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Abstract: Investigating the network response to node removal and the efficacy of the node removal
strategies is fundamental to network science. Different research studies have proposed many node
centralities based on the network structure for ranking nodes to remove. The random walk (RW) on
networks describes a stochastic process in which a walker travels among nodes. RW can be a model
of transport, diffusion, and search on networks and is an essential tool for studying the importance
of network nodes. In this manuscript, we propose four new measures of node centrality based on
RW. Then, we compare the efficacy of the new RW node centralities for network dismantling with
effective node removal strategies from the literature, namely betweenness, closeness, degree, and
k-shell node removal, for synthetic and real-world networks. We evaluate the dismantling of the
network by using the size of the largest connected component (LCC). We find that the degree nodes
attack is the best strategy overall, and the new node removal strategies based on RW show the highest
efficacy in regard to peculiar network topology. Specifically, RW strategy based on covering time
emerges as the most effective strategy for a synthetic lattice network and a real-world road network.
Our results may help researchers select the best node attack strategies in a specific network class and
build more robust network structures.

Keywords: real-world networks; node centrality; random walk processes; network robustness; network
random walks

MSC: 37M10

1. Introduction

Numerous studies have been conducted in recent years to explore the response of
real-world networks to the removal of nodes [1–7]. These investigations simulate the
consequences of node removal (attack) on the network and have applications in diverse
scientific fields, such as ecology [5], transportation [8], informatics [9], neural [10,11], and
social networks [12,13].

The main objectives of these studies are twofold. Firstly, they aim to assess networks’
robustness by measuring the system’s ability to maintain functionality after link and node
removal. Secondly, they seek to identify the link and node removals that cause the most
significant damage to the network, thereby uncovering the key players that significantly
influence network functioning.

Analyzing attack strategies provides valuable insights into enhancing network re-
silience by anticipating threats and identifying elements requiring protection [5,6].
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An attack strategy refers to the identification and implementation of methods or
techniques that aim to disrupt or dismantle a network [5–7]. It also plays a crucial role in
situations where network disruption is necessary, such as halting the spread of a disease or
a computer virus or impeding the growth of a cancer cell [14–16].

Many centralities’ measurements have been proposed to select important nodes to
remove. See [17] for a summary. Methods to measure node centralities are generally based
on the topological structure of the network, such as removing nodes while accounting for
their degree and betweenness [5,17,18]. The betweenness node removal strategy, which
removes nodes according to their recalculated betweenness centrality, yields the best attack
in 70–80% of the cases [17].

Other methods analyze dynamic processes on networks and then identify important
nodes for these processes.

The graph burning problem (GBP) is introduced in the context of social contagion, and
it may also model the spread of viral infections under a very idealistic context [19,20]. GBP
furnishes the burning number, which quantifies how vulnerable to “contagion” a network
is. In addition, the solution of GBP ranks node importance and consists of a set of critical
nodes to attack to halt the epidemic spreading.

The firefighter problem (FFP) defines a discrete-time model of a diffusive process
(e.g., a fire, a flood, an infectious disease, information, a computer virus, or an invasive
species) where the fire originates from a set of network nodes [21,22]. A solution to the FFP
furnishes the defending actions that have to be taken to optimally contain the spreading
process by minimizing the number of burnt nodes to stop the diffusive process [22].

The random walk (RW) on networks describes a stochastic process in which a walker
travels among nodes along network links [23,24]. RW can be a model of transport, diffusion,
and search on networks [25,26]; it is a handy tool for studying the structure of networks [23]
and the importance of network nodes [27–29].

This manuscript joins network attack simulation and random walk processes on
networks. Here, we propose four new measures of node centrality based on RW. The new
removal strategies focus on important notions in RW walks theory, such as the covering
time, start node, and stop node. Then, we test the proposed node centralities as effective
strategies to rank nodes to remove to dismantle the network on synthetic and real-world
networks. We compare the efficacy of the new node removal strategies based on random
walks with effective node removal strategies from the literature, namely betweenness,
closeness, degree, and k-shell node removal.

2. Methods
2.1. Basic Notions

In this work, we consider binary and undirected networks G(V, E), where V and E
are the sets of nodes (vertices) and links (edges). N = |V| indicates the number of nodes,
and L = |E| indicates the number of edges. We assume G to be undirected. The symbol
A denotes the N × N adjacency matrix of G, having entries aij, for i, j = 1, . . . , N, such
that aij = 1 if (i, j) ∈ E, and aij = 0 otherwise. A path between two nodes, u and w, is
a sequence of nodes 〈v1, . . . , vk〉 with v1 = u and vk = w, such that (vi, vi+1) ∈ E for
i = 1, . . . , k− 1. The length of the path equals the number of edges it contains. The distance,
dij, is the shortest path length between node i and j. In this work, all considered networks
are connected, i.e., a path exists between each pair of nodes in V.

The problem of finding if one graph is a subgraph of another graph is called Subgraph
Isomorphism [30].

Given a pair of graphs, H(VH , EH) and G(VG, EG), the problem of checking if H is a
subgraph of G consists in finding a bijection, f : VH → VG , such that ((u, v))∈ EH if and
only if (( f (u), f (v)))∈ EG.
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2.2. Synthetic Networks

1. ER: classical Erdös–Rényi (ER) random graph [31]. In the ER model, each edge has a
fixed probability of being present or absent, independent of the other edges. The ER
graph is defined by two parameters only: the number of nodes, N; and the probability
of drawn links, p. We indicate the ER(N, p) of the N (number of nodes) and p (proba-
bility of links) between each pair of vertices. We investigate ER network with N = 80
and p = 0.15.

2. LTC: rectangular (or square) lattice (LTC) complex network. A lattice graph is called a
mesh or grid graph in graph theory. The LTC is a specific lattice graph where nodes
form a grid with square meshes. The LTC can be defined by two parameters, x and y,
indicating the number of nodes along each side. We simulate two LTC(x, y) networks
by choosing x = 20 and y ∈ 5, 20 [32].

3. BBT: balanced binary tree [33–35]. A balanced binary tree is a tree data structure
in which the difference in height between the left and right subtrees of any node is,
at most, one. A reduced version (for space constraints) with 50 nodes is shown in
Figure 1.
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Figure 1. The picture displays examples of the synthetic networks used in this study. From left to
right, the reported networks are BBT (50 nodes), ER (n = 80; p = 0.15), and LTC (20, 5).

For the statistical relevance of the results obtained with ER random graphs, we per-
formed 103 graph generations.

Figure 1 depicts examples of the synthetic networks used in this research.

2.3. Real-World Complex Networks

1. Air Control: This network was constructed from the USA’s FAA (Federal Aviation
Administration) National Flight Data Center (NFDC), Preferred Routes Database
(Preferred Routes Database: http://www.fly.faa.gov/ accessed on 29 October 2023).
The nodes in this network represent airports or service centers, and the links are
created from strings of preferred routes recommended by the NFDC [36].

2. Arenas Email: email communications among people working within a medium-sized
university (i.e., Universitat Rovira i Virgily, Spain) with about 1700 employees [25].
The nodes are employees, and the links describe the emailing among them.

3. Barcelona Flow: models the traffic flow in Barcelona (Spain). The nodes represent
intersections among roads, and the links represent roads [36].

http://www.fly.faa.gov/
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4. UK Faculty: personal friendship network within a faculty at a university in the UK.
This network comprises 81 vertices representing individuals and edges representing
their friendship relations [37].

5. Netscience: a co-authorship network focusing on scientists involved in network
science. The network represents collaborations among these scientists [29]. The nodes
are scientists, and the links depict the co-authorship in scientific papers.

6. Beijing 2nd: represents the second ring road of Beijing City, China’s capital. The nodes
and links represent road intersections and roads, respectively [38].

7. Beijing 3rd: represents the third ring road of Beijing City, China’s capital. The nodes
and links represent road intersections and roads, respectively [38].

8. Beijing 4th: represents the fourth ring road of Beijing City, China’s capital. The nodes
and links represent road intersections and roads, respectively [38].

9. Beijing 5th: represents the fifth ring road of Beijing City, China’s capital. The nodes
and links represent road intersections and roads, respectively [38].

10. Euroroad: a topological representation of international European roads in which the
nodes represent intersections among roads, and the links represent roads [39].

11. Little Rock Food Web: a model of trophic interactions among species of the Little
Rock Lake ecosystem in Wisconsin. In this ecological network, the nodes represent
living species, and the links represent the transfer of nutrients between them [40].

12. Olocene Food Web: The Olocene Food Web ecological network is the basis of the
48 million years-old uppermost early Eocene Messel Shale food web. The nodes are
biological species, and the links represent trophic relationships among them [41].

13. San Francisco Reduced: represents a reduced version of the San Francisco road net-
work [36] (Real Datasets for Spatial Databases, https://users.cs.utah.edu/~lifeifei/
SpatialDataset.htm accessed on 29 October 2023) that was obtained by applying a sim-
ple spatial-partitioning algorithm, resulting in a smaller, computationally affordable
graph for the scope of this work.

14. Road Minnesota: the road map of Minnesota (US) [42]. The nodes represent intersec-
tions among roads, and the links represent roads.

15. San Joaquin County: California (US) city road map [36] (Real Datasets for Spatial
Databases, https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm accessed on 29
October 2023). The nodes are the intersections among roads, and the links repre-
sent roads.

2.4. Network Structural Indicators

In Table 1, we report network structural indicators that are useful for comparing the
structure of the networks considered in this work. The network diameter, Diam, is the
maximum length among all shortest paths between each pair of nodes [12]; the average
node degree is the average number of links to the node, k [43]; the average clustering
coefficient, CC, is the number of closed triplets (or triangles) over the total number of
triplets (both open and closed) [44,45]; the average node distance, δ, is the average length of
the shortest path among node pairs [12]; and the network density (or connectance), ρ, is the
fraction of realized edges among all possible edges that can be drawn in the network [46,47].

2.5. Node Removal Strategies

Node removal (NR), also called node attack [48,49], refers to the process of selectively
removing nodes from a network to study the impact on the structural properties of the
network [13]. The removal strategy refers to how nodes are chosen to be removed from the
network by assigning a value to each node and then defining an order in which to perform
the NR.

https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm
https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm
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Table 1. Network structural indicator values for the synthetic and real-world networks analyzed.

Network |V| |E| Diam k δ CC ρ

Air Control 1226 2410 17 3.931 5.924 0.064 0.003

Arenas Email 1133 5451 8 9.622 3.603 0.166 0.009

Barcelona Flow 930 1798 27 3.867 12.721 0.084 0.004

Beijing 2nd 144 233 19 3.236 7.813 0.011 0.023

Beijing 3rd 322 544 27 3.379 11.030 0.018 0.011

Beijing 4th 547 926 33 3.386 13.904 0.019 0.006

Beijing 5th 815 1308 48 3.210 17.246 0.024 0.004

Euroroad 1039 1305 62 2.512 18.377 0.035 0.002

Little Rock Food Web 183 2452 4 26.798 2.135 0.332 0.147

Netscience 379 914 17 4.823 6.026 0.431 0.013

Olocene Food Web 700 6425 6 18.357 2.629 0.074 0.026

Road Minnesota 2641 3303 100 2.501 35.349 0.028 0.001

San Francisco Reduced 435 440 41 2.023 17.461 0.000 0.005

San Joaquin County 7087 9793 50 2.764 13.939 0.000 0.000

UK Faculty 81 577 4 14.247 2.072 0.473 0.178

LTC (20,5) 100 175 23 3.500 8.250 0.000 0.035

LTC (20,20) 400 760 38 3.800 13.300 0.000 0.010

BBT 100 99 12 1.980 7.654 0.000 0.020

ER (N = 80, p = 0.15) 80.0 474.52 3.1 11.863 1.969 0.148 0.150

In this paper, we define a series of RW-based node NR strategies and investigate
their effectiveness in dismantling the networks. We compare their efficacy against four
well-known centrality measures from the literature: closeness, betweenness, degree, and
k-shell node removals. We quantify the network dismantling after NR by using the largest
connected component (LCC)’s size. The node centrality rank is computed at the beginning
of the simulation, i.e., before the first node removal. The NR is performed by following the
order of node centrality and computing the LCC after each removal. In the case of ties, i.e.,
nodes with equal centrality values, we randomly sort the nodes. The node centralities and
the simulation analyses are performed using the complex network analysis (CNA) library
Graph Tool (Tiago P. Peixoto) [50], which consists of Python bindings for C++ and is highly
performant, as it is based on the Boost Graph Library [51].

In the following, we define the NR strategies used in this work.

2.6. Betweenness Centrality

The betweenness centrality of a node v ∈ V, is defined as follows:

btw(v) = ∑
s 6=v 6=t

σst(v)
σst

where σst is the total number of shortest paths from s to t, and σst(v) is the number of
shortest paths from s to t that pass through node v [52].
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2.7. Closeness Centrality

The closeness centrality of a node v ∈ V is defined as follows:

cls(v) =
1

∑u 6=v duv

where duv represents the distance between node u and node v [53].

2.8. Degree Centrality

The degree centrality of a node v ∈ V is defined as follows:

deg(v) = k

where k is the number of links of v.

2.9. K-Shell Centrality

The k-shell [54] of graph G(V, E) is closely related to the concept of k-core [55]. The
k-core of G is the largest subset of V in which nodes induce a subgraph [30] where all nodes
have degrees larger than or equal to k.

Consequently, the k-shell of a node v ∈ V is defined as follows:

ksh(v) = k

where the v ∈ k-core of G and v /∈ (K+1)-core of G.

2.10. Random Walk-Based Strategies

A simple random walk (RW) on G is a graph traversal in which an agent moves from
node u to node v, such that v is chosen with uniform probability among the (first) neighbors
of u [56]. Formally, the probability of transition from u to v can be defined as follows [57]:

puv =
auv

∑w∈τ auw

where τ is the neighbor’s node set of u, and auv is the element of the adjacency matrix of
G. The walk ends when all vertices have been visited at least once. The covering process
refers to the process of visiting all the network nodes. We call the vertex from which the
walk starts the “start node”. For statistical relevance of analysis, we averaged the results
from 103 RWs for each start node, v ∈ V. In the following part of this section, we define
four RW-based strategies to perform node removals.

2.11. Recurrence Number

The recurrence number (RN) of a node is the number of times a random walker passes
through the node during the covering process. Since the random walker covers all graph
nodes, the simulation stops with a vector of RNs, one for each node. We call this vector of
length, |V|, the recurrence vector (RV), and each RN is > 0. In this node attack strategy, we
remove nodes in decreasing order of the RN.

2.12. Stop Node

The stop node (SN) is the last node encountered by an RW, or, in other terms, the node
where the RW stops its travel. The stop vector (SV) is the vector of length, |V|, in which the
entry i accounts for how many times the node i acted as an SN. Since we iterate 103 RW
simulations, the sum of the SV entries is 103. In this node attack strategy, we remove nodes
in ascending order of the SN.
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2.13. Cover Time

Given a vertex, v ∈ V, we call the time step the action of passing from v to a (randomly
chosen) neighbor. The cover time refers to the number of time steps needed to visit all
graph nodes [58]. The cover time vector (CTV) is the vector of length, |V|, in which entry i
accounts for the CT when i is the starting node. The CTV accounts for each source node,
the corresponding CT. In this node attack strategy, we remove nodes in decreasing order of
the CT: starting nodes producing a higher CT are removed first.

2.14. Stop Distance

Given a random walk on G, the stop distance (SD) is the distance, dst, for s, t ∈ V,
where s and t are, respectively, the start and the stop node of the random walk. The stop
distance vector (SDV) is the vector of length, |V|, in which the entry i accounts for the SD
when i is the starting node. The SDV stores the corresponding SD for each source node. In
this node attack strategy, we remove nodes in ascending order of the SD: starting nodes
near the stop node are removed first.

See Algorithm 1 for an explanation of the RW simulation analysis.

Algorithm 1: Methodology of the RW analysis.

RW(G(V, E), start_node):
rec_number[v]← 0, ∀v ∈ V
rec_number[start_node]← 1
cov_time← 1
stop_node← start _node
v← start _node
while ∃ x ∈ V | rec_num[x] == 0 do
u← randomly chose a neighbor of v
rec_num[u]← rec_num[u] + 1
stop_node← u
cov_time← cov_time + 1
v← u
end while
stop_distance← d(start_node, stop_node)

2.15. Network Robustness Indicator
2.15.1. Largest Connected Component

The largest connected component (LCC), also called the giant component [34], indi-
cates the connected subgraph of G having the largest set of nodes. In the literature, it has
often been used as a network robustness indicator to evaluate the effectiveness of node or
link removal strategies [14,59,60] by observing the decreasing trends of the LCC after such
removals.

2.15.2. Robustness

The robustness value, R, represents the area under the curve of a decreasing trend
of the LCC [17,59,61]. The lower the R, the higher the efficacy of the NR to dismantle the
network. On the other hand, the higher the R, the lower the efficacy of the NR to dismantle
the network. For clarity, we also define the inverse of robustness, R−1. In this manner,
higher R−1 values denote more effective NR strategies.

Furthermore, given a fixed network, this value is normalized by the maximum value
obtained among all NR strategies. This procedure allows us to compare the different
robustness values obtained on a network while varying the different strategies. Addition-
ally, given a fixed strategy, we denote R−1

avg as the average value of R−1 obtained across
all networks, allowing us to rank the average performance of each NR strategy across
all networks.
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Table 2 lists the abbreviations used in this manuscript.

Table 2. List of the abbreviations used in this manuscript.

LCC (network’s) largest connected component

|V| number of nodes in the network

|E| number of links in the network

Diam diameter of the network

k average node degree

δ average length of shortest path among all node pairs

CC clustering coefficient, i.e., number of closed triples

ρ network density, i.e., fraction of realized links in the network among all possible links

R robustness of the network

R−1 inverse of the network robustness

R−1
avg average inverse robustness, R−1, among all networks

RN recurrence number

CT cover time

SN stop node

SD stop distance

BTW betweenness centrality

CLS closeness centrality

KSH k-shell centrality

DEG degree centrality

3. Results and Discussion

In this study, we simulated random walk processes to cover the networks and evaluate
node importance. We introduced four node attack strategies based on the simulated
random walks process to assign each node a ranking (a value or score). Subsequently, we
utilized these scores to define new node centrality measures. The introduced strategies
include the recurrence number, stop node, stop distance, and covering time. Then, after
attacking 19 networks—4 of which are synthetic and 15 of which are real-world networks—
we compared the efficacy of dismantling the network of the new node centralities with four
well-known competitors from the literature, namely betweenness (BTW), closeness (CLS),
degree (DEG), and k-shell (KSH) node removals.

In Figure 2, we show the LCC decrease as a function of the node removal fraction
for real-world networks, and in Figure 3, we show the same for the synthetic networks.
Figure 4 displays the inverse of robustness, R−1, normalized per row (i.e., per network),
where each cell in the table is assigned a darker color as the strategy becomes more effective
than the others. We report the average inverse robustness value across all networks in the
last row.

Moreover, in Figures A1 and A2 in Appendix A, we furnish the scatterplots of the
random walk-based node centralities vs. the betweenness node centrality for the real-
world networks, and in Figures A3 and A4 in Appendix A, we depict the scatterplots
of the random walk-based node centralities vs. the node degree centrality for the real-
world networks.
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In the following, we summarize and discuss the outcomes for each NR strategy.
BTW: Our results show that the well-known betweenness nodes attack (BTW) is

an effective strategy overall, as it ranks second among the examined strategies, with an
R−1

avg ≈ 0.96 (Figure 4). The BTW was the most effective on both food webs, UK Faculty,
Arenas Email, and Beijing 5th. It has also achieved good results on synthetic networks,
particularly the ER networks and BBT. The performance of the BTW remains quite good
because the R−1 > 0.7 for all other networks but Euroroad. These results confirm previous
studies indicating that betweenness is a very effective strategy for dismantling complex
networks [5,17].

CLS: While the closeness nodes attack (CLS) performs poorly on most road maps, it is
particularly effective on UK Faculty, Little Rock Food Web, and Arenas Email regarding
real-world networks. Regarding synthetic networks, it exhibits a fairly good performance
overall, especially on ER, BBT, and LTC(20, 20). The CLS ranks seventh among the exam-
ined strategies, with an R−1

avg ≈ 0.68.
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Figure 4. Inverse network robustness, R−1, for each network analyzed. To compare the efficacy of the
node attack strategies, we normalize R−1 with its maximum value for each network. In this way, the
maximum R−1 for each network equals 1. The higher the R−1, the more effective the attack strategies
to dismantle the network. In the last row, we depict the average R−1 value for all networks. The
darker cell color indicates a higher R−1.

DEG: This strategy is particularly effective on real-world road networks (Figure 4),
where the removal of hubs according to their degree greatly impacts the dismantling
process. The DEG ranks first among all tested strategies, with and R−1

avg = 1, resulting
in the top strategy on eight networks and maintaining a high level of performance on
all real-world networks, with an R−1 > 0.84. Removing nodes based on their degree
requires local information only; for this, the node degree attack is a strategy with a low
computational cost. The low computational cost and the good performance confirm this
strategy to be a good candidate for network dismantling.

KSH: The k-shell emerges as a generally effective strategy. Among real-world net-
works, it ranks first on Beijing 3rd and performs well on San Joaquin County (R−1 ≈ 0.91)
and Beijing 4th (R−1 ≈ 0.95). Among synthetic networks, KSH proves effective on lattices,
ranking first on LTC(20,20) and having an R−1 ≈ 0.95 on LTC(20,5). KSH ranks fourth
among all tested strategies, with an R−1

avg ≈ 0.80.
SN: The stop node (SN) has notable effectiveness on the ER random graph. Regarding

real-world networks, the SN is the most effective on Barcelona Flow and the second most
effective on UK Faculty. It also demonstrates good effectiveness on Beijing 2nd and 4th, as
well as on Road Minnesota. The SN is the fifth strategy regarding average effectiveness,
with an R−1

avg ≈ 0.76.
We defined the stop node as the node where the RW stops its travel. For this reason,

nodes acting many times as stop nodes are likely to be peripheral nodes, with a very low
probability of encountering an RW. On the contrary, nodes that never (or rarely) acted as a
stop node are likely to be central in the network and encounter an RW. The SN strategy
removes nodes in the ascending order of stop nodes, thus removing the central nodes first.

CT: The covering time (CT) proved effective on LTC(20, 20), and two real-world
networks, Beijing 3rd and 4th. It also exhibited noteworthy effectiveness on Beijing 2nd and
ER. The CT ranks last in terms of average effectiveness, with an R−1

avg ≈ 0.65. The covering
time is the number of time steps that the RW needs to pass over all nodes in the network [58].
The CT node attack strategy removes nodes in decreasing order of their covering time
when they are the start node. This way, start nodes producing higher covering times are
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removed first. The CT strategy returns peculiar results: on the one hand, the CT showed the
worst average efficacy (lowest R−1

avg); on the other hand, it performed well in dismantling
one synthetic and two real-world networks. The synthetic network is the square grid LTC,
i.e., the model network with a planar structure and highly homogeneous node degree. In
Figure 5, we depict the twenty most central nodes for each node removal strategy for the
LTC networks of different sizes. The twenty most central nodes selected by the CT strategy
are distributed over the entire network. In contrast, the most central nodes reside in a
central part of the network for all the other strategies. Therefore, if we remove the highest
BTW nodes from the LTC network, a large LCC composed of the peripheral nodes of the
network will survive (see Figure 5). In other terms, the CT selects nodes covering the whole
network structure, and for this, removing nodes according to the CT strategy may cause a
faster LCC dismantling.
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The two real-world networks where the CT is highly effective are the road networks
of the Beijing ring. This road network shows a planar-like structure and a narrow range
of node degrees (see Figure 6). Therefore, an interesting ability of the CT node attack
strategies emerges to dismantle the networks with the specific characteristics of the planar-
like structure and homogeneous node degree. In Figure 7, we depict the fifty most central
nodes for each node removal strategy for the Road Minnesota and the Beijing 3rd road
networks. Like what was observed for the LTC, the fifty most central nodes, according
to the CT strategy, are distributed over the entire network. In contrast, for all the other
strategies, most central nodes reside in a part of the network. Therefore, this CT-specific
node rank property may effectively dismantle real-world networks with a planar-like
structure and homogeneous node degree, such as road networks.

SD: The stop distance (SD) performs well on synthetic graphs, particularly on LTC(20, 5),
thus proving itself to be the most effective strategy. As for real networks, it demonstrates a
solid performance on Olocene Food Web, UK Faculty, Arenas Email, and Beijing 2nd. The
SD is the sixth strategy regarding average effectiveness, with an R−1

avg ≈ 0.69. We defined
the stop distance for a pair of nodes, s and t, the shortest path length between the start
node, s, and the stop node, t, of the random walk. The SD attack strategy removes nodes in
ascending order of stop distance.
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For this reason, the SD first removes the start nodes that are a small distance from the
respective stop node. This strategy emerges as a particularly effective node removal over
the lower dimension synthetic network square lattice LTC. As shown in Figure 5, the SD
strategy can select nodes whose removals trigger the disruption of the LCC network in two
parts. Therefore, removing nodes near their stop nodes can be a good method to dismantle
this kind of model network and consequently select important nodes for its robustness.

RN: For a sufficiently large number of iterations, the recurrence number (RN) is
proportional to the degree (see Figures A3 and A4 in the Appendix A). As easily verified,
the degree vector is the eigenvector of the transition matrix corresponding to the eigenvalue
1 (Perron–Frobenius eigenvector) [62]. Given this property, the RN is a degree-like node
removal strategy and can be generally effective on most networks. Specifically, RN is
the top strategy for the San Joaquin County road network. Additionally, it maintains an
average level of effectiveness, R−1, greater than 0.74 on all other real networks, seven of
which have an R−1 > 0.9. As for synthetic networks, it is less effective on lattices (LTC)
where 0.68 < R−1 < 0.72 and ineffective on BBT. RN is the third most effective strategy
among the tested networks, with an R−1

avg ≈ 0.92.
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4. Conclusions

Finding the best node attack strategy to dismantle the network is a paramount problem
in network science [3,5,17,18]. In this manuscript, we proposed four new node removal
strategies based on a simulated random walk on the network and compared them with
well-known strategies from the literature. The well-known node removal strategies based
on the node degree and betweenness resulted in the best strategies. Nonetheless, the
random walk-based node removal proposed here presents a peculiar and high effectiveness
on specific network structures. The CT strategy of removing nodes in decreasing order
of the covering time they produce when they are the starting node is highly effective in
dismantling planar-like and homogenous node degree network structures, such as road
and square lattice networks. The methodology presented here can open future research.
On the one hand, the node removal strategy proposed here can be helpful for another
significant network science problem, such as finding the most influential spreader nodes
in the network [63]. On the other hand, it will be interesting to investigate the efficacy
of the random walk-based node attack strategies proposed here to lower other network
robustness indicators, such as network efficiency [53].

A possible shortcoming of the proposed node removal strategies based on a simulated
random walk can be the simulation cost. Nonetheless, we can say that dynamic processes
based on random walks have become computationally more accessible than they were two
decades ago. It is now possible to establish a series of statistically significant simulations
by using tools such as the one used in Reference [50] that are adequately optimized for
conducting small-scale simulations like the ones presented in this study. Our objective
in further investigating these topics is to migrate our codes, making them suitable for
harnessing parallel hardware in the HPC environment and enabling the simulation of such
processes on large-scale graphs. Moreover, we aim to introduce new strategies that facilitate
the exploration of the novel properties of real networks, which are often challenging to
access solely through theoretical analysis.
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centrality DEG (x-axis) for 8 real-world networks.
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