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Wi-Fi connectivity for localization purposes has been used for sev-
eral years in the Internet of Things (IoT) context, where the (general)
static nature of IoT devices allows to approximately localize them
in known environments with low effort and implementation costs.
While the accuracy of Wi-Fi localization for IoT applications can be
considered as acceptable, the adoption of Wi-Fi-based localization
for (a highly mobile) unmanned aerial vehicle (UAV) has received
limited attention. In this article, a low-cost and low-complexity system
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architecture is proposed and exploited to perform a comparative
analysis between two Wi-Fi-based localization approaches: the tradi-
tional received signal strength indicator (RSSI) ranging and the more
recent fine time measurement (FTM), based on the IEEE 802.11mc
amendment. Our goal is to estimate and compare the efficacy of the
proposed system for real-time positioning of a static or moving UAV,
evaluating the impact of different filtering solutions on the localization
accuracy. The obtained results show that FTM-based localization is
more accurate, reducing the positioning error by 37% with respect
to the RSSI-based positioning approach. Our results also confirm
the better overall performance of the FTM-based solution for low-
cost localization applications, discussing its limitations, scalability,
and advantages as a viable backup positioning solution in (weak or
denied) Global Navigation Satellite System-based environments and
scenarios.

NOMENCLATURE

List of the Acronyms Adopted in this Article
ACK Acknowledgment.
AGL Above ground level.
AoA Angle of arrival.
AP Access point.
BVLOS Behind visual line-of-sight.
COTS Commercial-off-the-shelf.
CSI Channel state information.
ECEF Earth-centered Earth-fixed.
ECDF Empirical cumulative distribution function.
EKF Extended Kalman filter.
EMA Exponential moving average.
FC Flight controller.
FTM Fine time measurement.
GNSS Global navigation satellite system.
IMU Inertial measurement unit.
IoT Internet of Things.
JSON JavaScript object notation.
KF Kalman filter.
LOS Line-of-sight.
LS Least squares.
LSMR Least squares with multiple right.
MAC Media access control.
MIMO Multiple-input–multiple-output.
ML Machine learning.
NLOS Non-line-of-sight.
PDR Pedestrian dead reckoning.
RADAR Radio detection and ranging.
RF Radio frequency.
RPi4 Raspberry Pi 4.
RSSI Received signal strength indicator.
RTT Round-trip time.
SBC Single board computer.
SSID Service Set IDentifier.
ToA Time of arrival.
ToD Time of departure.
ToF Time of flight.
TSME Two-step M-estimator.
TWR Two-way ranging.
UAV Unmanned aerial vehicle.
UWB Ultra wideband.
VSLAM Visual simultaneous localization and mapping.
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WGS84 World geodetic system 1984.

I. INTRODUCTION

Radio localization has been investigated from various
perspectives. In fact, given the widespread adoption of
wireless connectivity, exploiting already available infras-
tructures for low-cost asset tracking purposes has always
been very attractive [1]. To this end, efforts have been
spent in the development of low-complexity and affordable
localization solutions, especially relying on existing Wi-Fi
infrastructures (typically available in industrial and public
environments). However, while in the literature (as will be
shown in Section II) several results have been proposed for
Internet of Things (IoT) applications, where a position error
on the order of several meters can be considered sufficient
to roughly estimate the position of an IoT device (e.g., in
a specific area of a warehouse), the same does not hold for
mobile robotic platforms, such as unmanned aerial vehicles
(UAVs). In this case, in fact, the combination of the mobile
nature of the platform together with the need to achieve the
best possible accuracy (ideally a position estimation error
not higher than 1 m), especially in critical behind visual line-
of-sight (BVLOS) applications, makes the application of
existing approaches challenging and extremely expensive.

Submeter localization accuracy can already be obtained
through the use of ultra wideband (UWB) technology [2],
which allows to achieve a position estimation error not
higher than 30 cm [3], especially in combination with a
dense infrastructure composed by several UWB anchors
deployed in the environment. However, the presence of this
infrastructure significantly increases the initial deployment
cost and the complexity needed to keep all the deployed
anchors synchronized with each other for localization pur-
poses. Moreover, such high accuracy might not be needed
in all the applications involving robotic platforms: for in-
stance, for some missions, a position estimation error of
a few meters, as already provided by traditional Global
Navigation Satellite System (GNSS) systems, is sufficient.
Therefore, in order to keep the initial deployment cost as low
as possible, as well as to allow a localization accuracy of a
few meters in medium-to-large environments, the use of ra-
dio technologies different from UWB must be investigated.

In this article, we first investigate existing Wi-Fi-based
localization systems, with the aim to predict the achiev-
able performance in both static and mobile conditions.
Then, targeting the development of a low-cost real-time
localization system for UAVs and comparing two different
Wi-Fi-based localization techniques, we propose a novel
localization architecture suitable for unmanned drones,
detailing its composing modules and the corresponding
processing algorithms (designed to maximize the position-
ing accuracy). In particular, the proposed system allows
to carry out a comparative analysis of two possible Wi-
Fi-based localization approaches: 1) traditional received
signal strength indicator (RSSI)-based approach, and 2)
more recent fine time measurement (FTM)-based approach.
Then, localization capabilities and positioning errors in

both static and mobile conditions are provided, together
with an experimental performance comparison between the
chosen approaches. In addition, the use of proper filtering
approaches is investigated. Our goal is to show the viability
of Wi-Fi-based localization as a backup solution suitable
to provide an approximate real-time position of a UAV
flying in a GNSS-denied environment. This is beneficial
to allow the pilot, while remotely controlling the UAV
flying in BVLOS conditions and in the absence of GNSS,
to understand in which part of the predefined flight path
the UAV is operating. In order to reach this goal, the
proposed Wi-Fi-based localization system is implemented
on a real UAV to experimentally validate its performance
and understand if the localization accuracy achievable with
Wi-Fi FTM-based localization solutions is sufficient for
real-time (approximate) localization of a mobile UAV. Our
experimental implementation is based on the adoption of
affordable commercial-off-the-shelf (COTS) hardware op-
erating on the 2.4-GHz band.

For the sake of clarity and convenience, in the Nomen-
clature, we list all the acronyms adopted in this article.

The rest of this article is organized as follows. In
Section II, we overview existing literature on Wi-Fi-based
technologies for localization purposes in both IoT and UAV
worlds. In Section III, we detail the considered Wi-Fi-based
localization techniques, while Section IV discusses the
adoption of Kalman filters (KFs) for both outlier and mea-
surement noise removal, with the aim to improve the accu-
racy of the position estimation. In Section V, we present the
proposed Wi-Fi-based localization architecture, discussing
its real-time capabilities. Preliminary experimental results
of the proposed system, integrated on a real UAV platform,
are presented in Section VI. Improvements of the proposed
system and future research directions are discussed in Sec-
tion VII. Finally, Section VIII concludes this article.

II. STATE OF THE ART

Radio-based localization is the most investigated and
adopted solution for GNSS-denied environments, where
several radio anchors are available (depending on the
adopted radio technology). In detail, it is exploited to allow
UAVs to operate not only in such critical environments,
but also to detect unwanted UAVs flying nearby critical
areas and infrastructures, as detailed in [4] and [5], where
radio-based approaches to identify and localize an incom-
ing UAV are discussed. Then, with regard to on-board
radio-based localization, several approaches have been in-
vestigated, such as traditional RSSI-based ranging and fin-
gerprinting, as well as more advanced solutions, such as
time of flight (ToF) ranging. For the sake of complete-
ness, an deeper overview and discussion is proposed in
Section III.

The most traditional approach for commercial wireless
communications relies on the estimation of the distances be-
tween the target and the anchors (with known positions)—
corresponding to access points (APs) in Wi-Fi networks—
on the basis of the RSSI. Using the Friis [6] propagation
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loss model, the RSSI allows to approximately determine the
distance between the transmitter and the receiver.1 Col-
lecting at least three distance estimations from different
APs, one can perform a multilateration geometrical bidi-
mensional position estimation of the target to be localized.

Although in the last decades several research activities
(as, for example, [7] and [8]) have adopted the RSSI ranging
techniques for localization purposes, their relative accuracy
still remains an open issue, being affected by radio envi-
ronment noise floor, external interference, and line-of-sight
(LOS) or non-LOS (NLOS) signal propagation. Therefore,
the accuracy of RSSI-based localization techniques purely
relies on the accuracy on the underlying distance estimation
model and adopted noise filtering techniques. The majority
of the proposed works, such as [9], manage to achieve errors
on the order of several meters in both LOS and NLOS
environments using Wi-Fi RSSI localization approaches
based on different signal propagation models to properly
estimate the LOS or NLOS nature of the considered target–
AP links. More in detail, for static objects (where multiple
RSSI measurements can be gathered and the LOS/NLOS
nature of each target–AP link can be characterized), it is
possible to achieve a position estimation error of a few me-
ters, as discussed in [9]. However, adopting more complex
filtering solutions, as well as a combination of additional
measurements and machine learning (ML) techniques (such
as in [10]), the performance can be improved. For example,
the solutions presented in [11], based on a Wi-Fi RSSI fin-
gerprinting approach, lead to a position estimation error be-
low 1 m. Another example of advanced techniques applied
to Wi-Fi RSSI fingerprinting is discussed in [12], where
multiple approaches are evaluated in order to determine the
best algorithm suitable to achieve the highest positioning
accuracy.

While the above results hold, providing satisfying po-
sitioning capabilities, for static targets, for mobile targets
(e.g., flying UAVs), when only a few (or only one) RSSI
measurements can be gathered from each anchor, the po-
sition estimation error can significantly increase. In order
to keep it suitable to UAV localization applications, a large
number of APs are required to obtain a sufficient position
estimation, as shown in [13]. A real experimental evaluation
of mobile target localization through RSSI measurements
is discussed by Booranawong et al. in [14], where they
achieved (in very specific environmental and experimental
conditions) a localization error between 1 and 5 m (with
respect to the ground truth), depending on the number of
gathered measurement and adopted filtering techniques.

1The Friis formula refers to unquantized transmitter and receiver powers.
In real-world scenarios, various factors, such as obstacles, reflections,
and absorption, can affect the signal strength as it travels through the
medium, resulting in received power levels lower than those predicted
by the Friis formula. Moreover, since RSSI provides a measure of the
received signal’s power level in a discretized form obtained from the
receiver’s hardware, establishing a straightforward relationship between
RSSI and the distance is challenging due to the intricate nature of wireless
propagation environments.

Instead, in [15], an advanced sensor fusion technique for
pedestrian localization, combining Wi-Fi RSSI together
with pedestrian dead reckoning, is proposed to reduce the
error on moving targets position tracking. Although the
result is interesting, its applicability to UAV localization
might be difficult.

Besides the RSSI-based distance estimation technique,
more consistent and reliable approaches have appeared,
mostly relying on advanced techniques requiring specific
hardware-implemented features, such as, for example, the
ToF measurement of the transmitted radio signals. The
ToF technique allows a more accurate distance estimation
between transmitter and receiver, especially when used in
combination with high-frequency and high-bandwidth pro-
tocols (i.e., UWB and 5 GHz Wi-Fi). In [16], a localization
technique for smartphones has been proposed exploiting
the FTM mechanism of the 2.4-GHz Wi-Fi IEEE 802.11mc
protocol [17], aided by the angle of arrival (AoA) [18]
measured on the 5-GHz band: the obtained results show a
promising positioning error below 1 m in a 8 × 9 m2 region
with LOS target–AP links. However, the results obtained
in [16] refer to a static target—for each tested position,
a large number of target–AP distance measurements are
collected. Therefore, in [16], the impact of the mobility is
not investigated. A similar approach (still for smartphones)
is presented in [19], where FTM is used in combination with
the RSSI fingerprinting technique to estimate the position
of a smartphone inside a 500 m2 area, in the end obtaining
an average position estimation error below 1 m. However,
this solution requires an intensive premeasurement phase,
which is not always feasible. Relevant results have been
achieved by a novel approach proposed in [20], where
the combination of LOS and NLOS channel estimation
with the use of the 5-GHz band APs allows to achieve an
average position estimation error between 1 and 2 m over a
300 m2 area on a smartphone in static and mobile conditions,
respectively.

In [21], the combined utilization of Wi-Fi FTM and
GNSS data, fused together through an extended Kalman
filter (EKF), is proposed to reach meter-level localization
accuracy in pedestrian applications, relying also on the use
of an inertial measurement unit integrated in the device de-
veloped in [21]. Despite the promising results, this solution
has been validated only for pedestrian applications.

Regarding the adoption of Wi-Fi FTM on UAVs, in [22],
a solution able to achieve a submeter positioning error with
four 5-GHz APs within a 5 × 5 m2 area, with the UAV hov-
ering in a static position, is proposed. However, the exten-
sion of the testbed is not representative of realistic applica-
tions for UAV localization. The approach proposed in [23],
exploiting a hardware similar to the one adopted in this
article for both RSSI- and FTM-based approaches—in de-
tail, the 2.4-GHz affordable ESP32S2-enabled development
boards used as APs—manages to obtain a 1.5-m positioning
error within a 5 × 10 m2 testing area (owing also to a novel
ML filtering solution) in the presence of a static target to
be localized. In [24] and [25], FTM measurements of Wi-Fi
signals are used, together with other sensing technologies, to
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provide distance estimation for UAV applications in several
scenarios, including IoT applications, research and rescue,
as well as autonomous drone landing close to an FTM-
enabled target. Despite the promising results, the solutions
detailed in [24] and [25] do not investigate the localization
performance relying on the sole FTM-based positioning
is provided, both in static and moving conditions, high-
lighting technology, which, instead, is used as additional
to enable specific missions. In [26], a comparison between
Wi-Fi RSSI-based and FTM-based smartphone positioning
techniques is proposed, confirming an overall reduction of
the positioning error by 16% with the FTM-based approach
using a 2.4 GHz 20 MHz bandwidth Wi-Fi infrastructure
with respect to the RSSI-based approach. However, details
regarding the ground truth measurement, as well as the size
of the experimental area, are missing, thus unfortunately
making the analysis in [26] not suitable for application to
UAVs.

In the context of radio localization, AoA estimation is
attracting a significant interest, especially owing to the fact
that, for some use cases, if combined with FTM distance
estimation (as considered, for example, in [16]), it allows
to estimate the position of a target with just one anchor. As
drawback, AoA estimation requires higher computational
complexity at the anchor, due to the need to integrate
multiple antennas at specific distances and, thus, a larger
number of RF-to-signal converters in the device modem:
this increases the cost of the hardware equipment design
and production. However, both these solutions (namely,
FTM and AoA) are affected by the signal reflections due to
the environment, which can significantly influence both the
distance and angle estimation. According to the literature,
a combination of AoA, channel state information (CSI)
analysis, and ToF can be combined and exploited with a
more complex matrix of antennas located on a UAV, not
only allowing to achieve a high-level positioning accuracy,
but also allowing to estimate pose and flight direction of
the tracked UAV, as discussed in [27] and [28]. Although
the results in [27] and [28] are quite impressive, several
details regarding implementation and experimental setup
are missing, thus making difficult to compare it with the po-
sition estimation framework proposed in this article, which
provides a significant lower cost and complexity. However,
the exploitation of the approaches discussed in [27] and
[28], combined with FTM and more convenient hardware,
might represent an interesting future research direction, as
detailed in Section VII.

III. WI-FI-BASED LOCALIZATION

There exist several ways to exploit existing deployed
Wi-Fi infrastructures for positioning purposes. In particular,
two possible Wi-Fi localization approaches can be iden-
tified: 1) passive and 2) active. Passive localization tech-
niques include Wi-Fi fingerprinting, as well as RSSI-based
approaches. They are defined passive as the target does not
need to exchange data with the existing infrastructure, but
can only process the incoming signals transmitted by the

APs, thus passively exploiting the available APs deployed
in the environment. At the opposite, active localization tech-
niques involve bidirectional information exchange between
target and APs, as in a ToF-based approach.

A. Passive Localization

1) Wi-Fi Fingerprinting Localization: Wi-Fi finger-
printing localization exploits the Wi-Fi signals broadcasted
by APs present in the localization environment. More in
detail, it relies on the unique behavior of Wi-Fi signals
upon interaction with the surrounding environment, which
leads to variations in the signals’ strengths and phases. In
particular, the way Wi-Fi signals propagate in an indoor
environment with respect to the target position can be con-
sidered similar to an RF “signature,” which strictly depends
on the environment and can be exploited for localization.
This might happen by creating (through several in-field
measurements) a heat map associated with a database con-
taining RF data, such as APs’ media access control (MAC)
addresses and their RSSIs perceived by the target in different
positions. The data in the heat map are then used as unique
fingerprints for each measurement location. Obviously, this
approach is effective if the environment does not change
at all.

Once both the heat map and the corresponding measure-
ments’ database for the whole area of interest are available
(through an operational phase denoted as offline phase),
they can be used for the next operational phase (denoted
as online phase), where the target device (to be localized)
performs, at each position, a scan of the sensed Wi-Fi
signals, thus obtaining relevant RF data, i.e., the radio
fingerprint. Through the use of the gathered data, it can then
search, within the RF database, the most likely location,
i.e., the location with a recorded fingerprint most similar
to the obtained fingerprint. Then, once (and if) a match
is found, various algorithms can be used to estimate the
device’s location. On the basis of the measurement density
(i.e., measurements per area unit) of the map built during
the offline phase, as well as of the adopted algorithms
(often relying on ML techniques), a position error of a few
meters can be achieved [29]. While this technique is used
on smartphones for indoor localization through shared heat
maps [30], the accuracy of Wi-Fi fingerprinting depends
on the signal variability and environmental changes. This
implies that the system accuracy can be heavily affected by
1) environmental layout changes, 2) addition or removal of
APs, as well as 3) interference incoming from other wireless
devices.

2) Wi-Fi RSSI-Based Localization: A simpler ap-
proach, which does not require the need to a priori know the
positions of the APs deployed in an environment, is based on
the use of the RSSI measurements gathered from the APs.
In this case, the RSSI, which is a measure of the received
RF power obtained by the radio interface, is collected from
the signal transmitted by each AP and is used to estimate
the distance between the target (to be localized) and the AP.
The distances from at least three APs need to be collected
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for bidimensional localization purposes. More in detail, the
following log-distance path loss model, in logarithmic scale,
can be used [31]

Pi = P0 + 10 · γ · log10

(
d

d0

)
+ Xg d ≥ dth (1)

where Pi is the received signal power [dimension: (dBm)];
P0 is the measured received signal power [dimen-
sion: (dBm)] at a reference distance d0 [dimension: (m)]; γ

is the path loss exponent (adimensional), a constant value
typically between 2 and 4 depending on the environment;
di is the distance between the AP and target node [di-
mension: (m)]; dth ≥ 2 · λ is the far-field region distance
threshold, needed to make the log-distance path loss model
valid [32]; and Xg ∼ N (0, σg) is a normal distribution with
zero mean, representing flat fading, used to model the
signal envelope fluctuations and the corresponding gains in
received power. A COTS device typically returns quantized
values of the received signal power. For simplicity, in the
rest of the mathematical derivations in this article, we will
consider the RSSI corresponding to the received signal
power—this corresponds to infinite quantization. In prac-
tice, the RSSI is a quantized version of the received signal
power (the experimental data refer to the RSSI). Therefore,
by measuring P0, γ , and Xg in the target environment at
d0 (typically being d0 = 1 m), it is possible to invert (1) to
estimate di from the measured RSSI Pi as follows:

di = 10
−

(
Pi−P0−Xg

10·γ
)
. (2)

Once at least three distances are estimated from different
APs, it is possible to apply a multilateration algorithm and
estimate the position of the target in the environment. How-
ever, while this approach has a very low implementation
cost, since almost any Wi-Fi client can gather the RSSI
from nearby APs, its accuracy is known to be low. This
is especially true for medium- and long-range distances,
where the log-distance path loss model, together with the
fluctuations of the RSSI measurements, makes it very com-
plicated to estimate the distance between the AP and the
target, especially if the target is mobile. This is exacerbated
by the fact that only a few RSSI samples can be collected
(to make position estimation only real time), thus hindering
to properly filter the environmental noise. In Fig. 1, we
show the Wi-Fi RSSI data collected by a node at different
distances in LOS conditions, showing how the measured
data compare to the theoretical log-distance path loss model
curve.

Moreover, RSSI-based localization also depends on the
antennas used by the target and the APs, since they can
significantly affect the RSSI values based on their gains
and directivity. Therefore, a proper value of P0 should be
measured and defined for each device. Also, radio signal
propagates in different ways according to the environment,
since obstacles (such as walls, humans, and other material)
can significantly hinder propagation, making distance esti-
mation [based on the log-distance model in (1)] inaccurate.

Fig. 1. Experimental measurement of the Wi-Fi RSSI at different
distances: the blue dots are the measured values at different distances, the
red line is the average RSSI value for each measurement point, and the

green line is the theoretical log-distance path loss model curve.

B. Active Localization

1) Wi-Fi ToF-Based Localization: The most common
active localization technique is based on ToF measure-
ment, which has been officially introduced in the Wi-Fi
IEEE 802.11mc amendment [17] standardized in June 2016,
under the name of FTM [33]. Several COTS Wi-Fi chipsets
already support the IEEE 802.11mc amendment, making
meter-level localization feasible (at least in principle). More
in detail, FTM utilizes round-trip time (RTT) measurements
to determine distances between the Wi-Fi client and APs.
FTM also exploits two-way ranging (TWR), thus not re-
quiring any clock synchronization between the two parties,
since the RTT is computed by exchanging several mes-
sages between the initiator (i.e., the Wi-Fi client) and the
responder (i.e., the AP). However, unlike UWB technology,
which, given the extremely short RF pulses (and ultra-large
bandwidth), requires only one TWR frame exchange to
estimate the RTT between two parties, Wi-Fi FTM requires
to exchange several TWR frames in order to determine a
reliable average value of the RTT and, therefore, the distance
between the two parties. In Fig. 2, an illustrative FTM frame
exchange sequence is shown. After the initiator performs
a Wi-Fi scan of the surrounding environment, the process
begins with the initiator sending an FTM Request frame
to the target responder, which immediately replies with an
Acknowledgment (ACK) frame to the initiator. At this point,
according to the defined parameters (namely, the number
of FTM frames to exchange), a sequence of n FTM and
ACK frames, collectively defined as Burst, are exchanged
between the two parties. More in detail, by setting n = 4,
for the ith RTT with i ∈ {1, . . . , 4}, these frames contain the
time of departures (ToDs) t (i)

1 and t (i)
3 , as well as the time

of arrivals (ToAs) t (i)
2 and t (i)

4 of the previous exchanged
frames. This allows the responder to compute RTTi and
send it back to the initiator as

RTTi =
(

t (i)
4 − t (i)

1

)
−

(
t (i)
3 − t (i)

2

)
(3)
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Fig. 2. FTM frame exchange sequence to determine the RTT between
the initiator and the responder.

Fig. 3. High-level overview of the localization architecture components.

where t (i)
1 is the ToD at which the FTM frame has been

sent by the responder; t (i)
2 is the ToA at which the FTM

frame has been received by the initiator; t (i)
3 is the ToD of

the ACK frame; and t (i)
4 is the ToA at which the ACK has

been received by the responder. Since during a Burst, n
RTT measurements {RTTi}n

i=1 are evaluated, the initiator
computes the average RTT as

RTT = 1

n
·

n∑
i=1

RTTi . (4)

Therefore, it is finally possible to compute the ToF
(denoted as τtof ) as

τtof = RTT

2
. (5)

Consequently, the initiator can compute the distance d
from the responder as

d = τtof · v + εcal (6)

where v is the speed of light [dimension: (m/s)], and εcal

is an offset [dimension: (m)] used to calibrate the delays
introduced by the specific (target) device. Once at least three
distances from known APs are gathered, performing the
multilateration allows to estimate the position of device.

According to the concepts of radio detection and rang-
ing, the ranging accuracy—denoted as range resolution
and defined as the system’s ability to distinguish between
two separate points (or objects) in space on the basis of
their distances—is determined by the pulse duration and
bandwidth of the radio signal. In detail, the range resolution
(denoted as rr) can be estimated as [34]

rr ≈ v

2B
(7)

where rr represents the attainable range resolution [dimen-
sion: (m)]; v denotes the velocity of the signal [dimen-
sion: (m/s)], which can be approximated to the speed of light
(namely, approximately 3 · 108 m/s); and B is the system’s
bandwidth [dimension: (Hz)].

For a 2.4-GHz Wi-Fi system with B = 40 MHz, the
smallest rr [that can be computed according to (7)] is
approximately equal to 3.75 m, while it becomes equal to
7.5 m for B = 20 MHz 2.4 GHz Wi-Fi systems. Instead,
in the case of a Wi-Fi system operating in the 5-GHz band
with B = 80 MHz, it is possible to achieve rr = 1.88 m,
while rr = 0.94 m can be reached with B = 160 MHz, as
confirmed in [17].

Therefore, the advantages of the Wi-Fi FTM technique
are mainly related to 1) its low implementation cost, since
the most recent APs and devices already support this op-
erational mode, and 2) its accuracy, higher than that of
traditional RSSI-based localization solutions, since it is less
affected by the presence of obstacles and signal attenuation
and is not affected by the antennas’ directivity. However,
even this solution has some drawbacks: since the protocol
is supported by different devices, a proper value of εcal must
be taken into account for each specific device, limiting
its interoperability only to well-known devices. Finally,
unlike UWB, Wi-Fi FTM can be heavily affected by signal
reflections in multipath scenarios.

In the following, both Wi-Fi RSSI and FTM will be eval-
uated for real-time UAV localization purposes: the obtained
results will show that the FTM-based localization system
outperforms the RSSI-based system when considering a
UAV flying in a large operational area. In all cases, we adopt
the cheapest COTS FTM hardware available on the market
operating at 2.4 GHz with a 40-MHz bandwidth (namely,
the ESP32S3 [35]).

C. Multilateration

Once the distance estimates between the target node and
at least three anchors are gathered (through either passive or
active approaches), it is possible to feed these data, together
with the known positions of the APs, to a geometric multilat-
eration algorithm, in charge of estimating the position of the
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target device.2 More in detail, since a multilateration algo-
rithm [36] simply determines the intersection between mul-
tiple spheres centered in the (known) APs’ position coordi-
nates and with radii equal to the estimated distances, in order
to estimate the device position in a bidimensional environ-
ment at least three APs are needed—in a 3-D space, instead,
four APs are needed to identify a possible unique solution.

Given a list of known APs with coordinates (xi, yi,

zi ), i ∈ {1, 2, . . . , n}, together with the corresponding dis-
tances di, i ∈ {1, 2, . . . , n}, between the device to be lo-
calized and the ith AP, estimated according to one of the
methods detailed and discussed in Sections III-A and III-B,
it is possible to analytically define, at each measurement
point, a system of equations, where each equation represents
the squared distance of the target from an AP⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Px − x1)2 + (Py − y1)2 + (Pz − z1)2 = d2
1

(Px − x2)2 + (Py − y2)2 + (Pz − z2)2 = d2
2

...

(Px − xn)2 + (Py − yn)2 + (Pz − zn)2 = d2
n

(8)

where (Px, Py, Pz ) represent the coordinates of the position
of the device to be localized in the 3-D space.3

The system of equations in (8) can be solved by adopting
an optimization algorithm. More in detail, in this work the
least squares (LS) optimization algorithm [37] has been
adopted to find the best fitting coordinates of the point P,
which minimize the sum of squared residuals of (8). Hence,
it is possible to define the following objective function from
system (8):

C(Px,Py,Pz )

=
n∑

i=1

[
(Px − xi )

2 + (Py − yi )
2 + (Pz − zi )

2 − d2
i

]2
. (9)

The goal of an LS approach is to find the best fitting
coordinates (Px, Py, Pz ), minimizing the residuals of the
objective function (9). More in detail, the residual ri, i ∈
{1, 2, . . . , n}, corresponds to the difference between the
left-hand side and right-hand side of the ith equation in (8)

ri = (Px − xi )
2 + (Py − yi )

2 + (Pz − zi )
2 − d2

i . (10)

Therefore, (9) can be expressed, in terms of residuals, as

C(Px,Py,Pz ) =
n∑

i=1

r2
i . (11)

In order to minimize C(Px,Py,Pz ), it is necessary to find its
gradient with respect to the variables (Px, Py, Pz ). Recall that
the gradient is the following vector of partial derivatives:

�C(Px,Py,Pz ) =
[
∂C(Px,Py,Pz )

∂Px
,
∂C(Px,Py,Pz )

∂Py
,
∂C(Px,Py,Pz )

∂Pz

]
(12)

2Other nongeometric algorithms could be applied. However, this research
direction is not investigated to keep the computational complexity low.
3For simplicity, the target node is associated with a single point, ideally
corresponding to its center of mass.

where

∂C(Px,Py,Pz )

∂Px
= 2

n∑
i=1

ri
∂ri

∂Px

∂C(Px,Py,Pz )

∂Py
= 2

n∑
i=1

ri
∂ri

∂Py

∂C(Px,Py,Pz )

∂Pz
= 2

n∑
i=1

ri
∂ri

∂Pz
. (13)

Since
∂ri

∂Px
= 2(Px − xi )

∂ri

∂Py
= 2(Py − yi )

∂ri

∂Pz
= 2(Pz − zi ) (14)

by combining (13) and (14), it is possible to obtain the fol-
lowing expression for the gradient of the objective function
given by (11):

�C(Px,Py,Pz ) =
[

2
n∑

i=1

ri · 2(Px − xi ),

×2
n∑

i=1

ri · 2(Py − yi ), 2
n∑

i=1

ri · 2(Pz − zi )

]
.

(15)

Finally, in order to find the optimal solution (under the as-
sumption that the objective function is convex), the gradient
must be set to zero

�C(Px,Py,Pz ) = [0, 0, 0] . (16)

The optimal solution can be found, for example, by
adopting the least squares with multiple right-hand sides
(LSMR) [38] algorithm, that iteratively updates the values
of (Px, Py, Pz ) using the gradient of the cost function and
the learning rate α (to be properly optimized) to minimize
the objective function. More precisely, at step m ≥ 1, the
updated values of (Px, Py, Pz ), denoted as (P(m)

x , P(m)
y , P(m)

z ),
can be expressed as

P(m)
x = P(m−1)

x − α · �C(Px,Py,Pz )

P(m)
y = P(m−1)

y − α · �C(Px,Py,Pz )

P(m)
z = P(m−1)

z − α · �C(Px,Py,Pz ) (17)

where (P(m−1)
x , P(m−1)

y , P(m−1)
z ) are the values at the previous

step. The starting values used as initial guess—namely,
(P(0)

x , P(0)
y , P(0)

z )—are set to (1, 1, 1). This iterative opti-
mization process continues until the cost function converges
to a minimum. Denoting the final iteration step as mfin, the
optimal position estimate is given by (P(mfin )

x , P(mfin )
y , P(mfin )

z ).
In order to further optimize the process to find the best

fitting coordinates, it is possible to insert constraints into
the LS optimization problem, to ensure that the estimated
parameters lie within a specific range or satisfy certain
conditions. For instance, in Wi-Fi-based UAV localization,
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it might be useful to apply a constraint to Pz, as it cannot be
negative. Moreover, it is also possible to rely on the UAV’s
on-board barometer to estimate the flight altitude (i.e., Pz),
which is already computed and provided by the UAV’s flight
controller (FC). Therefore, Pz can be assumed to be known,
thus simplifying (13) as

∂C(Px,Py )

∂Px
= 2

n∑
i=1

ri
∂ri

∂Px

∂C(Px,Py )

∂Py
= 2

n∑
i=1

ri
∂ri

∂Py
(18)

where

∂ri

∂Px
= 2(Px − xi )

∂ri

∂Py
= 2(Py − yi ) . (19)

This leads to the following simplified expression of the
gradient (15) of the objective function:

�C(Px,Py ) =
[

2
n∑

i=1

ri · 2(Px − xi ), 2
n∑

i=1

ri · 2(Py − yi )

]
.

(20)

IV. KALMAN FILTERING

In order to enhance the Wi-Fi-based position estimation
accuracy, it could be useful (and might be considered a
good practice) to properly filter the distances estimated
according to the RSSI- or FTM-based methods described in
Section III, in order to remake outliers (caused by the radio
environmental noise affecting the received Wi-Fi signals at
the device to be localized). Among various possible filtering
approaches, the most common and adopted solution is based
on the KF [39], a recursive filter adopted in heterogeneous
contexts (e.g., control systems, signal processing, localiza-
tion, finance, etc.) to estimate and predict the state of linear
and nonlinear systems with noisy measurement inputs.

In detail, Kalman Filters (KFs) have been initially
proposed for linear systems, since they require low com-
putational capabilities with respect to more complex ap-
proaches. However, in the last years, EKFs [40] have been
proposed for nonlinear systems, also thanks to the increased
computational capabilities of mobile devices. More in de-
tail, both KF and EKF iteratively combine information from
previous estimates and current measurements to provide an
accurate (and, in some cases, optimal) estimate of the state
of a system, even in the presence of noisy measurements
and uncertainty, thus allowing to significantly reduce the
impact of measurement errors on the final accuracy.

When dealing with a KF, system dynamics are crucial
for the filtering process, eventually determining the overall
filter performance. Therefore, it is necessary to define the
transition and observation models that describe how the
state of the dynamic system evolves over time and how
it relates to measurements, respectively.

The state transition model of a KF can be generally
expressed as [41]

xt = Ft · xt−1 + Bt · ut + wt (21)

where wt ∼ N (0, Qt ) represents the process noise, char-
acterized by a normal distribution with zero mean and
covariance matrix Qt ; xt and xt−1 are the current and pre-
vious estimated system state vectors at time t and t − 1,
respectively; Ft is the state transition matrix at time t ; and
ut is the control input vector, while Bt is the control input
matrix, both at time t .

The observation model can be expressed as [41]

zt = Ht · xt + vt (22)

where vt ∼ N (0, Rt ) is the observation noise, characterized
by a normal distribution with zero mean and covariance ma-
trix Rt ; zt is the observation (or measurement) vector; and
Ht is the observation matrix that describes the relationship
between the state information vector xt and the observation
vector zt .

In order to properly estimate the new state of the system,
the KF relies on two phases [42]: 1) state predict and 2) state
update. In particular, in the state predict phase, the new state
is predicted using the state transition model (21), while the
state update phase refines the state estimate by incorpo-
rating the measurements using the observation model (22).
This iterative process allows the KF to estimate the state
of a linear dynamic system in the presence of noise and
measurement uncertainties.

The state predict phase, which predicts the a priori state
information vector, denoted as x̂t |t−1, using the information
from the previous a posteriori state information vector,
denoted as xt−1|t−1, relies on the following equation [41]:

x̂t |t−1 = Ft · xt−1|t−1 + Bt · ut (23)

where ut is the system control input vector; Ft is the state
transition matrix; and Bt is the control input matrix.

The estimated a priori covariance matrix P̂t |t−1 is ob-
tained as [41]

P̂t |t−1 = Ft · Pt−1|t−1 · Fᵀ + Qt (24)

where Pt−1|t−1 is the previous state a posteriori covariance
matrix, and Qt denotes the covariance matrix of the noise
process.

The State Update phase corrects the a priori state in-
formation through the use of the observation vector. In
detail, in this phase, the innovation vector ỹt , representing
the difference between the observed measurement and the
predicted measurement based on the current state estimate,
can be expressed as [41]

ỹt = zt − Ht · x̂t |t−1 . (25)

On the other hand, the covariance matrix St can be expressed
as [41]

St = Ht · P̂t |t−1 · Hᵀ
t + Rt . (26)
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At this point, the updated a posteriori state vector x̂t |t can
be calculated as [41]

x̂t |t = x̂t |t−1 + Kt · ỹt (27)

where Kt is the optimal Kalman gain, which can be obtained
as follows [41]:

Kt = P̂t |t−1 · Hᵀ
t · S−1

t . (28)

Finally, the updated a posteriori state covariance matrix Pt |t
can be derived as [41]

Pt |t = (I − Kt · Ht ) · P̂t |t−1 . (29)

Once the KF has been set, the aforementioned param-
eters (namely, P0, Rt , Qt , Ht , ut , and Ft ) must be prop-
erly set according to the intended filtering application. In
the developed Wi-Fi-based localization system (detailed in
Section V), the KFs are applied to two different parts of
the system, namely: 1) at the reception of the RSSI or
FTM measurement from each AP, and 2) to further filter
the estimated RSSI- or FTM-based positions computed by
the multilateration algorithm described in Section III-C.
Moreover, different KFs properly tuned with the right pa-
rameters must be defined accordingly to efficiently filter
the measurement noise. The reason behind the double KF
implementation in the developed system is detailed in the
following.

The first KF, denoted as “prefilter RSSI-KF,” is applied
to the RSSI measurement arriving from the Wi-Fi scanner of
the device to be localized, with the aim to remove possible
measurement outliers. More in detail, in the case of the
RSSI-based localization system, an RSSI-KFAPi is assigned
to each known APi, i ∈ {1, . . . , 6}, thus allowing to filter the
measured RSSI according to the previous measurement of
the same APi. This means that, in the experimental setup
of the developed system with six APs, six RSSI-KFAPi (one
for each AP) are initialized by the developed localization
algorithm. Therefore, in the RSSI-KFAPi , the estimated 1 ×
1 vector x(APi )

t given by (21) is defined as

x(APi )
t = ˆRSSI

(APi )
t (30)

while the observed 1 × 1 vector z(APi )
t of (22) is defined as

z(APi )
t = RSSI(APi )

t . (31)

Since the estimated vectors have only one element,
all the aforementioned matrices have one element. More-
over, all {RSSI-KFAPi}6

i=1 share the same initial covariance
1 × 1 matrix P0 = 1, the same observation noise 1 × 1
matrix Rt = 3 · I = 3, and the same process noise 1 × 1
matrix Qt = 0.2 · I = 0.2. Those values have been chosen
according to in-field experimental measurements of the
RSSI in both static and mobile conditions of the device
to be localized, as further detailed in Section VI. When the
RSSI-KFAPi is initialized, the initial estimated states x(APi )

0

are set equal to the first observations z(APi )
0 . Since in the

developed system there is no control input signal ut , this
term can be neglected, thus also removing Bt . Instead, Ht

and Ft are equal to the identity 1 × 1 matrix I = 1 = 1.

The same approach (i.e., initializing a filter for each
APi, i ∈ {1, . . . , 6}) is applied to the FTM. In detail, an
FTM-KFAPi is assigned to each known APi, thus allowing
to filter the measured FTM according to the previous mea-
surement of the same APi. In the FTM-KFAPi , the estimated
1 × 1 vector x(APi )

t is defined as

x(APi )
t = ˆFTM

(APi )
t (32)

while the observed 1 × 1 vector z(APi )
t can be expressed as

z(APi )
t = FTM(APi )

t . (33)

All {FTM-KFAPi}6
i=1 share the same initial covariance 1 × 1

matrix P0 = 1, the same observation noise 1 × 1 matrix
Rt = 2 · I = 2, and the same process noise 1 × 1 matrix
Qt = 0.2 · I = 0.2. Similarly to the RSSI-based case, those
values have been chosen according to in-field experimental
measurements of the FTM in both static and mobile con-
ditions of the device to be localized—this will be further
detailed in Section VI. Then, as for RSSI-KF filters, the ini-
tial estimated state x(APi )

0 is set equal to the first observation
z(APi )

0 to initialize the corresponding filter. As for RSSI-KF,
in this case as well the terms ut and Bt are neglected, while
Ht and Ft are set to the identity 1 × 1 matrix I = 1 = 1.

The second set of KFs, corresponding to the multilat-
eration filters and denoted as POS-KFs, are applied to the
estimated RSSI-based and FTM-based positions—namely,
(P(RSSI)

x , P(RSSI)
y , P(BARO)

z ) and (P(FTM)
x , P(FTM)

y , P(BARO)
z ),

respectively—computed by the multilateration algorithm
applied to RSSI and FTM data, respectively. Therefore, the
estimated state 3 × 1 vectors x(RSSI)

t of the POS-KF(RSSI)

applied to the RSSI-based position are defined as

x(RSSI)
t = (

P̂(RSSI)
x , P̂(RSSI)

y , P̂(BARO)
z

)ᵀ
t

(34)

while the observed 3 × 1 vectors z(RSSI)
t are defined as

z(RSSI)
t = (

P(RSSI)
x , P(RSSI)

y , P(BARO)
z

)ᵀ
t

. (35)

The estimated state 3 × 1 vectors x(FTM)
t of the POS-KF(FTM)

applied to the FTM-based position are defined as

x(FTM)
t = (

P̂(FTM)
x , P̂(FTM)

y , P̂(BARO)
z

)ᵀ
t

(36)

while the observed 3 × 1 vectors z(FTM)
t can be expressed as

z(FTM)
t = (

P(FTM)
x , P(FTM)

y , P(BARO)
z

)ᵀ
t

. (37)

In both cases, the estimated vector has dimensions
3 × 1 and, therefore, all matrices have dimensions 3 × 3.
The initial covariance matrix P0 3 × 3 matrix is defined as

P0 =

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ (38)

while the 3 × 3 observation noise covariance matrix Rt is
defined as

Rt =

⎡⎢⎣0.8 0 0

0 0.8 0

0 0 0.8

⎤⎥⎦ (39)
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Fig. 4. Equipment used for the Wi-Fi localization test. (a) Quadcopter
with the on-board ESP32S3 module connected to the RPi4, and (b) one

of the six ESP32S3 APs, held by a prototypical 3-D-printed case,
deployed in the experimental environment.

and the 3 × 3 process noise covariance matrix Qt as

Qt =

⎡⎢⎣0.2 0 0

0 0.2 0

0 0 0.2

⎤⎥⎦ . (40)

Hence, when the filters are initialized, the initial es-
timated states x(RSSI)

0 and x(FTM)
0 are set equal to the first

observations z(RSSI)
0 and z(FTM)

0 , respectively. Since there is
no control input signal, the terms ut and Bt are neglected,
while Ht and Ft are set equal to the 3 × 3 identity matrix I.

All the aforementioned KFs’ parameters have been
chosen according to experimental evaluations carried out
in both static and mobile conditions, aiming at finding an
effective KF tuning process, representing an acceptable
tradeoff for both scenarios, as will be further discussed in
the following. This allows to understand when the use of
both filters can be beneficial, as well as when the use of
only one of the identified KFs (the first or the second) is
preferable.

V. SYSTEM ARCHITECTURE

The developed low-cost real-time Wi-Fi-based local-
ization system is composed of several elements. On the
hardware side, the Wi-Fi RSSI and FTM measurements are
gathered on a common platform (used for both the APs
and the target device to be localized) based on the ESP32S3
SoC, embedded in the Lilygo T3S3 development board [43].
Then, one Lilygo T3S3 has been integrated (inside its own
3D-printed case) on the Tarot 650-based UAV platform, as
shown in Fig. 4(a), in turn connected to a Raspberry Pi 4
(RPi4) single board computer located on-board the drone
and running Ubuntu 20.04 OS, as well as the robot operating
system (ROS) framework [44]. A high-level representation
of the proposed experimental localization system is shown
in Fig. 3. Our goal is to gather ground truth satellite data
(from the GNSS receiver attached to the UAV’s FC) as well
as the Wi-Fi positioning data of the designed system, thus
allowing to properly evaluate, in a comparative way with
respect to the only GNSS-based position, its performance.
Six Lilygos T3S3, together with their 3D-printed cases [as

shown in Fig. 4(b)], have been adopted as Wi-Fi APs and
deployed in the experimental environment.

The ESP32S3 firmware has been customized according
to the role of the Lilygo T3S3.

1) In the boards used as Wi-Fi APs, the developed
firmware has been properly designed to enable the
ESP32S3 SoC to work as a Wi-Fi FTM responder
on the 2.4-GHz band (with B = 40 MHz).

2) The development board integrated on the UAV, con-
nected to the on-board RPi4 through a USB-C cable,
has been programmed to act as a Wi-Fi node contin-
uously scanning for available Wi-Fi APs.

The goal of the UAV is to retrieve the MAC address, the
Service Set IDentifier (SSID), and the RSSI (with 1 dBm
granularity) of each Wi-Fi AP, in turn performing as an FTM
initiator with the FTM-enabled APs.

With regard to the FTM operational steps (detailed in
Section III-B), in order to reduce the time needed to com-
plete the computation of RTT, the number of FTM frames
to be exchanged for each Burst has been set equal to 8, with
a total of only one Burst exchanged: this is expedient to
minimize the impact of the movement of the quadcopter.
In the end, this leads to a time duration of the Burst equal
to 32 ms: considering the Wi-Fi scan time and the six APs
used for the localization experiment, this results, in turn, in a
measured average iteration period (denoted as θcycle) equal
to 522 ms. Then, for the sake of clarity and readability,
details on the Wi-Fi scanning data retrieval are discussed in
Appendix A.

At the UAV side, the RPi4 receives these JavaScript
Object Notation (JSON)-formatted strings and, through a
Python script, separates the known APs—the ones used for
the localization task, whose GNSS coordinates are known—
from those corresponding to unknown APs. Once the known
APs’ list is built, RSSI-KFAPi , i ∈ {1, 2, . . . , 6}, is set to
the newly observed value RSSIAPi . The same operation
is carried out with FTM-KFAPi , i ∈ {1, 2, . . . , 6}, which
is instead set to the measured value FTMAPi . At system
activation as well as when a new AP is added to the list,
the relative KFs are initialized as described in Section IV.
Once the input data are filtered: in case of RSSI-based lo-
calization, the log-distance path loss model is applied to the
filtered RSSI(FILT)

APi
; while for the FTM-based solution, the

calibration offset εcal is removed from the filtered FTM(FILT)
APi

measurement. In detail, for the log-distance path loss model
behind the RSSI, γ = 3.65 and P0 = −27 dBm have been
measured in the experimental environment at the reference
distance d0 = 1 m; for the FTM calibration, according to
the experimental measurements, the offset calibration has
been set to εcal = −52.82 m.

The output of log-distance estimation and FTM offset
removal blocks, namely, d (RSSI)

APi
and d (FTM)

APi
, then feed the

multilateration algorithm, together with the altitude [dimen-
sion: (m)], which corresponds to P(BARO)

z of the device to
be localized and is retrieved from the UAV’s FC (which
estimates it through an internal barometer). Before applying
the multilateration algorithm, the GNSS coordinates of
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Fig. 5. System architecture of the developed Wi-Fi-based localization solution.

the known APs are converted from the World Geodetic
System 1984 (WGS84) [45] standard to Earth-centered
Earth-fixed (ECEF) [46] coordinates: this allows to apply
the multilateration algorithm together with the LS. Once
both RSSI-based (P(RSSI)

x , P(RSSI)
y , P(BARO)

z ) and FTM-based
(P(FTM)

x , P(FTM)
y , P(BARO)

z ) coordinates have been computed,
they are fed into the POS-KF filters, namely, one for the
FTM-based localization and one for the RSSI-based lo-
calization. Finally, the output of the latter KFs, namely,
the filtered RSSI-based estimated position coordinates
(P̂(RSSI)

x , P̂(RSSI)
y , P̂(BARO)

z ) and the filtered FTM-based es-
timated position coordinates (P̂(FTM)

x , P̂(FTM)
y , P̂(BARO)

z ), are
converted from ECEF to WGS84 coordinates and become
the final estimated positions (according to the RSSI or FTM)
of the UAV. A block diagram of the overall proposed system
architecture is shown in Fig. 5.

Finally, in order to ease performance evaluation (which
will be the focus of Section VI), all raw Wi-Fi scan data,
as well as the computed RSSI and FTM coordinates, are
published to a custom-made ROS topic, thus allowing to
record the estimated positions to be synchronized with the
ground truth positions output by the UAV’s GNSS receiver.

VI. EXPERIMENTAL PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
Wi-Fi-based localization system, the considered testbed, as
shown in Fig. 6(a), is located in an outdoor yard (measuring

26 × 21 m2) in a suburban area in northern Italy—in the
neighborhood of the city of Sabbioneta, Italy. More in
detail, the battery-powered APs have been deployed on
several tripods [shown in Fig. 6(b)] at the same altitude
(equal to 150 cm) along the external border of the yard.
The GNSS coordinates (in terms of latitude and longitude)
of the APs have been obtained by averaging the positions
gathered using the GNSS-receiver of the drone positioned
on the tripod for approximately 5 min—averaging allows
to minimize the measurable drift affecting GNSS systems.
In detail, the point cloud composed by the GNSS mea-
surements collected during 5 min at each AP lies in a
circle with a radius of approximately 1 m: the reference
coordinates of the AP to be used for the multilateration
algorithm correspond the average values of the latitudes
and longitudes of all points in the cloud.

All APs have been deployed in LOS conditions with
each other and with respect to the UAV. Given the suburban
environment, a few Wi-Fi 2.4 GHz networks are available in
the same area: in order to mitigate the possible interference
effects, the deployed Wi-Fi APs have been set to operate in
unused Wi-Fi channels.

The experimental evaluation has been carried out ac-
cording to two procedures: 1) a static localization test,
where the UAV hovered for about 2 min in the same position
at approximately 2 m above ground level (AGL), with just
a few fluctuations due to the correction applied by the FC to
compensate wind and altitude drift; 2) a mobile localization
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Fig. 6. (a) Experimental testbed located in a yard in a suburban area in the neighborhood of the city of Sabbioneta, Italy, in the northern Italy. (b)
Detail of a battery-powered AP deployed on a tripod.

Fig. 7. Evaluation of the implemented KFs in static hovering conditions. (a) Unfiltered and filtered AP1 RSSI measurements, and (b) unfiltered and
filtered AP1 FTM distance measurements.

test, where the UAV flew in AUTOmode at 2 m AGL with an
average horizontal speed of 1.3 m/s for three times through
a predefined flight path with a square shape, with a size
of approximately 16 × 11 m2, within the experimental area
surrounded by the APs.

These tests have been carried out aiming at validating
both RSSI- and FTM-based localization performance, in
static (first procedure) and mobile (second procedure) con-
ditions, in order to understand how accurate the proposed
system can be in terms of real-time tracking of an object.

A. KFs Evaluation

Before performing the in-flight tests, we have carried
out a preliminary performance evaluation of the KFs im-
plemented and adopted to mitigate the noise of the RSSI
and FTM measurements, aiming at properly setting their
parameters outlined in Section IV.

In the static hovering experimental evaluation, car-
ried out with respect to AP1 (whose results are shown
in Fig. 7), the KF performs outlier removal, filtering the
measurement noise due to both environmental background
noise and measurement error from the Wi-Fi scanner. In
Fig. 7(a), the unfiltered and filtered RSSI measurements
are shown, highlighting how the filter manages to remove
some RSSI measurements at the boundaries of the observed
RSSI’s range, thus smoothing the RSSI values used for
the distance estimation. In Fig. 7(b), the unfiltered and
filtered FTM-based distance measurements are shown: as
in the previous case, the KF manages to efficiently remove
some FTM outliers, thus smoothing the FTM distance
estimation.

Under UAV mobile conditions along the predefined
path, the filtering performance is evaluated in Fig. 8. Ac-
cording to the results shown in Fig. 8(a), the KF manages
to properly remove most of the outliers and to smooth the
RSSI values. The same holds true for the KF applied to the
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Fig. 8. Evaluation of the implemented KFs with UAV in mobile condition. (a) Unfiltered and filtered AP1 RSSI measurements, and (b) unfiltered and
filtered AP1 FTM measurements.

FTM measurements, with results shown in Fig. 8(b). This
confirms the effectiveness of the designed filter, suitable
to remove some background noise without losing relevant
information, as would happen with other filters (e.g., expo-
nential moving average [47])—the results with other filters
are not shown here for the sake of conciseness.

B. Absolute Positioning Error Evaluation

In the following, the localization accuracy of the pro-
posed system has been evaluated in the two aforementioned
scenarios (namely, with static hovering UAV and with mo-
bile UAV). However, in order to evaluate the impact of the
implemented KFs and to understand how much and when
it is beneficial to use both, the localization performance (in
terms of positioning error with respect to the GNSS ground
truth) is investigated in four different system setups for both
RSSI- and FTM-based localization solutions depicted in
Fig. 9 and illustrated in the following.

1) without any KF applied to the input RSSI and FTM
data (no filtering): the corresponding setup is denoted
as RAW RSSI position and RAW FTM position.

2) with only the POS-KF applied to the raw RSSI and
raw FTM data (single filtering): the corresponding
setup is denoted as RAW RSSI position with second
KF and RAW FTM position with second KF.

3) with only the RSSI-KFAPi and FTM-KFAPi filters,
i = 1, . . . , 6, applied to the raw input data before
multilateration (single filtering): the corresponding
setup is denoted as RSSI position with first KF and
FTM position with first KF.

4) with both the double KFs applied at the raw input
RSSI and FTM data, as well as after multilateration
(double filtering): the corresponding setup is denoted
as RSSI position with both KFs and FTM position
with both KFs.

Fig. 9. Four different system setups adopted for both RSSI- and
FTM-based localization experimental evaluation.

1) Static UAV: Considering the RSSI-based approach,
the RAW RSSI position setup achieves acceptable results,
as shown in Fig. 10(a) and further confirmed by the em-
pirical cumulative distribution function (ECDF), as shown
in Fig. 10(c). From the obtained results, one can notice the
beneficial effects of the RAW RSSI position with second KF
filtering setup, which reduces the overall positioning error,
lowering the raw RSSI mean position error from 2.58 m (no
filtering) to 2.23 m, as given in Table I. The error reduction is
higher for the 95th percentile position error, which reduces
from 4.61 m (no filtering) to 3.26 m.

With regard to the double filtering setup, in Fig. 10(b),
it can be observed that the point cloud of the RSSI position
with both KFs setup concentrate in an approximate circular
area, near the true UAV GNSS coordinates, which has a
radius shorter than that of the point cloud associated with
the RSSI position with first KF. This is also confirmed by
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Fig. 10. Evaluation of the implemented Wi-Fi-based localization system in the static hovering scenario with different filtering setups.
(a) Experimental position point clouds with RAW RSSI position and RAW RSSI position with second KF setups. (b) Experimental position point clouds

with RSSI position with first KF and RSSI position with both KFs setups. (c) ECDF of the position error with RAW RSSI position and RAW RSSI
position with second KF setups. (d) ECDF of the position error with RSSI position with first KF and RSSI position with both KFs setups.

TABLE I
Experimental Evaluation of RSSI- and FTM-Based Localization

With the UAV in Static Hovering Conditions With Different
Filtering Setups

the ECDF, as shown in Fig. 10(d), as well as by the values
listed in Table I: the mean positioning error reduces from
2.54 m (single filtering) to 2.21 m (double filtering), whereas

the 95th percentile positioning error reduces from 4.20 m
(single filtering) to 3.13 m (double filtering).

Regarding the FTM-based approach, the RAW FTM
position setup achieves a more consistent and better result
with respect to the RSSI-based double KF setup, as given
in Table I, with a mean positioning error equal to 1.99 m.
However, it is interesting to look at the higher (with respect
to the RSSI-based system) 95th percentile error of the RAW
FTM position setup, equal to 5.82 m, which is the overall
worst. Comparing the RAW FTM position setup with the
RAW FTM position with second KF setup, the latter allows
to lower the mean positioning error to 1.51 m and the 95th
percentile to 3.57 m, as confirmed by the ECDFs shown
in Fig. 11(c) and visually illustrated by the point clouds in
Fig. 11(a).

With regard to the FTM position with both KFs (double
filtering) setup, Fig. 11(b) shows the filtered estimated
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Fig. 11. Evaluation of the implemented Wi-Fi-based localization system in the static hovering scenario with different filtering setups.
(a) Experimental position point clouds with RAW FTM position and RAW FTM position with second KF setups. (b) Experimental position point clouds

with FTM position with first KF and FTM position with both KFs setups. (c) ECDF of the position error with RAW FTM position and RAW FTM
position with second KF setups. (d) ECDF of the position error with FTM position with first KF and FTM position with both KFs setups.

positions concentrate nearer the true UAV GNSS position
with respect to estimated positions in Fig. 11(a). This is
confirmed by the ECDFs shown in Fig. 11(d) and by the
values listed in Table I, where the FTM position with
both KFs setup achieves a mean positioning error equal
to 1.41 m, with a 95th percentile error equal to 3.22 m,
thus achieving slightly better results than all the other afore-
mentioned RSSI-based and FTM-based filtering setups. For
the sake of comparison, the RSSI position with first KF
only achieves a mean positioning error equal to 1.70 m,
with a 95th positioning error of 4.81 m (the second worst
value for this metric in the static scenario). The obtained
FTM results are significantly better than the expected rr
for the Wi-Fi 2.4 GHz 40 MHz technology discussed in
Section III-B.

As expected, in the static scenario, the FTM-based lo-
calization solution manages to achieve the best performance

with or without filters with respect to RSSI-based solutions,
with the double KF setups able to further improve the
localization accuracy of both the RSSI and FTM systems,
but with the relatively higher gain in the FTM solution.

2) Mobile UAV: In the considered scenario with the
quadcopter flying along a square path, both RSSI- and
FTM-based solutions achieve (as expected) worse results
with respect to those experienced in the static scenario.
Starting with the RSSI-based approach, the RAW RSSI
position setup significantly suffers from the movement of
the UAV, as shown in Fig. 12(a) and further confirmed
by the values listed in Table II. More in detail, the un-
filtered localization solution achieves a mean positioning
error equal to 5.49 m, with a 95th percentile error equal to
9.99 m. According to the ECDF, as shown in Fig. 12(c), it is
possible to observe the beneficial effects of the RAW RSSI
position with second KF setup, which marginally reduces
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Fig. 12. Evaluation of the implemented Wi-Fi-based localization system in the mobile scenario with different filtering setups. (a) Experimental
position point clouds with RAW RSSI position and RAW RSSI position with second KF setups. (b) Experimental position point clouds with RSSI

position with first KF and RSSI position with both KFs setups. (c) ECDF of the position error with RAW RSSI position and RAW RSSI position with
second KF setups. (d) ECDF of the position error with RSSI position with first KF and RSSI position with both KFs setups.

TABLE II
Experimental Evaluation of RSSI- and FTM-Based Localization

With the UAV in Mobile Conditions With Different Filtering Setups

the mean error and 95th percentile error to 5.23 and 9.06 m,
respectively.

Considering the RSSI position with first KF and RSSI
position with both KFs setups, none of these approaches

manages to improve the results of the RAW RSSI with second
KF setup, as confirmed by the mean error, given in Table II
and close to 5.35 m in both cases, and by the ECDFs shown
in Fig. 12(b). In any case, regardless of the filtering approach
applied to the RSSI-based localization system, it is clearly
impossible to understand (relying only on the RSSI-based
estimated coordinates) in which part of the predefined flight
path the UAV is located. Therefore, this makes the use of
this solution for localization purposes with a mobile target
unfeasible.

Significantly better results are achieved by the FTM-
based systems. As for the static hovering scenario, the RAW
FTM position setup leads to better results with respect to
all the RSSI-based solutions, as listed in Table II. More
in detail, without filtering, the FTM-based system achieves
a mean positioning error equal to 3.76 m, with a 95th per-
centile error equal to 6.62 m. The unfiltered FTM-estimated
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Fig. 13. Evaluation of the implemented Wi-Fi-based localization system in the mobile scenario with different filtering setups. (a) Experimental
position point clouds with RAW FTM position and RAW FTM position with second KF setups. (b) Experimental position point clouds with FTM

position with first KF and FTM position with both KFs setups. (c) ECDF of the position error with RAW FTM position and RAW FTM position with
second KF setups. (d) ECDF of the position error with FTM position with first KF and FTM position with both KFs setups.

positions are shown (as a point cloud) in Fig. 13(a), together
with the estimated positions computed adopting the RAW
FTM position with second KF setup. As highlighted in the
ECDFs shown in Fig. 13(c), the adoption of a KF after the
application of a multilateration algorithm, as in the RAW
FTM position with second KF setup, allows to reduce the
mean positioning error and the 95th percentile error to 3.32
and 5.63 m, respectively.

Considering the FTM position with both KFs (double
filtering) setup, Fig. 13(b) shows a smaller number of
outlier positions as well as the overall point cloud closer
to the ground truth GNSS-based flight path followed by
the UAV. This seems valid for both the FTM position
with first KF and FTM position with both KFs setups,
as confirmed by the similar ECDFs shown in Fig. 13(d)
and the values listed in Table II. In fact, both prefiltering

and double filtering approaches allow to achieve similar
mean positioning errors equal to 3.34 and 3.30 m, re-
spectively, providing a limited improvement with respect
to the RAW FTM position with second KF setup. Then,
similar 95th percentile positioning errors are confirmed
by the values listed in Table II. In this case, the FTM-
based localization results are aligned with the expected rr
for the Wi-Fi 2.4 GHz 40 MHz technology discussed in
Section III-B.

With regard to the mobile scenario, despite the dis-
cussed positioning errors, it must be taken into account
that the goal of the proposed Wi-Fi RSSI- and FTM-based
localization system is to provide an approximate knowledge
of the position of the UAV, possibly flying in a BVLOS
condition without a (or with a weak) GNSS signal reception.
Therefore, behind the average positioning error (in terms

PAGLIARI ET AL.: WI-FI-BASED REAL-TIME UAV LOCALIZATION 8773



of values), it is also relevant to evaluate the trajectories
of the ground truth GNSS-based path with respect to the
Wi-Fi estimated positions of the proposed systems, in order
to understand which approach can allow to better under-
stand where the UAV is flying with respect to the its true
position.

As shown in Figs. 12(a) or 12(b) and 13(a) or 13(b),
related to the RSSI- and FTM-based positioning in the
mobile scenario, respectively, the first two “images” do not
provide any reliable information to understand where the
UAV is positioned along the true trajectory, while in the
latter two images, the estimated positions are approximately
distributed along the true flight path. Therefore, the RSSI
-based solutions are not suitable for real-time applicability
to a UAV, at least with the proposed architecture and ap-
proach, while the FTM-based approach allows to estimate
the UAV position in real time with significantly higher
accuracy, even in mobile conditions. The best performance
is achieved by the double filtering setup: the estimated
positions, as shown in Fig. 13(b), are mostly distributed
along the true flight path, indicating that the corresponding
system can provide an approximate position estimate of the
UAV in the case of GNSS outage, thus allowing the pilot
to understand where the UAV is flying along the planned
path.

C. Relative Positioning Error Evaluation

Another relevant metric to be used for evaluating the
performance of the proposed Wi-Fi-based localization sys-
tem is the relative positioning error with respect to the
average target–AP distance, as proposed in [9]. This al-
lows to characterize the performance as a function of the
“shape” of the considered scenario, regardless of its actual
scale.

According to this evaluation metric, in the static sce-
nario, the average UAV–AP distance, with the UAV hover-

ing in a fixed position, is approximately equal to d
STATIC
AP =

13.42 m. Considering the RSSI-based localization system
with the double KFs setup (which, according to Table I,
achieves the lowest mean positioning error equal to 2.21 m),

the relative position error (with respect to d
STATIC
AP ) is approx-

imately equal to 16.67%. Considering instead the FTM-
based system with the double KFs setup (which, according
to Table I, achieves the lowest mean positioning error equal
to 1.41 m), the relative position error is approximately equal
to 10.65%.

Focusing on the mobile scenario, the mean AP–target

distance is approximately equal to d
MOBILE
AP = 14.01 m.

Therefore, according to Table II, for the RAW RSSI with
second KF setup, the relative position error (with regard to

d
MOBILE
AP ) is approximately equal to 37.36%, while for the

FTM-based solution with both KFs, the relative position
error is approximately equal to 23.56%.

In both static and mobile scenarios, it can be concluded
that the FTM-based approach with both KFs reduces the

relative position error observed with RSSI-based approach
by approximately 37%.4

D. Update Frequency and Processing Times

Finally, since the system has been designed for real-
time localization purposes, the measured position update
rate must be evaluated to further understand the capabilities
of the proposed solutions. As mentioned in Section V, with
six APs deployed in the experimental environment acting as
FTM responders, the ESP32S3 can provide a list of Wi-Fi
scan results with six FTM measurements and all the RSSIs
of the nearby APs approximately every θcycle = 522 ms.
More in detail, θcycle is defined as

θcycle = υwifi + n · ν (41)

where υwifi is the Wi-Fi scan time [dimension: (ms)], ap-
proximately equal to 330 ms; n = 6 is the number of APs;
and ν is the FTM Burst duration [dimension: (ms)], which,
given the parameters adopted in the proposed architecture,
is equal to 32 ms.

Therefore, considering the measured processing time in-
troduced by the RPi4-handled filtering and multilateration,
denoted as κ [dimension: (ms)] and approximately equal to
66 ms, the overall update period increases to approximately
�cycle = 588 ms. This leads to a position update rate equal
to fpos = 1/�cycle ≈ 1.7 Hz, which is sufficient for several
real-time UAV applications.

E. Complexity

The complexity of the proposed system mainly corre-
sponds to the computational complexity required to apply
the KFs at each Wi-Fi AP, as well as the computation of
the multilateration algorithm solved through the LSMR
algorithm. Thus, it might be argued that the system involves
several steps, each of them with its own computational
complexity, which can be quantified as follow.

Collecting RSSI and FTM measurements from a num-
ber, denoted as A, of Wi-Fi APs is a linear scan opera-
tion through the APs’ list, thus resulting in a complex-
ity of O(A). Subsequently, as detailed in Section V, for
each AP’s data, one KF is executed on the RSSI values
(RSSI-KFAPi ) and one on the FTM values (FTM-KFAPi ), to
remove possible noise in the measurements. According to
the literature [48], a linear KF has a complexity of O(n3),
where n is the size of the state vector in our filters. This
is because the most computationally intensive step in a
KF involves matrix multiplications and inversions, which
generally have a complexity of O(n3). Therefore, since each
AP requires two KFs, the resulting complexity is equal to
O(A · 2n3) = O(2An3) = O(An3).

Then, the next step—the execution of the multilateration
algorithm, solved with the LSMR approach (as discussed in
Section III-C and in [48])—involves matrix multiplication

4This value is obtained as [(16.67 − 10.65)/16.67] · 100 in the static
scenario and as [(37.36 − 23.56)/37.36] · 100 in the mobile scenario.
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with its transpose, thus corresponding to a complexity of
O(A3).

After obtaining the position estimates from the multilat-
eration, the POS-KFs are applied to both RSSI and FTM-
based positions. Hence, since each KF has a complexity of
O(n3) (as detailed before), this task results in a complexity
of O(2n3) = O(n3).

In the end, it is possible to estimate the overall complex-
ity of the proposed algorithm by simply adding the com-
plexity terms of each step, i.e.: O(A) + O(An3) + O(A3) +
O(n3). The dominant term in this sum, especially for typical
scenarios where A ≥ 3, is O(A3), which is also the over-
all complexity of the described Wi-Fi-based localization
system.

F. System Limitations

Although the performance of the proposed low-cost
system architecture might be suitable for some UAV ap-
plications where the achieved accuracy level is sufficient
to compensate for temporary GNSS outages, the proposed
solution cannot provide submeter positioning capabilities,
as well as more complex pose estimation of the UAV, as
achieved in [27] and [28]. As shown by our solution, the
results in [27] and [28] also confirm the limitations of Wi-
Fi-based positioning, which requires LOS (between Wi-Fi
APs and the UAV) to avoid inaccurate distance estimation
and, thus, large position estimations errors.

Another limitation of the proposed solution is the op-
erational area, which, even if wider than other position-
ing solutions (such as UWB based), since it does also
not need to synchronize the clocks of the deployed Wi-
Fi anchors, keeping the infrastructure cost lower, cannot
compete with other on-board positioning solutions, such
as visual simultaneous localization and mapping, more
suitable to cover large environments without any infrastruc-
ture, as proposed in [49]. To this end, a deeper discussion
about the scalability of our proposed solution is detailed in
Section VI-G.

Finally, due to the low-cost nature of the proposed sys-
tem, another limitation could be related to the usage of lim-
ited bandwidth in the 2.4-GHz spectrum band, which limits
the accuracy capabilities of the system itself. As detailed
in the future research directions discussed in Section VII,
the usage of additional spectrum in the 5-GHz Wi-Fi band
might allow to achieve more consistent submeter level accu-
racy, despite a slightly higher cost and reduced operational
range.

G. Scalability

Finally, as mentioned in Section VI-F, the operational
area of the proposed localization system might be a limiting
factor. However, given the absence of need to synchronize
the clocks of the deployed Wi-Fi anchors, it can be stated
that our proposed approach is scalable since, as shown
in Section VI-C, our solution provides a localization ac-
curacy which is, on average, a fixed percentage of the

distance between the UAV and a Wi-Fi AP. Therefore,
it is possible to naturally scale the system by increasing
the distance between UAV and APs. Nevertheless, increas-
ing too much the distance is not compatible with typical
transmission power levels of Wi-Fi transceivers. Should the
transmit power be increased, our solutions would directly
scale.

Another effective approach to make our solution scal-
able would be to increase the number of APs deployed in the
area of interest, so that, on the average, the UAV has enough
APs within the transmission range, thus guaranteeing the
obtained performance.

VII. IMPROVEMENTS

Several approaches might be implemented to further
enhance the performance of the proposed Wi-Fi-based lo-
calization system. In the following, we outline a few relevant
ones identified for future research activities.

1) Exploit the 5-GHz Wi-Fi band for RSSI-based dis-
tance estimation purposes: the higher carrier fre-
quency provides more granular measurements.

2) Exploit other Wi-Fi-related signal quality metrics,
such as the CSI, which can be used to estimate
the AoA on Wi-Fi multiple-input/multiple-output
systems, thus increasing the position estimation ac-
curacy [27], [28]. This, however, comes at the cost
of more expensive devices and a higher complexity
of the system architecture.

3) Utilization of 5 GHz, 80 MHz, or 160 MHz Wi-Fi
FTM equipments, in order to reduce the rr and
achieve a submeter level localization positioning
error.

4) Adoption of an EKF instead of a KF, as well
as other alternative filters, with the purpose of
enhancing the filtering capabilities of the pro-
posed solution, thus improving the final localization
accuracy.

5) Adoption of a different algorithm for the localization
task instead of the multilateration solution, such as,
for example, the two-step M-estimator [50], which
might be more effective in removing the noise, thus
allowing to achieve a smaller positioning error with
respect to the multilateration solution adopted in the
solution proposed here.

6) Evaluation of sensor fusion-oriented approaches to
exploit both RSSI- and FTM-based ranging solu-
tions, aiming at developing LOS and NLOS channel
estimation models suitable to improve the outliers
removal filter and, therefore, to enhance the distance
estimation, eventually increasing the overall posi-
tioning accuracy.

VIII. CONCLUSION

The proposed real-time Wi-Fi-based localization
system (discussed in Section III) has been implemented
and evaluated on a real UAV, aiming at understanding
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the localization performance achievable with low-cost
IEEE 802.11mc 2.4-GHz COTS hardware, as well as
adopting traditional and well-known filtering and ranging
estimation techniques (discussed in Sections IV and V). The
obtained accuracy with the FTM-based solution in mobile
conditions (presented in Section VI) is already sufficient
in environments with weak GNSS or GNSS-denied condi-
tions, where the adoption of UWB might be too expensive or
infeasible (given the larger area) and not necessary (since
sub-30 cm might be needed only on specific missions
involving small UAVs, but not in BVLOS missions).

The proposed solution is effective as temporary GNSS
backup solution to provide the pilot with an approximate
position of the UAV. Moreover, the complexity and scala-
bility analyses and the system limitations, as well as the
identified improvements (detailed in Section VII) might
further enhance the performance of the proposed localiza-
tion system, thus paving the way to new applications. In all
cases, we expect that the complexity and, therefore, the cost
of the infrastructure will remain low, since FTM is being
supported by most of the newly released devices, even on
the 5-GHz band (which should provide significantly better
localization capabilities).

APPENDIX A
WI-FI SCANNING DATA RETRIEVAL

As mentioned in Section V, in the following, additional
details on the Wi-Fi scanning data retrieval are presented.
Once the Wi-Fi scan results are obtained by the ESP32S3
module connected to the RPi4 on-board the quadcopter,
they are then parsed into a JSON string and sent, through
the USB-enabled serial port, to the RPi4 itself, with the
structure of the generated JSON string depending on the
result of the Wi-Fi scan process.

If the scanned AP is an FTM responder, then the JSON
string includes the FTM-related fields, as follows:

{“SSID”: “FTM_1”, “MAC”:
“f6:12:fa:5a:05:10”,

”rtt_est”: 346, ”rtt_raw”: 478,
”dist_est”: 5200,

”num_frames”: 15, ”mean_rssi”: -
45.00}

where SSID corresponds to the name of the Wi-Fi
network; the MAC address is the unique physical address
of the AP creating its own Wi-Fi network; rtt_est is
the RTT between the responder and the initiator [dimen-
sion: (ns)] taking into account the clock drift compensation;
rtt_raw is the raw RTT between the responder and the
initiator [dimension: (ns)]; dist_est is the average esti-
mated distance d between the responder and the initiator
[dimension: (cm)], derived from rtt_est and without the
initial offset correction; num_frames is the total number
of exchanged frames (i.e., including both FTM and ACK
frames) during the FTM process; and mean_rssi is the
average RSSI [dimension: (dBm)] measured over all the
exchanged FTM frames.

Otherwise, in the case that the scanned AP is not an
FTM responder, then only SSID, MAC address, and RSSI
are included as follows.

{“SSID”: “Tenda”, “MAC”:
“f2:5a:01:5a:12:f4”,

“mean_rssi”: -52.00}
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