈ E(T ) such that cutmimG(Ae ∩ Sx, Ae ∩ S�

Y ) ≥ R(4, t) + t + 1. Let {p1q1, . . . , pR(4,t)+t+1qR(4,t)+t+1} be an induced 
matching witnessing this, where P = {p1, . . . , pR(4,t)+t+1} ⊆ Sx and Q = {q1, . . . , qR(4,t)+t+1} ⊆ S�

Y . Since q1 is Sx-bad, let 
u1 ∈ Sx be one of its neighbours distinct from p1. Suppose that q1 has at least R(4, t) neighbours in Q . Then, at least 
t of these neighbours induce a clique. Without loss of generality, suppose that {q2, . . . , qt+1} are neighbours of q1 in-
ducing a clique. If {q2, . . . , qt+1} is anticomplete to u1, then these t vertices together with {q1, p1, u1} induce a copy of 
K2,t + P1, a contradiction. Hence, u1 has at least one neighbour in {q2, . . . , qt+1}, say without loss of generality q2. But 
then, G[q1, q2, p3, . . . , pt+2, u1] ∼= K2,t + P1, a contradiction.

Hence, q1 has less than R(4, t) neighbours in Q . Without loss of generality, suppose that qR(4,t)+1, . . . , qR(4,t)+t+1
are non-neighbours of q1. Then, these t + 1 vertices form a clique, or else two non-adjacent vertices v and v ′
among them would give G[v, v ′, q1, vx] ∼= 4P1, a contradiction. Next, since qR(4,t)+1 is Sx-bad, it has another neigh-
bour u2 ∈ Sx distinct from pR(4,t)+1. Suppose that {qR(4,t)+2, . . . , qR(4,t)+t+1} is anticomplete to u2. Then, we have that 
G[pR(4,t)+1, u2, qR(4,t)+2, . . . , qR(4,t)+t+1, qR(4,t)+1] ∼= K2,t + P1, a contradiction. Therefore, u2 has at least one neighbour in 
{qR(4,t)+2, . . . , qR(4,t)+t+1}, say without loss of generality qR(4,t)+2. Then, G[qR(4,t)+1, qR(4,t)+2, p1, . . . , pt , u2] ∼= K2,t + P1, a 
contradiction. �

Claim 23. Let α, β ⊆ {a, b, c} with α ∩ β �= ∅. Then cutmimG(Ae ∩ Sα, Ae ∩ Sβ) < R(4, t) + 4, for any e ∈ E(T ).

Proof of Claim 23. Let i ∈ α ∩β . Then vi is complete to Sα and Sβ . Suppose, to the contrary, that there exists e ∈ E(T ) such 
that cutmimG(Ae ∩ Sα, Ae ∩ Sβ) ≥ R(4, t) + 4. Let {p1q1, . . . , pR(4,t)+4qR(4,t)+4} be an induced matching witnessing this, 
where P = {p1, . . . , pR(4,t)+4} ⊆ Sα and Q = {q1, . . . , qR(4,t)+4} ⊆ Sβ . Since G is 4P1-free, Q contains a clique of size at least 
t . Without loss of generality, suppose that {q1, . . . , qt} induces a clique. Observe now that {pR(4,t)+1, . . . , pR(4,t)+4} contains 
a pair of adjacent vertices, as G is 4P1-free. Without loss of generality, suppose that pR(4,t)+1 is adjacent to pR(4,t)+2. But 
then, G[pR(4,t)+1, pR(4,t)+2, q1, q2, . . . , qt, vi] ∼= K2,t + P1, a contradiction. �

We can finally show that mimwG(T , δ) < 43R(4, t) +24t +214. Let Sz = {va, vb, vc} and let D = {{a}, {b}, {c}, {a, b}, {b, c},
{a, c}, {a, b, c}, {z}}. Since {Sα : α ∈ D} is a partition of V (G), Observation 13 implies that

mimwG(T , δ) ≤ max
e∈E(T )

∑

α,β∈D

cutmimG(Ae ∩ Sα, Ae ∩ Sβ). (1)

For any α ∈ D , we have that cutmimG(Ae ∩ Sz, Ae ∩ Sα) ≤ 3 and cutmimG(Ae ∩ Sα, Ae ∩ Sz) ≤ 3, for any e ∈ E(T ). 
For α, β �= {z}, there are 49 distinct pairs (α, β). 12 of such pairs are such that α ∩ β = ∅: ({a}.{b}), ({b}, {c}), ({a}, {c}),
11
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({a}, {b, c}), ({b}, {a, c}), ({c}, {a, b}) and those obtained by swapping α and β . The remaining 37 pairs are such that α ∩ β �=
∅. In this case, by Claim 23, cutmimG(Ae ∩ Sα, Ae ∩ Sβ) ≤ R(4, t) + 4, for any e ∈ E(T ).

We now estimate the terms in the sum above corresponding to pairs (α, β) such that α∩β =∅. Suppose first that (α, β)

is one of ({a}, {b}), ({b}, {c}), ({a}, {c}), ({b}, {a}), ({c}, {b}), ({c}, {a}). If Sα is 3t-almost-complete to Sβ or Sβ is 3t-almost-
complete to Sα then, by Claim 21, cutmimG(Ae ∩ Sα, Ae ∩ Sβ) < 3t + 1 and cutmimG(Ae ∩ Sβ, Ae ∩ Sα) < 3t + 1. Otherwise, 
Sα is not 3t-almost-complete to Sβ and Sβ is not 3t-almost-complete to Sα . By definition of G1 and G2, this implies that 
G[Sα, Sβ ] = G1[Sα, Sβ ] = G2[Sα, Sβ ]. If either e = rs or e belongs to T ′

3, then all vertices of Sα and Sβ belong to the same 
partition class of V (G) induced by e and so cutmimG(Ae ∩ Sα, Ae ∩ Sβ) = cutmimG(Ae ∩ Sβ, Ae ∩ Sα) = 0. Otherwise, e

must belong to T ′
2. The edge e then induces a partition (A′

e, A′
e) of the vertices of G2 with respect to (T ′

2, δ2), and (A′
e, A′

e)

coincides with (Ae, Ae) restricted to Sα ∪ Sβ . Hence, cutmimG(Ae ∩ Sα, Ae ∩ Sβ) = cutmimG2 (A′
e ∩ Sα, A′

e ∩ Sβ) ≤ 2.
Suppose finally that (α, β) is one of ({a}, {b, c}), ({b}, {a, c}), ({c}, {a, b}), ({b, c}, {a}), ({a, c}, {b}), ({a, b}, {c}). Clearly, 

cutmimG(Ae ∩ Sα, Ae ∩ Sβ) ≤ cutmimG(Ae ∩ Sα, Ae ∩ S�
β) + cutmimG(Ae ∩ Sα, Ae ∩ (Sβ \ S�

β)). Note that G[Sα, Sβ \ S�
β ] =

G2[Sα, Sβ \ S�
β ]. Thus, by the same reasoning as in the previous paragraph, cutmimG(Ae ∩ Sα, Ae ∩ (Sβ \ S�

β)) ≤ 2. On the 
other hand, by Claim 22, cutmimG(Ae ∩ Sα, Ae ∩ S�

β) ≤ R(4, t) + t + 1. Therefore, cutmimG(Ae ∩ Sα, Ae ∩ Sβ) ≤ R(4, t) + t + 3.
Combining these bounds with (1), we obtain mimwG(T , δ) < 14 · 3 + 37 · (R(4, t) + 4) + 6 · (3t + 1) + 6 · (R(4, t) + t + 3) =

43R(4, t) + 24t + 214. �
4.2. Unboundedness results

All the unboundedness results of this section are obtained by applying the same strategy. The class of walls plays a 
crucial role. A wall of height h and width r (an (h × r)-wall for short) is the graph obtained from the grid of height h and 
width 2r as follows. Let C1, . . . , C2r be the set of vertices in each of the 2r columns of the grid, in their natural left-to-right 
order. For each column C j , let e j

1, e
j
2, . . . , e

j
h−1 be the edges between two vertices of C j , in their natural top-to-bottom order. 

If j is odd, we delete all edges e j
i with i even. If j is even, we delete all edges e j

i with i odd. We then remove all vertices of 
the resulting graph whose degree is 1. This final graph is an elementary (h × r)-wall (see Fig. 4). We denote by W the class 
of all elementary 2n × 2n walls, for n ≥ 1.

Theorem 24 (Brettell et al. [6]). Let W be an elementary n × n wall with n ≥ 7. Then mimw(W ) ≥
√

n
50 . Hence, W has unbounded 

mim-width.

The idea is to start from an elementary wall, find an appropriate vertex colouring, and repeatedly apply the following 
result (the case k = 2 was first proved in [36]).

Lemma 25 (Brettell et al. [6]). Let G be a k-partite graph with partition classes V 1, . . . , Vk and let G ′ be a graph obtained from G by 
adding edges where, for each added edge, there exists some i such that both endpoints are in V i . Then mimw(G ′) ≥ 1

k · mimw(G).

Theorem 26. The class of (3P1, K4,4 + P1)-free graphs has unbounded mim-width.

Proof. Let W be an elementary 2n × 2n wall and consider its proper 2-colouring depicted in Fig. 4(a). We add edges within 
each colour class to make them cliques. Let f (W ) be the graph obtained and let W1 = { f (W ) : W ∈ W}. By Theorem 24
and Lemma 25, W1 has unbounded mim-width.

Note that, for the graph f (W ), every two vertices of the same colour are adjacent, and every two vertices of different 
colours are adjacent if and only if they are adjacent in W . Clearly, f (W ) is 3P1-free. It remains to show that f (W ) is 
K4,4 + P1-free.

Claim 27. Any copy of K5 in f (W ) is monochromatic.

Proof of Claim 27. Let u1, . . . , u5 be the vertices of a copy of K5. Since f (W ) is obtained from W by adding edges within 
each colour class, if an edge uv ∈ E( f (W )) is not monochromatic, then uv belongs to E(W ) as well. Hence, there cannot 
be one blue vertex and four red vertices in {u1, . . . , u5}, since this would imply that in W there is a vertex with four 
neighbours. Also, there cannot be exactly two blue vertices in {u1, . . . , u5}, for otherwise these two blue vertices share three 
common red neighbours in W , contradicting the fact that in W any two vertices have at most one common neighbour. By 
symmetry, there cannot be exactly one or two red vertices, and so {u1, . . . , u5} is monochromatic. �

Suppose, to the contrary, that f (W ) contains an induced copy of K4,4 + P1 with vertex set {v0, . . . , v8} as depicted in 
Fig. 1. By Claim 27, the two copies of K5 induced by {v0, v1, v2, v3, v4} and {v0, v5, v6, v7, v8} must both be monochro-
matic. Hence, v1, . . . , v8 must be of the same colour. This implies that v1, . . . , v8 must form a clique in f (W ), a contradic-
tion. �
12
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Fig. 4. The different colourings of elementary walls used in the proofs of Theorems 26, 28 and 30. (For interpretation of the colours in the figures, the 
reader is referred to the web version of this article.)

Theorem 28. The class of (4P1, K3,3 + P1)-free graphs has unbounded mim-width.

Proof. Let W be an elementary 2n × 2n wall and consider its proper 3-colouring depicted in Fig. 4(b). We add edges within 
each colour class to make them cliques. Let g(W ) be the graph obtained and let W2 = {g(W ) : W ∈ W}. By Theorem 24
and Lemma 25, W2 has unbounded mim-width. Clearly, g(W ) is 4P1-free. It remains to show that g(W ) is K3,3 + P1-free.

Claim 29. Any copy of K4 in g(W ) is monochromatic.

Proof of Claim 29. Let u1, . . . , u4 be the vertices of a copy of K4. At least two such vertices have the same colour, say colour 
c. Since g(W ) is obtained from W by adding edges within each colour class, if an edge uv ∈ E(g(W )) is not monochromatic, 
then uv belongs to E(W ) as well. Observe first that there cannot be exactly two vertices with colour c in {u1, . . . , u4}, for 
otherwise these two vertices coloured c have two common neighbours coloured different from c, contradicting the fact that 
in W any two vertices have at most one common neighbour. Moreover, there cannot be exactly three vertices coloured c
in {u1, . . . , u4}, since this would imply that in W there is a vertex not coloured c adjacent to three vertices coloured c. 
However, in the 3-colouring of W depicted in Fig. 4(b), no vertex has three monochromatic neighbours. �

Suppose, to the contrary, that g(W ) contains an induced copy of K3,3 + P1 with vertex set {v0, . . . , v6}, where v0 is 
the universal vertex and {v1, v2, v3} and {v4, v5, v6} induce disjoint cliques. By Claim 29, the two copies of K4 induced 
by {v0, v1, v2, v3} and {v0, v4, v5, v6} must both be monochromatic. Hence, v1, . . . , v6 must be of the same colour. This 
implies that v1, . . . , v6 must form a clique in g(W ), a contradiction. �
Theorem 30. The class of (5P1, K2,2 + P1)-free graphs has unbounded mim-width.

Proof. Let W be an elementary 2n × 2n wall and consider its proper 4-colouring depicted in Fig. 4(c). We add edges within 
each colour class to make them cliques. Let h(W ) be the graph obtained and let W3 = {h(W ) : W ∈ W}. By Theorem 24
and Lemma 25, W3 has unbounded mim-width. Clearly, h(W ) is 5P1-free. It remains to show that h(W ) is K2,2 + P1-free.

Claim 31. Any copy of K3 in h(W ) is monochromatic.

Proof of Claim 31. Let u1, u2, u3 be the vertices of a copy of K3. Firstly, there cannot be exactly two vertices in {u1, u2, u3}
of the same colour, say colour c, since this would imply that in W there is a vertex coloured different from c which is 
adjacent to two vertices coloured c, contradicting the 4-colouring of W depicted in Fig. 4(c). Moreover, the vertices in 
{u1, u2, u3} cannot be coloured with distinct colours, for otherwise these three vertices would induce a K3 in W . �
13
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Similarly to Theorems 26 and 28, it is now easy to see that h(W ) is K2,2 + P1-free. �
4.3. Dichotomy

Combining the results of Sections 4.1 and 4.2, we can finally show Theorem 8, which we restate for convenience.

Theorem 8. Let r ≥ 3 and s, t ≥ 2 be integers. Then the mim-width of the class of (r P1, Ks,t + P1)-free graphs is bounded if and only 
if:

• r = 3 and one of s and t is at most 3;
• r = 4 and one of s and t is at most 2.

In all these cases, the mim-width is also quickly computable.

Proof. If r ≥ 5, the mim-width is unbounded by Theorem 30. Suppose now that r = 4. If both s and t are at least 3, the 
mim-width is unbounded by Theorem 28, whereas if one of s and t is at most 2, the mim-width is bounded and quickly 
computable by Theorem 19. Finally, suppose that r = 3. If both s and t are at least 4, the mim-width is unbounded by 
Theorem 26, whereas if one of s and t is at most 3, the mim-width is bounded and quickly computable by Theorem 16. �
5. Mim-width of (Kr, sP1 + t P2 + u P3)-free graphs

In this section we address Open Problem 2 and show Theorems 9 and 10. Both results are obtained by identifying new 
(Kr, sP1 + t P2 + u P3)-free classes of unbounded mim-width.

Open Problem 2 was formulated in [6] starting from [6, Theorem 35]. We remark that there is a typo in the formulation 
of this statement. For completeness we provide the correct formulation, whose proof is essentially identical to that of [6, 
Theorem 35].

Theorem 32 (Brettell et al. [6]). Let H be a graph and let r ≥ 4 be an integer. Let S be the class of graphs every component of which is 
either a subdivided claw or a path. Then exactly one of the following holds:

• H ⊆i sP1 + P5 or t P2 , and the mim-width of the class of (Kr, H)-free graphs is bounded and quickly computable;
• H /∈ S , or H ⊇i K1,3 , P2 + P4 , or P6 , and the mim-width of the class of (Kr, H)-free graphs is unbounded; or
• H = sP1 + t P2 + u P3 , where u ≥ 1 and t + u ≥ 2.

Proof. By [6, Theorem 31-(i)], if H /∈ S , then the mim-width of the class of (Kr, H)-free graphs is unbounded. So we may 
assume that H is a forest of paths and subdivided claws. By [6, Theorem 31-(iii)], if H contains a K1,3, then the mim-
width is again unbounded. So we may assume that H is a linear forest. If H ⊆i sP1 + P5 or H ⊆i t P2, then mim-width is 
bounded and quickly computable by parts (xii) and (xiv) of [6, Theorem 30]. So we may assume that H is a linear forest 
containing P2 + P3. By [6, Theorem 31-(viii)], we may also assume H contains neither P2 + P4 nor P6, otherwise the 
mim-width is again unbounded. It now follows that H ⊆i t P2 + u P3 for some u, t such that u ≥ 1 and t + u ≥ 2. Therefore, 
H = sP1 + t P2 + u P3, for u ≥ 1 and t + u ≥ 2. �
5.1. Unboundedness results

Similarly to Section 4.2, the unboundedness results for (Kr , sP1 + t P2 + u P3)-free graphs in this section (Theorem 35
for r = 5 and Theorem 38 for r = 4) are obtained by applying Lemma 25. However, in the case of Theorem 38, only certain 
types of edges are added inside each colour class; this is to avoid creating copies of K4. We will also make use of the 
following two results.

Lemma 33 (Vatshelle [41]). Let G be a graph and v ∈ V (G). Then mimw(G) ≥ mimw(G − v).

Lemma 34 (Brettell et al. [6]). Let G be a graph and let G ′ be the graph obtained by 1-subdividing an edge of G. Then mimw(G ′) ≥
mimw(G).

Theorem 35. The class of (K5, P3 + P2 + P1)-free graphs has unbounded mim-width.

Proof. Consider first a 2n × 2n-grid G2n with vertex set {(i, j) : 1 ≤ i, j ≤ 2n}. Consider the set of vertices S = {(i, j) : i + j ≡
1 (mod 2)} and the set of edges T = {(i, j)(i, j − 1) : (i, j) ∈ S}. We define the graph Wn as Wn = (V (Gn), E(Gn) \ T ). Since 
14
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Fig. 5. The graph W4 with the red-blue colouring as in the proof of Theorem 35.

Wn contains the elementary n × n wall as an induced subgraph, Theorem 24 and Lemma 33 imply that the class of graphs 
{Wn : n ≥ 1} has unbounded mim-width. Given Wn , we now consider the following partition of its vertices:

A = {(i, j) : i + j ≡ 0 (mod 2), i ≡ 1 (mod 3)}
B = {(i, j) : i + j ≡ 0 (mod 2), i ≡ 2 (mod 3)}
C = {(i, j) : i + j ≡ 0 (mod 2), i ≡ 0 (mod 3)}
D = {(i, j) : i + j ≡ 1 (mod 2), i ≡ 1 (mod 3)}
E = {(i, j) : i + j ≡ 1 (mod 2), i ≡ 2 (mod 3)}
F = {(i, j) : i + j ≡ 1 (mod 2), i ≡ 0 (mod 3)}.

We then colour in red the vertices in A ∪ B ∪ C , and in blue the vertices in D ∪ E ∪ F (see Fig. 5). This gives a proper 
2-colouring of Wn and, in particular, each partition class defined above forms an independent set in Wn . Observe that each 
vertex is adjacent to at most one vertex from each partition class of the opposite colour. That is, each vertex in A ∪ B ∪ C
is adjacent to at most one vertex from each of D , E and F , and each vertex in D ∪ E ∪ F is adjacent to at most one vertex 
from each of A, B and C .

We now build the graph W ′
n by adding all edges between different partition classes of the same colour. That is, we 

make A, B , C pairwise complete and D , E , F pairwise complete. No other edges are added. In particular, W ′
n[A ∪ B ∪ C] and 

W ′
n[D ∪ E ∪ F ] are complete tripartite graphs.
Applying Lemma 25 to the bipartition (A ∪ B ∪ C, D ∪ E ∪ F ) of V (Wn), we obtain that mimw(W ′

n) ≥ mimw(Wn)/2. 
Hence, the class of graphs {W ′

n : n ≥ 1} has unbounded mim-width. It is then enough to show that W ′
n is K5-free and 

(P3 + P2 + P1)-free.

Claim 36. W ′
n is K5-free.

Proof of Claim 36. Suppose, to the contrary, that {v1, v2, v3, v4, v5} induces a copy of K5 in W ′
n . Since each of 

A, B, C, D, E, F is an independent set, the vi ’s belong to different partition classes. In particular, without loss of gener-
ality, v1, v2, v3 are red and v4, v5 blue, or vice versa. Since no edges between red and blue vertices are added when 
constructing W ′

n , we have that {v1, v2, v3} is complete to {v4, v5} in Wn . But this contradicts the fact that in Wn no two 
vertices have two common neighbours. �

Claim 37. W ′
n is (P3 + P2 + P1)-free.

Proof of Claim 37. Suppose, to the contrary, that {v1, . . . , v6} induces a copy of P3 + P2 + P1 in W ′
n , where W ′

n[v1, v2, v3] ∼=
P3 with v2 adjacent to both v1 and v3, {v4, v5} is anticomplete to {v1, v2, v3} and induces a copy of P2, and {v6} is 
anticomplete to {v1, . . . , v5}. Suppose, without loss of generality, that v2 is red.

Case 1: Both v1 and v3 are blue. Since v4 is adjacent to at most one vertex from each blue partition class, we have that 
v1 and v3 belong to different blue partition classes. By construction, these partition classes are complete, contradicting the 
fact that v1 is non-adjacent to v3 in W ′

n .
15
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Fig. 6. The graph W ′
3 in the proof of Theorem 38, together with a proper 5-colouring: blue vertices correspond to X , red vertices to Y , grey vertices to A, 

yellow vertices to B and green vertices to C .

Case 2: At least one of v1 and v3 is red. Without loss of generality, v1 is red. Since each partition class forms an 
independent set in W ′

n , we have that v1 does not belong to the class of v2. But then {v1, v2} dominates the red vertices 
and so v4, v5, v6 are all blue. By a similar reasoning, v4, v5, v6 all belong to the same blue partition class, or else there 
exists a vertex in {v4, v5, v6} dominating the remaining two. But each partition class is an independent set, contradicting 
the fact that v4 is adjacent to v5. �

This concludes the proof of Theorem 35. �
Theorem 38. The class of (K4, P3 + 2P2 + P1, 2P3 + P2)-free graphs has unbounded mim-width.

Proof. Let Wn be the graph defined in the proof of Theorem 35. Given Wn , we subdivide every edge (i1, j1)(i2, j2) by 
adding a new vertex ( i1+i2

2 , j1+ j2
2 ). We then multiply the coordinates of all vertices by 2 (so, e.g., (4, 5.5) becomes (8, 11)) 

and preserve the adjacencies between vertices in order to obtain a new graph W ′
n . By Lemma 34, mimw(W ′

n) ≥ mimw(Wn). 
We now define a partition of the vertices of W ′

n as follows (see Fig. 6):

X = {(i, j) : i + j ≡ 2 (mod 4)}
Y = {(i, j) : i + j ≡ 0 (mod 4)}
A = {(i, j) : i + j is odd, i ≡ 1 (mod 3)}
B = {(i, j) : i + j is odd, i ≡ 2 (mod 3)}
C = {(i, j) : i + j is odd, i ≡ 0 (mod 3)}

Note that X and Y consist of the vertices of Wn , and A, B and C consist of the new vertices introduced after edge 
subdivisions. In particular, each partition class is an independent set. Moreover, X is anticomplete to Y , and A, B, C are 
pairwise anticomplete. Since W ′

n has no cycle of length 4, each x ∈ X and y ∈ Y have at most one common neighbour in 
A ∪ B ∪ C .

Observation 39. Let u1 = (i1, j1) and u2 = (i2, j2) be two vertices belonging to the same partition class in {A, B, C}. The following 
hold:

• 3 divides |i1 − i2|;
• If i1 = i2 , then 2 divides | j1 − j2|.

We now proceed to the construction of the graph W ′′
n , obtained as follows. Start from W ′

n and
16
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• Add all edges between X and Y ;
• For each pair of distinct sets R and S in {A, B, C} and r = (ir, jr) ∈ R and s = (is, js) ∈ S , add the edge rs, unless jr = js

and |ir − is| = 2, that is, unless r and s are the “right neighbour” and the “left neighbour” of a vertex in X ∪ Y .

The edges left out in the second step above avoid the creation of copies of K4, as will be shown shortly.
Since (X ∪ Y , A ∪ B ∪ C) is a bipartition of V (W ′′

n ), Lemma 25 implies that mimw(W ′′
n ) ≥ mimw(W ′

n)/2. Hence the class 
of graphs {W ′′

n : n ≥ 1} has unbounded mim-width. It is then enough to show that W ′′
n does not contain any graph in 

{K4, P3 + 2P2 + P1, 2P3 + P2} as an induced subgraph. This will be done in a series of claims.

Claim 40. W ′′
n is K4-free.

Proof of Claim 40. Suppose, to the contrary, that {v1, v2, v3, v4} induces a copy of K4 in W ′′
n . Since each of X, Y , A, B and 

C is an independent set, the four vertices belong to four different partition classes.
Suppose first that exactly one of {v1, v2, v3, v4} belongs to X ∪ Y . Without loss of generality, v1 ∈ X and v2, v3, v4 ∈

A ∪ B ∪ C . Since no edges between X and A ∪ B ∪ C are added to E(W ′
n) in order to build W ′′

n , the vertices v2, v3, v4 are 
adjacent to v1 in W ′

n . Suppose that v1 = (i, j). Then, up to relabelling, we must have that v2 = (i − 1, j), v3 = (i + 1, j)
and v4 = (i, j ± 1). In other words, v2 and v3 are the left neighbour and right neighbour of v1, respectively. But then, by 
construction, v2 v3 /∈ E(W ′′

n ), a contradiction.
Suppose finally that exactly two vertices of {v1, v2, v3, v4} belong to X ∪ Y . Without loss of generality, v1, v2 ∈ X ∪ Y , 

and v3, v4 ∈ A ∪ B ∪ C . Since no edges between X ∪ Y and A ∪ B ∪ C are added to E(W ′
n) in order to build W ′′

n , both v1 and 
v2 are adjacent to v3 and v4 in W ′

n , contradicting the fact that W ′
n does not contain any cycle of length 4. �

Claim 41. Let u1, u2 be two distinct vertices from the same partition class in {A, B, C}. Let u3 be a vertex from a partition class in 
{A, B, C} different from that of u1 and u2 . Then u3 is adjacent to at least one of u1 and u2 .

Proof of Claim 41. Let u1 = (i1, j1), u2 = (i2, j2) and u3 = (i3, j3). Suppose, to the contrary, that u3 is non-adjacent to both 
u1 and u2. By construction of W ′′

n , this implies that j1 = j3 = j2 and |i1 − i3| = 2 = |i2 − i3|. Since u1 and u2 are distinct, 
i1 �= i2, which implies that |i1 − i2| = 4, contradicting the first part of Observation 39. �

We now prove that W ′′
n is (P3 + 2P2 + P1)-free and (2P3 + 2P2)-free. The following result will be used as the backbone 

of both proofs.

Claim 42. Suppose that {v1, . . . , v7} induces a copy of P3 + 2P2 , where v2 is adjacent to v1 and v3 , v4 is adjacent to v5 , v6 is 
adjacent to v7 and no other edges are present in W ′′

n [{v1, . . . , v7}]. Then the following hold:

1. At least one of v1 and v3 belongs to X ∪ Y ;
2. v2 ∈ X ∪ Y .

Proof of Claim 42. We first show that at least one of v1 and v3 belongs to X ∪ Y . Suppose, to the contrary, that both v1
and v3 belong to A ∪ B ∪ C . Since A, B and C are pairwise disjoint, v1, v3 ∈ S ∪ T for some distinct S, T ∈ {A, B, C}.

Observe that at least two of v4, v5, v6, v7, say vi and v j , belong to A ∪ B ∪ C , or else at least three vertices among 
v4, v5, v6, v7 belong to X ∪ Y and so W ′′

n [X ∪ Y ] contains a copy of P2 + P1, contradicting the fact that W ′′
n [X ∪ Y ] is a 

complete bipartite graph.
Observe now that, by Claim 41 and the previous paragraph, v1 and v3 belong the same partition class. Without loss 

of generality, v1, v3 ∈ S . Since S is an independent set, v2 /∈ S , and since each vertex in X ∪ Y has at most one neighbour 
in each of A, B and C , we have that v2 /∈ X ∪ Y . Moreover, by Claim 41, vi and v j both belong to S . But this contradicts 
Claim 41, as v2 ∈ (A ∪ B ∪ C) \ S .

We finally show that v2 ∈ X ∪ Y . Suppose, to the contrary, that v2 ∈ R , for some R ∈ {A, B, C}. Since R is an independent 
set, v1, v3 /∈ R . In view of part 1, we distinguish two cases, according to which partition classes v1 and v3 belong. Let S and 
T be the two distinct partition classes in {A, B, C} \ R .
Case 1: v1 and v3 both belong to X ∪ Y .

Since each vertex in R is adjacent to at most one vertex in X and at most one vertex in Y , one of v1 and v3 belongs to 
X and the other to Y , contradicting the fact that X is complete to Y .
Case 2: One of v1 and v3 belongs to X ∪ Y and the other to S ∪ T .

Without loss of generality, v1 ∈ S and v3 ∈ X . Since X is complete to Y , v4, v5, v6, v7 /∈ Y . Since X is an independent 
set, at most one of v4 and v5 belongs to X and at most one of v6 and v7 belongs to X . Without loss of generality, 
v4, v6 ∈ A ∪ B ∪ C . If both v4 and v6 belong to R , then v1 ∈ S is non-adjacent to both v4, v6 ∈ R , contradicting Claim 41. 
If exactly one of v4 and v6 belongs to R , say without loss of generality v4 ∈ R and v6 /∈ R , then v6 ∈ (A ∪ B ∪ C) \ R is 
non-adjacent to v2 ∈ R and v4 ∈ R , contradicting Claim 41. Therefore, none of v4 and v6 belongs to R . If v4 and v6 belong 
to the same partition class in (A ∪ B ∪ C) \ R , then v2 ∈ R being non-adjacent to both of them contradicts Claim 41. Finally, 
17
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if v4 and v6 belong to different partition classes in (A ∪ B ∪ C) \ R , then one of them belongs to the partition class S of v1, 
say without loss of generality v4 ∈ S . But then v6 being non-adjacent to both v1 and v4 contradicts Claim 41. �

Claim 43. W ′′
n is (P3 + 2P2 + P1)-free.

Proof of Claim 43. Suppose, to the contrary, that {v1, . . . , v8} induces a copy of P3 + 2P2 + P1, where v2 is adjacent to v1
and v3, v4 is adjacent to v5, v6 is adjacent to v7 and no other edges are present in W ′′

n [{v1, . . . , v8}] (hence v8 is the 
isolated vertex). By Claim 42, v2 ∈ X ∪ Y and at least one of v1 and v3 belongs to X ∪ Y . Without loss of generality, v2 ∈ X
and v1 ∈ X ∪ Y . Since X is an independent set, v1 ∈ Y . Since X is complete to Y , we have that {v1, v2} dominates X ∪ Y
and so {v4, . . . , v8} ⊆ A ∪ B ∪ C . By the pigeonhole principle, there exists two vertices among v4, v5, v6, v7 that belong to 
the same partition class in {A, B, C}. Since these classes form independent sets, the two vertices are non-adjacent. Without 
loss of generality, v4, v6 ∈ R for some R ∈ {A, B, C}. If v8 ∈ (A ∪ B ∪ C) \ R , then v8 is non-adjacent to both v4, v6 ∈ R , 
contradicting Claim 41. Therefore, v8 ∈ R . Since R is an independent set, v4 ∈ R implies that v5 ∈ (A ∪ B ∪ C) \ R and v5 is 
non-adjacent to both v6, v8 ∈ R , contradicting Claim 41. �

Claim 44. W ′′
n is (2P3 + P2)-free.

Proof of Claim 44. Suppose, to the contrary, that {v1, . . . , v8} induces a copy of 2P3 + P2, where v2 is adjacent to v1 and 
v3, v4 is adjacent to v5, v7 is adjacent to v6 and v8, and no other edges are present in W ′′

n [{v1, . . . , v8}]. By Claim 42, 
v2 ∈ X ∪ Y and at least one of v1 and v3 belongs to X ∪ Y . Without loss of generality, v2 ∈ X and v1 ∈ X ∪ Y . As in the 
proof of Claim 43, {v1, v2} dominates X ∪ Y and so {v4, . . . , v8} ∈ A ∪ B ∪ C .

Suppose first that at least two vertices among v6, v7 and v8 belong to the same partition class in {A, B, C}. These two 
vertices are non-adjacent, as A, B, C are independent sets, and so they must be v6 and v8. Without loss of generality, 
v6, v8 ∈ R for some R ∈ {A, B, C}. Similarly, at least one of v4 and v5 does not belong to R , say v4 ∈ (A ∪ B ∪ C) \ R . Then 
v4 is non-adjacent to both v6, v8 ∈ R , contradicting Claim 41.

Therefore, v6, v7 and v8 belong to distinct partition classes in {A, B, C}. By Claim 41, none of v4 and v5 belongs to the 
partition class of either v6 or v8. But then v4 and v5 both belong to the partition class of v7, contradicting the fact that 
every class is an independent set. �

This concludes the proof of Theorem 38. �
5.2. Summary results

With the aid of Theorems 35 and 38, we can finally show Theorems 9 and 10, which we restate for convenience.

Theorem 9. Let r ≥ 5 be an integer and let H = sP1 + t P2 + u P3 , for s, t, u ≥ 0. Then exactly one of the following holds:

• H ⊆i sP1 + t P2 , or H ⊆i sP1 + P3 , and the mim-width of the class of (Kr, H)-free graphs is bounded and quickly computable;
• H ⊇i P3 + P2 + P1 , and the mim-width of the class of (Kr, H)-free graphs is unbounded;
• H = 2P3 , or H = P3 + P2 .

Proof. By Theorem 35, if H contains P3 + P2 + P1, then the mim-width of the class of (Kr, H)-free graphs is unbounded. So 
we may assume that u ≤ 2. If u = 0, then the mim-width is bounded by [6, Theorem 30-(xiv)]. If u = 1, then the mim-width 
is unbounded for t ≥ 2 and s ≥ 0 or t = 1 and s ≥ 1 (Theorem 35), and bounded for t = 0 ([6, Theorem 30-(xii)]). This leaves 
open the case H = P3 + P2. Finally, if u = 2, then the mim-width is unbounded if one of t and s is at least 1. This leaves 
open the case H = 2P3. �
Theorem 10. Let r = 4 and let H = sP1 + t P2 + u P3 , for s, t, u ≥ 0. Then exactly one of the following holds:

• H ⊆i sP1 + t P2 , or H ⊆i sP1 + P3 , and the mim-width of the class of (Kr, H)-free graphs is bounded and quickly computable;
• H ⊇i P3 + 2P2 + P1 , or 2P3 + P2 , and the mim-width of the class of (Kr, H)-free graphs is unbounded;
• H = P3 + 2P2 , or H = P3 + P2 + sP1 , or H = 2P3 + sP1 .

Proof. By Theorem 38, if H contains P3 + 2P2 + P1 or 2P3 + P2, then the mim-width of the class of (Kr , H)-free graphs 
is unbounded. So we may assume that u ≤ 2. If u = 0, then the mim-width is bounded by [6, Theorem 30-(xiv)]. If u = 1, 
then the mim-width is bounded for t = 0 ([6, Theorem 30-(xii)]), and unbounded for t ≥ 2 and s ≥ 1 or t ≥ 3 and s ≥ 0
(Theorem 38). This leaves open the cases H = P3 + 2P2 and P3 + P2 + sP1. Finally, if u = 2, then the mim-width is 
unbounded for t ≥ 1. This leaves open the case H = 2P3 + sP1. �
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6. Concluding remarks and open problems

In view of Corollary 7, we believe that the main open problem related to algorithmic applications of sim-width is 
whether Independent Set is polynomial-time solvable for graph classes whose sim-width is bounded and quickly com-
putable (this was first formulated in [32]). We highlight a possible connection. In [19], it is asked whether there exists 
a (tw, ω)-bounded graph class for which Independent Set is NP-hard. In view of these two open problems, it would be 
interesting to determine whether every (tw, ω)-bounded graph class has bounded sim-width (the converse does not hold, 
as mentioned in Section 1.1).

Cameron and Hell [10] showed that Independent H-packing is polynomial-time solvable for weakly chordal graphs, a 
superclass of chordal graphs, and for AT-free graphs, a superclass of co-comparability graphs. Both chordal graphs and co-
comparability graphs have sim-width at most 1 and in [32] it is asked whether weakly chordal graphs and AT-free graphs 
have bounded sim-width. We believe that Corollary 7 also provides strong motivation for studying the sim-width of weakly 
chordal and AT-free graphs.

Finally, we conclude by asking to classify the mim-width for the remaining open cases in Theorems 9 and 10. A particu-
larly interesting open case is the mim-width of (Kr , 2P3)-free graphs, for r ≥ 5. In view of Theorem 4, this is related to the 
open problem in [24] of whether there exists k ∈ N for which List k-Colouring restricted to u P3-free graphs is NP-hard 
for some u ∈N .
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[13] Maria Chudnovsky, Jason King, Michał Pilipczuk, Paweł Rza̧żewski, Sophie Spirkl, Finding large H-colorable subgraphs in hereditary graph classes, SIAM 

J. Discrete Math. 35 (4) (2021) 2357–2386.
[14] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2) 

(2000) 125–150.
[15] Bruno Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput. 85 (1) (1990) 12–75.
[16] Bruno Courcelle, Stephan Olariu, Upper bounds to the clique width of graphs, Discrete Appl. Math. 101 (1–3) (2000) 77–114.
[17] Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, Daniël Paulusma, List coloring in the absence of a linear forest, Algorithmica 71 (1) (2015) 

21–35.
[18] Konrad K. Dabrowski, Matthew Johnson, Daniël Paulusma, Clique-width for hereditary graph classes, in: London Mathematical Society Lecture Note 

Series, Cambridge University Press, 2019, pp. 1–56.
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