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Partially pivoted ACA based acceleration of the Energetic BEM
for time-domain acoustic and elastic waves exterior problems

A. Aimia, L. Desiderioa,∗, G. Di Credicoa

aDepartment of Mathematical, Physical and Computer Science, University of Parma,
Parco Area delle Scienze, 53/A, Parma, Italy

Abstract

We consider acoustic and elastic wave propagation problems in 2D unbounded domains, reformu-
lated in terms of space-time Boundary Integral Equations (BIEs). For their numerical solution,
we employ a weak formulation related to the energy of the system and we discretize the weak
problems by a Galerkin-type Boundary Element Method (BEM): this approach, called Energetic
BEM, has revealed accurate and stable even on large time intervals of analysis. In particular, it
results that, when standard Lagrangian basis functions are considered, the BEM matrices have
Toeplitz lower triangular block structure, where blocks for growing time become fully populated;
hence the overall memory cost of the energetic BEM is O(M2N), M and N being the number
of the space degrees of freedom and the total number of performed time steps, respectively. This
drawback prevents the application of such method to large scale problems. As a possible remedy,
we propose a fast technique based on the Adaptive Cross Approximation (ACA). The core of
this procedure is the approximation of sufficiently large time blocks of the energetic BEM matrix
through the partially pivoted ACA algorithm, which allows to compute only few of the original
entries. This leads to reduced assembly time, which for the energetic BEM is generally relevant,
coupled with reduced memory storage requirements. Additionally, the consequent acceleration of
the matrix/vector multiplication together with a marching on time procedure, leads to remark-
able reduction of the computational solution time. The effectiveness of the proposed method is
theoretically proved and several numerical results are presented and discussed.

Keywords: Energetic Boundary Element Method, Adaptive Cross Approximation, Fast time-
domain BEM, Wave Scattering Problems

1. Introduction

Numerical methods for solving acoustic and elastic wave propagation problems have widespread
applications in industry, for instance in seismic exploration, target identification and geophysics.
Computations in time-domain are of particular interest for problems beyond the reach of frequency-
domain methods, such as the simulation of transient dynamics, moving sound sources or nonlinear
and dynamical contact problems, since they allow to observe the phenomenon as it evolves. Even
if different directions exist, the use of a Boundary Integral Equation (BIE) technique, whose dis-
cretization is known as the Boundary Element Method (BEM), is an appealing choice because it
allows to handle problems defined on the exterior of bounded domains as easily as those defined
in the interior, without the introduction of an artificial boundary to truncate the computational
domain (see [21, 22]). Nevertheless, the applicability of Time-Domain BIE (TD-BIE) methods
has been limited due to inefficiency and instability. Whereas the Galerkin discretization in space
has been the de facto standard, no consensus has been reached yet on the numerical discretization
in time, since only the weak formulation due to Bamberger and Ha Duong [11] furnishes genuine
convergence results. Several other approaches have been proposed in literature, among which col-
location [29], space-time Galerkin [1] and Convolution Quadrature (CQ) [26] are the most popular
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choices, although stability and convergence are assured under strong regularity assumptions on
problem data.

Recently, a direct space-time Galerkin BEM for the discretization of TD-BIEs related to scalar
and vector wave propagation problems has been introduced [2, 5] and compared with the classical
space-time discretization approach due to Bamberger and Ha-Duong. The proposed technique
is based on a natural energy identity satisfied by the solution of the corresponding differential
problem, which leads to a space-time weak formulation of the BIEs with precise continuity and
coerciveness properties [2]. Consequently, the integral problem can be discretized by uncondi-
tionally stable schemes with well-behaved stability constants even for large times. The algebraic
reformulation of the energetic BEM leads to a linear system whose matrix has a Toeplitz lower-
triangular block structure, where for growing time, blocks become fully populated, if standard
Lagrangian basis functions are considered. Consequently, the overall memory cost of the energetic
BEM is O(M2N), M and N being the number of the space degrees of freedom and the total
number of time steps performed, respectively. This drawback prevents the application of such
method to large scale problems.

Since the late 1980s, the development of fast numerical methods has improved the application
of BEMs in the context of efficient and reliable simulations of wave propagation in unbounded
exterior domains. Most early examples of such methods are the Fast Multiple Method (FMM)
[23] and the Panel Clustering Method (PCM) [24]. Although these techniques are very effective
and provide a valuable tool for the fast solution of BEM problems, their main disadvantage is
that the knowledge of the kernel expansion is required in order to carry out the integration; all
the terms of the series needed to reach a given accuracy must be computed in advance and then
integrated, which can lead to a significant modification of the integration procedures in standard
BEM codes. A complementary class of fast BEMs is based on hierarchical matrices (H-matrices)
[25] and approximation of their blocks through suitable algorithms, like interpolation and Adaptive
Cross Approximation (ACA) [12]. These methods essentially are algebraic tools to approximate
the BEM matrices, providing an alternative to tackle problems for which analytical expressions
of the Green’s functions are not available. Another possible approach is the wavelet based BEM
[9], which produces sparse matrices based on orthogonal systems of wavelet like functions. All the
above mentioned fast BEMs have been used to successfully simulate wave propagation phenomena
in both frequency [6, 15, 17, 30] and time [14, 18, 20] domains.

In this paper, we consider 2D Dirichlet boundary value exterior problems defined by the acous-
tic and elastic wave equations, to which one can eventually reduce 3D problems invariant in one of
the cartesian directions. For their solution, we propose a numerical scheme based on the energetic
BEM, accelerated by the ACA technique. The core of this procedure is the approximation of
sufficiently large time blocks of the energetic BEM matrix through the partially pivoted ACA al-
gorithm, which allows to compute only few of the original entries. This leads to reduced assembly
time, which for the energetic BEM is generally relevant, coupled with reduced memory storage
requirements. Additionally, the consequent acceleration of the matrix/vector multiplication to-
gether with a marching on time procedure, leads to remarkable reduction of the computational
solution time. The ACA algorithm was original developed for asymptotically smooth kernels,
needing a suitable mesh elements clustering, and for this class of operators its convergence and
performances were theoretically investigated and assessed [13]. Smooth kernels, like those involved
in the energetic BEM after a double analytic integration in time variables and for sufficiently large
times, do not formally fit into the definition of asymptotically smoothness. However, in this case
the ACA algorithm can be interpreted as a rank-revealing decomposition applicable to kernels
that admit degenerate approximations [12]. This enabled the successful application of ACA to
energetic BEM, avoiding the construction of cluster trees.

The paper is organized as follows: in the next Section we present the model problems for
the acoustic and elastic wave equations and their space-time boundary integral formulations. In
Section 3 we describe the Energetic BEM discretization, focusing on its algebraic reformulation.
Section 4 is devoted to the analysis of the time-integrated kernels generating matrix blocks entries
and to briefly recall the ACA algorithm. Numerical results validating the proposed approach are
illustrated and discussed in Section 5. Finally, some conclusions are drawn in the last Section.
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2. Model problems and their boundary integral energetic formulation

In a fixed orthonormal Cartesian coordinates system x = (x1, x2)
>, we consider an open

bounded domain Ω0 ⊂ R2 with a sufficiently smooth closed boundary Γ := ∂Ω0, and we denoted
by Ω := R2 \Ω0 the exterior unbounded domain. We are interested in the numerical solution of
the following time-domain wave propagation problem in Ω:

%ü(x; t)−∇ · σ[u](x; t) = 0 (x; t) ∈ Ω × [0, T ]

u(x; t) = g(x; t) (x; t) ∈ ΣT := Γ × [0, T ]

u(x; 0) = 0 x ∈ Ω
u̇(x; 0) = 0 x ∈ Ω,

(2.1a)
(2.1b)
(2.1c)
(2.1d)

where u = (u1, u2)
> denotes the unknown field of displacements, g = (g1, g2)

> is the vector of
the assigned boundary conditions of Dirichlet type and % is the mass density. In problem (2.1),
homogeneous initial conditions are assumed at the first time of interest t = 0. Furthermore, the
superposed dot indicates time differentiation, while ∇ denotes the nabla operator.
The form of the Cauchy stress tensor σ[u] determines the model and in this work we will consider
both acoustic and elastic wave poropagation.

In order to approximate u through a BEM technique, we have to obtain a boundary integral
reformulation of the problem (2.1). This can be done by using classical arguments and the knowl-
edge of the fundamental solution of the two-dimensional differential operator at hand. In the case
of wave propagation in a homogenous unbounded domain, the full-space fundamental solution
G(x,y; t, τ) for the displacement in time-domain is found as the solution of the equation

%G̈(x,y; t, τ)−∇ · σ[G](x,y; t, τ) = Iδ(x− y)δ(t− τ), (2.2)

I being the 2-by-2 identity tensor and δ(·) the Dirac distribution. We remark that G(x,y; t, τ) is
a tensor field with the doubly indexed components Gij(x,y; t, τ), for i, j = 1, 2.

The knowledge of the fundamental solution allows us to consider the following single layer potential
representation of the solution of problem (2.1), written by components as:

ui(x, t) =
2∑
j=1

tˆ

0

ˆ

Γ

Gij(x,y; t, τ)ϕj(y, τ)dΓydτ, x ∈ Ω \ Γ, t ∈ [0, T ], i = 1, 2. (2.3)

where ϕϕϕ = (ϕ1, ϕ2)
> is a suitable density field to be determined. From the above formula, with a

limiting process that makes a point x ∈ Ω tending to a point x ∈ Γ and exploiting the Dirichlet
boundary condition, we can obtain a system of two TD-BIEs:

gi(x, t) =
2∑
j=1

tˆ

0

ˆ

Γ

Gij(x,y; t, τ)ϕj(y, τ)dΓydτ =:

2∑
j=1

(Vijϕj) (x, t), (x, t) ∈ ΣT , i = 1, 2. (2.4)

The space-time integral operators Vij : L2((0, T ];H−1/2(Γ )) −→ H1((0, T ];H1/2(Γ )), depending
on the components of the fundamental solution, allow us to rewrite the boundary equations system
in a vectorial form: ([

V11 V12
V21 V22

] [
ϕ1

ϕ2

])
(x, t) =

[
g1
g2

]
(x, t). (2.5)

This BIEs system is the core of the entire method: its numerical resolution generates an ap-
proximation of vector ϕϕϕ that can be used in the representation formula (2.3), recovering in a
post-processing phase the behaviour of the displacement u at each point of the diffusion domain
and at each time instant.
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Now we write the energetic weak formulation of the BIEs (2.5) (see [2] and [5] for further details):

find ϕi ∈ L2([0, T ];H−1/2(Γ )), i = 1, 2 such that

2∑
j=1

< ˙(Vijϕj), ψi >L2(ΣT )=< ġi, ψi >L2(ΣT ) ∀ψi ∈ L2([0, T ];H−
1/2(Γ )), i = 1, 2. (2.6)

2.1. Acoustics
At first we are interested in the numerical solution of an acoustic wave propagation problem, i.e.
we consider

σ(x; t) := %c2∇u(x; t), (2.7)

where c > 0 is the speed of the wave propagation. In this case equation (2.1a) can be written as
the vector acoustic wave equation:

ü(x; t)− c2∆u(x; t) = 0 (x; t) ∈ Ω × [0, T ], (2.8)

∆ being the vector Laplace operator, and the component of the tensor G(x,y; t, τ) are given by:

Gij(x,y; t, τ) :=
c

2π

H(c(t− τ)− r)√
c2(t− τ)2 − r2

δij with r := ‖r‖2 := ‖x− y‖2, i, j = 1, 2, (2.9)

where H(·) denotes the Heaviside step function while δij indicates the Kronecker symbol. Conse-
quently, the components of the unknown density ϕ decouple, since equation (2.5) is recast in the
following form:([

V 0
0 V

] [
ϕ1

ϕ2

])
(x, t) =

[
g1
g2

]
(x, t) with V := V11 = V22. (2.10)

Thus, we can retrieve the vector field ϕ by solving one scalar BIE with two different right hand
sides.

Having introduced the energy of the wave equation (2.8) as follows (see [2])

E(u; t) := 1

2

2∑
i=1

ˆ
Ω

u̇i
2(x; t)dx+ c2

2∑
j=1

ˆ

Ω

∣∣∣∣ ∂ui∂xj
(x; t)

∣∣∣∣2 dx
 , (2.11)

it turns out that the quadratic form related to the left-hand side of the energetic weak problem
(2.6) satisfies

E(u;T ) =
2∑
i=1

ˆ

Γ

T̂

0

˙(Viiϕi)(x, t)ϕi(x, t)dtdΓx, i = 1, 2. (2.12)

2.2. Elastodynamics
As second model we consider an elastic wave propagation problem, corresponding to

σ[u](x; t) := λ [∇ · u(x; t)] I+ µ
[
∇u(x; t) +∇u>(x; t)

]
, (2.13)

where µ is the shear modulus and λ is the Lamé parameter. These last two quantities are related
to the Poisson ratio ν by λ := 2µν(1− 2ν)−1. Thus, equation (2.1a) takes the following form

ü(x; t)− c2S∆u(x; t)− (c2P − c2S)∇(∇ · u(x; t)) = 0 (x; t) ∈ Ω × [0, T ]. (2.14)

For this model there are two wave speeds, c2P := (λ+2µ)%−1 and c2S := µ%−1, which are associated
with the pressure wave and the shear wave. Since for any real materials, the shear modulus and
the Lamé parameter are both real positive quantities, it holds cP > cS, i.e. the pressure waves
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travel faster than the shear ones. Consequently, the former is called Primary wave (P-wave in
short), while the latter is called Secondary wave (S-wave in short). Additionally, when Poisson’s
relation is satisfied, i.e. λ = µ, we have cP =

√
3cS.

As in the previous scalar acoustic case, the second order tensor fundamental solution associated
to the differential operator in (2.14) is known in closed form (see [10]) and its components are
given by:

Gij(x,y; t, τ) :=
H[cP(t− τ)− r]

2πρcP

{
rirj
r4

2c2P(t− τ)2 − r2√
c2P(t− τ)2 − r2

− δij
r2

√
c2P(t− τ)2 − r2

}

−H[cS(t− τ)− r]
2πρcS

{
rirj
r4

2c2S(t− τ)2 − r2√
c2S(t− τ)2 − r2

− δij
r2

c2S(t− τ)2√
c2S(t− τ)2 − r2

}
, i, j = 1, 2,

(2.15)

where the Heaviside function models the primary and the secondary wave fronts propagation.
In this case, the components of the unknown density ϕ do not decouple and equation (2.5) still
represents a system of two BIEs.

It can be proved also for the elastic model that, having defined the energy of the system as (see
[5])

E(u; t) := 1

2

2∑
i=1

ˆ
Ω

u̇2i (x; t)dx + c2S

2∑
j=1

ˆ

Ω

∣∣∣∣ ∂ui∂xj
(x; t)

∣∣∣∣2 + (c2P − c2S)
2∑
j=1

ˆ

Ω

∂ui
∂xi

(x; t)
∂uj
∂xj

(x; t)dx

 ,

(2.16)
it holds

E(u;T ) =
2∑

i,j=1

T̂

0

ˆ

Γ

˙(Vijϕj)(x; t)ϕi(x; t)dΓxdt. (2.17)

3. Energetic BEM discretization

For the discretization phase, we consider an uniform decomposition of the time interval [0, T ]
with time step ∆t := T/N , N being a positive integer, generated by N + 1 instants:

tn := n∆t, n = 0, . . . , N (3.1)

and we choose temporally piecewise constant shape functions, although higher degree shape func-
tions can be used. Note that, for this particular choice, the shape functions, denoted by ŵn(t),
are defined as:

ŵn(t) := H(t− tn)−H(t− tn+1), n = 0, . . . , N − 1. (3.2)

For the space discretization, we consider a boundary mesh T∆x(Γ ) := {e1, . . . , eM} constituted by
M flat segments such that length(ei) ≤ ∆x, ei ∩ ej = ∅ if i 6= j and ∪Mi=1ei coincides with Γ if
the boundary is polygonal, or it is a suitable approximation of Γ , otherwise.
The functional background compels one to choose spatially shape functions belonging to L2(Γ ).
Hence, we consider piecewise constant basis functions wm(x), m = 1, . . . ,M related to T∆x(Γ ).

Thus, the unknown approximate solution of problem (2.6) is expressed as:

ϕi(x; t) '
N−1∑
n=0

ŵn(t)

M∑
m=1

α
(n)
i,mwm(x) i = 1, 2, (3.3)

and the test function are replaced by ψi(x; t) = wm̃(x)ŵñ(t). Consequently, the energetic BEM
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discretization produces the linear system

EEEα = β, (3.4)

where the matrix EEE has a block lower triangular Toeplitz structure, since its elements depend on
the difference ∆ñ,n := tñ − tn and in particular they vanish if tñ < tn. Hence, if we set n = 0 so
that we denote by EEE(`) the block obtained when t` := ∆ñ,n = tñ, with ` = ñ = 0, . . . , N − 1, the
linear system (3.4) can be written as

EEE(0) 0 0 . . . 0

EEE(1) EEE(0) 0 . . . 0

EEE(2) EEE(1) EEE(0) . . . 0
...

...
...

. . .
...

EEE(N−1) EEE(N−2) EEE(N−3) . . . EEE(0)




α(0)

α(1)

α(2)

...
α(N−1)

 =


β(0)

β(1)

β(2)

...
β(N−1)

 (3.5)

where the unknowns and right hand side entries are organized as follows

α(`) =
(
α
(`)
1,1, α

(`)
1,2, . . . , α

(`)
1,M , α

(`)
2,1, α

(`)
2,2, . . . , α

(`)
2,M

)>
β(`) =

(
β
(`)
1,1, β

(`)
1,2, . . . , β

(`)
1,M , β

(`)
2,1, β

(`)
2,2, . . . , β

(`)
2,M

)>
,

(3.6)

while the 2M -by-2M block EEE(`) has the following structure

EEE(`) =

(
E(`)
11 E(`)

12

E(`)
21 E(`)

22

)
with E(`)

12 = E(`)
21 . (3.7)

The solution of (3.5) is obtained by a block forward substitution, i.e. at every time instant t` with
` = 0, . . . , N − 1, one computes

z(`) = β(`) −
∑̀
j=1

EEE(j)α(`−j) (3.8)

and then solves the reduced linear system

EEE(0)α(`) = z(`). (3.9)

Procedure (3.8)-(3.9) is a time-marching technique, where the only matrix to be inverted is the
non-singular block EEE(0); therefore the LU factorization needs to be performed only once and stored.
All the other blocks EEE(`) are used to update at every time step the right-hand side. Of course, due
to the whole matrix EEE structure, one can construct and store only blocks EEE(0), . . . ,EEE(N−1) with a
preliminary reduction in the computational cost and the memory requirement.
Finally, we stress that the crucial point for the success of the energetic BEM is the careful numerical
evaluation of the entries of the block EEE(0) that must take place under the assumption that all the
involved integrals are computed with a sufficiently high accuracy.

3.1. Acoustics
For what concerns the discretization of the energetic weak problem related to the acoustic model,
we remark that the block EEE(`) inherits the structure of the space-time integral operator V so that,
due to (2.10), we have:

EEE(`) =

(
E(`) 0
0 E(`)

)
with E(`) := E(`)

11 = E(`)
22 . (3.10)

After a double analytic integration in the time variables, the entries of the M -by-M matrix E(`)

6



are of the form:

E(`)
m̃,m = − 1

2π

1∑
η̃,η=0

(−1)η̃+η
ˆ

Γ

wm̃(x)

ˆ

Γ

wm(y)V(x,y;∆ñ+η̃,η)dΓydΓx, (3.11)

where
V(x,y; t) = H(ct− r)ζ(x,y; t; c) (3.12)

with peculiar kernel function

ζ(x,y; t; c) :=
[
log
(
ct+

√
c2t2 − r2

)
− log (r)

]
(3.13)

In (3.12), the Heaviside function represents the wave front propagation and its contribution is 0 or
1. Moreover, in (3.13) we observe a space singularity of type O(log (r)) as r → 0, which is typical
of the weakly singular kernels related to 2D elliptic problems.

3.2. Elastodynamics

When we deal with elastic problems, all the fourM -by-M sub-blocks E(`)
ij , with i, j = 1, 2, in (3.7)

are non-zero and, after a double analytical integration in time variables, their generic entry for
i, j = 1, 2 has the form

(
E(`)
ij

)
m̃,m

= − 1

2π%

1∑
η̃,η=0

(−1)η̃+η
ˆ

Γ

wm̃(x)
ˆ

Γ

wm(y)Vij(x,y;∆ñ+η̃,η)dΓxdΓy, (3.14)

where

Vij(x,y; t) :=
(
rirj
r4
− δij

2r2

)[
H(cPt− r)

c2P
ξ(x,y; t; cP)−

H(cSt− r)
c2S

ξ(x,y; t; cS)

]
+
δij
2

[
H(cPt− r)

c2P
ζ(x,y; t; cP) +

H(cSt− r)
c2S

ζ(x,y; t; cS)

]
(3.15)

having introduced, besides (3.13), another peculiar kernel function

ξ(x,y; t; c) := ct
√
c2t2 − r2. (3.16)

If 0 ≤ r ≤ cSt < cPt the kernel Vij has a reduced form:

Vij(x,y; t) =
(
rirj
r2
− δij

2

)
(c2P − c2S)t2

cPcS [ξ(x,y; t; cS) + ξ(x,y; t; cP)]
+
δij
2

[
ζ(x,y; t; cP)

c2P
+
ζ(x,y; t; cS)

c2S

]
,

(3.17)
with a space weak singularity of type O (log(r)) for r −→ 0, as highlighted for acoustic problems.
Instead, if cSt < r ≤ cPt, the reduced form of the kernel Vij is

Vij(x,y; t) =
(
rirj
r4
− δij

2r2

)
ξ(x,y; t; cP)

c2P
+
δij
2

ζ(x,y; t; cP)

c2P
, (3.18)

with no space singularity, due to the fact that r is neither null nor negligible in this interval.

Quadrature schemes for the efficient evaluation of all the above integrals can be found in [2, 8].

Remark. The proposed energetic weak formulation, after time integration, can be regarded as
a Newmark scheme with parameters ζ = 1/2 and θ = 1 in the notation of [28], as proved for
scalar problems in [3, 4] in the more general framework of Energetic BEM-FEM coupling. This
particular Newmark scheme is implicit, unconditionally stable and first-order accurate in ∆t.
Furthermore, the theoretical analysis about convergence and space-time accuracy in the context
of elastodynamic problems has been performed in [7]. The theoretical results will be mantained
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also after the coupling with the ACA based compession technique, introduced in the following, as
shown by the intensive numerical tests presented in Section 5.

4. Partially pivoted ACA based fast blocks generation

Depending on the value of wave propagation speed, the wavefront can quickly recover the
obstacle or not. In the first case, blocks E(`) in (3.5) becomes immediately full matrices, while
in the latter case first time blocks are highly sparse, but, due to the Heaviside function in the
kernels, modeling wavefront propagation, for growing index `, i.e. as time goes on, they become
more and more populated until they assume a full structure, too. These two scenarios are shown
in Figure 1 for the acoustic model, where blocks structure is compared at the same time instants
for two different speeds. Consequently, the whole memory storage requirement for the matrix
EEE in (3.4) has to be considered as O(M2N). The above drawback reduces the efficiency of the
energetic BEM. In this regard, we propose a procedure to reduce the computational time and cost
for the generation of the full blocks EEE(`), based on a subtler analysis of their entries, while sparse
blocks do not need to be compressed. For sake of simplicity, we focus our attention on the acoustic
problem but the analysis we are going to explain can be extended to the elastic case, as we will
show at the end of this section.

Figure 1: Structure of the block E(`) at different time instants. Here, we consider a circumference Γ with unitary
radius, approximated by M = 512 segments with length ∆x = π/256, so that E(`) is a 512-by-512 matrix. The
problems evolves in the time interval [0, 8π], decomposed uniformly with N = 2048 instants and characterized by
the velocities c = 1 (top plot) and c = 343 (bottom plot).

4.1. Acoustics
When, for growing times, it becomes c t`−1 > r, then (3.11) reduces to

E(`)
m̃,m = − 1

2π

ˆ

Γ

wm̃(x)

ˆ

Γ

wm(y)Ṽ(x,y; t`)dΓydΓx (4.1)

where

Ṽ(x,y; t) = log

 (
ct+

√
c2t2 − r2

)2(
c(t−∆t) +

√
c2(t−∆t)2 − r2

)(
c(t+∆t) +

√
c2(t+∆t)2 − r2

)
 (4.2)

Thus, when ct`−1 > diam(Γ ), we do not observe any space singularity, since the kernel function
Ṽ(x,y; t`) is smooth for r → 0; further we note that it is symmetric in space variables and in the
limit for t→∞ it tends to become identically zero.

The reduction of the memory storage for the fully populated blocks E(`), generated by the energetic
BEM, rests on the possibility that the kernel Ṽ(x,y; t) admits a low-rank or degenerate expansion,
i.e. it can be decomposed as follows:

Ṽ(x,y; t) =
k∗∑̀
k=0

χk(x; t)ωk(y; t) +Rk∗` (x,y; t) := Sk∗` (x,y; t) +Rk∗` (x,y; t), (4.3)
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where Rk∗` (x,y; t) is the residuum that tends to zero for k∗` →∞, k∗` being the rank of the repre-
sentation. Going back to the definition (4.2) and to the properties of smoothness and symmetry
of Ṽ(x,y; t), for a fixed t and ∆t, it is well known (see [31]) that such kind of kernels can be
represented by a bilinear expansion in terms of eigenvalues and eigenfunctions in space variables.
Anyway, it is better to work in the r variable to have an idea of the value of the rank k∗` in
the degenerate decomposition (4.3). Here, we stress that the following theoretical study is not
necessary for the implementation of the method, since we will employ a rank revealing algorithm
for the computation of the low-rank approximation of the matrices E(`).

Taking into account the definition of the reduced integral kernel (4.2) and the fact that the shape
functions in (4.1) are piecewise constant, a generic matrix element can be approximated as follows:

E(`)
m̃,m ' −

∆x2

2π
Ṽ(r; t`) (4.4)

since the function Ṽ(x,y; t`) is almost flat in r for a large time instant t`. We proceed then in the
estimate by applying to this smooth kernel a Taylor expansion in the r variable, centred in r = 0:

E(`)
m̃,m '

+∞∑
k=0

Ck(t`)r
2k =

(
Sk∗` (r; t`) +Rk∗` (r; t`)

)
, (4.5)

where Sk∗` (r; t`) and Rk∗` (r; t`) represent the summation over the first k∗` + 1 terms of the series
and the related reminder, respectively. In particular, the coefficients Ck(t) can be approximated,
up to negligible terms for large t, as follows:

Ck(t) ' C̃k(t) := −
(c∆x∆t)2

2π

(2k + 1)!

(k!)24k
1

(ct)2k+2
. (4.6)

Now, if we introduce the function

S̃k∗` (r; t) :=

k∗∑̀
k=0

C̃k(t)r
2k (4.7)

and we observe that, since for each k ≥ 0 it holds

(2k + 1)(2k + 1)

2k + 1

r2k

(ct)2k+2
= − 1

c(2k + 1)

∂2

∂t∂r

(
r2k+1

(ct)2k+1

)
,

we have:

S̃k∗` (r; t) =
c(∆x∆t)2

2π

k∗∑̀
k=0

(2k)!

(2k + 1)(k!)24k
∂2

∂t∂r

(
r2k+1

(ct)2k+1

)

=
c(∆x∆t)2

2π

∂2

∂t∂r

 k∗∑̀
k=0

(2k)!

(2k + 1)(k!)24k

( r
ct

)2k+1

 . (4.8)

The argument of the double derivative in formula (4.8) is the general term, calculated in x = r/(ct),
of the expansion centred in x = 0 of the function arcsin(x). Therefore, we approximate the generic
block element in (4.5) with a series of terms (4.8), having as limit for k∗` → +∞ the following
function:

S̃∞(r; t) =
c(∆x∆t)2

2π

[
∂2

∂t∂r
arcsin

( r
ct

)]
= −c(∆x∆t)

2

2π

(
1

t
√
c2t2 − r2

+
r2

t
√

(c2t2 − r2)3

)
.

(4.9)
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Consequently, we can estimate the reminder Rk∗` (r; t) at a fixed k∗` with the difference

Rk∗` (r; t) ' S̃∞(r; t)− S̃k∗` (r; t). (4.10)

Thus, we can conclude that it is possible to obtain a low-rank approximation of the matrix E(`)

and k∗` is the rank required to achieve a given relative accuracy ε > 0 if∣∣Rk∗` (r; t`)∣∣ ' ∣∣∣S̃∞(r; t`)− S̃k∗` (r; t`)
∣∣∣ ≤ ε ∣∣∣S̃∞(r; t`)

∣∣∣ . (4.11)

At the discrete level, the decomposition (4.5) can be written as

E(`) = Sk∗` + Rk∗` with Sk∗` := Q ·W>, (4.12)

where Q and W are both M -by-k∗` matrices and the residuum Rk∗` is such that∥∥Rk∗` ∥∥F
=
∥∥∥E(`) − Sk∗`

∥∥∥
F
=
∥∥∥E(`) −Q ·W>

∥∥∥
F
≤ ε

∥∥∥E(`)
∥∥∥

F
,

where ‖ · ‖F denotes the Frobenius norm of a real matrix and ε > 0 is a parameter representing
the accuracy required to the approximation.

It is worth noting that such low-rank approximation can be computed by different algorithms. In
general, the best low-rank representation up to a given accuracy can be found through the Sin-
gular Value Decomposition (SVD) but this technique is unattractive for large-scale computations
since, due to the computational complexity, it can not lead to fast procedures. On the other hand,
a purely algebraic algorithm as the partially pivoted Adaptive Cross Approximation (ACA) (see
[12, 13]) appears to be very efficient for the application to the energetic BEM matrices, because
it allows to attain the low-rank representation of the blocks E(`) by computing adaptively some
of the rows and the columns of the original matrix, until a stopping criterion related to the set
accuracy εACA > 0 is satisfied.

The starting point of ACA is that every matrix of rank k is the sum of k matrices of rank 1.
Thus, the idea at the basis of ACA algorithm is to improve the accuracy of the approximation by
adding iteratively rank-1 matrices. At iteration k, the matrix Sk is constituted by k rows qi and
k columns wi, i.e.

Sk :=

k∑
i=1

qiw
>
i = Q ·W>. (4.13)

The information is shifted iteratively from the residual to the approximant. More precisely, at
iteration k, given Sk and assuming the row index m̃∗ is known the algorithm is given by the
following six steps:

1. generation of the rows a := E(`)>em̃∗ and R>k em̃∗ := a−
k∑
i=1

(qi)m̃∗ wi;

2. find the column index m∗ := argmaxm |(Rk)m̃∗,m| and compute γk+1 := (Rk)−1m̃∗,m∗ ;

3. generation of the columns b := E(`)em∗ and Rkem∗ := b−
k∑
i=1

qi (wi)m∗ ;

4. find the next row index m̃∗ := argmaxm̃ |(Rk)m̃,m∗ |;
5. compute vectors qk+1 := γk+1E(`)em∗ and wk+1 := E(`)>em̃∗ ;
6. update the approximation Sk+1 = Sk + qk+1w

>
k+1.

The algorithm stops when the new rank-1 approximation does not improve the accuracy of the
approximation. Since at each iteration k, Sk − Sk−1 = qkw

>
k the stopping criteria reads

‖qk‖2‖wk‖2 ≤ εACA‖Sk‖F. (4.14)
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As we can see, ACA provides a purely algebraic and easy to implement tool for the approximation
of the energetic BEM blocks, without requiring any a priori kernel expansion.

Remark. Citing the work of Bebendorf (see [12, 13]), the ACA algorithm was original developed
for asymptotic smooth kernels and for this class of operators its convergence and performances
were theoretically investigated and assessed. Smooth kernels, like Ṽ (x,y; t), do not formally fit
into the definition of asymptotic smoothness of a function. However, in this case the ACA al-
gorithm can be interpreted as a rank-revealing decomposition applicable to kernels that admit
degenerate approximations, as (4.3). At the authors’ knowledge, one of the first application to
smooth kernels can be found in [27].

Remark. Since the success of the proposed ACA based acceleration of the energetic BEM relies on
the possibility of obtaining low-rank approximations of the blocks E(`), we considered a set of such
matrices related to a problem on a circumference Γ with unitary radius, approximated byM = 512
segments with length ∆x = π/256, so that E(`) is a 512-by-512 matrix. The problems evolves
in the time interval [0, 8π], decomposed uniformly with N = 2048 instants and characterized by
the velocity c = 1. In the first row of Table 1, we report the evaluation of the ranks k` of some
time blocks obtained by the execution of the ACA compression with threshold εACA = 1.0e − 04
in (4.14). These values are compared with the rank k∗` obtained by the estimate of the reminder,
calculated for r = 2, i.e. the maximum value that this distance can assume on Γ , and by setting
the threshold ε = 1.0e − 04 in (4.11). The results confirm how the estimate of the rank by the
study of the reminder of the decomposition (4.5) is qualitatively significant and they give us an
idea of how low the rank of the blocks becomes as the time increases. We note that k` is bigger
than k∗` but this phenomenon is not surprising since the ACA does not provide the best numerical
rank but a good approximation. However, the two numerical ranks are of the same order.

` 256 512 768 1024 1280 1536 1792 2048

k` 13 7 7 7 5 4 4 4
k∗` 11 4 3 2 2 2 2 1

Table 1: Comparison between the estimates of the ranks of E(`) given by the execution of the ACA algorithm with
threshold εACA = 1.0e− 04 in (4.14), and by the evaluation of the reminder Rk∗

`
(r; t`) with threshold ε = 1.0e− 04

in (4.11).

Formula (4.11) gives the possibility to know a priori an approximation of each block E(`) low
rank. Under slightly more restrictive hypothesis, we can give an upper bound for the low ranks
of all the blocks to be compressed, not depending on the time index ` but only on the requested
relative accuracy ε. Consequently, we will be able to give an upper bound of the overall compu-
tational cost of the marching-on-time procedure, based on the next result.

Proposition. Let λ :=

√
3 diam(Γ )

c T
be a real positive number depending on problem pa-

rameters and `∗ = dλNe be the minimum natural number greater than or equal to λN . If
ct`∗ >

√
3 diam(Γ ), then for any fixed ε > 0, ∀` ≥ `∗, the rank of block E(`) can be bounded from

above by the solution k∗ε of the following inequality:

2(2k + 3)!

[(k + 1)!]2 12k+1
< ε

and the computational cost of the ACA based compression scheme can be bounded from above by

2k∗ε(1− λ)NM .
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Proof. Looking at (4.7), we rewrite the related series at t = t`, up to the sign, as
+∞∑
k=0

ak, with

ak =
∆x2

2π `2
(2k + 1)!

(k!)24k
x2k.

Since, due to the hypothesis, we have that x ≤ diam(Γ )

c t`∗
<

1√
3
, it holds for any k ≥ 0

ak+1

ak
=

[
1 +

1

2(k + 1)

]
x2 ≤ 3

2
x2 <

1

2
< 1

and we can bound from above the series reminder by

ak+1

1− 1
2

= 2ak+1 ≤
∆x2

π `2
(2k + 3)!

[(k + 1)!]2 12k+1
.

Finally, observing that (4.9) can be rewritten as

∆x2

2π `2 (1− x2) 3
2

we can impose a relative accuracy ε > 0 by

∆x2

π `2
(2k+3)!

[(k+1)!]2 12k+1

∆x2

2π `2 (1−x2)
3
2

= 2
(2k + 3)!

[(k + 1)!]2 12k+1
(1− x2) 3

2 <
2(2k + 3)!

[(k + 1)!]2 12k+1
< ε .

The plot of the function
2(2k + 3)!

[(k + 1)!]2 12k+1
is given in Figure 2 and it is clear that we can solve the

above chain last two members inequality, obtaining the searched upper bound k = k∗ε for the low
rank of blocks E(`),∀` ≥ `∗.

0 5 10 15 20 25 30
10−16

10−12

10−8

10−4

100

k

Figure 2: Plot of the function 2(2k+3)!

[(k+1)!]2 12k+1 .

To conclude, the computational cost of the ACA based compression scheme can be bounded
from above by

N−1∑
`=`∗

2k∗`M ≤ 2 k∗ε(1− λ)NM .

�

Remark. For the N distinct time blocks in (3.5), the overall computational cost can be
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bounded from above by
`∗−1∑
`=0

f`M + 2 k∗ε(1− λ)NM , (4.15)

where f`, ` = 0, · · · , `∗ − 1 are suitable coefficients such that 1 ≤ f` < M . It is clear that,
when c T >>

√
3 diam(Γ ), the parameter λ and consequently `∗ tend to zero, and the above

formula reduces to the second term. On the contrary, if λ → 1−, in principle one does not need
blocks compression, because of the blocks sparsity pattern. Anyway, in this case and for blocks E(`)

related to growing values of coefficients f`, one can make use of well known compression algorithms
for static problems (see e.g. [23, 24, 25]), due to (3.12) and its space singularity highlighted in
(3.13) .

4.2. Elastodynamics
Observations similar to those made for the acoustic integration kernel can be made for the elastic
problem and some of them are resumed below. We start by noting that, for growing time, the
matrix element defined in (3.14) can be rewritten in the following reduced form(

E(`)
ij

)
m̃,m

= − 1

2πρ

ˆ

Γ

wm̃(x)

ˆ

Γ

wm(y)Ṽij(x,y; t`)dΓydΓx (4.16)

where the kernel

Ṽij(x,y; t) =
δij
2

 1

c2P
log


(
cPt+

√
c2Pt

2 − r2
)2

(
cP(t−∆t) +

√
c2P(t−∆t)2 − r2

)(
cP(t+∆t) +

√
c2P(t+∆t)2 − r2

)


+
1

c2S
log


(
cSt+

√
c2St

2 − r2
)2

(
cS(t−∆t) +

√
c2S(t−∆t)2 − r2

)(
cS(t+∆t) +

√
c2S(t+∆t)2 − r2

)



+
c2P − c2S
cPcS

(
rirj
r2
− δij

2

)[
2t

cP
√
c2St

2 − r2 + cS
√
c2Pt

2 − r2

− t+∆t

cP
√
c2S(t+∆t)2 − r2 + cS

√
c2P(t+∆t)2 − r2

− t−∆t
cP
√
c2S(t−∆t)2 − r2 + cS

√
c2P(t−∆t)2 − r2

]

has the same properties of the reduced acoustic kernel Ṽ(x,y; t), i.e. it is smooth for r → 0 and
symmetric w.r.t to the space variables. Moreover, for a fixed r, in the limit for t→∞ it tends to
become identically zero. Since the generic matrix entry defined in (4.16) can be approximated as
follows (

E(`)
ij

)
m̃,m
' −∆x

2

2πρ
Ṽij(r; t`), (4.17)

we proceed with a generalised Taylor expansion in the vectorial variable r = (r1, r2)
> of the right

hand side of the previous relation, leading us to rewrite the element as a series of even terms:(
E(`)
ij

)
m̃,m
'

∞∑
k=0
|α|=2k

Cij
α(t`)r

α, (4.18)

where the argument of the summation depends on a multi-index α := (α1, α2) with |α| = α1+α2,
and Cij

α(t) is a fourth-order tensor having a behaviour in time as O(1/(cSt)|α|+2). Consequently,
we can conclude that the reduced elastodynamic kernels Ṽij(x,y; t) admit a low-rank expansion
and that the ACA algorithm is applicable for the computation of the sub-blocks E(`)

ij , i, j = 1, 2,
in (3.7).
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5. Numerical Results

This section consists of two main parts: the first is devoted to the numerical study of the
efficiency of the proposed method, in terms of accuracy, memory saving and CPU time reduction;
the second presents the application of the scheme to some soft scattering problems.

All the numerical computations have been performed on a cluster with two Intel R© XEON R© E5-
2683v4 CPUs (2.1 GHz clock frequency and 16 cores) by means of parallel FORTRAN R© codes.

5.1. Example 1. Numerical study of the efficiency of the proposed method.
Let Ω0 be the unit disk centered at (0, 0), so that Γ = {x ∈ R2 : x = (cos θ, sin θ)>, θ ∈ (−π, π]}.
We consider the Problem (2.1) with the final time instant T = 4π.

Here, we aim at testing the accuracy and the efficiency of the approximations we obtain by using
the energetic approach combined with the ACA technique. Since, to the best of our knowledge,
for both the acoustic and the elastodynamic problems it is not possible to choose a Dirichlet da-
tum g(x; t) such that an analytical expression of the exact solution of the problem is known, we
construct the corresponding reference solution by solving the problem with the standard energetic
BEM, by using Me degrees of freedom for the space discretization and Ne sub-intervals for the
time interval [0, 4π]. We refer to the reference solution as ϕ∗Me,Ne

(x; t) and to the corresponding
potential function as u∗Me,Ne

(x; t), obtained replacing the analytical solution with ϕ∗Me,Ne
(x; t) in

the integral representation formula (2.3). Moreover, we denote by ϕM,N (x; t) and uM,N (x; t) the
approximate solution and the corresponding potential function obtained with the proposed ACA
based acceleration, choosing the space and time discretization parameters M and N , respectively.

To test the accuracy of our method, we introduce the absolute error

EϕM,N := max
t∈(0,T ]

∥∥ϕ∗Me,Ne
(·; t)−ϕM,N (·; t)

∥∥
L2(Γ )

, (5.1)

associated to the approximate solution ϕM,N (x; t), the error made on the calculation of the ex-
ternal solution at the point x0 = (0, 2)>

Eu
M,N := max

t∈(0,T ]

∣∣u∗Me,Ne
(x0; t)− uM,N (x0; t)

∣∣. (5.2)

and the corresponding Estimated Order of Convergence (EOC), by means of the following standard
formula:

EOC := log2

∣∣∣∣∣ E∗M,N

E∗2M,2N

∣∣∣∣∣ with ∗ = ϕ,u. (5.3)

Moreover, we focus our attention on the percentage of the memory saving, defined as

mem(%) := 100 ·

(
1− 1

N

N−1∑
`=0

k`
M

)
, (5.4)

where k`/M is the ratio between the size of the compressed block E(`) and the size of its complete
(not compressed) form.

5.1.1. Acoustics
For the acoustic problem, we consider the Dirichlet boundary datum g1(x; t) = t4e−2t cos

(
x21 + 2x22

)
and g2(x; t) = 0, so that ϕ2(x; t) = 0. In the sequel, we report the numerical results corresponding
to the parameters Me = 4096 and Ne = 8192 for the computation of the reference solution. In
spite of the previous underlined limitations of the standard energetic BEM, this choice of Me and
Ne is possible, because the considered geometry of Γ allows us to take advantage of the Toeplitz
structure of the blocks E(`), for ` = 0, 1, . . . , Ne − 1. Therefore, in this test we need to construct
and store only the first row of each block. In Figure 3 and 4, we show the behaviour of the
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component of ϕ∗Me,Ne
(x; t) and u∗Me,Ne

(x0; t) in the x1-direction, for two values of the speed of
wave propagation, i.e. c = 1 and c = 343.

Figure 3: Acoustics. 3D view of the component in the x1-direction of the reference density solution ϕ∗Me,Ne
(x(θ); t)

for θ ∈ (−π, π] and t ∈ (0, 4π], for two speeds of wave propagation, i.e. c = 1 (left plot) and c = 343 (right plot).

0 2 4 6 8 10 12

−4

−2

0

·10−2

Time
0 2 4 6 8 10 12

−1.5

−1

−0.5

0

·10−2

Time

Figure 4: Acoustics. Time history of the component in the x1-direction of the reference potential solution
u∗Me,Ne

((0, 2)>; t) for t ∈ (0, 4π] and for two speeds of wave propagation, i.e. c = 1 (left plot) and c = 343

(right plot).

In Tables 2 and 3, we report the errors EϕM,N and Eu
M,N , the corresponding EOCs and the per-

centages of memory saving, obtained by setting in (4.14) εACA = 1.0e− 03, εACA = 1.0e− 04 and
εACA = 1.0e − 05 for the value of the speed of wave propagation c = 1, and εACA = 1.0e − 04,
εACA = 1.0e− 05 and εACA = 1.0e− 06 when we consider c = 343.
We remark that we have obtained the same accuracy (at least up to the second significant digit) for
all the considered choices of the threshold parameters, as well as for the standard (without ACA
based compression) energetic BEM. This phenomenon is due to the fact that the highest value of
the error is in the first time instants, whose corresponding blocks are stored in the standard (not
compressed) format. On the other hand, as time passes, the blocks tends to become identically
zero with decreasing rank and so their compression does not change the maximum error of the
method, but they are necessary for the stability of the global procedure.
As we expected since we use constant shape functions in space and in time, we observe a lin-
ear convergence rate for the approximate density ϕM,N . Indeed, the numerical results show a
quadratic convergence rate for the approximate potential uM,N .
In Tables 2 and 3, the high memory saving obtained with the proposed compression technique is
visible, too. We oberve that the memory saving improves when we increase the problem size. In
particular, when we consider the speed of wave propagation c = 343 and for the values M = 512
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and N = 1024, approximatively only 1.5% entries of the original matrices are needed for all the
three considered parameters εACA.

M N EϕM,N EOC Eu
M,N EOC mem mem mem

εACA = 1.0e− 03 εACA = 1.0e− 04 εACA = 1.0e− 05
8 16 2.67e− 01 3.42e− 02 0.0% 0.0% 0.0%

0.6 1.8
16 32 1.77e− 01 9.87e− 03 12.5% 0.0% 0.0%

1.0 1.9
32 64 8.47e− 02 2.56e− 03 47.9% 39.0% 31.6%

1.0 2.0
64 128 4.22e− 02 6.28e− 04 66.1% 60.9% 57.6%

1.0 1.7
128 256 2.03e− 02 1.92e− 04 74.4% 72.1% 70.2%

1.1 2.1
256 512 9.44e− 03 4.41e− 05 78.4% 77.3% 76.4%

1.2 2.0
512 1024 4.04e− 03 1.09e− 05 80.3% 79.7% 79.4%

Table 2: Acoustics. Energetic BEM combined with the partially pivoted ACA. Absolute errors in L2-norm of the
boundary solution ϕM,N and absolute error of the external solution uM,N , with corresponding EOCs (speed of
wave propagation c = 1).

M N EϕM,N EOC Eu
M,N EOC mem mem mem

εACA = 1.0e− 04 εACA = 1.0e− 05 εACA = 1.0e− 06
8 16 5.94e− 01 8.54e− 03 37.5% 34.4% 25.0%

0.7 0.4
16 32 3.54e− 01 1.13e− 02 67.2% 65.6% 59.4%

1.0 2.0
32 64 1.78e− 01 2.83e− 03 84.6% 83.6% 83.6%

1.0 2.0
64 128 8.95e− 02 7.04e− 04 92.1% 91.5% 91.0%

1.0 2.0
128 256 4.41e− 02 1.78e− 04 96.0% 95.7% 95.0%

1.0 2.0
256 512 2.13e− 02 4.33e− 05 97.6% 97.5% 97.1%

1.1 2.0
512 1024 9.93e− 03 1.06e− 05 98.3% 98.2% 98.0%

Table 3: Acoustics. Energetic BEM combined with the partially pivoted ACA. Absolute errors in L2-norm of the
boundary solution ϕM,N and absolute error of the external solution uM,N , with corresponding EOCs (speed of
wave propagation c = 343).

Note that for the choice of the parameters N = 2M and speed of wave propagation c = 1 the
Courant-Friedrichs-Lewy (CFL) number is β = c∆t∆x = 1.0. However, applying for example the
energetic BEM withM = 512 and N = 4M (β = 0.5) or N =M (β = 2.0), no instabilities appear,
as shown in the plots of Figure 5. Thus, from this and many other numerical tests, the proposed
method does not reveal instability problems, as proved in [3, 4], also in presence of ACA based
compression. Percentages of memory saving for these simulations are given in Table 4: they are
nearly the same, as expected from theoretical results given in Section 4, since in the simulations
the variation is only related to the parameter N .

β
mem mem mem

εACA = 1.0e− 03 εACA = 1.0e− 04 εACA = 1.0e− 05
0.5 80.4% 79.9% 79.4%
1.0 80.3% 79.7% 79.4%
2.0 80.5% 80.0% 79.5%

Table 4: Acoustics. Energetic BEM combined with the partially pivoted ACA. Percentages of memory saving for
different CFL numbers (speed of wave propagation c = 1).
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Figure 5: Acoustics. Component in the x1-direction of the density solution ϕM,N (x(θ);T ) for θ ∈ (−π, π], for the
discretization parameters M = 512 and N = 4M (left plot), N = 2M (center plot) and N =M (right plot).

The reduction of the memory requirement for the energetic BEM gives rise to an acceleration of
the method even in terms of computation time. In the plots of Figure 6, we compare the CPU
time needed by the standard energetic BEM and its ACA based acceleration for the computation
of the blocks E(`). The reported results are relative to the same discretization parameters and
thresholds of Tables 2 and 3. For both the speeds of wave propagation c = 1 (left plot) and
c = 343 (right plot), we underline that the growth of the CPU time (measured in seconds) is
optimal, i.e. O(NM).
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Figure 6: Acoustics. CPU time required to assemble the BEM system by the standard energetic BEM and its ACA
based acceleration with different values of εACA, for the speeds of wave propagation c = 1 (left plot) and c = 343
(right plot).For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.

Finally, in the plots of Figure 7 we show the behaviour in time of the absolute error

Eϕ(t) :=
∥∥ϕ∗Me,Ne

(·; t)−ϕM,N (·; t)
∥∥
L2(Γ )

t ∈ [0, 4π],

where the reference and the approximate solutions are obtained by choosing the discretization
parameters Me = M = 4096 and Ne = N = 8192. In the left graph, the transient phase,
where the blocks are stored in standard (not compressed) format, is cleary visible. For both the
considered speeds of the wave propagation, we observe that, as time passes, the level of error
introduced by the ACA can be controlled by the parameter εACA, since the former is at most of
the same order of magnitude of the latter.
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Figure 7: Acoustics. Time history of the error in L2 norm on the solution of the BEM system. For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.

5.1.2. Elastodynamics
Now, we consider an exterior Dirichlet elastic problem with the velocities cS = 1 and cP = 2 and
the datum g(x; t) = (g1, g2)

>, where

g1(x; t) = t4e−2tx1 and g2(x; t) = t4e−2tx2 x ∈ Γ, t ∈ [0, 4π].

During our numerical testing, we have remarked that the blocks of the energetic BEM do not have
the special Toeplitz structure underlined in the acoustic case. Therefore, we have to compute and
store all their entries, so that we are limited in the choice of the reference parameters Me = 512
and Ne = 2048. In Figure 8, we plot the two components of the reference solution ϕ∗Me,Ne

(x; t) on
Γ , while in Figure 9 we show only the vertical component of the reconstructed field u∗Me,Ne

(x0; t)

at the point x0 = (0, 2)
>, because the horizontal ones is null.

Figure 8: Elastodynamics. 3D view of the component in the x1-direction (left plot) and in the x2-direction (right
plot) of the reference density solution ϕ∗Me,Ne

(x(θ); t) for θ ∈ (−π, π], t ∈ [0, 4π] and the two speeds of wave
propagation cS = 1 and cP = 2.
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Figure 9: Elastodynamics. Time history of the component in the x2-direction of the reference potential solution
u∗Me,Ne

((0, 2)>; t) for t ∈ (0, 4π] and the two speeds of wave propagation cS = 1 and cP = 2.

In Table 5 we report the errors EϕM,N and Eu
M,N , the corresponding estimated order of convergence

(EOC) and the memory saving for three different values of the threshold parameter in (4.14), i.e.
εACA = 1.0e− 03, εACA = 1.0e− 04 and εACA = 1.0e− 05.

M N EϕM,N EOC Eu
M,N EOC mem mem mem

εACA = 1.0e− 03 εACA = 1.0e− 04 εACA = 1.0e− 05
8 32 6.29e− 01 1.81e− 02 0.0% 0.0% 0.0%

1.0 1.9
16 64 3.11e− 01 4.81e− 03 13.8% 0.0% 0.0%

1.1 2.2
32 128 1.49e− 01 1.07e− 03 48.4% 38.7% 30.5%

1.2 1.9
64 256 6.44e− 02 2.88e− 04 65.0% 60.2% 55.9%

1.5 2.4
128 512 2.15e− 02 5.35e− 05 73.2% 71.0% 68.3%

Table 5: Elastodynamics. Energetic BEM combined with the partially pivoted ACA. Absolute errors in L2-norm of
the boundary solution ϕM,N and absolute error of the external solution uM,N , with corresponding EOCs (speeds
of wave propagation cS = 1 and cP = 2).

As in the acoustic case, the choice of the parameter εACA does not influence the errors but only
the memory saving. Furthermore, the EOCs reported in the above table confirm the first order
convergence rate for the density function ϕ and the second order convergence rate for the solution
u. By comparing the results reported in Tables 2 and 5 we note the same level of accuracy and
memory saving of the method for both the acoustic and the elastic models. As a consequence of
the reduction of the memory requirement for the energetic BEM, we have an acceleration of the
construction of the time blocks. In Figure 10 we show that the CPU time (measured in second)
needed to assemble the energetic BEM system is proportional to NM , where the values of the
discretization parameters are the same of the ones in Table 5.
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Figure 10: Elastodynamics. CPU time required to assemble the BEM system by the standard energetic BEM and
its ACA based acceleration with different values of εACA, for the speeds of wave propagation cS = 1 and cP = 2.For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.

Finally, in Figure 11 we show the time history of the absolute L2-error between the approximate
solution ϕ∗Me,Ne

(x; t) obtained with the standard energetic BEM, and the approximate solution
ϕM,N (x; t) obtained with the proposed ACA based acceleration, for the choice of the discretization
parameters Me = M = 512 and Ne = N = 2048. We have considered three different values of
the threshold εACA and, as in the acoustic case, the order of the error on the solution of the BEM
system turns out to be the controlled by the fixed parameter.
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Figure 11: Elastodynamics. Time history of the error in L2 norm on the solution of the BEM system. For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.

5.2. Example 2. Application to scattering problems.
A relevant field where the results in this work apply is in the study of the scattering of acoustic
and elastic waves in homogeneous materials. Here, we consider the scattered field of a plane wave
impinging upon an infinitely long cylindrical scatterer. In a fixed 3D Cartesian coordinates system
(x1, x2, x3)

>, the cylindrical scatter is supposed to be invariant with respect to x3. We suppose
that the incident wave is simultaneously emitted by all the points in a line source parallel to the
x3-axis. Therefore, the incident wave is invariant to x3 and the problem is reduced to a 2D case.
Consequently, we choose to set our simulations in the plane x3 = 0. The total wave field utot

is given by the sum of the incident wave uinc and the scattered one usca, where the latter is the
solution of problem (2.1) with the Dirichlet datum g(x; t) = −uinc(x; t) on the boundary Γ of the
section of the scatterer.
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5.2.1. Acoustics. Cylindrical scatterer with circular-shaped section.
In the first acoustic example we assume that Γ is a circumference of unitary radius centred in
(0, 0)>, scattered by a wave packet

uinc(x; t) =

(
4∑
i=1

e−2(x1−ξi+c(t+t0))2 , 0

)>
with t0 = 0.13 and ξi = 50, 55, 60, 65,

consisting of a sum of four successive waves spaced at regular intervals and travelling in x1-
direction with velocity c = 343. We solve the problem in the time interval [0, 0.15] by means
of the ACA based acceleration of the energetic BEM. For the space discretization we set the
parameter M = 128, while the time interval of interest is subdivided into N = 1049 subintervals.
In this numerical test the ACA threshold is εACA = 1.0e− 04 with a consequently memory saving
of 87.3%.
In Figure 12, we show the snapshots of the total field at different instants and at the x1x2-domain
[−4, 4]× [−4, 4] external to the obstacle.

t = 0.0114 t = 0.0146 t = 0.0196 t = 0.0256

t = 0.0273 t = 0.0282 t = 0.0299 t = 0.0310

t = 0.0388 t = 0.0398 t = 0.0413 t = 0.0423

t = 0.0436 t = 0.0552 t = 0.0585 t = 0.0652

Figure 12: Acoustic scattering problem. Snapshots of the reconstructed total field utot around the circular-shaped
section at different time instants.

5.2.2. Acoustics. Cylindrical scatterer with helicoidal-shaped section.
Now, we consider an acoustic wave generated by a single horizontally propagating incident wave:

uinc(x; t) =
(
e−50(x1−50+c(t+0.13))2 , 0

)>

21



impinging on the obstacle, whose section Γ is given by the parametric representation:{
x1 = ρ(θ) cos θ θ ∈ (−π, π]
x2 = ρ(θ) sin θ,

where
ρ(θ) = 1 +

1

2
cos (6θ).

We refer to a medium where the wave propagation velocity is c = 343. We subdivide the time
interval of interest [0, 0.07] into N = 10352 instants while, for the space discretization, we choose
to decompose the parametric interval (−π, π] in M = 4096 sub-intervals. We set the threshold
parameter εACA = 1.0e− 04. In spite of a bigger obstacle diameter and a halved final time instant
of analysis with respect to the previous simulation, the compression efficiency, in this example
involving a high number of degrees of freedom, is maintained at 86.2%. In the plots of Figure
13, we represent the behaviour of the reconstructed total field at different instants and at the
x1x2-domain [−4, 4]× [−4, 4] external to the obstacle. As we can see, the proposed method allows
the reproduction of an extremely complex scattered field given by the superposition of different
waves.

t = 0.007 t = 0.009 t = 0.011 t = 0.013

t = 0.015 t = 0.017 t = 0.019 t = 0.021

t = 0.023 t = 0.025 t = 0.027 t = 0.029

Figure 13: Acoustic scattering problem. Snapshots of the reconstructed total field utot around the helicoidal-shaped
section of the obstacle at different time instants.

5.2.3. Elastodynamics
In the last example we aim at simulating an elastic wave generated by the incident P-wave

uinc(x; t) =
(
e−20(x1−2+cPt−0.475)2 , 0

)>
,

when the section of the obstacle is a circumference of unitary radius centred in (0, 0)>. Since in
many elastic materials the Poisson’s relation holds, i.e. λ = µ, we assume cS = 1 and cP =

√
3.

The spatial discretization parameter used to compute the approximate solution is M = 128 and
we fix N = 426 equi-spaced time instants within the interval [0, 12]. The threshold parameter is
εACA = 1.0e− 04 that gives rise to a memory saving of 71.1%.
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In Figures 14 and 15 we present several snapshots related to the components in x1- and x2-
directions, respectively, of the reconstructed total field in a square around the obstacle for different
time instants. As expected, the vertical component appears once the solution in x1-direction,
generated by the given Dirichlet datum, bumps against the obstacle and is reflected back.

t = 0.2535 t = 0.5070 t = 0.7606 t = 1.0141

t = 1.2676 t = 1.5211 t = 1.7746 t = 2.0282

t = 2.2817 t = 2.5352 t = 2.7887 t = 3.0423

Figure 14: Elastodynamic scattering problem. Circular-shaped section. Snapshots of the component in the x1-
direction of the reconstructed total field utot around the obstacle at different time instants.

t = 0.2535 t = 0.5070 t = 0.7606 t = 1.0141

t = 1.2676 t = 1.5211 t = 1.7746 t = 2.0282

t = 2.2817 t = 2.5352 t = 2.7887 t = 3.0423

Figure 15: Elastodynamic scattering problem. Circular-shaped section. Snapshots of the component in the x2-
direction of the reconstructed total field utot around the obstacle at different time instants.
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Finally, we change the geometry of the section of the obstacle and we assume that Γ is a kite
described by the parametric equations:{

x1 = cos θ + 0.65 cos 2θ − 0.65 θ ∈ (−π, π]
x2 = 1.5 sin θ,

In Figures 16 and 17 we show the component of the total field in the x1 and x2 directions,
respectively, at the same time instants of the previous simulation. In this case the approximate
density solution has been obtained by a decomposition of the parametric interval into M = 2048
sub-intervals, while the time discretization has been performed by using N = 7095 time steps.
The chosen threshold parameter for the compression of the time blocks is εACA = 1.0e − 04. In
spite of a bigger obstacle diameter with respect to the previous geometry, we observe also in this
example, involving a high number of degrees of freedom, a memory saving of 72.5%. This saving
percentage increases to 76.0% when we deal with a simulation with M = 8192 and N = 28380,
confirming the efficiency of the proposed approach.

t = 0.2535 t = 0.5070 t = 0.7606 t = 1.0141

t = 1.2676 t = 1.5211 t = 1.7746 t = 2.0282

t = 2.2817 t = 2.5352 t = 2.7887 t = 3.0423

Figure 16: Elastodynamic scattering problem. Kite-shaped section. Snapshots of the component in the x1-direction
of the reconstructed total field utot around the obstacle at different time instants.
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t = 0.2535 t = 0.5070 t = 0.7606 t = 1.0141

t = 1.2676 t = 1.5211 t = 1.7746 t = 2.0282

t = 2.2817 t = 2.5352 t = 2.7887 t = 3.0423

Figure 17: Elastodynamic scattering problem. Kite-shaped section. Snapshots of the component in the x2-direction
of the reconstructed total field utot around the obstacle at different time instants.

6. Conclusions and prespectives

We have considered a boundary integral reformulation of the 2D time-domain acoustic and
elastic wave problems, to which one can eventually reduce 3D problems invariant in one of the
cartesian directions. In particular, we have focused our attention on problems defined in un-
bounded regions, external to bounded obstacles, and endowed by a Dirichlet type boundary con-
dition. For the resolution of the corresponding Boundary Integral Equation, we have used the
space-time energetic Galerkin Boundary Element Method. The novelty of this paper consists in
applying the partially pivoted version of the Adaptive Cross Approximation technique to reduce
the computational time and the memory requirement for the matrix blocks of the resulting global
discretization. The proposed numerical procedure allows for a compression of the energetic BEM
blocks without the need of storing a priori the fully populated ones. Out of an extensive numerical
testing, the results we have obtained show the optimality of the global scheme and reveal it to be
accurate and competitive in terms of memory saving and CPU time.
We believe that the proposed approach displays potentials also for what concerns the application
of the energetic BEM method to 3D realistic and seismic oriented cases, where the compression
of the blocks is even more crucial. An investigation in this direction is underway.
Finally, we remark that at the current stage the design and the implementation of a fast, stable
and accurate solver, that allows to increase the capabilities of the energetic BEM, are still open
questions. Even if this issue is crucial to successful applications of the proposed method to large-
scale HPC applications, it is out of the aim of the present pioneering paper. Since these aspects
are worth to be studied, they will be the subject of future investigations.
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