
220 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 3, NO. 1, FEBRUARY 2021

A Real-Time 3D Reconstruction of Staircases
for Rehabilitative Exoskeletons

Marina Raineri , Member, IEEE, Riccardo Monica , Member, IEEE,
and Corrado Guarino Lo Bianco , Senior Member, IEEE

Abstract—In medical contexts, the use of assistive exoskeletons
for the rehabilitation of people with impaired mobility repre-
sents a common practice. Recent advances suggest that, soon,
such mechatronic systems will also be used to assist people in
their everyday life. In order to reach such target, exoskeletons
must become able to perceive the environment. To this purpose, a
system for the parametric identification of a staircase is proposed
in this article. More precisely, given a staircase of unknown geom-
etry, the system identifies its 3D shape. Furthermore, it also
estimates the reciprocal orientation and distance between the
exoskeleton and the staircase. Differently from other approaches,
this result is achieved by means of low cost devices: an iner-
tial measurement unit, two ranging sensors, and an Arm-Cortex
processor. Starting from the ranging sensors acquisitions, the
staircase model is identified in real time, during the execution of
a step. The proposed procedure is based on an extended recursive
total least squares strategy, in order to fully exploit the compu-
tational capabilities of the Arm processor, and it is characterized
by execution times smaller than 10−3 s. The estimation algo-
rithm has been tested on an actual exoskeleton and the resulting
experimental outcomes are compared with the results obtained
through alternative methods.

Index Terms—Staircases 3D reconstruction, ranging sensor,
lower-limb exoskeleton.

I. INTRODUCTION

EXOSKELETONS are assistive devices which can be
used in different contexts. In particular, they can be

adopted to reduce the physical efforts of workers but, more
frequently, they represent powerful instruments for rehabil-
itation of injured people or the assistance of patients with
limited motion capabilities. An exhaustive review on the actual
therapeutic uses and performances of lower limb exoskele-
tons is proposed in [1]. The Authors underline that almost
all the studies in the field neglect the system dynamics. This
is probably motivated by the fact that commercial exoskele-
tons are currently not equipped with self-balancing systems.
Apart from possible technical reasons which could motivate
such choice, another, practical one, can be emphasized. At
the moment, commercial exoskeletons are not directly driven

Manuscript received October 11, 2020; revised December 8, 2020; accepted
January 5, 2021. Date of publication January 11, 2021; date of current version
February 22, 2021. This article was recommended for publication by Associate
Editor M. Munih and Editor P. Dario upon evaluation of the reviewers’
comments. (Corresponding author: Corrado Guarino Lo Bianco.)

The authors are with the Dipartimento di Ingegneria e Architettura,
University of Parma, 43124 Parma, Italy (e-mail: marina.raineri@unipr.it;
riccardo.monica@unipr.it; guarino@ce.unipr.it).

Digital Object Identifier 10.1109/TMRB.2021.3050561

by patients but, conversely, they are operated by special-
ized physiotherapists who activate, depending on the therapy,
proper pre-programmed gaits. The motion is balanced by the
patient, assisted by the operator, through the use of crutches.
Consequently, at a control level, only kinematics problems
need to be handled.

Large part of the papers mentioned in [1] focus on straight
walking movements, while other human activities are poorly
covered. In particular, the ability to ascend and descend stair-
cases is addressed in a few works and, due to the previously
mentioned reasons, it is handled through the adoption of repet-
itive movements. Such choice, which does not pose particular
problems on flat surfaces, complicates the staircases climb-
ing motion. In fact, steps geometry changes depending on
the architectonic context and, moreover, the approach to the
first tread must be adapted depending on the initial distance
between the exoskeleton and the staircase: with commer-
cial devices, such uncertainties are handled, through relevant
physical efforts, by means of the crutches.

This considerations suggest equipping the exoskeleton with
sensors, so as to detect the surrounding environment and, con-
sequently, to adapt its gait. In recent years, a branch of the
research activity in this field focused on the gait identifica-
tion problem, managed through the use of different sensors
like, for example, Inertial Measurement Units (IMU) and
force-sensitive resistors. On the basis of the acquired data the
Authors of [2], [3] were able to determine if the exoskele-
ton is walking on a straight ground, on a ramp, or on a
staircase. In [4], the actual gait phase was identified. The
common aim of these studies was to compute, depending
on the obstacle, the most appropriate exoskeleton reaction.
For example, in [5]–[7] different methodologies have been
developed in order to help people to climb staircases of known
geometry.

When the environment is unknown, two alternative strate-
gies can be adopted. In the first, the perception capabilities
of the person who wears the exoskeleton – acquired for
example by means of electrophysiological measurements sen-
sors, such as electromyography or electroencephalography
sensors – are used to directly drive the unit [8]. In the
second, the environment must be perceived through devices
which are typically based on Time-of-Flight (ToF) technolo-
gies. Laser scanners are the most frequently used devices.
They allow one obtaining, with a single sweep, a complete
point cloud of the environment. Such point cloud needs to be
post-elaborated in order to convert it into parametric surfaces.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-7388-9136
https://orcid.org/0000-0002-1262-6348
https://orcid.org/0000-0002-0046-9242

RAINERI et al.: REAL-TIME 3D RECONSTRUCTION OF STAIRCASES FOR REHABILITATIVE EXOSKELETONS 221

The resulting elaboration represents a challenging task, which
requires specific computational resources.

Early works concerning the plane fitting problem appeared
in [9], [10]. The first paper estimates both the best fitting
plane and its reliability, while the second one proposes a
model which also considers the noise in range data. In the
subsequent years, alternative works addressed the same problem
by using data obtained from different laser sensors. In [11], 3D
georeferenced data were used and two algorithms, based on the
planar regression and the moment of inertia, were proposed; a
SICK laser scanner was used in [12] and a probabilistic plane
fitting concept was suggested for the point cloud elaboration.
An alternative method, which still requires a high computational
burden, appeared in [13]. It was based on the recognition of
common primitives, such as cuboids or cylinders, and on a
neighboring technique. A cheaper solution was adopted in [14].
In that paper a 2D laser scanner, driven by a stepper motor so
as obtain a 3D reconstruction, was used for the acquisition of
the point cloud. In a recent work, focused on the estimation of
the environmental features for an exoskeleton application [15],
an IMU and a depth camera were used to generate a 3D point
cloud. Such point cloud was then processed through a neural
network, so as to classify the surrounding objects. A survey
concerning the known plane fitting methods can be found
in [16]. Such paper underlines that, in practical applications,
a trade-off between speed and quality must be reached.

Other works in the literature specifically address the stair-
case identification problem. A visual system was implemented
in [17] for a humanoid robot, while in [18] a NAO robot
was additionally equipped with a laser range finder. A stepper
motor and a 2D laser scanner were mounted in [19] on a hexa-
pod robot in order to acquire 3D point cloud of a staircase.
Finally, an exoskeleton application was considered in [20]: the
staircase was identified by means of a depth camera mounted
on the patient chest.

All the mentioned techniques can be divided into two main
categories: those based on visual systems and those adopting
laser scanners. The use of such identification systems in com-
mercial exoskeletons is prevented, in part, by cost reasons. For,
example, laser scanners are typically expensive – the cheapest
ones cost some hundred dollars – and their dimensions are inad-
equate for the slim structures of the exoskeletons: the dimension
of the smallest Sick sensor is equal to (6.0×6.0×8.6)·10−2 m.
Approaches based on visual systems may admit reduced sensor
costs, but they still assume the acquisition of a point cloud,
which is later elaborated by means of dedicated boards with
sufficient computational capabilities.

This article proposes a solution to the plane fitting problem
for an exoskeleton, based on low cost devices. In particular,
the target is represented by the parametric identification of
a staircase posed in front of the exoskeleton. The identifica-
tion methods proposed in the literature – see, for example,
the above mentioned ones – hypothesize that (a) a point cloud
is acquired, (b) the point cloud is partitioned, so as to asso-
ciate points belonging to the same surface to a single cluster,
and (c) an appropriate identification algorithm is used on each
cluster in order to identify the parameters of the associated
surface. Such working schema can not be adopted in a low cost

architecture with limited computational capabilities and, for
this reason, in this article an alternative strategy is proposed.
It fuses the three previously mentioned phases into a single
one, which is recursively executed at each sampling time.
Practically, the point cloud is obtained during the motion of the
exoskeleton, by acquiring a sequence of single points and by
immediately processing them in real time through a recursive
method characterized by a limited computational burden.

The surfaces points are acquired by means of a VL53L1X
ranging sensor whose current cost is close to 4 dollars. Such
ranging sensor has already been used in a collaborative envi-
ronment. Tests made in [21], [22] confirm that it can be
successfully used in real-time contexts. It is a solid state
miniaturized sensor, which emits a single laser beam. Every
time a new point is acquired, it is tentatively associated to
one of the possible surfaces, whose parameters are immedi-
ately updated through a Recursive Total Least Squares (RTLS)
approach [23], [24]. The resulting staircase identification algo-
rithm is characterized by a limited computational burden, so
that it has been implemented, as a task, in the exoskeleton con-
trol board: the additional hardware, required for the staircase
identification, is limited to 2 ranging sensors.

The paper is organized as follows. Section II describes the
exoskeleton and the proposed acquisition system. Section III
reports the equations of the adopted RTLS, while Section IV
proposes the recursive algorithm used to identify the
staircase surfaces. Experimental results obtained with an
actual exoskeleton are presented in Section V. In the
same section, comparisons are proposed with the out-
comes of alternative methods. Final conclusion are drawn in
Section VI.

II. THE SYSTEM

The perceptual system developed in this work was con-
ceived for a commercial exoskeleton. Consequently, much
attention was paid to the cost of the acquisition system. Three-
dimensional environments are typically acquired by means of
stereoscopic cameras or lidar scanners but, for economic rea-
sons, in this work a totally different approach is followed and
staircases are detected by means of an economic ranging sen-
sor named VL53L1X produced by STMicroelectronics. Such
sensor has reduced dimensions [(4.9× 2.5× 1.56) · 10−3 m]
and can acquire distances up to 4 m at a frequency of 50 Hz.
While lidar scanners and camera sensors instantly acquire an
entire point cloud, ranging sensors can only measure a single
distance at each sampling instant. Necessarily, the point cloud
is not acquired as a whole, but it grows during the motion.
In particular, when the exoskeleton faces a staircase, it begins
hinting a step and, at the same time, it progressively estimate
the geometry of the staircase itself. When the next touch down
tread is identified, the leg trajectory is modified in order to
correctly conclude the step.

The exoskeleton considered in this work has a structure like
the one shown in Fig. 1. It has two degrees of freedom for
each leg, which are used for the movement of the hip and
the knee, respectively. An IMU is mounted on the torso and
measures the exoskeleton orientation w.r.t. a world reference

222 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 3, NO. 1, FEBRUARY 2021

Fig. 1. Schematic representation of the exoskeleton. Two ranging sensors
measure the distance (red dashed lines) between the calf and the staircase
surfaces. Positions of pl and pr w.r.t. inertial frame {W} are obtained by
solving a forward kinematic problem.

Fig. 2. The two ranging sensors mounted on the exoskeleton calf.

frame. Two ranging sensors are located on the calf of each leg
(see Fig. 2). Such sensors measure the distance between the
calf and the staircase surfaces. The surface estimation system
proposed in this article is based on the knowledge of positions
pl and pr, corresponding to the points in which the laser rays
intercept the staircase surfaces (see also Fig. 1), measured w.r.t.
an inertial frame located on the supporting foot. Both positions
can be calculated from the knowledge of
• the kinematic parameters of the exoskeleton,
• the 4 joint variables (θl1 , θl2 , θr1 , θr2),
• the torso orientation,
• the distances acquired by the ranging sensors.
When one of the two legs starts climbing the staircase, a

point cloud is progressively built and analyzed in order to iden-
tify the step surfaces. During the motion, each sensor draws
an approximately linear segment on each surface (see Fig. 1).
Since an infinite number of planes passes through a single
linear segment, a second one is required in order to uniquely

define the surface: this motivates the use of 2 ranging sensors
for each leg.

The exoskeleton is governed by a Arm Cortex-M4 32bit pro-
cessor running at 168MHz, with a sampling rate of the control
loop equal to 1 kHz. The limited computational capabilities of
such processor imposed developing an identification approach
based on a lightweight strategy. The identification method
proposed in this work exploits the incremental acquisition of
the point cloud. Practically, surfaces are identified by means
of an iterative procedure which progressively updates the sur-
faces parameters. Such approach, which drastically reduces the
number of operations that must be executed at each sampling
instant, will be described in next Section III.

III. THE PROPOSED RECURSIVE TOTAL LEAST

SQUARES APPROACH

Surface identification problems are typically solved by
means of least squares approaches or their orthogonal
counterpart, i.e., Total Least Squares (TLS) strategies.
TLS approaches are applied in different contexts, from
the robot localization problem [25], to the estimation of
parameters [26], [27]. Furthermore, they are used for sig-
nal processing applications and FIR filtering [28], [29], but
also for the estimation of the batteries capacity [30], [31].
Mentioned works propose several recursive TLS techniques,
but the emphasis is always posed on a recursive formulation
of the Singular Value Decomposition (SVD) problem which
must be internally solved. Conversely, for the problem at hand,
the SVD problem, due to the dimension of the involved matri-
ces, has a negligible computational impact, but the sequential
acquisition of the point cloud requires to continuously update
the internal matrices of the algorithm: an iterative procedure
is used in order to reduce the computational burden of the
update process.

In this work, the staircase surfaces are identified by means
of a RTLS approach similar to the one proposed in [23], [24].
Similarly to the standard TLS method [32], [33], each plane is
identified from an over-determined system of equations. Such
equations are obtained by assuming that all the points associ-
ated to the same surface are actually contained by the same
point cloud but, since acquisitions are affected by noise, the
plane coefficients need to be estimated through a best fitting
approach.

Unfortunately, due to the acquisition procedure adopted, it
may happen that points are assigned to the wrong surface. The
RTLS algorithm has been consequently modified, in order to
update surfaces by adding new points or by removing wrongly
assigned ones.

This section will briefly recall the basic concepts of the TLS
strategy and, then, it will show how it can be reformulated into
a recursive form.

Any planar surface can be analytically represented as
follows

vx(x− x̄)+ vy(y− ȳ)+ vz(z− z̄) = 0, (1)

where v := [vx vy vz]T is a generic vector which is orthogonal
to the plane and p̄ := [x̄ ȳ z̄]T is a generic point lying on

RAINERI et al.: REAL-TIME 3D RECONSTRUCTION OF STAIRCASES FOR REHABILITATIVE EXOSKELETONS 223

the plane. A point p := [x y z]T belongs to the plane if it
satisfies (1). Thus, a plane is defined through the knowledge
of vectors v and p̄.

Given a cloud of points pi = [xi yi zi]T , i = 1, 2, . . . , n,
the corresponding best fitting plane can be found by means of
several methods, among which the TLS is the most commonly
used one. The plane coefficients are obtained by minimizing
the squared distances between the given points and the plane
itself, i.e., by minimizing the following cost index

J =
n∑

i=1

[
vx(xi − x̄)+ vy(yi − ȳ)+ vz(zi − z̄)

]2

v2
x + v2

y + v2
z

. (2)

Any cloud of points admits a centroid defined as follows

e := 1

n

n∑

i=1

pi, (3)

or, alternatively,

e := PoT

n
, (4)

where P := [p0 p1 · · · pn] ∈ R
3×n is a matrix which contains

the points and o := [1 1 · · · 1] is a row vector containing n
ones.

As shown in [34], the centroid associated to the point cloud
belongs to the best fitting plane, so that p̄ can be assumed as
follows

p̄ = e. (5)

Bearing in mind (5), (2) can be rewritten into the following
form

J = ∥∥Mpn̂
∥∥2 = n̂TMT

p Mpn̂ (6)

where Mp ∈ R
n×3 and n̂ ∈ R

3 are defined as follows

Mp := (P− p̄o)T =
⎡

⎢⎣
x1 − ex y1 − ey z1 − ez

...
...

...

xn − ex yn − ey zn − ez

⎤

⎥⎦, (7)

n̂ = 1√
v2

x + v2
y + v2

z

⎡

⎣
vx

vy

vz

⎤

⎦. (8)

Evidently, n̂ is an unit vector which is orthogonal to the esti-
mated plane and can be obtained by minimizing J, i.e., by
solving the following optimization problem

n̂∗ = arg min
n̂

{
n̂TMT

p Mpn̂
}

(9)

Since matrix MT
p Mp ∈ R

3×3 is real, symmetric and positive
semi-definite, the solution of (9) is well known and can be
obtained through an SVD decomposition of the same matrix.
In particular, MT

p Mp can always be written as follows

MT
p Mp =

[
û1 û2 û3

]
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

⎡

⎢⎣
ûT

1

ûT
2

ûT
3

⎤

⎥⎦, (10)

where û1, û2 and û3 are the vectors of an orthonormal basis
of R

3 composed by the eigenvectors of Mp and λ1 ≥ λ2 ≥

λ3 ≥ 0 are the corresponding eigenvalues. According to [34],
the solution of (9) is given by n̂∗ = û3, where û3 is the
eigenvector associated to λ3, i.e., to the smallest eigenvalue.

The SVD decomposition of matrix MT
p Mp, owing to its

reduced dimensions, is not time consuming and can be effi-
ciently obtained in real time even through processors with
reduced computational capabilities. However, as anticipated in
Section II, the point cloud is continuously updated, so that the
dimension of Mp continuously grows and the re-evaluation of
MT

p Mp can become time consuming.
The mentioned problem has been overcome by implement-

ing an iterative procedure for the estimation of the plane
coefficients.

Bearing in mind (5) and (7), as well as the definition of
vector o, product MT

p Mp can be expanded as follows

MT
p Mp = (P− p̄o)(P− p̄o)T ,

= PPT − eoPT − PoTeT + eooT eT ,

= PPT − eoPT − PoTeT + neeT .

By further recalling (4), the following equation is obtained

MT
p Mp = PPT − neeT − neeT + neeT = PPT − neeT . (11)

Equation (11) can be used for the recursive update of MT
p Mp.

Let us suppose that at step n, product MT
pn

Mpn
has been

obtained by means of the following equation

MT
pn

Mpn
= PnPT

n − neneT
n , (12)

and that terms Vn := PnPT
n ∈ R

3×3 and en ∈ R
3 have been

stored into 2 variables. At step n + 1, product MT
pn+1

Mpn+1
necessarily assumes the following form

MT
pn+1

Mpn+1
= Pn+1PT

n+1 − (n+ 1)en+1eT
n+1, (13)

where

Pn+1 := [
Pn|pn+1

]
. (14)

Evidently, term Pn+1PT
n+1 in (13) can be obtained, with a

limited computational burden, by means of the following
expression

Vn+1 = Pn+1PT
n+1 = PnPT

n + pn+1pT
n+1 = Vn + pn+1pT

n+1.

(15)

Similarly, en+1 can be updated by means of the following
mean recursion formula

en+1 := Pn+1oT
n+1

n+ 1
= PnoT

n + pn+1

n+ 1
= nen + pn+1

n+ 1
. (16)

As shown in next Section IV, the acquired points may also
be assigned to the wrong surface due to the incremental acqui-
sition of the point cloud. As a consequence, it is important to
have the possibility to remove wrongly assigned points from a
surface, in order to discard or to assign them to a new plane.
The same reasoning followed for the synthesis of (15) and
(16) leads to the following recursive equations, which can be
used to remove a point from a surface

Pn−1PT
n−1 = Vn − pApT

A, (17)

en−1 := nen − pA

n− 1
. (18)

224 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 3, NO. 1, FEBRUARY 2021

IV. PLANE FITTING ALGORITHM

As explained in previous sections, the staircase steps are
identified by means of economic ranging sensors, so that the
point cloud grows, point by point, during the motion. As a
consequence, when a new point pr or pl is acquired, its mem-
bership to a given surface is not known in advance. For such
reason, the first problem to be solved is the identification of
the surface on which acquired points are located.

A staircase is made of a sequence of planar surfaces. A
structure Sid = {n, B, V, e, n̂∗, σ, ok } is defined for each of
them. It contains all the elements required for the analyti-
cal representation of the surface. Each structure is defined as
follows:
• id, surface IDentification number. 0 indicates the ground

plane;
• n = [nr, nl], number of points assigned to Sid, deriving

from the right and the left ranging sensors, respectively;
• B ∈ R

b×3, First Input First Output (FIFO) register which
stores the last b points associated to Sid;

• e := [ex ey ez]T ∈ R
3, centroid of Sid;

• V ∈ R
3×3, matrix PPT used by the RTLS (see

Section III);
• n̂∗ ∈ R

3, normal vector of Sid;
• σn, standard deviation of the distances between the

acquired points and Sid;
• ok, Boolean variable which indicates if the plane estimate

is reliable or not.
Structures are collected into a vector of five elements S :=
[S0, S1, . . . , S4]T , since during a standard climbing step the
acquired points belong to a maximum of 5 surfaces. Even ids
correspond to horizontal surfaces, while odd ids are relative to
vertical ones.

It is natural to assume that, while climbing, the first acquired
points are located on S0, immediately followed by other points
falling on the first riser, S1, then by others lying on the first
tread, S2, and so on.

The functions proposed in Algorithm 1 exploit such idea
for the identification of the planes. The first one, i.e.,
Assign, associates the acquired point to the correct surface,
while the second one, i.e., SurfUpdate, updates the corre-
sponding surface equations through the recursive technique
proposed in Section III. Details of both functions are given in
Sections IV-A and IV-B respectively, while the workflow of
the algorithm is proposed in Algorithm 1. The calling main
program is omitted for conciseness. At each sampling time,
the main program computes the coordinates of a new point
through a forward kinematic function, and then passes them
to Assign. Furthermore, the calling program keeps track of an
index, id, which identifies the surface currently under investi-
gation. During the motion, the first points will certainly belong
to S0, so that, initially, id = 0.

The general purpose version of the algorithm does not make
assumptions concerning the surfaces orientations. However, in
case of regular staircases, even and odd planes can be assumed
horizontal and vertical, respectively. Such assumptions simplify
the RTLS procedure: for horizontal planes the normal vector is
perpendicular to the ground, while for the vertical ones, matrix
V becomes 2-dimensional, so that the SVD procedure is faster.

Algorithm 1: The Algorithm Which Assigns the Point to
the Correct Surface and Updates Its Information

Data: pi, acquired point, Qi, FIFO queue which stores q
points from a single ranging sensor

Result: Sid, id ∈ [0, s], structure for the s surfaces
identified

1 Function Assign(p, Q, S, f , id)
2 if Q is full then
3 Compute z̄ and σz;
4 q← Extract(Q);
5 if IsEven(id) & (σz < thz) & (|qz − z̄| < σz)

then
6 SurfUpdate(q, Sid, f);
7 else if IsEven(id) & (σz ≥ thz) &

(qz > Sid.ez + 1.5 thz) then
8 id← id + 1;
9 SurfUpdate(q, Sid, f);

10 else if IsOdd(id) & (σz ≥ thz) then
11 SurfUpdate(q, Sid, f);
12 else if IsOdd(id) & (σz < thz) then
13 if (qz > Sid−1.ez + thpl) then
14 id← id + 1;

15 SurfUpdate(q, Sid, f);

16 Q← Insert(p);

17 Function SurfUpdate(q, Sid, f)
18 if B is full then
19 r← Extract(Sid.B);
20 d = Dist(r, Sid);
21 if not(|d| ≤ Sid.σn) then
22 RemoveFromSurf (r, Sid, f);

23 Sid.B← Insert(q);
24 AddToSurf (q, Sid, f);
25 if Sid.nr ≥ N & Sid.nl ≥ N then
26 Sid.ok← 1;

27 if id > 0 & Sid.ok = 1 then
28 Shift(Sid−1, Sid);

A. Phase I: Points Are Assigned to the Proper Surface

Each time a new point p := [px py pz]T is acquired, function
Assign is called. As previously asserted, points are preliminary
analyzed in order to allocate them on the correct surface. To
this purpose, they are not immediately assigned to a surface
but, conversely, they are initially stored into a (First Input First
Output) FIFO queue, named Q := [p0 p1 · · ·pq−1] ∈ R

3×q,
which contains the last acquired positions. The queue dimen-
sion, i.e., q, is kept small, so as to guarantee that Q contains
points belonging to a maximum of two adjacent planes. Two
different FIFOs are used, one for the left laser sensor, Ql, and
the other for the right one, Qr. The proper FIFO is passed to
Assign by the calling program, together with a flag f which
is equal to “r” for the right sensor and to “l” for the left one.
Since the two FIFOs are managed with the same strategy, from
now on, Q will be used to indifferently indicate one of them.

RAINERI et al.: REAL-TIME 3D RECONSTRUCTION OF STAIRCASES FOR REHABILITATIVE EXOSKELETONS 225

The algorithm starts assigning points to a surface only when
Q is full. Conversely, new points are simply stored into the
FIFO (line 16). When Q is full (line 2), i.e., when it contains q
elements, stored points are analyzed in order to assign the old-
est one to its corresponding plane. The basic idea is that points
belonging to horizontal surfaces have similar pz components.
As a consequence, if all the points in Q belong to the same
plane, then the standard deviation of their pz component, i.e.,

σz =
√√√√1

q

q−1∑

k=0

(
pzk − z̄

)2
,

with

z̄ = 1

q

q−1∑

k=0

pzk ,

must be smaller than a given threshold, thz > 0. Such threshold
depends on the acquisition noise.

Bearing in mind such idea, the oldest point in Q is extracted
and placed in q := [qx qy qz]T (line 4). If the current id is
even, and σz < thz, i.e., the points in Q belong to a horizontal
surface, and qz ∈ [z̄− σz, z̄+ σz], then point q is assigned to
the plane identified by the current id (lines 5, 6).

Still considering an even id – which means that the cur-
rent plane is horizontal – if σz > thz, then Q also contains
points belonging to a vertical surface: q may belong to
the horizontal plane or to the subsequent vertical one. If
Sid.e := Sid.[ex ey ez]T is the centroid associated to the current
horizontal plane and the analyzed point has a qz component
which is larger than Sid.ez+1.5 thz, then id is incremented and
q is consequently assigned to the subsequent vertical plane
(lines 7–9).

If function Assign is called with an odd id (the current plane
is vertical), until condition σz ≥ thz applies, points are assigned
to the vertical surface (lines 10, 11). Conversely, if σz < thz

a further test is made in order to check if qz is higher than a
minimum value given by the elevation of the past horizontal
plane (Sid−1.ez) plus a threshold thpl. Such threshold corre-
sponds to the minimum height which is expected for a riser
and has been introduced in order to avoid false switches to
the subsequent horizontal plane. If the test is passed, id is
increased and q is correctly assigned (lines 12–15).

Any other situation is considered unacceptable and q is con-
sequently discarded, since it is probably affected by too much
noise.

B. Phase II: The Surfaces Equations Are Updated

When a point is finally assigned to a plane by the Assign
function, the corresponding surface structure Sid must be
updated. Hence Assign calls SurfUpdate(q, Sid, f), which acts
on the plane data. It should be noticed that points q are
assigned to a given surface on the basis of considerations
deriving from the analysis of a short FIFO (Q), so that it
may happen that points are assigned to the wrong surface.
Therefore, function SurfUpdate(q, Sid, f) re-elaborates them
by exploiting the entire point cloud assigned to each surface:

some points will be discarded, others will be removed from a
surface to be assigned to another.

Let us deeper analyze function SurfUpdate(q, Sid, f). Any
new point q, associated to a surface through its id, is stored
into FIFO Sid.B (line 23) for future elaborations and, simulta-
neously, it is used to update the plane equations (line 24). In
particular, AddToSurf (q, Sid, f) updates matrix Sid.V and vec-
tor Sid.e through (15) and (16), respectively. Furthermore, it
calculates Sid.n̂∗ from the eigenvectors of MT

p Mp.
A surface is declared “reliable” when its point cloud con-

tains at least N samples for each one of the two ranging sensors
(lines 25 and 26). For such reason, AddToSurf (q, Sid, f) keeps
track of the number of samples obtained from the left and the
right ranging sensors by properly updating field Sid.n.

The remaining lines of the code are conceived to improve
the surface identification. In the literature, surface outliers are
usually managed through techniques based on Random Sample
Consensus (RANSAC) algorithm [15], [35] or on Least
Trimmed Squares and Principal Component Analysis [36].
Such methods cannot be adopted in this context due to their
computational burden, so that an alternative strategy has been
adopted. In particular, if FIFO B is full, lines 18–22 extract
from it the oldest point, i.e., r, and verify its distance from the
plane: if such distance is higher than the standard deviation of
all the points associated to the plane, i.e., Sid.σn, r is removed
from the surface by means of RemoveFromSurf (q, Sid, f),
which uses equations (17) and (18). Sid.n is updated accord-
ingly. It should be noticed that, as mentioned before, if the
assumption of perpendicular planes can be made, functions
AddToSurf and RemoveFromSurf simplifies since the problem
involves a single dimension for the horizontal planes and two
for the vertical ones.

A final refinement is eventually performed through function
Shift(Sid−1, Sid). If Sid is “reliable”, such function checks if
some of the points of Sid−1 are actually closer to the current
surface. In that case, such points are removed from Sid−1 and
added to Sid.

V. RESULTS

The proposed algorithm has been tested by means of the
experimental exoskeleton shown in Fig. 3. The first exper-
iments involved a single staircase which was approached
from different angles. Generic surfaces were assumed in
Section V-A, while regular surfaces – with perfectly horizontal
treads and vertical risers – were considered in Section V-B.
An extensive set of experiments, involving three different
staircases, was then executed to verify the reliability and
the efficiency of the whole algorithm. The corresponding
results are compared in Section V-C with the analogous ones
achieved through three alternative methods proposed in the
literature.

A. Identification of Staircases With Generic Surfaces

The first tests considered the following three cases. Case A
is relative to a nominal operating condition: the exoskeleton
is posed in front of a staircase whose risers are 0.162 m high
and whose treads are 0.28 m depth. The rising foot is posed

226 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 3, NO. 1, FEBRUARY 2021

Fig. 3. The experimental exoskeleton used for the tests. A yellow circle
points out the ranging sensors positions.

at an initial distance L = 0.305 m from the first riser, so
as to execute a regular climbing step. Conversely, Case B and
Case C consider two unusual working conditions. As shown in
Fig. 4b, in Case B the exoskeleton is counterclockwise turned
around its vertical axis by 23 deg, so as to see the staircase
on its right side. Furthermore, the climbing foot is initially
located closer to the staircase, more precisely at a distance
L = 0.27 m from the first riser. Conversely, in Case C (see
Fig. 4c) the exoskeleton is clockwise turned by 23 deg around
its vertical axis and its foot is posed at a distance L = 0.49 m
from the staircase. Cases B and C are unusual in real oper-
ating conditions since, for evident reasons which also include
safety, therapists who assist the patient activate the climbing
procedure only when the exoskeleton is placed exactly in front
of the staircase. Both cases were considered so as to verify
the robustness of the approach. Indeed, they admit different
distances between the two sensors and the first step of the stair-
case and different incidence angles between the laser beams
and the steps surfaces. In facts, both variables influence the
sensors precision and, consequently, may affect the estimate
accuracy. Furthermore, in both configurations, points acquired
at the same sampling instants by the 2 sensors may belong to
different surfaces, thus complicating their assignment to the
right plane. In all the three cases, a trajectory was planned
for the right leg, so as to make it climb the first step. The
acquired points were processed in real time by means of a Arm
Cortex-M4 32bit processor running at 168 MHz. The follow-
ing thresholds were assumed for Algorithm 1: thz = 8·10−3 m
and thpl = 13 · 10−2 m.

Figure 4 shows the outcomes of the three experiments.
Since this work focuses on the staircase estimation, a simple
parabolic trajectory was used, and the same was not updated
after the steps were identified. A red asterisk along the trajec-
tory points out the position in which S2 is first identified. As

Fig. 4. Staircase reconstruction obtained through Algorithm 1 when (a) the
exoskeleton is located frontally w.r.t. the staircase, (b) it is turned anticlock-
wise or (c) clockwise around its vertical axis. Light blue solid segments are
used for the actual profile of the staircase, while the estimated surfaces are
represented through magenta dashed lines. The thick green dashed segment
points out the exoskeleton orientation w.r.t. the staircase, while the black dot-
ted curve is the foot trajectory. A red asterisk along such trajectory indicates
the position in which the estimate of S2 is considered reliable. Colors of the
acquired points change depending on the surface to which they are assigned:
blue points have been used for treads, while green ones have been used for
risers. Discarded points are highlighted in red.

can be noticed, the surface is known when the foot is still far
from its final destination, so that the trajectory can be promptly
modified in order to obtain the best foot placement.

Table I makes it possible to evaluate quantitatively the out-
comes of the three test cases. Columns 2, 4, and 6 show, for
each id, angle α between the normal vectors of the actual and
the estimated surfaces (see also Fig. 5). Similarly, columns 3,
5, and 7 list distances d between the centroids of the esti-
mated surfaces and the actual planes. In all the test cases,
a good matching between identified and actual surfaces was
obtained. The sole exceptions are represented by surfaces S3
for Cases A and B and S2 for Case C. The reason of such
performance deterioration is given by the vibrations in the
exoskeleton structure, which appear at the end of each tran-
sient. Due to such vibrations, the acquisition precision reduces
and points are spread on the corresponding surface (see Fig. 4).

The most important row in Table I is the one relative to
S2, i.e., the touch down surface. For Cases A and B, α is
always smaller than 3 deg and the centroids associated to the

RAINERI et al.: REAL-TIME 3D RECONSTRUCTION OF STAIRCASES FOR REHABILITATIVE EXOSKELETONS 227

Fig. 5. The blue surface with its normal vector n̂ represents a plane of
the actual staircase, while the red surface is identified through the strategy
proposed in Section IV. α is the angle between the normal vectors, d is the
distance between the point cloud centroid and the staircase surface, e is the
contact point elevation error.

Fig. 6. Case A: staircase identification under the hypothesis of horizontal
treads and vertical risers. (a) top view (b) side view. Colors are the same used
for Figure 4.

surfaces are closer than 3 millimeters to the actual staircase.
Such tolerances make it possible to reasonably select the final
touch down position for the foot. In such position, the height
of the estimated tread is equal to 0.1579 m for Case A, i.e.,
the estimated tread was roughly 4 · 10−3 m lower than the
actual one (see error e in Fig. 5), while for Case B it is equal
to 0.1603 m, i.e., the step was 2 · 10−3 m lower than the real
one. As anticipated, Case C returned the worst tread estima-
tion. However, in the touch down position the height of the
estimated tread is equal to 0.1551 m, i.e., the error is similar
to the one obtained for Case A. It is important to point out
that such precisions have been achieved with ranging sensors
whose acquisition noise, measured under static conditions, is
equal to ±1.5 · 10−3 m.

TABLE I
ANGLE α BETWEEN NORMAL VECTOR n̂ OF THE ACTUAL SURFACE AND

n̂∗ OF THE ESTIMATED ONE, AND DISTANCE d BETWEEN POINT CLOUD

CENTROIDS p̄ = e AND THE STAIRCASE SURFACES

Fig. 7. Case B: staircase identification under the hypothesis of horizontal
treads and vertical risers. (a) top view (b) side view. Colors are the same used
for Figure 4.

TABLE II
RESULTS OBTAINED BY ADMITTING HORIZONTAL TREADS AND

VERTICAL RISERS. DATA ARE REPORTED IN THE SAME WAY OF TABLE I.
ANGLE α BETWEEN NORMAL VECTOR n̂ OF THE ACTUAL SURFACE AND

n̂∗ OF THE ESTIMATED ONE, AND DISTANCE d = e BETWEEN POINT

CLOUD CENTROIDS p̄ = e AND THE STAIRCASE SURFACES

B. Identification of Staircases With Horizontal Treads and
Vertical Raisers

So far, the proposed algorithm hypothesized the iden-
tification of staircases whose surfaces may be generically
oriented in the space. However, it is almost always possible to
assume that treads are horizontal and risers are vertical. The
identification algorithm considerably simplifies: the treads esti-
mation process becomes one-dimensional, while the risers one
becomes two-dimensional. Algorithm 1 can also manage such

228 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 3, NO. 1, FEBRUARY 2021

TABLE III
A COMPARATIVE ANALYSIS BETWEEN THE EXPERIMENTAL RESULTS OBTAINED IN THIS WORK WITH THE HTVR METHOD,

AND THE ONES ACHIEVED WITH THE ALTERNATIVE TECHNIQUES PROPOSED IN [18], [19], AND [20].
THE STATISTICS OF THE FIRST 3 ROWS REFER TO 3 DIFFERENT STAIRCASES

Fig. 8. Case C: staircase identification under the hypothesis of horizontal
treads and vertical risers. (a) top view (b) side view. Colors are the same used
for Figure 4.

simplified problems. In particular, the complexity of functions
AddToSurf and RemoveFromSurf reduces.

The same points acquired for Cases A, B, and C have
been re-elaborated by admitting such hypothesis. The obtained
results are visually shown in Figs. 6, 7, and 8, while numerical
errors are listed in Table II. Due to the imposed parallelism,
errors d and e coincides, and α is always 0 for all the treads.
A comparison with the homologous results listed in Table I
shows that, due to the reduced degrees of freedom, slightly
higher errors are obtained. However, the maximum errors for
S2, i.e., the foot contact surface, is equal to −6.36 · 10−3 m.

In terms of computational time, the proposed algorithm
meets the expectations. With the adopted processor, i.e., a
Cortex-M4 32bit running at 168 MHz, the average compu-
tational time for the general purpose algorithm was equal to
0.685±0.437 ·10−3 s. For the horizontal treads version, com-
putational times reduce to 0.427± 0.132 · 10−3 s. Practically,

the identification algorithm is sufficiently fast to be executed
between two subsequent acquisitions of the laser sensors,
whose sampling time is equal to 50 · 10−3 s.

C. Reliability Tests on Different Staircases

The approach reliability has been tested through a set of
additional experiments involving 3 different staircases. For
each of them, 20 different positions and orientations of the
exoskeleton were considered. The experimental results are
summarized in the first 3 rows of Table III and have been
obtained by assuming Horizontal Treads and Vertical Risers
(HTVR). In the same table, they are compared with the
outcomes of the following alternative systems:
• Reference [18] a NAO robot, additionally equipped with

a laser range finder (Hokuyo URG-04LX);
• Reference [19] a hexapod robot, equipped with a stepper

motor and a 2D laser range finder (Sick LMS111) in order
to acquire 3D point cloud of a staircase;

• Reference [20] an exoskeleton, equipped with a depth
camera (Percipio FM830).

In terms of accuracy, the performance of the novel method is
comparable with the ones achieved in [18] and [19]. Better
results are obtained in [20], which however use a dense point
cloud, which is elaborated offline by means of MATLAB.
As shown by the last two columns of Table III, different
conclusions can be drawn in terms of computational times
and implementation costs: despite the low power processor
adopted, the novel method is evidently the fastest and its
implementation cost is very small.

Summarizing, for all the experiments, the elevation error
associated to the touch down position of the foot was lower
than 10−2 m. Such tolerance is acceptable for the application
at hand, since minor errors are compensated by the patient who
wears the exoskeleton. Furthermore, if required, additional
ranging sensors could be added to the system, in order to
improve the final approach to the step.

VI. CONCLUSION

The algorithm proposed in this work was conceived to iden-
tify in real time the 3D shape of a staircase, so as to allow
an exoskeleton to consequently adapt its gait. Differently from
other strategies in the literature, the target is reached by means
of a low cost system based on an IMU, two ranging sensors,
and an Arm Cortex processor. Despite the architectural sim-
plicity, the 3D shape of the staircase is reconstructed with

RAINERI et al.: REAL-TIME 3D RECONSTRUCTION OF STAIRCASES FOR REHABILITATIVE EXOSKELETONS 229

a precision which is sufficient for the correct planning of
a climbing step. Furthermore, the computational time of the
algorithm is fully compatible with the cycle time of the system.

A possible drawback of the method proposed in this work
is related to the incremental acquisition of the point cloud. In
fact, each new sample point is obtained at a different instant
and its Cartesian position is computed by solving a forward
kinematics problem. As a consequence, an accurate knowl-
edge of the kinematic parameters of the system is required in
order to properly build the point cloud: the mentioned accuracy
was achieved through a careful identification of the system
parameters. Such accuracy can also be affected by unmeasured
deformations of the structure. As previously reported, good
estimates have been obtained despite the system vibrations.
This result was possible because the exoskeleton structure is
sufficiently rigid and thanks to the angular sensors located
on the joint axes, which compensate for possible backslashes
along the actuation chains.

The limited computational burden of the proposed method
will allow, in the future, to improve the identification precision
by processing the signals of additional sensors. Currently, the
on-line gait planning problem is under investigation: once the
staircase has been identified, the exoskeleton step must be
adapted, so as to smoothly and correctly reach the final touch
down position.

REFERENCES

[1] D. Pinto-Fernandez et al., “Performance evaluation of lower limb
exoskeletons: A systematic review,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 28, no. 7, pp. 1573–1583, Jul. 2020.

[2] J. Jang, K. Kim, J. Lee, B. Lim, J.-K. Cho, and Y. Shim, “Preliminary
study of online gait recognizer for lower limb exoskeletons,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. (IROS), 2017,
pp. 5818–5824.

[3] F. Gao, G. Liu, F. Liang, and W.-H. Liao, “IMU-based locomotion mode
identification for transtibial prostheses, orthoses, and exoskeletons,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 6, pp. 1334–1343,
Jun. 2020.

[4] I. Kang, P. Kunapuli, and A. J. Young, “Real-time neural network-based
gait phase estimation using a robotic hip exoskeleton,” IEEE Trans. Med.
Robot. Bionics, vol. 2, no. 1, pp. 28–37, Feb. 2020.

[5] H.-Y. Huang, J.-S. Chen, and C.-E. Huang, “Toward the gait anal-
ysis and control of a powered lower limb orthosis in ascend-
ing and descending stairs,” Procedia Eng., vol. 79, pp. 417–426,
Jan. 2014. [Online]. Available: http://www.sciencedirect.com/science
/article/pii/S1877705814009424

[6] R. Auberger, M. F. Russold, R. Riener, and H. Dietl, “Patient motion
using a computerized leg brace in everyday locomotion tasks,” IEEE
Trans. Med. Robot. Bionics, vol. 1, no. 2, pp. 106–114, May 2019.

[7] Z. Li et al., “Hybrid brain/muscle signals powered wearable walking
exoskeleton enhancing motor ability in climbing stairs activity,” IEEE
Trans. Med. Robot. Bionics, vol. 1, no. 4, pp. 218–227, Nov. 2019.

[8] D. Novak and R. Riener, “A survey of sensor fusion methods in
wearable robotics,” Robot. Auton. Syst., vol. 73, pp. 155–170, Nov.
2015. [Online]. Available: http://www.sciencedirect.com/science/article
/pii/S0921889014001705

[9] Y. Kanazawa and K. Kanatani, “Reliability of plane fitting by range sens-
ing,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, May 1995,
pp. 2037–2042.

[10] C. Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto,
“Comparison of local plane fitting methods for range data,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1, Dec. 2001,
pp. 663–669.

[11] O. Fernández, “Obtaining a best fitting plane through 3D geo-
referenced data,” J. Struct. Geol., vol. 27, no. 5, pp. 855–858,
2005. [Online]. Available: http://www.sciencedirect.com/science/article
/pii/S0191814105000143

[12] J. W. Weingarten, G. Gruener, and R. Siegwart, “Probabilistic plane
fitting in 3D and an application to robotic mapping,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA04), vol. 1, Apr. 2004, pp. 927–932.

[13] S.-W. Kwon, F. Bosche, C. Kim, C. T. Haas, and K. A. Liapi,
“Fitting range data to primitives for rapid local 3D modeling
using sparse range point clouds,” J. Autom. Construct.,
vol. 13, no. 1, pp. 67–81, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0926580503000773

[14] Z. Tian, F. Gao, Z. Jin, and X. Zhao, “Dimension measurement of hot
large forgings with a novel time-of-flight system,” Int. J. Adv. Manuf.
Technol., vol. 44, no. 1, pp. 125–132, Sep. 2009. [Online]. Available:
https://doi.org/10.1007/s00170-008-1807-8

[15] K. Zhang et al., “Environmental features recognition for lower limb
prostheses toward predictive walking,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 27, no. 3, pp. 465–476, Mar. 2019.

[16] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of sur-
face normal estimation methods for range sensing applications,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2009, pp. 3206–3211.

[17] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade, “GPU-accelerated real-time 3D tracking for humanoid loco-
motion and stair climbing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), 2007, pp. 463–469.

[18] S. Oßwald, J. Gutmann, A. Hornung, and M. Bennewitz, “From 3D
point clouds to climbing stairs: A comparison of plane segmentation
approaches for humanoids,” in Proc. IEEE-RAS Int. Conf. Humanoid
Robots (Humanoids), 2011, pp. 93–98.

[19] Z. Zheng, G. Zhong, and H. Deng, “A method to detect stairs with three-
dimensional scanning for hexapod robot stair climbing,” in Proc. IEEE
Int. Conf. Mechatronics Autom. (ICMA), 2016, pp. 2541–2546.

[20] Y. Feng, L. Xia, Y. He, C. Wang, Z. Yan, and X. Wu, “Stairs reconstruc-
tion with 3D point cloud for gait generation of lower limb exoskeleton
robot,” in Proc. IEEE Int. Conf. Robot. Biomim. (ROBIO), 2019,
pp. 2019–2024.

[21] S. Kumar, C. Savur, and F. Sahin, “Dynamic awareness of an industrial
robotic arm using time-of-flight laser-ranging sensors,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2018, pp. 2850–2857.

[22] S. Kumar, S. Arora, and F. Sahin, “Speed and separation monitoring
using on-robot time-of-flight laser-ranging sensor arrays,” in Proc. IEEE
Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2019, pp. 1684–1691.

[23] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast plane detec-
tion and polygonalization in noisy 3D range images,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots and Syst. (IROS), Sep. 2008, pp. 3378–3383.

[24] R. Dubé et al., “Incremental-segment-based localization in 3-D point
clouds,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1832–1839, Jul.
2018.

[25] D. L. Boley, E. S. Steinmetz, and K. T. Sutherland, “Robot localization
from landmarks using recursive total least squares,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), vol. 2, Apr. 1996, pp. 1381–1386.

[26] D. Kubus, T. Kroger, and F. M. Wahl, “On-line estimation of iner-
tial parameters using a recursive total least-squares approach,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2008,
pp. 3845–3852.

[27] S. Rhode and F. Gauterin, “Online estimation of vehicle driving resis-
tance parameters with recursive least squares and recursive total least
squares,” in Proc. IEEE Intell. Veh. Symp. (IV), Jun. 2013, pp. 269–276.

[28] C. E. Davila, “An efficient recursive total least squares algorithm for
FIR adaptive filtering,” IEEE Trans. Signal Process., vol. 42, no. 2,
pp. 268–280, Feb. 1994.

[29] D.-Z. Feng, X.-D. Zhang, D.-X. Chang, and W. X. Zheng, “A fast recur-
sive total least squares algorithm for adaptive FIR filtering,” IEEE Trans.
Signal Process., vol. 52, no. 10, pp. 2729–2737, Oct. 2004.

[30] G. Plett, “Recursive approximate weighted total least squares
estimation of battery cell total capacity,” J. Power Sources,
vol. 196, no. 4, pp. 2319–2331, Feb. 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037877531001654X

[31] T. Kim, Y. Wang, Z. Sahinoglu, T. Wada, S. Hara, and W. Qiao,
“A rayleigh quotient-based recursive total-least-squares online maxi-
mum capacity estimation for lithium-ion batteries,” IEEE Trans. Energy
Convers., vol. 30, no. 3, pp. 842–851, Sep. 2015.

[32] G. Golub and C. Van Loan, “An analysis of the total least squares
problem,” SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, 1980.

[33] S. Van Huffel and J. Vandewalle, “Analysis and solution of the non-
generic total least squares problem,” SIAM J. Matrix Anal. Appl., vol. 9,
no. 3, pp. 360–372, 1988.

[34] Y. Nievergelt, “Total least squares: State-of-the-art regression in numer-
ical analysis,” SIAM Rev., vol. 36, no. 2, pp. 258–264, 1994.

[35] X. Qian and C. Ye, “NCC-RANSAC: A fast plane extraction method
for 3-D range data segmentation,” IEEE Trans. Cybern., vol. 44, no. 12,
pp. 2771–2783, Dec. 2014.

[36] S. Miyagawa, S. Yoshizawa, and H. Yokota, “Trimmed median PCA for
robust plane fitting,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Oct. 2018, pp. 753–757.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

