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1 Introduction

Recent years have seen significant progress in computing holographic correlators, which
are key objects for exploring and exploiting the AdS/CFT correspondence. Traditionally,
holographic correlators are computed by diagrammatic expansions in AdS. Such a method
works in principle. However, in practice, it requires the precise knowledge of the exceed-
ingly complicated effective Lagrangians and is extremely cumbersome to use. Therefore,
for almost twenty years the diagrammatic approach led to only a handful of explicit results.
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The new developments, on the other hand, are based a totally different strategy which re-
lies on new principles. This is the bootstrap approach initiated in [2, 3], which eschews the
explicit details of the effective Lagrangian altogether. The new approach works directly
with the holographic correlators and uses superconformal symmetry and consistency con-
ditions to fix these objects. The bootstrap strategy has produced an array of impressive
results.1 For example, at tree level general four-point functions for 1

2 -BPS operators with
arbitrary Kaluza-Klein (KK) levels have been computed in all maximally superconformal
theories [2, 3, 5, 6], as well as in theories with half the amount of maximal superconformal
symmetry [7–9]. Note that these general results are all in the realm of four-point functions.
Higher-point functions still mostly remain terra incognita. In fact, only two five-point func-
tions have been computed in the literature for IIB supergravity on AdS5×S5 [1] and SYM
on AdS5 × S3 [10] respectively, and both for the lowest KK modes only.

However, studying higher-point holographic correlators is of great importance. Firstly,
higher-point correlators allow us to extract new CFT data which is not included in four-
point functions. For example, the OPE coefficient of two double-trace operators and one
single-trace operator can only be obtained from a five-point function. Moreover, via the
AdS unitarity method [11] higher-point correlators are also necessary ingredients for con-
structing higher-loop correlators. Secondly, via the AdS/CFT correspondence holographic
correlators correspond to on-shell scattering amplitudes in AdS. Recently, there has been
a lot of progress in finding AdS generalizations of flat-space properties [9, 10, 12–24]. As
we know from flat space, many remarkable properties of amplitudes are only visible at
higher multiplicities. To further explore the analogy between holographic correlators and
scattering amplitudes it is necessary to go to higher points. Finally, it has been observed
in [25] that a ten dimensional hidden conformal symmetry is responsible for organizing all
tree-level four-point functions for IIB supergravity on AdS5×S5. The nature of this hidden
structure is still elusive. It is an interesting question whether the 10d hidden symmetry is
just a curiosity for four points or it persists even at higher points.

For these reasons, in this paper we continue to explore the bootstrap strategy for
computing higher-point correlators. In particular, we will focus on computing the five-point
functions of the form 〈pp222〉 for IIB supergravity in AdS5×S5, where three of the operators
have the lowest KK level but the other two have arbitrary KK level p. Our strategy will be
similar to that of [1], which computed the p = 2 case, but with important differences. In [1],
the starting point is an ansatz in position space which is a linear combination of all possible
Witten diagrams with unfixed coefficients. To fix the coefficients, one imposes various
constraints from superconformal symmetry and consistency conditions. These includes
factorization in Mellin space [26], the chiral algebra constraint [27] and the Drukker-Plefka
twist [28]. The first constraint is the consistency condition for decomposing the five-
point function into four-point functions and three-point functions at its singularities. The
second and the third conditions come from superconformal symmetry and are the statement
that the appropriately twisted five-point function becomes topological. Although these
conditions uniquely fix the p = 2 five-point function, the strategy of [26] suffers from a

1See [4] for a review.
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few drawbacks which make it difficult to apply efficiently to correlators with higher KK
levels. Firstly, computing the higher-point Witten diagrams in the ansatz is a nontrivial
task. In particular, simplifications used in [26] for computing p = 2 diagrams no longer
exist for p > 2 and the analysis is in general more complicated. Secondly, the three
constraints were implemented in different spaces, which makes the algorithm less efficient.
Factorization is most convenient in Mellin space. However, the chiral algebra constraint
and the Drukker-Plefka twist were implemented in the original position space. The position
space implementation requires computing explicitly a set of five-point contact diagrams,
i.e., D-functions, to which the ansatz reduces. As was shown in [26], these D-functions
can further be expressed in terms of one-loop box diagrams which can be written as Li2
and logarithms. But the complexity of the expression for each D-function is determined
by its total external conformal dimensions. For 〈pp222〉 five-point functions, the sum of
dimensions grows linearly with respect to p. Therefore, it soon becomes computationally
very expensive for large enough p.

We overcome these difficulties by proposing a new algorithm. It relies on the key
observation that a more careful analysis of the Mellin factorization condition together
with the Drukker-Plefka twist allow us to completely fix the five-point correlators without
using the chiral algebra constraint. Although computing Witten diagrams is difficult in
position space, formulating the ansatz in Mellin space is straightforward thanks to their
simplified analytic structure in Mellin space. This is further aided by a new pole truncation
phenomenon which keeps the number of poles fixed irrespective of the KK levels. As a
result, we can write down the ansatz for the Mellin amplitude for general p. Moreover, we
find a way to implement the Drukker-Plefka twist directly in Mellin space. Therefore, we
can perform the bootstrap entirely within Mellin space without ever taking the position
space detour. This allows us to compute the five-point 〈pp222〉 Mellin amplitudes for
arbitrary p in a closed form. Although in this paper we focused on this particular family
of correlators, the strategy applies straightforwardly to more general five-point functions.

The rest of the paper is organized as follows. In section 2 we discuss the superconformal
kinematics of the five-point functions. In particular, we will introduce the Drukker-Plefka
twist. In section 3 we review the Mellin space formalism and the factorization of Mellin
amplitudes. We also explain how to implement the Drukker-Pleka twist in Mellin space. We
bootstrap the five-point functions in section 4 and give the general formula for the 〈pp222〉
Mellin amplitudes. In section 4.5 we also comment on how to perform the bootstrap in
position space. We conclude in section 5 with an outlook for future directions. Technical
details are contained in the two appendices. In appendix A we explain how to compute
spinning four-point functions which are needed for factorizing the five-point functions. In
appendix A.4 we discuss how to glue together the R-symmetry dependence when performing
factorization. For reader’s convenience, we also included a Mathematica notebook with the
arXiv submission which contains various explicit results.
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2 Superconformal kinematics of five-point functions

We consider the correlation functions of the super primaries of the 1
2 -BPS multiplets.

These are scalar operators OI1...Ik
k with I = 1, . . . , 6, k = 2, 3, . . ., transforming in the rank

k symmetric traceless representation of the SO(6) R-symmetry group. Their conformal
dimensions are protected by supersymmetry and are determined by the R-symmetry rep-
resentation ∆ = k. Via the AdS/CFT correspondence, they are dual to scalar fields in AdS
with KK level k and are usually referred to as the super gravitons. A convenient way to
keep track of the R-symmetry information is to contract the indices with null polarization
vectors

Ok(x; t) = OI1...Ik
k tI1 . . . tIk

, t · t = 0 . (2.1)

Our main target in this paper is the following five-point correlator

Gp(xi; ti) = 〈Op(x1; t1)Op(x2; t2)O2(x3; t3)O2(x4; t4)O2(x5; t5)〉 . (2.2)

More precisely, we will compute the leading connected contribution which is of order 1/N3

and corresponds to tree-level scattering in AdS. The disconnected piece factorizes into a
three-point function and a two-point function, and is protected because the lower-point
functions are.

Symmetry imposes strong constraints on the form the correlator. For example, con-
formal symmetry allows us to write the five-point function as a function of five conformal
cross ratios after extracting an overall kinematic factor2

u1 = x2
12x

2
35

x2
13x

2
25
, u2 = x2

14x
2
23

x2
13x

2
24
, u3 = x2

25x
2
34

x2
24x

2
35
, u4 = x2

13x
2
45

x2
14x

2
35
, u5 = x2

15x
2
24

x2
14x

2
25

(2.3)

where we have defined xij = xi − xj . Similarly, extracting a kinematic factor also allows
us to express the R-symmetry dependence as a function of the following five R-symmetry
cross ratios

σ1 = t12t35
t13t25

, σ2 = t14t23
t13t24

, σ3 = t25t34
t24t35

, σ4 = t13t45
t14t35

, σ5 = t15t24
t14t25

(2.4)

where we have introduced the shorthand notation tij = ti · tj . However, there is more
we can say about the R-symmetry dependence. Since the polarization vectors ti are just
multiplied to saturate the R-symmetry indices, they must appear in Gp with positive
powers. Therefore, Gp must be a collection of monomials of the form

∏
i<j t

aij

ij , with the
conditions

aij = aji ≥ 0 ,
∑
j 6=i

aij = ki , (2.5)

where k1 = k2 = p, k3 = k4 = k5 = 2 are the weights of the external operators. Note
the number of these monomials is finite and we will refer to them as different R-symmetry
structures. In section 2.1, we will explicitly write down these structures.

2We are using a different, but equivalent, set of cross ratios here compared to [1]. These new cross ratios
have appeared before in [29]. One reason why these variables are nice is that it is possible to associate
some x2

ij to uk, for example x12 only appears in u1. Another interesting property is that they are cyclically
related to each other.
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Figure 1. Inequivalent R-symmetry structures in the 〈pp222〉 five-point function. Here (a1, a2)
is (1, 2) or (2, 1) and (a3, a4, a5) can be any permutation of (3, 4, 5). Each thin line represents a
single contraction. The thick line represents the multi-contraction ta12 with the power a given by
the number next to the line. The R-symmetry structures in the first row have counterparts in
the 〈22222〉 five-point correlator. For 〈pp222〉 they are simply obtained by multiplying the p = 2
structures with tp−2

12 . The R-symmetry structures in the second row are new and do not appear in
〈22222〉.

The considerations so far have only used the bosonic symmetries in the full super-
conformal group. The dependence on the spacetime variables x2

ij and on the R-symmetry
variables tij are not related. However, the fermionic generators in the superconformal group
will impose further constraints which correlate the x2

ij and tij dependence. For five-point
functions, a thorough analysis the full consequences of the fermionic symmetries has not
been performed in the literature. However, two classes of such constraints are known. The
first is the chiral algebra construction [27] which constrains the five-point function when
all the operators are inserted on a two dimensional plane. The other is the Drukker-Plefka
twist [28] which imposes constraints on the correlator with generic insertion positions. In
this paper, we will only need the latter. We will review these conditions in section 2.2.

2.1 R-symmetry

A systematic way to enumerate the R-symmetry structures of the 〈pp222〉 five-point func-
tion is to consider the Wick contractions. Different Wick contractions are illustrated in
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figure 1 and the corresponding R-symmetry structures are explicitly given by

P (I)
a3a4a5 = tp−1

12 t2a3ta3a4ta4a5t1a5 ,

P (II)
a3a4a5 = tp−2

12 t1a3t2a3t2a4ta4a5t1a5 ,

T (I)
a3a4a5 = tp12ta3a4ta4a5ta3a5 ,

T (II)
a3a4a5 = tp−1

12 t2a3t1a3t
2
a4a5 ,

T (III)
a1a2a3a4a5 = tp−2

a1a2ta1a4ta4a5t1a5t
2
a2a3 ,

N (I)
a3a4a5 = tp−3

12 t1a3t1a5t2a3t2a5t1a4t2a4 ,

N (I)
a3a4a5 = tp−3

12 t21a3t
2
2a4t1a5t2a5 .

(2.6)

Here (a1, a2) is (1, 2) or (2, 1) and (a3, a4, a5) can be any permutation of (3, 4, 5). The
Wick contractions in the first row of figure 1 exist for all p ≥ 2 while the second row are
only possible when p ≥ 3. This is a new phenomena that arises at the level of five-point
functions and should be contrasted with the four-point function case. In the four-point
function 〈pp22〉, the number of Wick contractions is the same irrespective of the Kaluza-
Klein weight p.3

For p = 2, all the five points are on the same footing and there is no distinction
between P

(I)
a3a4a5 , P

(II)
a3a4a5 and among T

(I)
a3a4a5 , T

(II)
a3a4a5 , T

(III)
a1a2a3a4a5 . Multiplying them by

tp−2
12 gives the corresponding structures when p > 2. Note that even when p ≥ 3, some of
these R-symmetry structures in figure 1 still have residual symmetries and are invariant
under certain permutations of {a3, a4, a5}. For example, T (I)

a3a4a5 = T
(I)
a4a3a5 = T

(I)
a3a5a4 and

T
(II)
a3a4a5 = T

(II)
a3a5a4 . We choose the independent R-symmetry structures to be

P (I,II)
a3a4a5 : (a3, a4, a5) ∈ {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} ,

T (I)
a3a4a5 : (a3, a4, a5) ∈ {(3, 4, 5)} ,

T (II)
a3a4a5 : (a3, a4, a5) ∈ {(3, 4, 5), (4, 3, 5), (5, 3, 4)} ,

T (III)
a1a2a3a4a5 : (a1, a2, a3, a4, a5) ∈ {(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 2, 5, 3, 4), (2, 1, 3, 4, 5),

(2, 1, 4, 3, 5), (2, 1, 5, 3, 4)} ,

N (I)
a3a4a5 : (a3, a4, a5) ∈ {(3, 4, 5)} ,

N (II)
a3a4a5 : (a3, a4, a5) ∈ {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} .

(2.7)

This gives in total 29 independent R-symmetry structures. When p = 2, N (I)
a3a4a5 and

N
(II)
a3a4a5 do not exist and we have 22 structures.

2.2 Drukker-Plefka twist and chiral algebra

A highly nontrivial constraint from superconformal symmetry is given by the topological
twist discovered in [28], which we will refer to as the Drukker-Plefka twist. In [28], it was

3In fact, this is true even in the more general case 〈pqrs〉 as long as the extremality E of the correlator
remains the same. Here extremality is defined as E = s − p − q − r and we have assumed that s is the
largest weight of them.

– 6 –
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found that when the operators have the following position-dependent polarization vectors
(commonly referred to as a twist)

t̄i = (ix1
i , ix

2
i , ix

3
i , ix

4
i ,
i

2(1− (xµ)2), 1
2(1 + (xµ)2)) , (2.8)

the twisted correlator preserves certain nilpotent supercharge. The twisted operators are
in its cohomology. More importantly, the translations of operators while keeping the po-
larizations twisted are exact. It then follows that the twisted correlators are topological,
i.e., independent of the insertion locations

Gp(xi; t̄i) = constant . (2.9)

Note that in terms of the variables x2
ij and tij , the twist condition can also be written as

tij = x2
ij .

Let us also mention another twist for contrast, namely the chiral algebra [27]. However,
we will not exploit this twist in this paper. The chiral algebra twist requires that all
the operators are inserted on a two dimensional plane. The coordinates therefore can be
parameterized by the complex coordinates z, z̄. Furthermore, the polarization vectors need
to be restricted to be four dimensional

ti = (tµi , 0, 0) , µ = 1, 2, 3, 4 , (2.10)

where tµ can be written in terms of two-component spinors

tµi = σµαα̇v
αv̄α̇ . (2.11)

Using the rescaling freedom of the polarization vector, we can write v and v̄ as

vi = (1, wi) , v̄ = (1, w̄i) . (2.12)

When we twist the operators by setting w̄i = z̄i, the correlator also preserves certain nilpo-
nent supercharge. The twisted operators are in its cohomology while the antiholomorphic
twisted translations are exact. Therefore, the twisted correlator are meromorphic functions
of zi only.

3 Mellin representation

It has been commonly advertised that Mellin space [30, 31] is a natural language for dis-
cussing holographic correlators. In this formalism, the connected correlators are expressed
as a multi-dimensional inverse Mellin transformation

〈O(x1) . . .O(x5)〉conn =
∫

[dδ]M(δij)
∏

1≤i<j≤5
Γ(δij)(x2

ij)−δij , (3.1)

where the Mellin-Mandelstam variables satisfy

δij = δji , δii = −∆i ,
∑
j

δij = 0 . (3.2)

– 7 –
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The function M(δij) encodes the dynamical information and is referred to as the Mellin
amplitude. Note that this definition is a bit schematic. To be precise, both the correlator
and the Mellin amplitude also depend on R-symmetry structures. However, for the moment
we will suppress this dependence to emphasize the analytic structure related to spacetime.
One of the reasons that Mellin amplitudes are convenient for describing scattering in AdS is
they are meromorphic functions of the Mellin-Mandelstam variables. This follows directly
from the existence of the OPE in CFT. Moreover, in the supergravity limit, the poles
are associated with the exchanged single-trace particles in AdS. This makes the Mellin
amplitudes have similar analytic structure as tree-level scattering amplitudes in flat space
and allows us to apply flat-space intuitions in AdS.

More precisely, the exchange of a conformal primary operator with spin J and dimen-
sion ∆ = τ + J in a channel is represented by a series of poles in the Mellin amplitude,
labelled by m = 0, 1, 2, . . ., starting from the conformal twist τ

M≈ Qm(δij)
δLR − (τ + 2m) , δLR =

q∑
a=1

n∑
b=q+1

δab. (3.3)

Here, the exchange channel divides the external particles into two sets which we refer to as
L and R. We label the particles in L from 1 to q and the ones in R from q+ 1 to n. δLR is
the Mandelstam variable in this channel. The residues Qm(δij) have nontrivial structures.
They are related to the lower-point Mellin amplitudes ML and MR for the (q + 1)- and
(n− q+ 1)-point functions involving particles in L and R respectively (figure 2). The extra
external state in each lower-point amplitude is the exchanged particle which has now been
put on-shell. This is the basic idea of Mellin factorization [26, 32]. In fact, it is very similar
to the factorization of amplitudes in flat space which has been studied for a long time.
However, there are also important differences. In flat space, the poles are located at the
squared masses of the exchanged particles. In Mellin space, as already pointed out, the
squared mass is replaced by the conformal twist and there is in general a series of poles
for each particle which are labelled by m in (3.3). These are related to the conformal
descendants. However, in theories with special spectra such as AdS5×S5 IIB supergravity,
the series usually truncates. For example, for p = 2 the series truncates at m = 0 and
contains just one term. Moreover, compared to flat-space amplitudes, the lower-point
Mellin amplitudes also appear in the residue Qm in a more complicated way. The precise
expression for the residues depends on the spin of the operator that is exchanged. The goal
of the following subsection is to explain all the details of this formula. In particular, we will
present the explicit residue formulas for exchanged fields with spins up to 2. We should
emphasize that the structure of factorization for the general 〈pp222〉 five-point functions
will turn out to be far richer than for the simple case of p = 2 which was analyzed in [1].
In particular, we will see poles with m ≥ 1.

– 8 –
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MR(�)
<latexit sha1_base64="HjYkv7vz1jGa6EHXDdkkwkwZS4o="></latexit>

ML(�)
<latexit sha1_base64="EVOs9p++9K9l2XOkOtaHBGeegBc="></latexit>

1

�LR � (�� J + 2m)
<latexit sha1_base64="vxbLtxDhNTewVn/NRvndA4DdJyg="></latexit>

Figure 2. Mellin amplitudes have poles correponding to the exchange of single-trace operators.
The residues at the poles are associated with lower-point Mellin amplitudes. In the channel depicted
in the figure, we have n = 5 and q = 3. The Mellin amplitude on the left has four points while the
one on the right has only three.

Note that for the five-point function Gp with p > 2 there are three non-equivalent
factorization channels which we choose to be

(12) : 〈pp?〉 〈?222〉 ,
(45) : 〈22?〉 〈?pp2〉 ,
(13) : 〈2p?〉 〈?p22〉 ,

(3.4)

In each of them there are exchanged primary operators with spins ranging from 0 to 2 as
will be discussed in the following subsection.

3.1 Melllin factorization

To discuss Mellin factorization, we need to be more explicit about what fields can be
exchanged as they give rise to different lower-point functions. The problem of enumerating
exchanged fields reduces to finding all the possible cubic vertices sk1sk2X where sk is the
scalar field dual to the superconformal primary Ok and X is a field to be determined. This
problem already appears in the case of four-point functions and therefore the answer is
also the same. The possible cubic vertices are determined by two conditions. The first is
the R-symmetry selection rule. The second is the condition that the cubic vertices cannot
be extremal.4 These determine the possible exchange fields to be [2, 3]

{k1, k2} = {p, p} : X = s2 , A2,µ , ϕ2,µν .

{k1, k2} = {2, 2} : X = s2 , A2,µ , ϕ2,µν , (3.5)
{k1, k2} = {2, p} : X = sp , Ap,µ , ϕp,µν .

Here sk is a scalar field and is dual to the superconformal primary Ok which has dimension
∆ = k and transform in the [0, k, 0] representation of SU(4). Ak,µ is a vector field and
is dual to a spin-1 operator Jk,µ which has dimension ∆ = k + 1 and transforms in the

4It also follows that four-point functions cannot be extremal or next-to-extremal. In particular, we do
not have the four-point functions 〈4222〉 and 〈6222〉.

– 9 –
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[1, k − 2, 1] representation. ϕk,µν is a spin-2 tensor field and is dual to a spin-2 operator
Tk,µν which has dimension ∆ = k + 2 and representation [0, k − 2, 0]. When k = 2, A2,µ
is the graviphoton and ϕ2,µν is the graviton. Their dual operators are correspondingly the
R-symmetry current and the stress energy tensor.

Let us emphasize again that in this subsection we will only focus on the Mellin-
Mandelstam variable dependence. BothML andMR in fact also depend on R-symmmtry
variables. Therefore in the residues Qm there is also a gluing of the lower-point R-symmetry
structures. However, this gluing is purely group theoretic. To avoid distracting the reader
from the discussion of the dynamics, we will leave the details of R-symmetry gluing to
appendix A.4. Alternatively, we can view the discussion in this subsection as the Mellin
factorization for each R-symmetry structure.

3.1.1 Exchange of scalars

The simplest example of factorization is the exchange of a scalar operator with dimension
∆. The resulting ML and MR are again scalar Mellin amplitudes. Nevertheless, this
example contains most of the features we shall need. In particular, the m dependence will
be shared in the spinning cases. Therefore, we will first analyze this case in detail. The
residue Qm introduced in (3.3) is given in [26]

Qm = −2Γ(∆)m!(
1 + ∆− d

2

)
m

LmRm , (3.6)

where Lm is related toML by5

Lm =
∑

nab≥0∑
nab=m

ML(δab + nab)
∏

1≤a<b≤q

(δab)nab

nab!
(3.7)

and similarly for Rm. Notice that here and in the following we will often leave the spacetime
dimension d unspecified, but it should always be set to 4. This equation has several
interesting consequences, which will become more evident after analyzing a few examples.
Let us start with a three-point Mellin amplitude for ML, which is just a constant c. In
this case, recalling that δ12 = 1

2(∆1 + ∆2 − δLR) and δLR is set to ∆ + 2m by the pole
condition (3.3), equation (3.6) with q = 2 immediately gives

M3-pt
L = c =⇒ Lm = c

(
δ̄LR

)
m

m! , δ̄LR := 1
2(∆1 + ∆2 −∆)−m. (3.8)

Factorizing a five-point function leads to a three-point function and a four-point function.
For 〈pp222〉, there are three inequivalent factorization channels, which can be chosen to
be (12), (45) and (13). From (3.5), we know that the exchanged scalar operators in these

5Notice that ML(δab + nab) is well defined when the Mellin-Mandelstam variables satisfy the pole
condition (3.3), in addition to their constraints (3.2). The parallel with scattering amplitudes makes this
point clear.
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three channels have twists 2, 2 and p respectively. Thus, δ̄LR in each case is given by

(12) : δ̄LR = p− 1−m ,

(45) : δ̄LR = 1−m ,

(13) : δ̄LR = 1−m ,

(3.9)

and the corresponding values of δLR are 2 +m, 2 +m, p+m. After plugging these values
in (3.8), it is straightforward to see that the residue vanishes for m > 0 in the channels
(13) and (45), and for m ≥ p− 1 in the channel (12).6 Naively, one would conclude that in
the (12) channel the number of poles increases with p. However, this is too fast since the
other part Rm can give more constraints. To see this explicitly, let us look at a four-point
Mellin amplitude which has the following generic form

M4pt
R = c1δ

2
45+c2δ45+c3
δ34−1 +c4+c5δ34+c6δ45 =⇒ Rm = 1

m!

[
c1mδ45 (δ45+1)(3−m)m−1

δ34−1

+
(
c1δ

2
45+c2δ45
δ34−1 +c4

)
(2−m)m+ c3(1−m)m

δ34−1 +(c5δ34+c6δ45)(3−m)m
]
. (3.10)

Here we have evaluated the expression at the pole δLR = τ + 2m. It follows that Rm
vanishes for this four-point Mellin MR for m ≥ 3 and therefore the number of poles does
not increase for arbitrary value of p. Let us also emphasize that all four-point Mellin
amplitudes that appear in the OPE of the correlator 〈pp222〉 have this structure as can be
checked in appendix A.

Let us note that the absence of poles for m ≥ p − 1 can also be understood from the
pole structure of the Mellin integrand. The Gamma functions in the definition of Mellin
amplitude already have poles in this location and a pole in the Mellin amplitude at m ≥ p−1
would give rise to a double pole. Such double poles are associated with the appearance of
anomalous dimension [2, 3, 31], which we do not expect at this order. On the other hand,
at the moment we do not have a direct physical argument for the truncation of poles at
m ≥ 3. Finally, this truncation continues to hold for the factorization formulas when the
exchanged operators have spins. This will be analyzed in the following subsubsection.

3.1.2 Exchange of operators with spins 1 and 2

In this subsection we will be interested in studying the contribution of operators with spins.
As it turns out, the analysis of the scalar case straightforwardly generalizes to the spinning
case. It is convenient to get rid of the Lorentz indices of these operators by contracting
them with null polarization vectors

O(x, z) = Oa1...aJ (x)za1 . . . zaJ , (3.11)

where z2 = 0 ensures the operator is traceless (we refer the reader to section 3 of [26] for
a more detailed review). The definition of Mellin amplitudes of one spinning operator and

6The zeros in these pochhammer symbols are exactly at a position to avoid a double pole, formed
by one coming from the explicit Gamma functions in the definition and the other from the factorization
formula (3.3).
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n scalar operators is given by [26]

〈O(x0, z0) . . .On〉 =
n∑

a1,...,aJ =1

J∏
i=1

(z0 · xai0)
∫

[dδ]M{a}(δij)
n∏
i=1

Γ(δi + {a}i)
(x2
i0)δi+{a}i

∏
1≤i<j≤n

Γ(δij)
(x2
ij)δij

,

(3.12)

where
{a}i = δδa1

i + · · ·+ δδaJ
i , δi = −

n∑
j=1

δij ,
n∑

i,j=1
δij = J −∆0 . (3.13)

We have used δδ to denote the Kronecker delta so that it can be distinguished from the
Mellin-Mandelstam variables δ. The Mellin amplitudesM{a} satisfy certain linear relations
that follows from the conformal invariance of the correlator, see equation (46) in [26]. Let
us first focus on the spinning generalization of (3.6) for the conserved currents which reside
in the k = 2 supermultiplet. For exchanging the graviphoton, the residues are given by7

Qm = (d− 1)Γ(d− 2)m!(
d
2

)
m

q∑
a=1

n∑
b=q+1

δabL
a
mR

b
m , (3.14)

For exchanging the graviton, the residues are

Qm = −(d+ 1)Γ(d− 1)m!
2
(
d
2 + 1

)
m

[
Q(1)
m −

( 1
2m + 1

d

)
L̃mR̃m

]
, (3.15)

where

Q(1)
m =

q∑
a,b=1

n∑
i,j=q+1

δai(δbj + δδabδδ
i
j)LabmRijm, (3.16)

L̃m =
q∑

a,b=1
δab[Labm−1]ab , R̃m =

q∑
a,b=1

δab[Rabm−1]ab .

Here we used the notation [f(δij)]ab = f(δij + δδai δδ
b
j + δδaj δδ

b
i). The functions Lam and Labm

(and analogously Ram, Rabm) are defined in the same way as in (3.7). Let us also add that
for m = 0 the second term in Qm for spin 2 is zero since both L̃0 and R̃0 vanish from the
definition. Therefore, the appearance of the pole in m does not lead to a divergence.

These residue formulas for spinning operators clearly are not the full story as there
are also non-conserved currents in the multiplets with k > 2. However, from (3.5) we can
see that such non-conserved currents only appear in the channel with s2 and sp. Similar
to the scalar case (3.9), the analysis of the three-point functions requires the truncation at
m = 0. The residues are

Q0 = −∆Γ(∆− 1)
q∑

a=1

n∑
b=q+1

δabL
a
0R

b
0, for spin 1 , (3.17)

Q0 = −(∆ + 1)Γ(∆− 1)
2

q∑
a,b=1

n∑
i,j=q+1

δai(δbj + δab δ
i
j)Lab0 R

ij
0 for spin 2 . (3.18)

7As above we write d to denote the dimension of space-time and we will always set d = 4.
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The most general expressions for factorization with arbitrary external and internal dimen-
sions and m can be found in [26]. But they are not needed in this paper.

As in the scalar case, the truncation of poles also relies on the form of the spinning
four-point amplitudes. They are given in appendix B (see (B.15) and (B.20) for explicit
expressions). In particular, they have the same analytic structure as the scalar four-point
amplitude (3.10) except that now they carry additional indices. As a result, the truncation
of poles also holds for the exchange of spinning operators. More precisely, we have the
same pole locations as in (3.9) where the allowed values for m are m = 0, 1, 2 for (12) and
m = 0 for (45), (13).

To summarize, the Mellin factorization formulas allow us to reconstruct all the polar
part of the amplitude from the lower-point Mellin amplitudes. Furthermore, the spectrum
of the theory gives rise to a further simplification where the poles truncate to a finite range
independent of p.

3.2 Drukker-Plefka twist in Mellin space

As we reviewed in the introduction, the two superconformal constraints, namely the chiral
algebra and the Drukker-Plefka twist, were both formulated and implemented in position
space [1]. To have a more streamlined algorithm, we would like to perform the bootstrap
entirely within Mellin space and therefore need to translate such position space constraints
into Mellin space. Let us first define the Mellin amplitude more precisely by restoring the
R-symmetry dependence suppressed in the definition (3.1). For the 〈pp222〉 correlator, we
have

Gp(xi, ti) =
∫

[dδ]M(δij , tij)
∏

1≤i<j≤5
Γ(δij)(x2

ij)−δij , (3.19)

where M(δij , tij) is a linear combination of the 29 R-symmetry structures listed in (2.7).
Usually the implementation of the twists in Mellin space is achieved by using the obser-
vation that x2

ij monomials multiplying the Mellin transform (3.19) can be absorbed into
the definition by shifting the Mellin-Mandelstam variables. This gives rise to difference
equations in Mellin space. This strategy has been used, for example, in [33, 34] to rewrite
the superconformal Ward identities in Mellin space for four-point functions. In our case,
there are extra complexities.

The issue is that the chiral algebra constraint requires all the operators to be on a two
dimensional plane. When the number of operators n > 4, this cannot be achieved by a
conformal transformation and there are relations among the cross ratios.8 The meromorphy
of the correlator after the chiral algebra twist depends crucially on these relations. On the
other hand, these relations do not hold in the definition of the Mellin amplitude where the
locations of the operators are assumed to be general. Therefore, the position space chiral
algebra condition cannot be translated into Mellin space using the same strategy.

8In two dimensions, the number of independent cross ratios is 2n−6 for n ≥ 2. However, in high enough
spacetime dimensions, the number of independent cross ratios is n(n−3)

2 . The relation for the cross ratios
can be written in form of detM = 0 where the matrix M has elements Mij = x2

ij .
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By contrast, the Drukker-Plefka twist only imposes conditions on the R-symmetry
polarizations and has no restriction on the operator insertions. Therefore, we can use the
same trick to implement the Drukker-Plefka twist in Mellin space. More precisely, we can
extract a kinematic factor and rewrite (3.19) in terms of cross ratios (2.3), (2.4)

Gp(xi, ti) = Kp

∫
dδijM(δij , σi)Γpp222 u

p−δ12
1 u−δ23

2 u2−δ34
3 u−δ45

4 u1−δ15
5 . (3.20)

Here Kp is a kinematic factor

Kp = x2
13t

p
12t

2
34t15t35

(x2
12)p(x2

34)2(x2
15x

2
35)t13

, (3.21)

and

Γpp222 = Γ (δ12) Γ (δ15) Γ (δ23) Γ (δ15 − δ23 − δ34 + 1) Γ (δ34) Γ (δ23 + 1− δ15 − δ45) Γ (δ45)
Γ (p− δ12 − δ15 + γ34 − 1) Γ (δ12 − p− δ34 − δ45 + 3) Γ (p− δ12 − δ23 + δ45 − 1) .

(3.22)
Moreover, we have chosen δ12, δ23, δ34, δ45 and δ15 as the independent Mellin variables.
Performing the Drukker-Plefka twist amounts to setting tij → x2

ij , or equivalently σ → u

for the cross ratios. To implement this in practice, we notice that doing the twist reduces
to multiplying the Mellin representation of different terms of the correlator K−1

p Gp(xi, ti)
by monomials un1

1 un2
2 un3

3 un4
4 un5

5

M(δij , σi) =
∑
{ni}

σn1
1 σn2

2 σn3
3 σn4

4 σn5
5 M{ni}(δij)→

∑
{ni}

un1
1 un2

2 un3
3 un4

4 un5
5 M{ni}(δij) .

(3.23)
We can absorb them by shifting δij and this has the effect on the Mellin amplitudes by
acting with a difference operator

un1
1 un2

2 un3
3 un4

4 un5
5 M{ni}(δij)→ Dn1,...,n5 ◦M{ni}(δij) , (3.24)

where the explicit action of Dn1,...,n5 reads

Dn1,...,n5◦M{ni}(δij) =M{ni}(δ12+n1, δ23+n2, . . .)×(δ12)n1
(δ15)n5

(δ23)n2
(δ34)n3

(δ45)n4

(δ15−δ23−δ34+1)n5−n2−n3
(δ23−δ15−δ45+1)n2−n4−n5

(p−δ12−δ15+δ34−1)n3−n1−n5

(δ12−p−δ34−δ45+3)n1−n3−n4
(p−δ12−δ23+δ45−1)n4−n1−n2

. (3.25)

The various Pochhammer symbols come from comparing the shifted Gamma factor with
the one in the Mellin representation definition. The full difference operator from the
Drukker-Plefka twist, denoted as DDP, is then a sum of such operators acting on different
R-symmetry structures. As we explained in section 2.2, the twisted correlator is just a
constant in position space. Following [2, 3], we should interpret its Mellin amplitude as
zero. Therefore, the Drukker-Plefka twist condition becomes in Mellin space

DDP ◦M(δij , σi) = 0 , (3.26)

which explicitly reads ∑
{ni}

Dn1,...,n5 ◦M{ni}(δij) = 0 . (3.27)

The implications of this equation are discussed in the following section.
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4 Bootstrapping five-point Mellin amplitudes

4.1 Strategy and ansatz

After introducing all the necessary ingredients, we are now ready to state our strategy. Our
strategy is comprised of three steps. First, we start by formulating an ansatz in Mellin space
which is based on our analysis of the analytic structure of the Mellin amplitudes. Second,
we impose the Mellin factorization condition which is the statement that the pole residues
should be correctly reproduced by the lower-point amplitudes. Finally, we implement the
Drukker-Plefka twist in Mellin space and completely fix the ansatz. In the following, we
explain the details of each step.

Step 1: Ansatz. As we emphasized in the previous section, Mellin amplitudes are
merophormic functions with simple poles corresponding to exchanging single-trace oper-
ators and residues related to lower-point amplitudes via factorization. Based on this, we
have the following ansatz for the 〈pp222〉 Mellin amplitude

M(δij , tij) =
2∑

m=0

Am(δij , tij)
(δ12 + 1 +m− p) +

∑
ā=1,2,a=3,4,5

Bāa(δij , tij)
δāa − 1 +

∑
3≤a<b≤5

Cab(δij , tij)
δab − 1

+D(δij , tij) . (4.1)

Here Am(δij , tij) is a rational function with possible poles in δ34, δ35, δ45. In particular,
it includes simultaneous poles which correspond to double exchange processes in the (12),
(34) channels etc. Similarly, Bāa(δij , tij) is a rational function with possible poles in δkl at
δkl = 1. The labels k, l need to satisfy k, l 6= ā, a but can be both from the set {3, 4, 5}, or
belong to different sets {1, 2} and {3, 4, 5}, see equation (4.5). To avoid double counting,
Cjk(δij , tij) and D(δij , tij) do not have poles and they are polynomial functions of the
Mellin-Mandelstam variables. Note that here we have also used our Mellin factorization
analysis for the subleading poles from section 3.1. We imposed that the poles in the (12)
channel truncate to m = 0, 1, 2.

More concretely, the function Am(δij , tij) in the ansatz has the following form

Am(δij , tij) = A34,m(δij , tij)
δ34 − 1 + A35,m(δij , tij)

δ35 − 1 + A45,m(δij , tij)
δ45 − 1 +A∅,m(δij , tij) , (4.2)

where A34,m, A35,m and A45,m are polynomials of degree 2 and A∅,m is a polynomial of
degree 1. Written explicitly, A34,m reads

A34,m(δij , tij) =
α1+α2+α3≤2∑

αi

29∑
I=1

aI34,m,{αi}δ
α1
23 δ

α2
25 δ

α3
45 TI , (4.3)

where {δ23, δ25, δ45} are chosen to be the independent Mellin-Mandelstam variables in ad-
dition to δ12 and δ34 which already appear in the poles. We have also used {TI} to denote
collectively the 29 independent R-symmetry structures in (2.7). The expressions for A35,m,
A45,m are similar. The polynomial A∅,m is given by

A∅,m =
α1+α2+α3+α4≤1∑

αi

29∑
I=1

aI∅,m,{αi}δ
α1
23 δ

α2
25 δ

α3
45 δ

α4
34 TI . (4.4)

– 15 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
7

The other terms in the ansatz are similar and are given by

B13 =
29∑
I=1

( α1+...α3≤2∑
αi

[bI13,24,{αi}δ
α1
15 δ

α2
23 δ

α3
45

δ24 − 1 +
bI13,45,{αi}δ

α1
15 δ

α2
23 δ

α3
34

δ45 − 1 +
bI13,25,{αi}δ

α1
23 δ

α2
34 δ

α3
45

δ25 − 1

]

+
α1+...α4≤1∑

αi

bI13,∅,{αi}δ
α1
23 δ

α2
34 δ

α3
45 δ

α4
15

)
TI , (4.5)

C34 =
α1+...α3≤1∑

αi

29∑
I=1

cI34,{αi}δ
α1
12 δ

α2
23 δ

α3
45 δ

α4
15 TI ,

D =
29∑
I=1

dITI .

In making the ansatz we have assumed that the degrees of various polynomials are the
same as in the p = 2 correlator. This is expected from the flat-space limit which is related
to the high energy limit of the Mellin amplitude [31]. This can also be confirmed by Mellin
factorization, which will be used in greater detail in the next step.9

Step 2: Mellin factorization. The second step of our strategy is to impose Mellin
factorization. As explained in the previous section, all the polar terms of the Mellin am-
plitude can be completely fixed in terms of the lower-point Mellin amplitudes. For the
〈pp222〉 five-point function, all these lower-point amplitudes are known and are given in
appendix B. These lower point functions depend on R-symmetry polarization vectors. One
important detail which we did not discuss is how to glue together the R-symmetry struc-
tures in the lower-point functions using the representation of the exchanged fields. This
step is explained in detail in appendix A.4. Thus all terms in the ansatz (4.1), except for the
regular term D, can be fixed by using this factorization procedure. Note that the number
of coefficients that remain unfixed in the ansatz is quite low as D is just a constant with
respect to the Mellin-Mandelstam variables. It can depend only on the linear combination
coefficients of the 29 R-symmetry structures.

Step 3: Drukker-Plefka twist. The final step is to impose the Drukker-Plefka twist.
As explained in section 3.2 this twist can be phrased in terms of a difference operator DDP
acting on the Mellin amplitude, see (3.26). This relates the regular part with the singular
part already fixed by factorization and completely fixes the remaining coefficients.10

Using this strategy, we obtain the 〈pp222〉 Mellin amplitudes in a closed form for arbi-
trary p. The final result for the Mellin amplitudes will be presented in the next section.11

9For example, it is straightforward to see that these are the correct degrees when exchanging scalar
operators. Exchanging vector or tensor fields is a bit more nontrivial but it is possible to check that the
degrees are correct. The only subtle point which avoids the factorization argument is the degree of the
regular piece. However, it is natural to assume that the degree is the same as the p = 2 case so that it has
the same high energy growth as the other terms.

10At the same time the Drukker-Plefka twist provides a very non trivial consistency check for the proce-
dure of extracting correlation functions of super-descendants and gluing of R-symmetry structures described
in appendix.

11It would also be interesting to extend this analysis to the first correction in α′. One promising candidate
is the p = 2 case since it is more symmetric and we can also use the known results for the four-point function
as an input [35].
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4.2 Mellin amplitude for p = 2

Due to the many R-symmetry structures involved, the expression for the full Mellin am-
plitude appears to be quite complicated at first sight. Therefore, before we present the
Mellin amplitude for general p, let us first revisit the p = 2 result of [1] and present it in a
simpler way.

When p = 2, the amplitude is symmetric under permutations of all the five external
points. The 22 R-symmetry structures also split into two classes and within each class the
structures are related by permutations. The first class is the pentagon contraction

Pa = {t12t23t34t45t15, . . .} , a = 1, 2, . . . , 12 , (4.6)

which includes P (I,II)
a3a4a5 in (2.7). The second class is the contraction of three points times

the contraction of the remaining two points

Ta = {t12t23t13t
2
45, . . .} , a = 1, 2, . . . , 10 , (4.7)

which includes T (I,II,III)
a3a4a5 in (2.7). The full amplitude can be written as

Mp=2 =
12∑
a=1
MP

a Pa +
10∑
a=1
MT

a Ta . (4.8)

It is sufficient to determine the coefficient amplitudes MP
1 and MT

1 as the rest can be
obtained by permutations. We find

MP
1 = 4

√
2
{(δ14 + δ24)(δ13 + δ14)

(δ12 − 1)(δ34 − 1) + (δ14 + δ24)(δ24 + δ25)
(δ12 − 1)(δ45 − 1) + (δ25 + δ35)(δ24 + δ25)

(δ23 − 1)(δ45 − 1)

+ (δ25 + δ35)(δ13 + δ35)
(δ23 − 1)(δ15 − 1) + (δ13 + δ35)(δ13 + δ14)

(δ15 − 1)(δ34 − 1) + 1
2

(
δ35

δ12 − 1 + δ14
δ23 − 1

+ δ25
δ34 − 1 + δ13

δ45 − 1 + δ24
δ15 − 1

)
− 2

}
,

(4.9)

MT
1 = −2

√
2
((δ13 + δ14)(δ23 + δ24)

(δ12 − 1)(δ34 − 1) + (δ13 + δ15)(δ23 + δ25)
(δ12 − 1)(δ35 − 1) + (δ14 + δ15)(δ24 + δ25)

(δ12 − 1)(δ45 − 1)

)
.

It is clear that terms of the same structure are related by the permutations preserved by
the R-symmetry structure. We will see that the Mellin amplitude for general p also has
similar structures.

4.3 Mellin amplitudes for general p

For p > 2, we no longer have the full permutation symmetry and there are seven types
of R-symmetry structures as we discussed in section 2.1. The Mellin amplitude can be
written as a sum over all the inequivalent R-symmetry structures

Mp =
∑
I1

MP,(I)
a3a4a5P

(I)
a3a4a5 +

∑
I1

MP,(II)
a3a4a5P

(II)
a3a4a5 +MT,(I)

345 T
(I)
345 +

∑
I2

MT,(II)
a3a4a5T

(II)
a3a4a5

+
∑
I3

MT,(III)
a1a2a3a4a5T

(III)
a1a2a3a4a5 +MN,(I)

345 N
(I)
345 +

∑
I1

MN,(II)
a3a4a5N

(II)
a3a4a5 , (4.10)
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where the sets I1,2,3 contain the following permutations

I1 = {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} ,
I2 = {(3, 4, 5), (4, 3, 5), (5, 3, 4)} , (4.11)
I3 = {(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 2, 5, 3, 4), (2, 1, 3, 4, 5), (2, 1, 4, 3, 5), (2, 1, 5, 3, 4)}

The coefficient Mellin amplitudes are given as follows. For the structures of P (I)
a3a4a5 , P

(II)
a3a4a5 ,

the coefficients are

MP,(I)
a3a4a5 = 2

√
2p
{2
p

δ1a4 +δ2a4

δ12−p+1

(
δ1a3 +δ1a4

δa3a4−1 + δ2a4 +δ2a5

δa4a5−1

)
+ 1
p

δa3a5

δ12−p+1

+ p−2
p

δ1a4 +δ2a4−1
δ12−p+2

(
δ1a3 +δ1a4

δa3a4−1 + δ2a4 +δ2a5

δa4a5−1 −1
)

− (p−2)(p−3)
2p

δa3a5

δ12−p+3 + (δ2a5 +δa3a5)(δ2a4 +δ2a5)
(δ2a3−1)(δa4a5−1) + (δ1a3 +δa3a5)(δ1a3 +δ1a4)

(δ1a5−1)(δa3a4−1)

+ p

2
(δ1a3 +δa3a5)(δ2a5 +δa3a5)

(δ1a5−1)(δ2a3−1) + 1
2

(
δ2a4

δ1a5−1 + δ1a4

δ2a3−1

)
+ p−1

p

(
δ2a5

δa3a4−1 + δ1a3

δa4a5−1

)
+ 6−7p

2p

}
, (4.12)

MP,(II)
a3a4a5 =

√
2p2
{(δ12+δ2a5)(δ2a5 +δa3a5)

(δ1a5−1)(δ2a3−1) + (δ12+δ1a4)(δ1a4 +δa3a4)
(δ2a4−1)(δ1a3−1)

+ (δ12+δ2a5)(δ12+δ1a4)
(δ1a5−1)(δ2a4−1) − (p−2)δ12

(δ1a5−1)(δ2a4−1) + 2δ12
p(δa4a5−1)

(
δ1a4

δ2a3−1 + δ2a5

δ1a3−1

)
− 2(p+1)δ12
p2(δa4a5−1) + (p−2)(δ12+1)+δa3a4

p(δ1a5−1) + (p−2)(δ12+1)+δa3a5

p(δ2a4−1)

+ 1−p
p

(
δ1a4

δ2a3−1 + δ2a5

δ1a3−1

)
+ p−2

p

}
. (4.13)

Upon setting p = 2, the two coefficient amplitudes become degenerate up to permuta-
tions and reproduce MP

1 in (4.9). The coefficient Mellin amplitudes of T (I)
345, T

(II)
a3a4a5 and

T
(III)
a1a2a3a4a5 are given by

MT,(I)
345 =−2

√
2
{ 1
δ12−p+1

((δ1a3 +δ1a4)(δ2a3 +δ2a4)
δa3a4−1 + (δ1a3 +δ1a5)(δ2a3 +δ2a5)

δa3a5−1

+ (δ1a4 +δ1a5)(δ2a4 +δ2a5)
δa4a5−1

)
+ (p−2)(δ12−p)

δ12−p+2

}
, (4.14)

MT,(II)
a3a4a5 =−

√
2p(p−1)
δa4a5−1

{(δ2a4 +δ3a4)(δ2a5 +δ3a5)
δ2a3−1 + (δ1a4 +δ3a4)(δ1a5 +δ3a5)

δ1a3−1

+ 2
p(p−1)

(δ1a4 +δ2a4)(δ1a5 +δ2a5)
δ12−p+1 + 4(p−2)

p(p−1)

((δ1a4 +δ2a4−1)(δ1a5 +δ2a5−1)
δ12−p+2

+ p−3
4

(δ1a4 +δ2a4−2)(δ1a5 +δ2a5−2)
δ12−p+3 − 1

2(pδa4a5−p−1)
)}

, (4.15)

– 18 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
7

MT,(III)
a1a2a3a4a5 =−

√
2p(p−1)
δa2a3−1

{(δa1a2 +δa2a5)(δa1a3 +δa3a5)
δa1a5−1 + (δa1a2 +δa2a4)(δa1a3 +δa3a4)

δa1a4−1

+ 2
p(p−1)

(δa2a4 +δa2a5)(δa3a4 +δa3a5 +p−2)
δa4a5−1 − p−2

p−1

(
δa1a2δa2a4

δa1a5−1 + δa1a2δa2a5

δa1a4−1

− 1+2p
p

δa1a2−
δa2a3

p
+1
)}

. (4.16)

They becomeMT
1 in (4.10) when p = 2. Finally, the coefficients of the two new structures

N
(I)
345, N

(II)
a3a4a5 are

MN,(I)
345 =

√
2p2(p− 2)δ12

{ 1
(δ15 − 1)(δ23 − 1) + 1

(δ15 − 1)(δ24 − 1) + 1
(δ13 − 1)(δ24 − 1)

+ 1
(δ13 − 1)(δ25 − 1) + 1

(δ14 − 1)(δ23 − 1) + 1
(δ14 − 1)(δ25 − 1)

− 2
p

( 1
δ15 − 1 + 1

δ25 − 1 + 1
δ13 − 1 + 1

δ23 − 1 + 1
δ14 − 1 + 1

δ24 − 1

)}
,

(4.17)

MN,(II)
a3a4a5 = −

√
2p(p− 2)δ12

{
δ2a3

(δ1a5 − 1)(δ2a4 − 1) + δ1a4

(δ2a5 − 1)(δ1a3 − 1)

+ 1 + δ12 − p(δ1a3 + δ2a4 + δa3a4)
p(δ2a4 − 1)(δ1a3 − 1)

}
.

(4.18)

Note that they are proportional to p− 2 and therefore vanish for p = 2.
Let us also make a comment regarding the seemingly confusing behavior at the flat-

space limit. The flat-space amplitude which one obtains from holographic correlators cor-
responds to that of gravitons. In general, one expects that the dependence on the KK
levels should factorize as different KK modes all correspond to the same particle in flat
space. However, this is not the case if we naively take the high energy limit of the Mellin
amplitudes. Clearly, the p-dependence is not factored out as the component amplitudes of
the new R-symmetry structures for p > 2 have the same high energy scaling behavior as
the other component amplitudes. To understand this, it is important to note that the flat-
space amplitude from AdS is in a special kinematic configuration where the polarizations
of the gravitons are perpendicular to all the momenta [9]. However, such an amplitude
for five points is zero in flat space.12 Therefore, the high energy limit of the Mellin am-
plitudes is not the flat-space amplitude as one might have naively expected. In fact, in
applying the prescription of [31], there is an additional power of the inverse AdS radius
1/R which renders the flat-space limit zero. In other words, the high energy limit of the
Mellin amplitudes computes only the 1/R corrections. We expect these corrections to have
the same power counting for different KK modes. However, we do not expect their explicit
expressions to be universal.

12This is easiest to see using double copy. The gluon five-point amplitude with orthogonal polarizations
vanishes because it is impossible to contract five polarization vectors among themselves. By double copy,
the graviton five-point amplitude also vanishes.
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4.4 A comment on consistency

Let us make a comment regarding the consistency of our result. In section 3 we proved
the truncation of the poles in δ12 by using factorization in the (12) channel which only
exploits the general analytic structure of the resulting four-point amplitude. Here we point
out that the truncation can also be seen from a different point of view when it involves
simultaneous poles with another channel. For concreteness, let us focus on the residue
of the amplitude at the pole δ45 = 1. The residue is, via the factorization in the (45)
channel, related to a four-point function 〈pp2X〉 where the first three operators are 1, 2,
3 respectively. As we know from (3.5), the operator X belongs to the k = 2 multiplet
and can be the superprimary O2, the R-symmetry current Jµ or the stress tensor Tµν .
The Mellin amplitude of 〈pp2X〉 contains poles in δ12 due to the operator exchanges in
the (12) channel. These four-point Mellin amplitudes are given explicitly in appendix B
and we observe a truncation of the subleading poles in δ12 for m ≥ 3. This gives another
derivation of the structure of the simultaneous poles in δ12 and δ45.

Similar consistency checks have also been performed in other channels (e.g., in the (13)
and (45) channel), as well as for the R-symmetry gluing (see appendix A.4 for details).

4.5 Comments on position space

Up to this point, all of our discussions are exclusively in Mellin space. This is mainly
because of the simplified analytic structure of Mellin amplitudes, as can be seen from
our main result (4.10). However, it is also sometimes convenient to have position space
expressions as some information is difficult to extract from the Mellin space representation.
This has to do with the fact that certain nonzero expressions in position space may naively
vanish in Mellin space. More precisely, different inverse Mellin transformations can only
be added up if their contours can be smoothly deformed from one to another. Usually the
contour part is ignored for simplicity and one just adds up the Mellin amplitudes. This
causes some information to be lost in the process. In fact, we have already encountered such
an example in this paper: the Drukker-Plefka twisted correlator is a constant in position
space but has zero Mellin amplitude.13 The existence of the ambiguities makes a direct
translation of Mellin space results into position space difficult.

One could also try to directly extend the position space algorithm of [1] to the 〈pp222〉
correlators. However, as explained in the introduction, this is technically difficult. Here
we propose a hybrid approach. As explained in [1, 10], all five-point Witten diagrams
can be expressed as a linear combinations of five-point D-functions by using integrated
vertex identities.14 It is then natural to construct an ansatz in position space directly in
terms of the D-functions. This will avoid directly computing the Witten diagrams which
is a nontrivial task. More concretely, we propose that the ansatz for Gp in position space

13See also [3] for more examples in four-point functions.
14It is known for some time [36] that four point exchange Witten diagrams can be express in terms D-

functions when certain conditions on the dimension of the operators are met, which is what often happens
in N = 4 SYM.

– 20 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
7

should have the following form

A∆1...∆5(xi) =
∑
{β}

c{β}(tij)(x2
ij)−βijD∆̃1...∆̃5

(xi) , (4.19)

where the coefficients c{β}(tij) are linear combinations of all possible R-symmetry struc-
tures. The summation over βij are subjected to the constraints

∆̃i +
∑
j

βij = ∆i, (4.20)

∑
i

∆̃i ≤ 2 +
∑
i

∆i, (4.21)

βij > 0 , βkl > 0 , only if {i, j} 6= {k, l} (4.22)
βij ≥ −2, (4.23)
β12 ≤ p− 1, βij ≤ 1 (i, j 6= 1, 2) . (4.24)

Let us now unpack these constraints a little. The first condition (4.20) ensures that the
external operators have the correct weights under conformal transformations. The con-
straint (4.21) imposes a bound on the sum of weights in each D-functions.15 This is
expected if we use the integrated vertex identities16 to reduce the exchange Witten dia-
grams to contact Witten diagrams. Exchanging single-trace operators leads to singularities
in position space. The condition (4.22) is the statement that particle exchanges have to be
in the compatible channels. The constraint (4.23) arises because the exchanged single-trace
operator operators have maximal spin 2. To understand this more precisely, let us notice
the following translation between position and Mellin space

∏
1≤i<j≤5

(x2
ij)−αijD∆̃1...∆̃5

→Mαij (δ) =
π

d
2 Γ
(∑

i
∆̃i−d
2

)
∏
i Γ(∆̃i)

∏
i<j

Γ(δij − αij)
Γ(δij)

. (4.25)

The condition (4.23) ensures in Mellin space that the numerator associated with an ex-
change pole is at most quadratic. Finally, the constraint (4.24) controls the twists of the
exchanged single-trace operators. Let us emphasize that this position ansatz, as it stands,
does not manifest the truncation of poles seen in (4.1). Nevertheless, this truncation can
still be imposed in position space, though in a more intricate manner (this is in stark con-
trast with Mellin space). We notice that a given negative power (x2

12)−α will lead to poles
in Mellin space at all the locations δ12 = 1, 2, . . . , α. Therefore, even though the δ12 poles
in Mellin space truncate according to (4.1), in position space the result will necessarily
involve all negative powers of (x2

12)−α with α = 1, 2, . . . , p − 1. Truncation only implies
that the negative powers are related but cannot just simply eliminate a subset of them.
This is another instance where we can see explicitly that Mellin space is simpler.

To fix the coefficients in the ansatz, one can translate the ansatz back into Mellin
space and compare with the Mellin amplitude (4.10). This can be achieved by using the

15One can see explicitly that it is the case for the p = 2 five-point function. Moreover, the same bound
also holds for four-point functions of higher KK modes.

16These will generalize the ones presented in appendix A of [1] for p = 2.
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rule (4.25). However, as explained above, only some of the coefficients can be fixed due
to the ambiguities of the translation. One may wonder if implementing the Drukker-
Plefka twist and the chiral algebra condition in position space17 will give rise to additional
constraints. But unfortunately we find that this is not the case. There still remains the
possibility that one can fix the remaining coefficients using the recently derived higher-
point lightcone conformal blocks [37] to impose factorization in position space. But we
have not found a very efficient way to implement this. Therefore, we will postpone the
task of finding the expressions in position space and leave it to future work.

5 Discussions and outlook

In this paper we continued our journey of exploring the structure of five-point functions
of 1

2 -BPS operators of 4d N = 4 SYM in the strongly coupled regime which is dual to
AdS5 × S5 IIB supergravity. We improved the bootstrap approach of [1] which relies only
on superconfromal symmetry and consistency with factorization. The important difference
compared to the old approach is that both constraints are now implemented in Mellin
space. Moreover, in the new method we only need to use the Drukker-Plefka twist and the
chiral algebra condition is not needed. Using this approach, we obtained in a closed form
the Mellin amplitudes for the infinite family of correlators of the form 〈pp222〉.

Compared to the simplest 〈22222〉 case studied in [1], the pole structure of the Mellin
amplitudes of operators with higher KK levels is in general more complicated. However,
an important simplifying feature we observed in this paper is a new type of pole truncation
phenomenon. We find that the residues of certain poles associated with conformal descen-
dants vanish. Morevoer, in the 〈pp222〉 case the number of poles does not grow with respect
to p when p is large enough. Consequently, the pole structure of the Mellin amplitudes is
much simpler than what is naively expected. This property played an important role in
obtaining the 〈pp222〉 amplitudes and also gives us hope to bootstrap in closed forms more
general families of five-point functions with different KK levels.

Note that in deriving the pole truncation conditions, we have only used general proper-
ties of Mellin factorization. The same argument holds in many other theories and we expect
similar simplifications in the pole structure. This leads to a number of possible extensions
of our results in different setups. A prime example to consider is the gluon sector of certain
4d N = 2 SCFTs which is dual to SYM in AdS5 × S3. The first five-point function for
the lowest KK level has been computed in [10]. To make further progress in computing
amplitudes of higher KK levels, one can adapt the strategy used here. One important
ingredient which still needs to be worked out is the relations between different component
correlators of the super four-point functions (see [21] for progress in this direction). This
would be the input for exploiting the full power of the Mellin factorization. However, this
will be a direct generalization to what we have done in appendix A. Another interesting
application is to the 6d N = (2, 0) theory which is dual to eleven dimensional supergravity
in AdS7 × S4.

17See appendix D of [1] for more details on how to obtain explicit expressions for D-functions.
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Going beyond five-point functions, an exciting future direction is to compute the su-
per graviton six-point function of AdS5 × S5 IIB supergravity. This will provide a new
benchmark for the program of holographic correlators at higher points. The results in this
paper can already help us gain a nontrivial amount of knowledge of the structure of this
new correlator. Moreover, much of the technology developed here, in particular the Mellin
Drukker-Plefka twist, can also be straightforwardly applied to that problem. It appears to
be a feasible target and we hope to report progress in this direction in the near future.

Finally, let us mention that the 〈pp222〉 five-point functions we computed in this paper
contain a wealth of new data of 4d N = 4 SYM. Through OPE, we can extract various
non-protected three- and four-point functions. In [1] we constructed five-point conformal
blocks (see [29, 38–41] for progress in higher-point conformal blocks) and explained how
to use them to extract data from the p = 2 five-point correlator. It would be interesting
to perform a similar analysis here for the 〈pp222〉 correlators. The expression we have for
general p will be helpful for solving the mixing problem for the CFT data which is similar
to the one appearing in four-point functions. It would also be interesting to extract the
chiral algebra correlator from our supergravity result and compare with the field theory
calculation. The four-point function case has been analyzed in [42, 43].
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A Higher R-charge super multiplet

A key element of the bootstrap analysis undertaken in the main text is the factorization of
Mellin amplitudes into lower-point correlators. As explained in section 3.1 we do need as
an input the explicit expression for the Mellin amplitudes associated with the four-point
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functions

〈O2O2O2O2〉 〈J2O2O2O2〉 〈T2O2O2O2〉 (A.1)
〈O2OpOpO2〉 〈J2OpOpO2〉 〈T2OpOpO2〉 (A.2)
〈OpOpO2O2〉 〈JpOpO2O2〉 〈TpOpO2O2〉 (A.3)

where Op, Jp and Tp denotes the following components of the half-BPS supermultiplet Op

Op : ∆ = p , R = [0, p, 0] , spin 0 , (A.4)
Jp : ∆ = p+ 1 , R = [1, p− 2, 1] , spin 1 , (A.5)
Tp : ∆ = p+ 2 , R = [0, p− 2, 0] , spin 2 . (A.6)

In the special case p = 2 they correspond respectively to the su(4) current and stress tensor,
hence their names. The first goal of this appendix is to explain how the correlators above
can be extracted from the 〈OpOpO2O2〉 component. This is a generalization of what has
been done in [44] for the case p = 2. The second goal of this appendix is to explain how the
factorization in Mellin space is implemented in the presence of some global symmetry. This
is done in appendix A.4. A final warning about notation is necessary. In the main text we
use the six component null vectors on which the R-symmetry act linearly. Here, as it is
natural from the super-space prospective will use four component R-symmetry variables y.
The basic two-point invariants are identified as

tij = y2
ij . (A.7)

A.1 Conventions

In the following we will list all the conventions for raising and lowering indices

yaȧ = εabyḃbε
ḃȧ , (A.8)

where the ε tensor is defined with

ε12 = ε12 = 1 . (A.9)

It follows that
(y1i)ȧa(y1j)aȧ = y2

1i + y2
1j − y2

ij , (A.10)

which, in a particular case becomes

det yij = 1
2(yij)ȧa(yij)aȧ = y2

ij . (A.11)

The Schouten identity can be used to show that

εȧḃεbay2
ij = yaȧij y

bḃ
ij − ybȧij yaḃij . (A.12)

Finally, the inverse can easily be seen to be

y−1
ȧa = yȧa

y2 , (A.13)

and, with these conventions we also have
∂

∂yaȧ
y2 = yȧa . (A.14)
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A.2 Differential operators

In order to consider different components of the 1
2 -BPS supermultiplets we will work in

analytic superspace. The eight bosonic and eight fermionic coordinates of this superspace
are packaged in a supermatrix

XAȦ =
(
xαα̇ ραȧ

ρ̄aα̇ yaȧ

)
, (A.15)

whose superdeterminant is

sdetX =
det

(
xαα̇ − ραȧy−1

ȧa ρ̄
aα̇
)

det yaȧ . (A.16)

The supersymmetrization of the propagator dij = y2
ij/x

2
ij is given by

d̂ij = 1
sdet(Xij)

=
y2
ij

x̂2
ij

, (A.17)

where we introduce the short-hand notation

x̂αα̇ = xαα̇ − ραȧy−1
ȧa ρ̄

aα̇ . (A.18)

The two-point function of half-BPS superfields Op is then simply

〈Op(Xi)Op(Xj)〉 = (d̂ij)p . (A.19)

The relevant superdescendants are obtained extracting the appropriate component by act-
ing with certain differential operators:

Jp = 1
2D

(J)Op(X)
∣∣
ρ=ρ̄=0 ,

Tp = 1
4D

(T )Op(X)
∣∣
ρ=ρ̄=0 . (A.20)

Given the charges and symmetries of those operators the ansatz for the differential opera-
tors needs to be18

D(J) = λαλ̄α̇vav̄ȧ
( ∂

∂ρ̄aα̇
∂

∂ραȧ
+ µ

∂

∂yaȧ
∂

∂xαα̇

)
, (A.21)

and

D(T ) =λα1λα2 λ̄α̇1 λ̄α̇2εȧ1ȧ2εa1a2 ×
( ∂

∂ρ̄a1α̇1

∂

∂ρ̄a2α̇2

∂

∂ρα1ȧ1

∂

∂ρα2ȧ2
+

+ ν1
∂

∂ρ̄a1α̇1

∂

∂ρα1ȧ1

∂

∂ya2ȧ2

∂

∂xα2α̇2
+ ν2

∂

∂ya1ȧ1

∂

∂ya2ȧ2

∂

∂xα1α̇1

∂

∂xα2α̇2

)
, (A.22)

18These differential operators depend on p through the coefficients µ, ν1, ν2. This dependence is not
explicit in the notation.
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Before fixing the coefficients let us quote two simple identities which are very useful in the
following19

∂

∂XAȦ
1

sdet(X) = −(−1)|A|
X−1

ȦA
sdet(X) , (A.24)

∂

∂XAȦ
X−1

ḂB = −(−1)(|A|+|Ȧ|)(|A|+|Ḃ|)X−1
ḂA X

−1
ȦB , (A.25)

where |α| = |α̇| = 0 , |a| = |ȧ| = 1. In order to fix the coefficients in the ansatz (A.21),
(A.22) it suffices to impose that two-point functions do not have off-diagonal components
between different superdescendants. So we impose

〈Jp(1)Op(2)〉 = D(J)
1 〈Op(X1)Op(X2)〉

∣∣
ρ,ρ̄=0

!= 0 , (A.26)

which fixes the unknown coefficient in D(J) to be

µ = 1
p
. (A.27)

The action of the resulting operator on the two-point function is given by20

D(J)
1 (d̂12)p = (1− p2)λα1 λ̄α̇1 va1 v̄ȧ1 X−1

α̇a X
−1
ȧα (d̂12)p , (A.28)

where X = X12, from which one derives the two-point function of the descendant J using
the formula

D(J)
1 D(J)

2 (d̂12)p
∣∣
ρ,ρ̄=0 = (1− p2)

(
λ̄1x

−1
12 λ2

) (
λ̄2x

−1
12 λ1

) (
v̄1y
−1
12 v2

) (
v̄2y
−1
12 v1

)
(d12)p .

(A.29)
From this equation we can extract the normalization of Jp. For the spin 2 operator we
need to consider

〈Tp(1)Op(2)〉 = D(T )
1 〈Op(X1)Op(X2)〉

∣∣
ρ,ρ̄=0

!= 0 ,

〈Tp(1)Jp(2)〉 = D(T )
1 D

(J)
2 〈Op(X1)Op(X2)〉

∣∣
ρ,ρ̄=0

!= 0 , (A.30)

which in turn fixes the coefficients νi to be

ν1 = − 4
2 + p

, ν2 = − 2
(1 + p)(2 + p) . (A.31)

In the case of the stress tensor multiplet, when p = 2, these coefficients agree with those
found in [44]. The action of the resulting operator on the two-point function is given by

D(T )
1 (d̂12)p = 2p2(p− 1)(p+ 3)λα1

1 λα2
1 λ̄α̇1

1 λ̄α̇2
1 εȧ1ȧ2εa1a2X−1

α̇1a1X
−1
α̇2a2X

−1
ȧ1α1X

−1
ȧ2α2(d̂12)p ,

(A.32)
19The second identity is obtained as follows

0 = ∂

∂XAȦ
δC

B = ∂

∂XAȦ
XCḂX−1

ḂB = δC
A δ

Ḃ
Ȧ X

−1
ḂB + (−1)(|A|+|Ȧ|)(|C|+|Ḃ|) XCḂ ∂

∂XAȦ
X−1

ḂB . (A.23)

Multiplying this equation by (−1)(|A|+|Ȧ|)(|C|+|Ḃ|) and X−1
ĊC from the left (with summation over C) we ob-

tain (A.25).
20The fact that is vanishes when p = 1 is consistent with the fact that in this case the (field strength)

supermultiplet is ultrashort and does not possess a J component.
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where X = X12, from which one derives the two-point function of the descendant T using
the formula

D(T )
1 D(T )

2 (d̂12)p
∣∣
ρ,ρ̄=0 = 16p2(p− 1)(p+ 3)

(
λ̄1x

−1
12 λ2

)2 (
λ̄2x

−1
12 λ1

)2 (y2
12)p−2

(x2
12)p+2 . (A.33)

Three-point function with one descendant operator can be obtained using the formulae

D(J)
1 (d̂12)a(d̂13)p−a

∣∣
ρ,ρ̄=0 = AΛ1,23 V1,23 (d12)a(d13)p−a , (A.34)

D(T )
1 (d̂12)p(d̂13)p−a

∣∣
ρ,ρ̄=0 = B (Λ1,23)2 det(y−1

12 − y
−1
13 )(d12)a(d13)p−a , (A.35)

where
Λ1,23 := λ̄1(x−1

12 − x
−1
13 )λ1 , V1,23 := v̄1(y−1

12 − y
−1
13 )v1 . (A.36)

and
A = −a(p− a)

p
, B = −8a(a+ 1)(p− a)(p− a+ 1)

(p+ 1)(p+ 2) . (A.37)

A.3 Four-point functions

The two- and three-point functions of Op operators are related in a simple way to the ones
of their superprimaries Op: they are obtained by replacing the propagators dij with the
super-propagators d̂ij . For four-point functions the situation is more involved due to the
presence of cross ratios, but it is still true that the correlators of Op is uniquely fixed by
the one of Op. This is achieved by replacing the familiar space-time and R-symmetry cross
ratios

u = x2
12x

2
34

x2
13x

2
24

= zz̄ , v = x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄) ,

σ = y2
12y

2
34

y2
13y

2
24

= αᾱ , τ = y2
14y

2
23

y2
13y

2
24

= (1− α)(1− ᾱ) . (A.38)

with their super-symmetrizations, namely the four eigenvalues of the supermatrix

Z = X12X
−1
13 X34X

−1
24 . (A.39)

More explicitly, we can extract the independent superconformal invariants by taking four
independent supertraces

t̂k = Str(Zk) = ẑk + ˆ̄zk − α̂k − ˆ̄αk , k = 1, 2, 3, 4 . (A.40)

When all fermionic variables are set to zero the matrix above reduces to

Z
∣∣
ρ,ρ̄=0 =

(
x12x

−1
13 x34x

−1
24 0

0 y12y
−1
13 y34y

−1
24

)
. (A.41)

and upon taking the supertrace gives

tk := t̂k
∣∣
ρ,ρ̄=0 = zk + z̄k − αk − ᾱk , (A.42)
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which establishes the relation between the quantities tk and the cross ratios introduced
above. In terms of the cross-ratios the four point function reads

〈Op1(X1)Op1(X2)Op2(X3)Op2(X4)〉 = (d̂12)p1 (d̂34)p2 G(ẑ, ˆ̄z; α̂, ˆ̄α) . (A.43)

The function G satisfies the super-conformal Ward Identities and have a specific polyno-
mial dependence on the R-symmetry cross ratios. We will come back to these constraints
momentarily. To extract the relevant components from (A.43) we need to act with the
differential operators D(J) and D(T ) given in (A.21), (A.22).

Action of D(J), D(T ) on four-point functions. The spinning four-point functions are
extracted by the action of the differential operators from (A.21) and (A.22)

〈Jp1(1)Op1(2)Op2(3)Op2(4)〉 = 1
2D

(J)
1 〈O(X1)Op1(X2)Op2(X3)Op2(X4)〉

∣∣
ρ,ρ̄=0 ,

〈Tp1(1)Op1(2)Op2(3)Op2(4)〉 = 1
4D

(T )
1 〈O(X1)Op1(X2)Op2(X3)Op2(X4)〉

∣∣
ρ,ρ̄=0 , (A.44)

with coefficients determined in (A.27) and (A.31) above. In what follows we will always
apply the differential operator at point 1, so we will need to consider two particular cases of
the four-point function, either p1 = 2 and p2 = p, or the opposite. The action of derivatives
on the superpropagators are discussed in the previous section. The action of derivatives
on the G factor is done in two steps. First we relate the derivatives with respect to the
eigenvalues of the Z matrix

z1 = ẑ , z2 = ˆ̄z , z3 = α̂ , z4 = ˆ̄α . (A.45)

to derivatives with respect to the supertraces (A.40). This is done by using the chain rule

∂G
∂t̂j

=
4∑
i=1

∂zi

∂t̂j

∂G
∂zi

. (A.46)

The Jacobian matrix can be derived easily since the variables are related according to (A.42),
and is given by

∂zi
∂tj

= (−1)j+Fi

j

Q
(i)
4−j∏

k 6=i(zi − zk)
, (A.47)

where Q(i)
4−j are symmetric polynomials formed with the three variables zk 6=i (here written

for i = 4)

Q
(4)
0 = 1 , Q

(4)
1 = z1 + z2 + z3 ,

Q
(4)
2 = z1z2 + z1z3 + z2z3 , Q

(4)
3 = z1z2z3 , (A.48)

and F1 = F2 = 0 and F3 = F4 = 1. The second step is to take derivatives of t̂k with respect
to the supercoordinates XAȦ

1 using, for example
∂

∂ZA
B
t̂k = k (−1)|A| (Zk−1)B

A , (A.49)

∂

∂XAȦ
1
t̂k = k (−1)|A| (X−1

12 Z
kX12)Ḃ

Ȧ (X−1
12 −X

−1
13 )ḂA , (A.50)

and similarly for higher derivatives. This procedure is straightforward but tedious, the
result takes the schematic form given in (A.62).
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General structure of the correlator. Superconformal Ward identities and polynomi-
ality in the R-symmetry variables imply that

〈Op(1)Op(2)O2(3)O2(4)〉 = Gfree + dp−2
12 RHp(u, v) , (A.51)

where R is the well-known function

R = v d2
12d

2
34 + v

u
d2

13d
2
24 + v2

u
d2

14d
2
23 + v

u
(v − u− 1)d12d13d24d34

+ v

u
(1− u− v)d12d14d23d34 + v

u
(u− 1− v)d13d14d23d24 . (A.52)

The free piece of the correlator can be supersymmetrized as shown in the next paragraph,
while the supersymmetrization of the anomalous component is achieved with the method
described above, where we supersymmetrize the cross ratios. The spinning anomalous
functions will then be expressed in terms of derivatives of the dynamical function Hp(u, v).

The free theory check. As a check of the formulae derived in the previous section, will
now consider the case of correlators in the free field theory. In the SU(N) gauge theory,
and for the particular configuration we are interested in, the tree-level four-point functions
at any value of N are

〈Op(1)Op(2)O2(3)O2(4)〉free = dp12d
2
34 + δ2p

(
d2

14d
2
23 + d2

13d
2
24

)
+ 2p(p− 1)

N2 − 1 dp−2
12 d14d23d13d24

+ 2p
N2 − 1d

p−1
12 d34(d14d23 + d13d24) . (A.53)

The four-point function 〈OpOpO2O2〉 is obtained from the above by simply replacing the
propagator dij with its supersymmetrized version d̂ij introduces in (A.17). We can rewrite
this expression in terms of cross ratios as

Gpp22 = 1 + δ2p

(
v2σ2

u2τ2 + σ2

u2

)
+ 2p
N2 − 1

(
(p− 1)u

2τ

vσ2 + uτ

vσ
+ u

σ

)
. (A.54)

In this case, the correlation function of superdescendants can be obtained either applying
the general procedure discussed in the previous paragraph or by replacing the propaga-
tor dij with d̂ij in (A.53) and then applying the differential operators D(J), D(T ). Both
procedures give the same result, as they should, providing a check of the general procedure.

Frame simplifications. The computation we described can be simplified by choosing a
frame. First, we wish only to apply the differential operator on the point 1 of the four-
point function, so we can set to zero the fermionic variables associated to the remaining
points from the beginning. Second, the matrix Z is superconformally invariant, so we can
take advantage of conformal and R-symmetry transformations to send both x2 and y2 to
0, while sending x3 and y3 to infinity. Effectively the computation simplifies significantly
to the evaluation of

t̂k = Str
(
(X1X

−1
4 )k

) ∣∣
ρi>1,ρ̄i>1=0 , (A.55)
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where the matrix Z becomes

(
X1X

−1
4

)A

B

∣∣
ρ4,ρ̄4=0 =

(
(x1x

−1
4 )αβ (ρ1y

−1
4 )αb

(ρ̄1x
−1
4 )aβ (y1y

−1
4 )ab

)
, (A.56)

and the cross ratios in this frame are given by

x2
1
x2

4
= zz̄ ,

x2
14
x2

4
= (1− z)(1− z̄) ,

y2
1
y2

4
= αᾱ ,

y2
14
y2

4
= (1− α)(1− ᾱ) . (A.57)

With a simple calculation we obtain (in this frame)

t̂1 = t1 = Tr(x1x
−1
4 )− Tr(y1y

−1
4 ) = z + z̄ − α− ᾱ (A.58)

t̂2 = t2 − 2 Tr
(
ρ̄x−1

4 ρy−1
4

)
,

t̂3 = t3 − 3 Tr
(
ρ̄x−1

4 x1x
−1
4 ρy−1

4

)
− 3 Tr

(
ρ̄x−1

4 ρy−1
4 y1y

−1
4

)
,

t̂4 = t4 − 4 Tr
(
ρ̄x−1

4 (x1x
−1
4 )2ρy−1

4

)
− 4 Tr

(
ρ̄x−1

4 ρy−1
4 (y1y

−1
4 )2

)
− 4 Tr

(
ρ̄x−1

4 x1x
−1
4 ρy−1

4 y1y
−1
4

)
− 2 Tr

(
ρ̄x−1

4 ρy−1
4 ρ̄x−1

4 ρy−1
4

)
, (A.59)

where ρ = ρ1, ρ̄ = ρ̄1.

Summary. The final expression for the spinning correlators in (A.44) involves the struc-
tures Λ1,ij and V1,ij introduced in (A.36). These quantities are not independent but satisfy
the relation

Λ1,24 = Λ1,23 + Λ1,34 , (A.60)

and similarly for V1,ij . In particular the correlator involving Jp is linear in Λ1,ij and H1,ij ,
while the one involving Tp is quadratic in Λ1,ij and independent of H1,ij . Once the general
expression for the correlator is obtained in terms of Λ1,ij , one can decompose into

λ̄1x
−1
1k λ1 = z · x1k

x2
1k

, zµ = σµαα̇λ
α
1 λ̄

α̇
1 (A.61)

elements, which will have a natural counterpart in the Mellin approach of the next section
(compare to (3.12))

〈Jp1(1)Op1(2)Op2(3)Op2(4)〉 = 1
x2p1

12 x
2p2
34

4∑
k=2

α(k)
p1,p2(u, v; yij , Y1,ij)

z · x1k
x2

1k
,

〈Tp1(1)Op1(2)Op2(3)Op2(4)〉 = 1
x2p1

12 x
2p2
34

4∑
k,l=2

β(k,l)
p1,p2(u, v; yij)

z · x1k
x2

1k

z · x1l
x2

1l
, (A.62)

where
Y1,ij = y2

1iy
2
1j V1,ij . (A.63)

– 30 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
7

A.4 R-Symmetry gluing

Realization of su(4) R-symmetry in the space of polynomials. It is convenient
to use an index free notation to implement finite dimensional representations of su(4).
The components of a given representation are packaged in a polynomial OR(y, v, v̄) in the
variables yaȧ, va, v̄ȧ (here a ∈ {1, 2}, ȧ ∈ {1̇, 2̇}) subject to certain constraints that depend
on the su(4) Dynkin labels R = [q, p, r]. The fist constraint states that OR(y, v, v̄) is
homogeneous in v and v̄ of degree q and r respectively. The second constraint is slightly
more involved. In the case R = [0, p, 0], so that OR is independent of v, v̄ it reads(

waw̄ȧ
∂

∂yaȧ

)p+1
OR(y) = 0 , ∀ w, w̄ . (A.64)

The case R = [1, p − 2, 1] is more involved. Since we will not use it in this work we will
not present the identification of R = [1, p − 2, 1] as the kernel of differential operators.
Two-point functions take the form

G[q,p,r](1, 2) = (y2
12)p (v1y12v̄2)q (v2y12v̄1)r . (A.65)

Projections and gluing. To implement factorization in Mellin space in the presence
of some global symmetry (in our case the su(4) R-symmetry) it is necessary to take into
account this extra structure. To do so, we introduce a projector that singles out the
contribution of a given operator21 O which we denote by

|O| = 1
NO
D(`,r)
R[O] |O(`)〉〈O∗(r)|

∣∣∣
`=r

, (A.66)

whereD is a differential operator which is fixed (up to a normalization that will be explained
momentarily) by the requirement that (A.66) is invariant under su(4). The notation ∗

denotes conjugation which acts on representations as [q, p, r]∗ = [r, p, q]. When we insert
the quantity |O| in an n-point correlation function it is understood that we first place
|O(`)〉〈O∗(r)|, next act with the differential operator D on the coordinates ` and r and
finally set the coordinates ` and r to be equal. To fix the normalization of D we insert |O|
in the two-point function

〈O∗(1)O(2)〉 = NOGR[O](1, 2) , (A.67)

where GR is given in (A.65) and obtain the condition

D(`,r)
R GR(1, `)GR(r, 2)

∣∣∣
`=r

= GR(1, 2) . (A.68)

The explicit form of DR is slightly complicated. The simplest one is given by

D(`,r)
[0,p,0] =

p∑
n=0

(−∂` · ∂r)p−n

Γ(p+ 1)Γ(p+ 2)

n∑
k=0

(−1)n−M(k,n−k) (p− n+ 1)m(k,n−k)+1
Γ(m(k, n− k) + 1) (�`)k(�r)n−k ,

(A.69)
21Here we use the notation O instead of O since we are ignoring the space-time part.
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where (a)n denotes the Pochhammer symbol, M(a, b) = max(a, b), m(a, b) = min(a, b) and

∂i · ∂j := εa1a2εȧ1ȧ2 ∂

∂ya1ȧ1
i

∂

∂ya2ȧ2
j

, �i = 1
2 ∂i · ∂i . (A.70)

The general expression for the differential operator D[1,p−2,1] is more complicated, but it
easy to obtain for fixed p using the defining relation (A.68). Let us report the simplest
member of this family as an example

D(`,r)
[1,0,1] = (∂v`

∂vr ) (∂v̄`
∂v̄r )

(
1
2∂` · ∂r −�` −�r

)
− 3

16 (∂v`
∂y`
∂v̄`

) (∂vr∂yr∂v̄r ) , (A.71)

where the contraction of indices is understood using the ε tensor.

Application to five-point functions. When we insert the projector (A.66) in a 5-
point function we will produce a product of a 3-point and a 4-point function on which the
differential operator D acts. In the following we denote by → the combination of acting
with D(`,r) and setting the coordinates ` = r. The case that is relevant for the exchange of
Op which transform in a [0, p, 0] representation is[

(y2
1`)(y2

2`)p−1][(y2
ri)p−2(y2

rj)(y2
rk)
]
→ (A.72)

1
p(y2

2i)p−3
(
y2

2i (y2
2jy

2
1k+y2

1jy
2
2k)+(p−2)y2

1iy
2
2jy

2
2k−

p−2
p+1 y

2
12 (y2

2ky
2
ij+y2

2jy
2
ik)− 1

p+1 y
2
12y

2
2iy

2
jk

)
(A.73)

Similarly, using the definitions above, gluing the 3 and 5 point functions corresponding to
the exchange of Jp (which transforms in the representation [1, p− 2, 1]) is achieved by the
subsitution[

(y2
2`)p−2 Y`,12

][
(y2
ri)p−3(y2

rj) Yr,kl
]
→ (A.74)

(y2
2i)p−4

(
y2

2i y
2
2j (y2

1ky
2
2l − y2

1ly
2
2k) + y2

12

(
p−3
p+2y

2
2j(y2

ily
2
2k − y2

2ly
2
ik) + 1

p+2y
2
2i(y2

jly
2
2k − y2

2ly
2
jk)
))

(A.75)

For the exchange of Tp we use the same rules as (A.72) with p replaced by p− 2.

B Strong coupling correlators

We can define the inverse Mellin transform of the scalar correlator as

〈Op1(1)Op1(2)Op2(3)Op2(4)〉 = dp1
12 d

p2
34 G(zk) =

∫
dδijM(δij , yij)

∏
i<j

Γ(δij)
x

2δij

ij

. (B.1)

Conformal symmetry requires the Mellin variables δij to obey the following equations∑
j 6=i

δij = ∆i , (B.2)

effectively leaving only two degrees of freedom for four-point functions. It is useful to
consider the following parametrization

δij = ∆i + ∆j − sij
2 , (B.3)

– 32 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
7

so that the solution is given simply as

s12 = s34 = s , s14 = s23 = t , s13 = s24 = 2(p1 + p2)− s− t . (B.4)

For the configuration we are interested in we can then write the inverse Mellin transform as

G(u, v;σ, τ) =
∫ dsdt

4 u
s
2 v

t−p1−p2
2 M(s, t;σ, τ)

∏
i<j

Γ(δij(s, t)) . (B.5)

Equivalently, the Mellin transform of the spacetime correlator is

M(s, t;σ, τ)
∏
i<j

Γ(δij(s, t)) =
∫ ∞

0
du
∫ ∞

0
dv u−

s
2−1v

p1+p2−t

2 −1G(u, v;σ, τ) . (B.6)

When the correlator has a factorized form as in (A.51), then it is convenient to introduce
the Mellin transform of the dynamical function Hp(u, v)

M̃p(s, t)
∏
i<j

Γ(δ̃ij(s, t)) =
∫ ∞

0
du
∫ ∞

0
dv u−

s
2−1v

p−t
2 Hp(u, v) , (B.7)

where the shifted variables are defined as

δ̃13 = δ13 + 2 , δ̃24 = δ24 + 2 ,
δij = δij otherwise, (B.8)

and make crossing properties of the Mellin amplitude simpler. At strong coupling the Mellin
space version of the correlator was found to have a particularly simple structure [2, 3], and
in the case under consideration it reduces to

M̃p(s, t) = 32
(s− 2)(t− p)(p− s− t) . (B.9)

For the spinning correlators we can also write inverse Mellin transforms as follows

〈Jp1(1)Op1(2)Op2(3)Op2(4)〉=
4∑

k=2

z ·x1k
x2

1k

∫
[dδ]Mk

p1,p2

4∏
i=2

Γ(δi+δδki )
x2δi

1i

∏
i<j

Γ(δij)
x

2δij

ij

,

〈Tp1(1)Op1(2)Op2(3)Op2(4)〉=
4∑

k,l=2

z ·x1k
x2

1k

z ·x1l
x2

1l

∫
[dδ]Mkl

p1,p2

4∏
i=2

Γ(δi+δδki +δδli)
x2δi

1i

∏
i<j

Γ(δij)
x

2δij

ij

,

(B.10)

with δδki the Kronecker-delta, and the Mellin variables are constrained by

δi = −
4∑
j=2

δij , δii = −∆i ,
4∑

i,j=2
δij = S −∆1 . (B.11)

In the two cases of interest we have S−∆1 = p1, so the δij variables have the same solution
as in the scalar case, see (B.3) and (B.4). Comparing with the form of the correlators
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obtained in the previous section, we can see that the inverse Mellin trasform of the functions
introduced in (A.62) are exactly theMk andMkl above

α(k)
p1,p2(u, v; yij , Y1,ij) =

∫ dsdt
4 u

s
2 v

t−p1−p2
2 Mk

p1,p2(s, t; yij , Y1,ij)
4∏
i=2

Γ(δi + δδki )
∏
i<j

Γ(δij) ,

β(k,l)
p1,p2(u, v; yij) =

∫ dsdt
4 u

s
2 v

t−p1−p2
2 Mkl

p1,p2(s, t; yij)
4∏
i=2

Γ(δi + δδki + δδli)
∏
i<j

Γ(δij) .

(B.12)

Inversing the logic we then have

Mk
p1,p2(s, t;yij ,Y1,ij)

4∏
i=2

Γ(δi+δδki )
∏
i<j

Γ(δij)=
∫ ∞

0
dudvu−

s
2−1v

p1+p2−t

2 −1α(k)
p1,p2(u,v;yij ,Y1,ij) ,

Mkl
p1,p2(s, t;yij)

4∏
i=2

Γ(δi+δδki +δδli)
∏
i<j

Γ(δij)=
∫ ∞

0
dudvu−

s
2−1v

p1+p2−t

2 −1β(k,l)
p1,p2(u,v;yij) .

(B.13)

As explained in the previous section, the functions α(k)
p1,p2 and β(k,l)

p1,p2 are given in terms of
derivatives of the dynamical function from the scalar correlator. When p1 = 2 and p2 = p,
or p1 = p and p2 = 2, we are then relating with Hp from (A.51), and so we should use∫ ∞

0
du
∫ ∞

0
dv u−

s
2−1v

p+2−t
2 −1umvn

∂a

∂ua
∂b

∂vb
Hp(u, v) = M̃p(s− 2m+ 2a, t− 2n+ 2b)

× (−1)a+b
(
m− a− s

2

)
a

(
n− b+ p+ 2− t

2

)
b

∏
i<j

Γ(δ̃ij(s− 2m− 2a, t− 2n− 2b)) ,

(B.14)

which allows us to write Mk
p1,p2 and Mkl

p1,p2 for those two configurations in terms of
the scalar Mellin amplitude M̃p(s, t). At the end of the day, the Mellin amplitudes for
〈J2O2OpOp〉 are

M2
2,p = −2(t− p− 2)

(2(p− 2)
s− 4 + 2

s− 2 + p

4 + p− s− t

)
y2

24 y
2(p−1)
34 Y1,23

− 2(2 + p− s− t)
(2(p− 2)

s− 4 + 2
s− 2 + p

t− p

)
y2

23 y
2(p−1)
34 Y1,24

− 2p(s− 2p)
( 1
t− p

− 1
4 + p− s− t

)
y2

23 y
2
24 y

2(p−2)
34 Y1,34 ,

M3
2,p = 2(t− p− 2)

( 2
s− 2 + p

4 + p− s− t

)
y2

24 y
2(p−1)
34 Y1,23

+ 2(2 + p− s− t)
( 2
s− 2 −

p

t− p

)
y2

23 y
2(p−1)
34 Y1,24

− 2p(s− 2p)
( 1
t− p

+ 1
4 + p− s− t

)
y2

23 y
2
24 y

2(p−2)
34 Y1,34 . (B.15)

Note that in general we expected poles at s−2, t−p and p+4−s−t. However, in theM2
2,p

component we see also the presence of a pole at s−4. While this might appear unexpected
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at first, it is in fact due to the shift in the Gamma functions of spinning correlators. When
p1 = 2 and p2 = p the relevant factors are

Γ(δ2 + 1)Γ(δ34) = Γ
(

3− s

2

)
Γ
(
p− s

2

)
. (B.16)

It is then evident that the Gamma functions do not prohibit the satellite pole at s − 4
(unless p = 2, in which case the residue vanishes). Meanwhile for 〈JpOpO2O2〉 we have

M2
p,2 = 2(p−2)s

p

[
t−p−2

4+p−s−ty
2(p−3)
12 y2

13 y
4
24Y1,23+ 2+p−s−t

t−p
y

2(p−3)
12 y2

14 y
4
23Y1,24

+2
(

1+ p

t−p
+ p

4+p−s−t

)
y

2(p−3)
12 y2

14 y
2
23 y

2
24Y1,23

]
+ 2(t−p−2)

p

(
p−2− 4

s−2−
2p

4+p−s−t

)
y

2(p−2)
12 y2

24 y
2
34Y1,23

+ 2(2+p−s−t)
p

(
p−2− 4

s−2−
2p
t−p

)
y

2(p−2)
12 y2

23 y
2
34Y1,24

+ 2
p

(
s(p−2)− 2p(s−2p)

t−p
+ 2p(s(p−1)−2p)

4+p−s−t

)
y

2(p−2)
12 y2

23 y
2
24Y1,34 ,

M3
p,2 = 2(p−2)(s−2p)

p

[
t−p−2

4+p−s−ty
2(p−3)
12 y2

13 y
4
24Y1,23+ 2+p−s−t

t−p
y

2(p−3)
12 y2

14 y
4
23Y1,24

+2
(

1+ p

t−p
+ p

4+p−s−t

)
y

2(p−3)
12 y2

14 y
2
23 y

2
24Y1,23

]
+ 2(t−p−2)

p

(
p−2+ 4(p−1)

s−2 + 2p(p−1)
4+p−s−t

)
y

2(p−2)
12 y2

24 y
2
34Y1,23

+ 2(2+p−s−t)
p

(
p−2+ 4(p−1)

s−2 − 2p
t−p

)
y

2(p−2)
12 y2

23 y
2
34Y1,24

+ 2(s−2p)
p

(
p−2− 2p

t−p
− 2p

4+p−s−t

)
y

2(p−2)
12 y2

23 y
2
24Y1,34 . (B.17)

In this case the Gamma factors forM2
p,2 are

Γ(δ2 + 1)Γ(δ34) = Γ
(
p+ 1− s

2

)
Γ
(

2− s

2

)
, (B.18)

and that is why the shift does not lead to any unexpected pole. For the other Mellin
componentsM3

p1,p2 andM4
p1,p2 we have

Γ(δ3 + 1)Γ(δ24) = Γ
(
s+ t− p

2

)
Γ
(
s+ t− p− 2

2

)
,

Γ(δ4 + 1)Γ(δ23) = Γ
(4 + p− t

2

)
Γ
(2 + p− t

2

)
, (B.19)

which explains why there cannot be any new poles in these channels for any of the two
configurations considered.
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Moving on to the spin 2 case, the Mellin amplitudes for the 〈T2O2OpOp〉 correlator are

M2,2
2,p = 16

3

(
1−p+6(p−2)

(
p−3
s−6 + 2

s−4

)
+ 2
s−2 + p(p−1)

t−p
+ p(p−1)

4+p−s−t

)
y2

23 y
2
24 y

2(p−1)
34 ,

M2,3
2,p = 16

3

(
1−p− 6(p−2)

s−4 − 4
s−2 + p(p−1)

t−p
− 2p(p−1)

4+p−s−t

)
y2

23 y
2
24 y

2(p−1)
34 ,

M3,3
2,p = 16

3

(
1−p+ 2

s−2 + p(p−1)
t−p

+ p(p−1)
4+p−s−t

)
y2

23 y
2
24 y

2(p−1)
34 . (B.20)

There are once again some satellite poles, but the explanation follows exactly the same
reasoning as before. The relevant Gamma factors inM2,2

2,p are in this case

Γ(δ2 + 2)Γ(δ34) = Γ
(

4− s

2

)
Γ
(
p− s

2

)
, (B.21)

thus allowing poles both at s− 4 and s− 6 (except if p = 2, 3). Meanwhile, forM2,3 (and
alsoM2,4) the relevant Gammas are

Γ(δ2 + δδ2
2)Γ(δ34) = Γ

(
3− s

2

)
Γ
(
p− s

2

)
, (B.22)

and so the only satellite pole in those Mellin components is at s − 4. At last, for the
correlator 〈TpOpO2O2〉 we have

M2,2
p,2= 8(p−2)(s+2)

(p+1)(p+2)

[(
s(p−1)−2p

t−p
+ 2p

4+p−s−t

)
y

2(p−3)
12 y2

14y
4
23y

2
24

+
( 2p
t−p

+ s(p−1)−2p
4+p−s−t

)
y

2(p−3)
12 y2

13y
2
23y

4
24

]

+ 8y2(p−2)
12 y2

23y
2
24y

2
34

(p+1)(p+2)

(
(p−1)(p−2)s−4(p2−2)+ 16

s−2

−2p(s(p−2)−2p)
t−p

− 2p(s(p−2)−2p)
4+p−s−t

)
,

M2,3
p,2= 8(p−2)

(p+1)(p+2)

[(
s2(p−1)−2p2s−2(p+2)(p−1)

t−p
− p(s(p−1)+6p+2)

4+p−s−t

)
y

2(p−3)
12 y2

14y
4
23y

2
24

+
(

2p(s−p+1)
t−p

+ s2(p−1)−sp(p−1)+2(p2+p+2)
4+p−s−t

)
y

2(p−3)
12 y2

13y
2
23y

4
24

]

+ 8y2(p−2)
12 y2

23y
2
24y

2
34

(p+1)(p+2)

(
(p−1)(p−2)s−2(p+2)(p−1)− 16p

s−2

−2p(s(p−2)−(p−1)(p+2))
t−p

+ p(s(p−1)(p−2)−2(p2+p+2))
4+p−s−t

)
,
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M3,3
p,2= 8(p−2)(s−2p)

(p+1)(p+2)

[(
2p2−(s−2)(p−1)

t−p
− 2p2

4+p−s−t

)
y

2(p−3)
12 y2

14y
4
23y

2
24

+
( 2p
t−p

+ s(p−1)+2
4+p−s−t

)
y

2(p−3)
12 y2

13y
2
23y

4
24

]

+ 8y2(p−2)
12 y2

23y
2
24y

2
34

(p+1)(p+2)

(
(p−1)(p−2)s−4p+ 8p(p−1)

s−2

+2p(2(p2−2)−s(p−2))
t−p

+ 2p2(s(p−2)+2)
4+p−s−t

)
.

(B.23)

Note that in the final expressions above we omit the M4
p1,p2 and Mk,4

p1,p2 cases, but they
can be easily obtained from the equations relating different Mellin components

∑
k

δkMk = 0 ,∑
k

(δk + δδlk)Mkl = 0 , (B.24)

which play a similar role to the equation (A.60) relating the tensor structures in position
space. Finally, note that for the particular case of p1 = p2 = 2 the expressions above
simplify and agree with those found in our earlier work [1].

B.1 Example of factorization

The goal of this subsection is to show explicitly how to use factorization, lower-point Mellin
amplitudes and the R-symmetry gluing rules from appendix A.4 to recover part of the five-
point function. To simplify the presentation we will focus on the factorization of the scalar
20′ operator exchanged in the channel (45).

The building blocks for the factorization are the Mellin amplitude of the four-point
function 〈OpOpO2O2〉 and the three-point function 〈O2O2O2〉

Mpp22 =4t01t23t
p−2
12

(
δ12 (p(t02t13−t03t12)−(p−1)t01t23)+(p−1)pt03t12+δ2

12t01t23
)

δ23−1 +. . .

M222 =COOO t45t40t50 (B.25)

where we decided to write explicitly only part of the four point function to simplify even
further the analysis. The label 0 in the formula is associated to the operator that is being
exchanged in the factorization channel.

Now we can borrow the formula from (3.3), (3.6)to obtain

Mpp222 = 2Γ(2)Mpp22M222
(2δ45 − 2) + . . . (B.26)
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where the . . . stand for other poles and contributions of other operators. The gluing in
R-symmetry space gives, implementing22 (A.72) for p = 2,

t`4t`5 tri1tri2 →
1
2

(
(t4i1t5i2 + t4i2t5i1)− t45ti1i2

3

)
, (B.27)

t`4t`5t
2
ri1 → t4i1t5i1 . (B.28)

Thus we obtain

Mpp222 = 2COOOt23t45t
p−2
12

3 (δ23 − 1) (δ45 − 1)
[
(3δ12 (p t15 (t13t24 − t12t34) + t14 (p (t13t25 − t12t35)

−2(p− 1)t15t23)) + (p− 1)pt12 (3t15t34 + 3t14t35 − t13t45) + 6δ2
12t14t15t23

) ]
+ . . . (B.29)

where, again, the dots stand for other poles and contributions of other operators. In
particular this formula can be compared with our previous result for five point function of
20’ operators.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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