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ABSTRACT 

Rapid prediction of beef quality remains a challenge for meat processors. This study evaluated the 

potential of Raman spectroscopy followed by chemometrics for prediction of Warner-Bratzler shear 

force (WBSF), in- tramuscular fat (IMF), ultimate pH, drip-loss and cook-loss. PLS regression 

models were developed based on spectra recorded on frozen-thawed day 2 longissimus thoracis et 

lumborum muscle and validated using test sets randomly selected 3 times. With the exception of 

ultimate pH, models presented notable performance in calibration (R2 ranging from 0.5 to 0.9; low 

RMSEC) and, despite variability in the results, promising predictive ability: WBSF (RMSEP 

ranging from 4.6 to 9 N), IMF (RMSEP ranging from 0.9 to 1.1%), drip-loss (RMSEP ranging from 

1 to 1.3%) and cook-loss (RMSEP ranging from 1.5 to 2.9%). Furthermore, the loading values 

indicated that the physicochemical variation of the meat influenced the models. Overall, results 

indicated that Raman spectroscopy is a promising technique for routine quality assessments of IMF 

and drip-loss, which, with further development and improvement of its accuracy could become a 

reliable tool for the beef industry. 

 

INTRODUCTION 

Besides safety and nutritional content, beef consumers expect a sa- tisfying eating experience. This 

means that beef and especially premium beef cuts must embrace a series of characteristics in 

flavour, texture, tenderness, juiciness and appearance in order to meet consumer ex- pectations 

(Hocquette et al., 2014; Troy & Kerry, 2010). These char- acteristics, which together determine the 

overall eating quality of beef, are affected by several factors, typically classified as: intrinsic (e.g. 

breed, sex and age) and extrinsic (e.g. season, feeding, slaughtering and post-slaughter 

Management) (Gagaoua, Picard, Soulat, & Monteils, 2018). Thus, variations in these factors may 

cause unpredictable eating experiences that can lead to consumer disappointment, and even dis- 

satisfaction (McCarthy, Henchion, White, Brandon, & Allen, 2017). 

Several objective indicators have been developed to provide instrumental information on the eating 

quality of beef. Texture, especially first bite tenderness is one of the most important factors 

determining consumer acceptability in beef steak and can be instrumentally esti- mated through 

shear-force measurements such as Warner-Bratzler shear force (WBSF) (AMSA, 2015). The 

amount of intramuscular fat (IMF) is also considered an indicator of beef eating quality as high le- 

vels of IMF have been associated with improved tenderness, juiciness and flavour (Corbin et al., 

2015; Hocquette et al., 2014; Webb & O'Neill, 2008). The ability to retain water—referred to as 

water holding capa- city (WHC)—is also a key aspect as it affects the visual acceptability, juiciness 

and tenderness of beef (Barbera, 2019; Modzelewska-Kapituła, Kwiatkowska, Jankowska, & 

Dąbrowska, 2015). Furthermore, water holding capacity has an additional value to processors in 

terms of its relationship with carcass yield (Di Luca, Mullen, Elia, Davey, & Hamill, 2011; 

Reardon, Mullen, Sweeney, & Hamill, 2010). Ultimate pH is an important indicator as it has a 

relationship to water-holding capacity and tenderness (Honikel, 2014a). However, classic 

measurements of WBSF, IMF and WHC are not amenable to routine analyses of beef quality in 

each carcass as these methods are destructive, time intensive and require complex sample 

preparation. Consequently, current challenges for the meat sector include the development and 

implementation of non-invasive tools capable of providing timely and reliable in- formation on beef 



quality on an individual basis. Furthermore, this information could be used to inform consumers 

about the quality of the product, as well as in breeding programmes for the improvement of beef 

eating quality (Cecchinato, De Marchi, Penasa, Albera, & Bittante, 2011). 

Raman spectroscopy is a vibrational technique which offers speed, non-invasive measurement and 

minimal sample preparation require- ments as advantages (Ana M. Herrero, 2008; Gremlich and 

Yan, 2000). Raman spectroscopy is based on the inelastic scattering of light resulting from the 

interaction between a laser light and the molecules of a sample (Li-Chan, Griffiths, & Chalmers, 

2010). Light inelastically scattered, which refers to photons that have been scattered from the 

sample with a different energy level/frequency than the incident light (laser), contains information 

about fundamental molecular vibrations (Berhe, Engelsen, Hviid, & Lametsch, 2014; Vankeirsbilck 

et al., 2002). Thus, Raman spectroscopy registers the vibrational signal of the scattering species of a 

sample proving information about its molecular composi- tion and structure (Schmidt, Scheier, & 

Hopkins, 2013). 

During the last decade, Raman spectroscopy has received increasing interest for many food 

applications. In the field of meat quality, few studies have been conducted to examine the potential 

of the technique, but those that have been done suggest the technology has merit for this field. For 

example, Raman spectroscopy was used to predict various meat-quality indicators such as pH, 

colour and IMF of pork (Andersen, Wold, Gjerlaug-Enger, & Veiseth-Kent, 2018; Nache, Hinrichs, 

Scheier, Schmidt, & Hitzmann, 2016; Scheier, Bauer, & Schmidt, 2014), beef (Fowler, Schmidt, 

van de Ven, & Hopkins, 2018; Nian et al., 2017) and lamb (Fowler, Schmidt, van de Ven, Wynn, & 

Hopkins, 2015). Best results were obtained for the prediction of pHu (R2cv = 0.65) (Scheier et al., 

2014) and IMF (R2cv = 0.73) (Andersen et al., 2018) of pork. The technique was also evaluated for 

the prediction of instrumental ten- derness and sensorial attributes of beef (Bauer, Scheier, Eberle, 

& Schmidt, 2016; Beattie, Bell, Farmer, Moss, & Patterson, 2004; Zhao et al., 2018) and lamb 

(Fowler, Schmidt, van de Ven, Wynn, & Hopkins, 2014a; Fowler, Schmidt, Van de Ven, Wynn, & 

Hopkins, 2014b). 

The objective of this study was to assess the potential of Raman spectroscopy combined with 

chemometric techniques to provide a level of information on the objective meat quality of beef LTL 

using samples collected at day 2 post-mortem. To this end, prediction models for instrumental 

tenderness (WBSF), IMF, drip-loss and cook-loss were developed from Raman spectra. 

 

MATERIALS AND METHODS 

 

Samples 

Crossbred bull and steer progeny (n = 110, 18 ± 4 months old) from elite Irish beef breed artificial 

insemination (AI) bulls were obtained and reared under the same feeding and environmental 

conditions by the Irish Cattle Breeders Federation Tully Progeny Test Centre (Tully, Kildare, ROI). 

Animals were slaughtered in 8 different batches at a time between February 2014 and May 2017 in 

a commercial plant by electrical stunning (50 Hz) followed by exsanguination. Between 40 and 60 

min post exsanguination, carcasses were split in half and placed in the chill. Four steaks with a 

thickness of 2.54 cm were removed sequentially from the right-side longissimus thoracis et 

lumborum (LTL) muscle 48 h post-mortem starting at the rump end. Steaks were then vacuum 

packaged and numbered so that subsequent trait analysis was conducted on a consistent location 

within LTL muscle. Steaks were frozen at −20 °C after 2 days or 14 days of ageing in a chill at 4 °C 

depending on the respective trait to be determined. 

 

Ultimate pH 

Ultimate pH (pHu) was collected from 109 longissimus muscles at 48 h post-mortem using a 

calibrated pH meter (Hanna HI 9125 pH meter, Woonsocket, RI 02895, USA). 

 

 



Drip-loss 

Drip-loss was analysed on 81 fresh steaks aged for 2 days following the procedure of Honikel & 

Hamm (1994b). From each steak, a piece of meat (2.5 cm thick, 7.5 cm long and 5 cm wide) was 

selected avoiding connective tissue and large areas of fat to secure representative samples. Selected 

pieces of meat were lightly blotted with tissue paper, weighed accurately to two decimal places 

(initial weight ~ 100 g ± 2 g) and suspended in an expanded clear plastic bag, ensuring that there 

was no contact between the sample and the bag. Samples were suspended in a 4 °C chill room for 

96 h. Afterwards, samples were lightly blotted with a tissue and re-weighed (final weight). The 

difference between initial and final weight was determined to two decimal places. Drip-loss was 

expressed as a percentage of initial weight of the steak. 

 

Intramuscular fat (IMF) 

IMF content was determined on 93 steaks that were aged for 2 days and then frozen at -20C until 

analysis. Thawing was conducted within the vacuum bag in a circulating water bath at 10 to 15 °C 

for ap- proximately 45 min. Steaks were then trimmed of external fat, cut into cubes of 

approximately 2.5 × 2.5 cm and homogenised to a fine consistency using a RobotCoupe R2 blender. 

Two grams of homogenised meat were selected for analysis. Intramuscular fat was measured using 

a Smart System-5 microwave moisture drying oven and an NMR Smart- Trac rapid fat analyser 

(CEM Corporation, USA) following the AOAC Official Methods 985.14 & 985.26, (AOAC 

International, 1995). Results were expressed as percentage of IMF (% w/w). 

 

Cook-loss 

Cook-loss was measured on 110 thawed steaks aged for 14 days. Thawing was performed within 

unsealed plastic vacuum bags in a circulating water bath at 10 to 15 °C. Steaks were trimmed of 

external fat, blotted lightly with tissue paper to remove moisture and weighed (initial weight). 

Steaks were then cooked in a water bath (Grant Instruments Ltd., England) set at 72 °C until 

reaching an internal core temperature of 70 °C. The internal temperature of the steaks was 

monitored with a temperature probe (Eirelec Ltd., Ireland). Once cooked, samples were cooled to 

room temperature, lightly blotted with tissue paper and re-weighed (final weight). The difference 

between initial and final weight was determined and expressed as a percentage of the initial (raw) 

weight of the steak. 

 

Warner-Bratzler Shear Force (WBSF) 

Warner-Bratzler Shear Force (WBSF) analysis was carried out on 110 tempered (4 °C, overnight) 

steaks used for determining the cook- loss (14-day post-mortem) according to AMSA guidelines 

(AMSA, 2015). Measurements were conducted using an Instron 4464 Universal testing machine 

(Instron Ltd., Buckinghamshire, UK) set with a load cell of 500 N and a cross head speed of −50 

mm/min. 

For each steak, seven cores of 1.27 cm were sheared perpendicular to the fibre direction. The 

maximum peak force recorded during ana- lysis was reported as Newton (N) shear force. Final 

shear force values were computed excluding the highest and lowest measurements, consisting, 

therefore, of the average of 5 measurements (5 cores). System control and data analysis was 

performed using the software provided by the manufacturer: Bluehill®2 (Instron Ltd., 

Buckinghamshire, UK). 

 

Raman spectroscopy 

Raman spectral data was collected on steaks that were aged for 2 days and then frozen at −20 °C 

until analysis. Thawing was con- ducted in bag in a circulating water bath at 10 to 15 °C for 

approximately 45 min. Measurements were performed immediately after removing vacuum 

package, trimming external fat and connective tissue, and carefully blotting the surface of the 

samples with a tissue. 



Spectral acquisition was performed using a DXR SmartRaman spectrometer (ThermoFisher 

Scientific UK Ltd., Loughborough, UK) equipped with a diode laser operating at 780 nm; a charge 

coupled device (CCD) detector and a universal platform sampling (UPS) acces- sory with a slit-

aperture of 50 μm. Spectral measurements comprised 

the recording of Raman intensity, expressed as counts per second (cps), 

over the 250–3381 cm−1 Raman shift range with 2 cm−1 interval. The scanning settings employed 

were: 120 mW laser power, 15 s exposure time and 10 exposures. Each sample was scanned 10 

times at random locations of its surface and on both sides (5 scans per side). All samples were 

scanned in random order at room temperature (~20 °C). The Raman system was controlled with the 

supplied OMNIC software v9.2.98 (ThermoFisher Scientific UK Ltd., Loughborough, UK). Cosmic 

spikes were automatically removed by the software. 

 

Spectral pre-processing and data analysis 

Spectral pre-processing and data analysis were performed in R (R Core Team, 2018) with the use of 

R commands and packages, including; baseline, signal, EMSC, pls and plsVarSel, as well as other 

in-house functions. 

Various Raman spectra presented spikes at around 1100 cm−1 with decreasing intensity over a few 

consecutive Raman spectra (sample replicates). This phenomenon was identified as blooming 

effect, which occurs when the amount of generated electrons is larger than the charge packet of the 

CCD detector (Ryabchykov et al., 2016). Blooming effect was corrected by linear interpolation of 

the region from 1093.059 to 1104.63 cm−1. 

Calculations were based on Raman shift ranges from 3100 to 700 cm−1 as low signal-to-noise ratio 

was observed outside this range. Particularly, two ranges were evaluated: 3100–700 cm−1, and 

1800–700 cm−1. Prior to spectral pre-processing and averaging the scans/replicates recorded per 

sample, the raw data set was investigated for outliers. Spectral outliers were first identified by 

principal component analysis (PCA) using a 99% confidence ellipse on the score plot of the 3rd and 

4th components as the first and second component re- present the general structure/information of 

all spectra (de Groot et al., 2001). 14 spectral points were identified as possible outliers, which were 

then plotted together with their 9 respective replicates. From these 14 spectra, only those that 

clearly presented differences in shape or intensity were identified as outliers. A total of 12 replicates 

(1%) from 11 different samples were discarded. Similarly, reference data points that lied outside 1.5 

* IQR (interquartile range) were not in- cluded in the models (Wilcox, 2010). A total of 1 (0.01%), 

4 (0.4%), 1 (0.01%) and 7 (0.6%) data points were discarded for WBSF, IMF, cook- loss and pHu 

respectively. From this point forward, identified outliers are excluded from calculations and results, 

including computation of descriptive statistics. 

Fluorescence background and multiplicative effects introduced by 

variations in experimental conditions such as laser intensity fluctuations were removed by means of 

pre-processing techniques. Several methods were trialled including baseline correction followed by 

unit vector normalisation (UVN), baseline correction followed by standard normal variate (SNV), 

Savitzky-Golay (SG) derivation, extended multiplicative scattering correction (EMSC) and EMSC 

with replicate correction. Baseline correction was performed using the baseline.modpolyfit 

command of the R baseline package with a 5th order polynomial. The algorithm is based on the 

method developed by Lieber & Mahadevan- Jansen which is a modification to least-squares 

polynomial curve fitting (Lieber & Mahadevan-Jansen, 2003). SG derivation was applied using first 

and second derivatives. The former with a third-degree polynomial and the latter with a second-

degree polynomial. Both SG approaches were applied using 9 smoothing points. EMSC with 

replicate correction was trialled to reduce the variation between replicates. Briefly, EMSC with 

replicate correction generates individual EMSC models for each set of replicates and uses principal 

component analysis to estimate the variation between replicates of the data set (Afseth & Kohler, 

2012; Liland, Kohler, & Afseth, 2016). EMSC techniques were applied using the mean spectrum of 

the dataset as reference and a six-degree polynomial. After pre-processing, spectral scans/replicates 



recorded per sample were averaged. For most samples the average was based on 10 scans, yet, for 

those samples that 1 or 2 replicates (i.e. spectral outliers) had been discarded, the average was based 

on the remaining 9 or 8 scans. 

Partial least squares (PLS) regression was used to correlate the spectral data to the reference values 

measured for each quality in- dicator. Cross validation (CV) was carried out using 10 randomly-se- 

lected data splits with 20 iterations. Variable importance in projection (VIP) was used to discard 

spectral bands which were not relevant for the prediction of each quality indicator. VIP was applied 

with a 0.9 threshold and using an in-house algorithm which iteratively selected the most important 

Raman bands and fitted new PLS models until reaching a global minimum of root mean square 

error of cross-validation (RMSECV). A similar algorithm was used in other studies (Bauer et al., 

2016; Scheier et al., 2014). Selection of the optimal number of latent variables (LV) was based on 

the RMSECV since it provides in- formation about the deviation of the model from their reference 

values (Cama-Moncunill et al., 2017). For that, RMSECV values were displayed as a function of 

the number of LV used in the models. From the plot (not shown), models with the lowest RMSECV 

were selected and subse- quently inspected for overfitting. If little improvement was found when 

compared to models with fewer LV, models with fewer LV were selected. 

PLS models were first developed using the complete data set and then using train sets comprising 

90% of the samples. PLS models were assessed through various figures of merit. In the frame of 

calibration, models were evaluated through the coefficients of determination of calibration (R2) and 

the root mean square error of calibration (RMSEC) computed from the correlation of the spectral 

data to the variation of meat quality. Models developed with the complete data set were further 

appraised by the coefficient of determination of cross-validation (R2cv) and the RMSECV both 

computed from the cross-validation step with 20 iterations, together with the coefficient of 

determination (r2), bias and slope computed from the correlation between predicted and measured 

values. The loading values provided for these models were used to evaluate the principal bands 

contributing to the prediction of each quality trait. In order to assess the predictive ability of the 

approach, data was randomly split into train and test sets 3 times using a sample split of 90/10. 

Train sets were used to build PLS models and test sets to evaluate the predictive ability of the 

models. For that, the root mean square error of prediction (RMSEP) was used along with the 

residual prediction deviation (RPD) and the range error ratios (RER). RPD is defined as the ratio 

between the standard deviation of the reference values and the RMSEP, while RER as the ratio 

between the range in the reference values of the validation set and the RMSEP (Williams & Norris, 

2001). 

 

RESULTS AND DISCUSSION 

 

Meat quality data 

Descriptive statistics for each beef quality indicator are presented in Table 1. The sample set 

presented typical pHu values for beef ranging from 5.34 to 5.8 (Honikel, 2014). WBSF ranged from 

22.05 to 71.4 N; thus, encompassing a range including tender, intermediate and tough samples 

(Shackelford et al., 1991). The sample set also presented a reasonable spread in IMF, ranging from 

0.07% to 5.4%, which would be in the typical range of variation for Irish beef (Cafferky et al., 

2019). Based on the coefficient of variation (CoV), it was considered that sufficient variability 

existed within WBSF, IMF, drip-loss and cook-loss data to develop models with the Raman spectral 

set (Cafferky et al., 2019), but not for ultimate pH. 

 

PLSR models for predicting objective quality traits 

To evaluate the potential of Raman spectroscopy to provide quan- titative information on beef 

quality, PLSR models were developed for each quality indicator using various pre-processing 

techniques and Raman shift ranges. A summary of the best two models developed for each quality 

trait is shown in Table 2. In general, models exhibited notable model fit (R2 ranging from approx. 



0.48 to 0.91 and low RMSEC) and different levels of accuracy when cross-validated (R2cv ranging 

from approx. 0.34 to 0.64). Furthermore, models resulted in increased predictive ability when based 

on the Raman shift ranges from 1800 to 700 cm−1, rather than 3100–700 cm−1. This effect was 

attributed to the fact that most relevant Raman scattering responses of meat occur within the range 

from 1800 to 500 cm−1 (Fowler et al., 2014a). 

Prior to model building, a preliminary investigation of the spectral data was performed with the aim 

to determine the most relevant Raman bands for beef as well as identify the variability in the Raman 

data related to the variation within each meat-quality attribute. Fig. 1 shows the average spectra of 

the 5 samples with the lowest (in red) and the average spectra of the 5 samples with the highest (in 

black) values determined for IMF, WBSF, drip-loss and Cook-loss. To facilitate interpretation, 

baseline corrected followed by UVN spectra are displayed. All spectra presented the characteristic 

Raman signal of proteins—b- road and dominant bands due to vibrations from multiple peptides 

and amino acids (Socrates, 2004; Tuma, 2005). Peptide backbone signals are observed at the 

regions of 1685–1645 cm−1 (amide I band), 1340–1225 cm−1 (amide III band), together with 

various bands within the region of 1130–800 cm−1 (C–C, C–N and CNC stretching) and at 1450 

cm−1 (C–H deformations) (Benevides, Overman, & Thomas Jr., 2003; Herrero, 2008; Schmidt et 

al., 2013; Socrates, 2004). The signal at 935 cm−1 (C–C stretching of α-helical structures) along 

with the amide I band centred at 1655 cm−1 and the amide III doublet at 1318 and 1270 cm−1 

indicated that α-helical structures predominated (Ana M. Herrero, 2008). Aromatic amino-acid 

responses included signals from: tryptophan (Trp) at 1553, 1341, 880 and 752 cm−1 (Bauer et al., 

2016; Benevides et al., 2003; Tuma, 2005); phenylalanine (Phe) at 1003 cm−1 (Beattie et al., 2004); 

and tyrosine (Tyr) at 855 and 825 cm−1 (Fowler, Schmidt, Van de Ven, et al., 2014). Furthermore, 

the shoulder band at approx. 1615 cm−1 was associated with Phe and Tyr (Benevides et al., 2003); 

while the peak at 1402 was attributed to C]O stretching of the COO– group in aspartic and glutamic 

acids (E. Li- Chan, Chalmers, & Griffiths, 2010). 

 

Prediction of WBSF 

Comparison between the most tender and toughest beef samples (Fig. 1a) revealed few obvious 

spectral differences. These differences were observed mainly at the amide I, amide III and 1000–

900 cm−1 (C–C stretching), where tough samples displayed slightly higher intensity at bands 

associated with β-sheet (1668 cm−1) and random coil (960 cm−1) conformations (Beattie et al., 

2004). Small differences were also observed at 1341 cm−1 (Trp) and 825 cm−1 (Tyr). The former 

may indicate changes in the hydrophobicity of the indolyl ring environment; while the latter may 

indicate changes in the OH hydrogen-bonding state (Benevides et al., 2003). Both therefore, may 

suggest changes in the tertiary structures of proteins (Ana M. Herrero, 2008). 

The best model for WBSF presented modest performances in both calibration (R2 = 0.48, RMSEC 

= 7.40 N) and cross-validation (Rcv2 = 0.36, RMSECV = 8.24 N) (Table 2). The correlation 

between the cross-validated predictions and the reference values are shown in Fig. 2a. The plot 

revealed poor fit (r2 = 0.37) and considerable deviation from the true line (slope = 0.38). Similar 

results were obtained in cross-validation when data was split into train and test sets, with R2cv 

ranging from 0.27 to 0.32 and RMSECV from 8,69 to 8,98 N (Table 3). The RMSEP values varied 

from 4.55 to 9.07 N, indicating an important variability between the results provided by each of the 

3 test data sets. Two further figures of merit were used to assess the predictive ability of a models: 

RPD and RER. As a general rule, RPD and RER values higher than three and twelve, respectively, 

are considered to be fair and appropriate for screening purposes, while RPD values in the range 

from 2.4 to 3 and RER values between 7 and 12 are recommended for rough screening purposes 

(Williams & Norris, 2001). WBSF models presented RDP and RER values ranging from 1.1 to 2.3 

and 5.4 to 10.9, respectively. Focussing on the former, an RPD of 1.1 indicates that the RMSECV is 

nearly as large as the SD of the data set which means that the model has very poor predictive ability 

(Williams, 2014; Williams & Norris, 2001); while an RPD of 2.3, which is close to the 2.4 

threshold, may indicate that the model is appropriate for rough screening pur- poses. Due to this 



variability in the results, it is difficult to evaluate the true predictive ability of the approach. These 

results agreed with pre- vious studies on predicting instrumental tenderness which reported models 

for shear force with an R2 of 0.49 and an R2cv 0.33 (Bauer et al., 2016); and for WBSF with an R2 

of 0.75 and an RMSECV of 19.8% of the mean (18.8% for our model). 

A distinctive aspect of the WBSF model was that only 1 PLS factor was included. This effect was 

attributed to the pre-processing tech- nique. EMSC with replicate correction reduces the variation 

between replicates and consequently fewer PLS factors are required to explain the variation within 

the data set (Afseth & Kohler, 2012). The PLS factor explained 10% of the spectral variance and 

48% of the WBSF variance. This indicated that the model accounted for the variation of WBSF, yet 

the low value of explained spectral variance suggested that most of the spectral variation seen in the 

data set was not related to the changes in WBSF. 

Further model evaluation was conducted through the loading values obtained for the first PLS factor 

(Fig. 3a) as the plot provides in- formation on the retained Raman bands that contributed to each 

PLS factor (Cama-Moncunill et al., 2017). The plot disclosed a series of contributing bands which 

could be attributed to changes in the secondary and tertiary structures of proteins. For example, 

most bands from 1680 to 1665 cm−1 (β-sheet) were positively correlated to WBSF which agreed 

with Beattie et al. (2004) who suggested that tough meat presents a larger amount of β-sheet 

structures compared to tender meat. Furthermore, the band at 960 cm−1 (C–C stretching vibrations 

of random coil structures) also presented a positive correlation to WBSF (Beattie et al., 2004; Ana 

M. Herrero, 2008). Yet, the contribution of α- helical structures—typically assigned at approx. 

1655, 1320–1305, 1273 and 935 cm−1—was unclear as a mixture of bands with positive and 

negative relationships were observed. This effect could be due to changes in the signals of α-helical 

structures as its response dependents on sample orientation (Pézolet, Pigeon, Ménard, & Caillé, 

1988). The region at 800–900 cm−1, which is associated with the symmetrical CNC stretching 

vibration of proteins (Socrates, 2004), was also positively correlated to WBSF. Interestingly, other 

studies related the signal at 855 cm−1 to connective tissue (Bauer et al., 2016). However, this as- 

sociation could not be confirmed due to unclear contribution from other connective tissue bands 

such as 1270 and 1248 cm−1 (Bauer et al., 2016). 

Regarding changes in the tertiary structure of proteins, the bands at 1552 and 1339 cm−1 could 

arise from tryptophan signals (Schmidt et al., 2013). Particularly, the band at 1339 cm−1 is sensitive 

to the hydrophobicity of the local environment and can be used to provide information on how 

buried the tryptophan residue is within the protein network (Benevides et al., 2003; Ana M. 

Herrero, 2008; Xu, Han, Fei, & Zhou, 2011). However, other tryptophan signals (e.g. 880 and 760 

cm−1) had no contribution to the loading values. Therefore, the relationship between WBSF and 

tryptophan residues/hydrophobic characteristics could not be confirmed. In addition, the band at 

1405 cm−1, negatively correlated to WBSF, could be due to the C]O stretching of aspartic and 

glutamic acids. 

Overall, the loading plot displayed a series of contributing bands which are likely to arise from 

changes in WBSF. However, the plot also illustrated the contribution from bands not readily 

interpreted. This result together with the small differences observed between the spectra of tough 

and tender meat (Fig. 1a) suggested that signals not related to physico-chemical changes were 

included in the model, which in fact could explain the relatively low values of R2 and R2cv of the 

model. 

 

Prediction of IMF 

Several spectral differences were observed between samples with the lowest and highest levels of 

IMF (Fig. 1b). Samples with higher IMF content presented greater intensity values at 1655, 1450, 

1316 and 1126 cm−1. Higher intensity at the amide I band (1685–1645 cm−1) may be due to 

contribution from lipids such as the C]C stretching mode occurring around 1680–1640 cm−1 

(Herrero, 2008; Li-Chan et al., 2010); while the increase at 1450 cm−1 may be due to CH3, CH2 

and CH bending modes of lipids (Berhe et al., 2014; Herrero, 2008; Tuma, 2005). Similarly, the 



intensity increase at 1316 cm−1 could be related to CH2 twisting modes of lipids (Fowler et al., 

2018; Nian et al., 2017; Zhao et al., 2018); while the increase at 1126 cm−1 could be associated to 

C–C stretching modes (Fowler, Ponnampalam, Schmidt, Wynn, & Hopkins, 2015). Contrarily, the 

spectrum for the lowest IMF samples presented greater intensity at 975, 900 and 876 cm−1. These 

bands were tentatively assigned to protein signals arising from C–C and CNC stretching modes 

(Beattie et al., 2004; Socrates, 2004). 

The best PLSR model developed for IMF presented excellent model fit (R2 = 0.89, RMSEC 

=0.45%) and notable predictive ability (R2cv = 0.64, RMSECV = 0.8%) (Table 2). The correlation 

between the cross-validated predictions and the references values (Fig. 2b) revealed considerable fit 

(r2 = 0.64) and modest deviation from the true line (slope = 0.6). PLS models developed using train 

sets (Table 3) also exhibited notable performances in calibration (R2 range = 0.71–0.82, RMSEC 

range = 0.62–0.77%) and in cross-validation (R2cv range = 0.46–0.52, RMSECV range = 0.97–

1.05%). RMSEP values presented notable variability (0.89–1.35%), giving rise to RPD values 

between 1.1 and 1.5 and RER between 4.7 and 6 (Table 3). While still regarded as poor predictive 

ability according to the general classification of RPD by Williams and Norris (2001), other 

authors—including Williams—indicated that for models of complex samples an RPD > 2 

(Williams, 2014) and even > 1.5 (D'Acqui, Pucci, & Janik, 2010; Kyprianidis & Skvaril, 2017) may 

still be usefull for preliminary ap- plications. However, the variability observed in RMSEP, RPD 

and RER between the 3 different splits makes it difficult to accurately evaluate the predictive ability 

of the approach. In general, results are in agree- ment with a previous study on porcine meat which 

reported a R2cv of 0.73 and RPDcv—computed using RMSECV rather than RMSEP—of 1.9 

(Andersen et al., 2018). 

The IMF model was based on 4 PLS factors which combined explained 57% of the spectral 

variance and 91% of the IMF variance indicating that the model accounted for most of the IMF 

variation within the data set. Further model evaluation was conducted through the loading values 

obtained for the first two PLS factors (Fig. 3b). The loading values of the first factor exhibited 

similar features to those observed in the spectral plot comparing the samples with highest and 

lowest IMF levels (Fig. 1b). This included contribution from the amide I (1685–1645 cm−1) and III 

(1320–1225 cm−1) bands, various C–H vibration modes (1450 cm−1) and C–C stretching modes 

(1126–1030 cm−1). As indicated in Fig. 1b, the involvement of the amide I and III regions may be 

due contribution from lipids such as C]C stretching (1660–1640 cm−1), CH2 twisting (1300 cm−1) 

and C–H deformations (1270 cm −1) (Fowler, Schmidt, et al., 2015; Nian et al., 2017; Socrates, 

2004). 

As for the loading values of the second factor, the plot indicated that a great part of the Raman 

bands contributing to the first factor also contributed to the second factor with inverse relationship. 

However, the second factor also revealed a positive correlation with a series of bands such as at 

1435, 1080 and 1061 cm−1 which could be related to vibration modes of lipids. For instance, the 

region around 1438 cm−1 has been associated with CH2 scissoring modes and the bands at 1080 

and 1068 cm−1 with C–C stretching modes, both of the aliphatic chains of lipids (Chen et al., 2018; 

Fowler, Ponnampalam, et al., 2015; Zhao et al., 2018). Overall, the plot indicated that most of the 

lipid-related bands (e.g. 1435 and 1126–1030 cm-1) contribute to the IMF model with a positive 

correlation. However, the plot also indicated contribution from non-readily identified bands which 

may not be related to the variation of IMF. This effect may explain the modest spectral variance 

explained (57%) by the model. 

 

Prediction of drip-loss and cook-loss 

Comparison among samples with the lowest and highest drip-loss (Fig. 1c) disclosed several 

spectral differences. Samples with the lowest drip-loss presented greater intensity values at the 

amide I and amide III bands as well as at various bands assigned to tyrosine and phenylala- nine 

such as 1618, 1605 and 1003 cm−1 (Benevides et al., 2003; Li- Chan, Chalmers, & Griffiths, 2010). 

Samples with the highest drip-loss exhibited greater intensity at 1553 and 876 cm−1 which could be 



assigned to tryptophan (Bauer et al., 2016; Schmidt et al., 2013); yet, the band at 876 cm−1 together 

with the band at 900 cm−1 could be attributed to C–C and CNC stretching modes of proteins 

(Socrates, 2004). Comparison between the spectra recorded for samples with the lowest and highest 

cook-loss (Fig. 1d) displayed little differences, which for the most part were observed at the region 

between 1000 and 870 cm−1 where samples with lowest cook-loss presented slightly higher 

intensity values. 

Drip-loss and cook-loss models presented notable fit with R2 values of 0.88 and 0.67, and RMSEC 

values of 0.41% and 1.78%, respectively (Table 2). The R2cv and RMSECV obtained for the drip-

loss model were 0.59 and 0.74%, while for the cook-loss models the R2cv was 0.49 and the 

RMSECV was 2.21%. The correlations between cross-validated predictions and references values 

for drip-loss and cook-loss are dis- played in Fig. 2.c and d, respectively. Both correlation plots 

revealed considerable fit (r2 = 0.59 for drip-loss, r2 = 0.47 for cook-loss) and deviation from the 

true line (slope = 0.55 for drip-loss, slope = 0.46 for cook-loss). For drip-loss, the test with 

independent samples (Table 3) provided similar and promising results in cross-validation (R2cv = 

0.40–0.69, RMSECV = 0.66–0.88%); however, it also indicated limited predictive ability with 

RMSEP values ranging from 0.99 to 1.30%, RPD from 0.9 to 1.2 and RER from 3.5 to 4.6. 

Similarly, cook- loss models exhibited notable performances in cross-validation (R2cv = 0.50–0.52, 

RMSECV = 2.08–2.21%), yet, more variability was observed in validation: RMSEP ranging from 

1.50–2.90%, RPD from 1.1 to 2.1 and RER from 4.6 to 8.8. Compared to a previous study on 

porcine meat (Scheier et al., 2014), the drip-loss model exhibited less predictive ability (R2cv pork 

= 0.73). This difference, however, was associated to a greater drip-loss variation across the sample 

set. The study by Scheier et al. (2014) evaluated a sample set ranging from 0.7 to 9.2% of drip-loss, 

while in this study the range was 0.7–5.3%. As for the cook-loss model, results indicated better 

performances than those reported in previous studies such as the work by Fowler, Schmidt, et al. 

(2015) and Schmidt et al. (2013). Nevertheless, their work was per- formed in situ using a portable 

Raman system. 

The drip-loss model was built using 3 PLS factors, which combined explained 88% of the variation 

in drip-loss and 40% of the spectral variance; while the cook-loss model utilized 2 PLS factors 

explaining 64% of the variation in cook-loss and 39% of the spectral variance. The loading values 

for the first two PLS factors of the drip-loss model are displayed in Fig. 3c. In general, the loading 

values for the first factor agreed with the spectral differences observed in Fig. 1c. The first factor 

indicated that β-sheet and random coil structures in the amide I region had a positive correlation to 

drip-loss; while the α-helix region exhibited a negative correlation. Raman scattering due to 

vibrations of other molecular species may occur near the α-helix bands of the amide I region. For 

example, O–H bending from water molecules occurs at 1640 cm−1 (Socrates, 2004). Although 

water has a relatively weak Raman response, contribution from water around 1640 cm−1 could be 

considered as the loading plot displayed a clear inverse relationship between drip-loss and the bands 

near 1642 cm−1. In addition, signals of tyrosine and phenylalanine are assigned near the α-helix 

region. Focusing on the former, the tyrosine doublet (848 and 820 cm−1) also presented a negative 

correlation to drip-loss. 

Loading values of the cook-loss model (Fig. 3d) exhibited a similar profile of contributing bands to 

those observed for the drip-loss model with some variations. One of the main differences was 

observed on the contribution of some Raman bands related to secondary structures. For example, 

the β-sheet band at 1680 cm−1 appeared to be negatively correlated with cook-loss, however 

positively correlated with drip-loss. 

Similarly, α-helical bands such as 1645 and 928 cm−1 were positively correlated with cook-loss; 

while the bands were negatively correlated with drip-loss. As for drip-loss, bands near 1640 cm−1 

in which water may have had involvement, had contribution to the loading values, yet with a 

positive correlation to cook-loss. On the contrary, the tyrosine doublet was not as relevant as it was 

for the drip-loss model; whilst phenylalanine bands, especially the signal at 1003 appeared to 

relatively contribute to both factors. Nevertheless, both drip-loss and cook- loss loading values 



displayed that the band at 1414 cm−1 had contribution. This band could arise from CO2– stretching 

modes of aspartic and glutamic and acids, which play an important role in binding water (Li-Chan, 

Griffiths, & Chalmers, 2010; Warner, 2017; Xu et al., 2011). Finally, Scheier et al. (2014), who 

used a portable Raman system to predict drip-loss of pork measured between 60 and 120 min post- 

mortem, thus during pre-rigor mortis, found that components involved on the energy metabolism of 

muscles (e.g. lactate, glycogen, adenosine diphosphate (ADP), adenine and creatine) had 

contribution to their drip-loss model. However, overall these components had little contribution to 

the drip-loss models probably because Raman measure- ments were performed on beef aged for 2 

days, at the end of rigor mortis. After rigor mortis, these components are metabolized to inosine 

mono- phosphate (IMP) (Honikel, 2014b). Thus, the bands at 1553 and 720 cm−1 could be related 

to signals of IMP (Scheier et al., 2014). 

Overall, the loading plot demonstrated that both models were based on changes in the secondary 

and tertiary structures of proteins. It also suggested that the contribution of these bands may be 

slightly different for predicting drip-loss or cook-loss. However, these differences may arise from 

the experimental design as drip-loss was measured on fresh muscle, while Raman acquisition and 

cook-loss were performed on thawed muscle. Furthermore, drip-loss and Raman spectra were 

measured on steaks aged for 2 days; while cook-loss were measured on steaks aged for 14 days. As 

observed for WBSF and IMF, the loading values for drip-loss and cook-loss indicated that Raman 

bands not readily identified had contribution to the model. Thus, models may be influenced by 

bands that may not be related to the physico-chemical variation of the samples, affecting the 

accuracy of the predictions. 

In all, promising prediction models were developed for WBSF, IMF, drip-loss and cook-loss. 

However, validation with independent sample sets revealed noticeable variability in the results 

making it difficult to assess the true predictive ability of the models. This variability could be 

caused by the limited sample size, thereby making results highly de- pendent on the train-test split. 

For this reason, future studies should allow for a larger independent test data set to accurately assess 

the predictive ability of the calibration models. 

 

CONCLUSION 

Raman spectroscopy followed by chemometrics constitutes a promising methodology for fast 

assessment of objective beef quality traits. Notable spectral quality was obtained between the 

Raman shift range from 1800 to 700 cm−1, which covers the main spectral features related to 

changes in meat quality indicators such as WBSF, IMF, drip-loss and cook-loss. Overall, PLS 

models exhibited notable performances in calibration, especially for IMF, drip-loss and cook-loss, 

and despite the limited sample size, models showed reasonable predictive ability. Furthermore, 

evaluation of the loading values demonstrated that models were considerably based on the variation 

of meat quality. Tentative interpretation of the loading plots suggested that changes in IMF would 

be associated with Raman signals arising from C–C and C]C stretching, CH2 twisting and various 

vibrations modes of CH; while changes in Warner-Bratzler shear force, drip-loss and cook-loss 

would be related to changes in the secondary protein structures (α-helix, β-sheet and random coils), 

hydrophobicity of the myofibrillar environment (tryptophan signals), hydrogen-bonding state 

(tyrosine doublet) and signals from aspartic and glutamic acids. The loading plots also disclosed 

that Raman bands a priori not related to the variation of meat quality had contribution to the 

predictive models. This effect together with overall results denoted that further improvement is 

required in order to enhance the accuracy of the method. 

Nonetheless, promising calibration models were developed and hence further development of the 

technique is encouraged, especially since Raman spectroscopy is rapid, non-invasive and offers the 

possibility to use probes and portable systems, making the technology sui- table for in situ 

measurements of beef eating quality at early stages post-mortem. In addition, Raman spectroscopy 

provides information on an individual basis (e.g. each measured steak). This aspect not only is 

relevant to meat processors, who could use the information for quality control and hence guarantee 



consistent quality and consumer satisfaction; but also to consumers as this information could be 

included in the product label providing information about its expected eating quality. Furthermore, 

this information has potential to be used in breeding programmes for the improvement of beef 

eating quality. 
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Fig. 1. Baseline corrected and unit vector normalised average spectra of the 5 samples with lowest and highest values of 

(a) IMF, (b) WBSF, (c) Drip-loss and (d) Cook-loss. 



 
Fig. 2. Measured versus predicted values for (a) WBSF, (b) IMF, (c) drip-loss and (d) cook-loss using the selected 

models for each quality indicator. 

 

 

 



 
Fig. 3. Loading values of first/first two PLS factors employed by the selected models for: (a) WBSF, (b) IMF, (c) drip-

loss and (d) cook-loss. 

 


