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A B S T R A C T

While an accurate computation of the tangent stiffness matrix of multibody systems is usually of
critical importance in various numerical analyses, one contribution often neglected in dynamics
is represented by the tangent stiffness matrix of constraints. This term, resulting from the change
of joints reactions with respect to the coordinates of the connected bodies, is indeed easily
discarded for the sake of performance due to its slight effect on dynamic simulation results. On
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the contrary, it plays a critical role when static or eigenvalue analyses are required, especially
for those cases featuring free motions. While the topic of holonomic constraint equations
and their respective Jacobian matrix is not new in literature, this article aims to provide a
general and unified formulation based on quaternion parametrization together with a consistent
analytical expression of the tangent stiffness matrix derived through linearization. The article
includes also the rheonomic contribution to holonomic constraints. The formulations presented
in this work are built on a mixed-basis formulation, in use in many engineering applications,
and allow to easily derive specialized versions (e.g. revolute, cylindrical, prismatic joints, etc.)
from the same equation set. Examples demonstrate the doubly-positive effect of this additional
stiffness term: first, static analyses are able to converge to the actual equilibrium position and
second, the eigenvalues analyses proved to be more consistent. For this latter set of tests the non-
linear dynamic results, observed in the frequency domain, are compared against those coming
from eigenvalue analysis, in order to prove the augmented accuracy of the results.

1. Introduction

The tangent stiffness matrix plays a key role in the formulation and solution of any multibody system since it contains various
undamental terms coming from the linearization of the inertial, external and internal forces with respect to the generalized
oordinates. However, each term might have a varying influence depending on the type of the analysis conducted and of the system
nder examination. In most multi-flexible-body systems, for example, the structural stiffness matrix 𝐾𝑓 together with the inertial

stiffness matrix 𝐾𝑖 usually are the main driving terms, thus often justifying the omission of other negligible contributions, like
the constraint stiffness matrix 𝐾𝑐 , coming from the linearization of the reaction forces of the joints [1]. This latter matrix, on the
contrary, becomes very relevant in case of extremely-soft flexible bodies or especially in rigid-body systems: in fact, differently from
the stiffness property provided by the material of the joints [2], this matrix does not come from the deformation of bodies, but from
the change in direction of the reaction forces and torques in the joints.

A typical example consists in a pendulum hinged to a fixed point and subject to gravity: if the tangent stiffness matrix of
constraints is not considered, the system stiffness matrix is zero. It follows that, in the Newton–Raphson iteration required by the
non-linear static analysis, the method does not know the potential correct direction to search for the equilibrium state, thus leading
to divergence. Moreover, the eigenvalues would be zero-valued because of the zero stiffness matrix: this is incorrect since it is well
known that the pendulum has an oscillatory motion at the equilibrium state.

On the contrary, it is true that the very same model can be easily simulated in dynamic mode without the stiffness matrix
of constraints: this is because dynamic simulations can still converge to proper solutions even with just an approximation of the
stiffness matrix [3]. However, even in this scenario where iterative schemes still observe progressive refinements, the presence
of the stiffness matrix of constraints could increase stability, convergence and in some cases also the performance of numerical
methods: in computer graphics applications, for example in movies and game industries where performance has a higher priority
over accuracy, its introduction can effectively improve the stability of the dynamic solution [4] especially for systems involving
inextensible objects and articulated chains. There, the symmetric form

(

𝐾𝑐 +𝐾𝑐
𝑇 ) ∕2 is employed to preserve the matrix symmetry

in the implicit integrator resulting in a speed boost in the solution of linear equations. Inspired by the discovery of Tournier [4],
Andrews [5] developed a diagonal approximation of the tangent stiffness matrix of constraints to alleviate the energy dissipation in
the simulation, and derived the closed-form expressions for a library of joints commonly used in articulated rigid body simulations,
however no unified expression is offered.

Macklin [6] further built the diagonal approximation of 𝐾𝑐 through successive finite differences using the last two Newton
iterations and clamped the shift to guarantee the matrix positive definiteness.

While many research works [1,7,8] in the field of linearization of the equations of motion of constrained multibody systems
have pointed out the existence of the tangent stiffness matrix of constraints, no explicit expressions have been clearly reported.

Bauchau [9] introduced the tangent stiffness matrix (called equivalent stiffness matrix in his book), but based on Euler and not
quaternion parametrization. Also the contribution of Géradin and Cardona [10] refers to tangent stiffness matrices of constraints,
but it misses to provide a detailed expansion of this term. Minaker [11] derived the analytical expressions of the tangent stiffness
matrix for the revolute joint, the point-on-plane contact and the rolling disk contact, and revealed the significant influence of the
tangent stiffness matrices of constraint on the eigenvalues of the A-arm suspension system, which demonstrated its importance in
the vehicle dynamics analysis. In the end, the author stated that there might exist a generic expression for the tangent stiffness
matrix of constraints because of the similarities between the forms of the stiffness matrix for the studied constraints. Minaker [12]
calculated the tangent stiffness matrix of a constant velocity joint and verified it through comparison between different modelling
approaches.

To the best of the authors’ knowledge a general, analytical and explicit expression of the tangent stiffness matrix of holonomic
constraints, including the rheonomic part, is still missing in the literature.

In this work, the constraint equation 𝑪(𝒒, 𝑡) = 𝟎 of holonomic constraints is proposed and later used to compute the Jacobian
matrix 𝐶𝒒 . A consistent and unified analytical formulation of the tangent stiffness matrix of holonomic constraints is then obtained.
In Section 2 the dynamic equation of motion is introduced together with the constraints equations. Scleronomic (Section 2.1) and
rheonomic formulations (Section 2.2) for the Jacobian matrices are offered, followed by the computation of the tangent stiffness
matrix of constraints for both joint types in Section 3. Three examples are then introduced in Section 4 to demonstrate its application
in the static and eigenvalue analysis of the multibody systems with rigid motions. Relevant properties and notations can be found
in appendices (Appendices A–C).
2



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116667C. Peng et al.

a

w

m

w

I

2. Jacobian matrix of constraints

For simple mechanical systems, one may write the Ordinary Differential Equation (ODE) of motion by carefully choosing the
independent coordinates. When the system includes more bodies and connection joints, it becomes difficult to determine the
independent coordinates, often not even unique [13].

To overcome this issue, the index-3 Lagrange multiplier method has been developed and widely used in the field of multibody
dynamics. The fundamental idea is to set up the ODE of all rigid bodies and flexible elements with the assumption that they are
completely separated. The ODE of every single object is set up by using the Newton-Euler formulation because of the advantage of
easier mathematical derivation and higher computational efficiency. To this redundant set of coordinates, constraints are added,
thus leading to Differential-Algebraic Equations system (DAE). In our formulation, we assume that the translational coordinates are
described in the absolute frame while the rotational coordinates are expressed in the local frame of the object; we call it a mixed-basis
formalism. This choice, though arbitrary, is motivated by the simpler form that rotational equations assume [14].

The constraint conditions

𝑪(𝒒, �̇�, 𝑡) = 𝟎 (1)

consist in a vector of 𝑛𝑐 scalar equations of generalized coordinates (positions, rotations) 𝒒, of velocities �̇�, of time 𝑡.
In case of holonomic constraints (i.e. not depending on velocities �̇�), that is the most common practical situation, the conditions

re simplified to:

𝑪(𝒒, 𝑡) = 𝟎 (2)

The vector constraint equation is linearized as:

𝛿𝑪(𝒒, 𝑡) = 𝐶𝒒𝛿𝒒 + 𝑪 𝑡𝛿𝑡 (3)

by introducing the following symbols:

𝐶𝒒 ∶= 𝜕𝑪
𝜕𝒒

∈ R𝑛𝑐×𝑛𝑞 (4)

𝑪 𝑡 ∶=
𝜕𝑪
𝜕𝑡

∈ R𝑛𝑐 (5)

here 𝐶𝒒 is the so-called Jacobian matrix of constraints.
The reaction forces and torques in the joints are added to the Newton-Euler equations to formulate the complete equations of

otion, which are expressed as the following index-3 Differential Algebraic Equation (DAE),
{

𝑀(𝒒)�̈� + 𝐶𝒒(𝒒, 𝑡)𝑇 𝜸 = 𝒇 (𝒒, �̇�, 𝑡) − 𝒇 𝑔(𝒒, �̇�) (a)
𝑪(𝒒, 𝑡) = 𝟎 (b) (6)

where 𝒇 is the vector of external and internal forces, 𝒇 𝑔 represents the gyroscopic and centrifugal components of the inertial forces,
here the full inertial forces are 𝒇 𝑖 = 𝑀 �̈� + 𝒇 𝑔 and 𝜸 are the Lagrange multipliers.

Linearizing the DAE about the equilibrium point one obtains [1]
{

𝑀(𝒒)𝛿�̈� +𝐷(𝒒, �̇�, 𝑡)𝛿�̇� +𝐾(𝒒, �̇�, �̈�, 𝜸, 𝑡)𝛿𝒒 + 𝐶𝒒(𝒒, 𝑡)𝑇 𝛿𝜸 = 𝟎 (a)
𝐶𝒒(𝒒, 𝑡)𝛿𝒒 = 𝟎 (b) (7)

where the damping matrix of the system is

𝐷(𝒒, �̇�, 𝑡) = −
𝜕𝒇 (𝒒, �̇�, 𝑡)

𝜕�̇�
+

𝜕𝒇 𝑔(𝒒, �̇�)
𝜕�̇�

(8)

and the tangent stiffness matrix of the system 𝐾(𝒒, �̇�, �̈�, 𝜸, 𝑡) can be expanded as

𝐾(𝒒, �̇�, �̈�, 𝜸, 𝑡) =
𝜕(𝑀(𝒒)�̈� + 𝒇 𝑔)

𝜕𝒒
+

𝜕𝐶𝒒(𝒒, 𝑡)𝑇

𝜕𝒒
𝜸 −

𝜕𝒇 (𝒒, �̇�, 𝑡)
𝜕𝒒

(9)

In particular, the tangent stiffness matrix of constraints term consists is:

𝐾𝑐 =
𝜕𝐶𝒒(𝒒, 𝑡)𝑇

𝜕𝒒
𝜸 (10)

It is then clear that, in order to compute this term, the analytical formulation of the Jacobian matrix of constraints is needed.
n the following section its expression is offered, for both scleronomic and rheonomic constraints.

2.1. Scleronomic constraints

Suppose a holonomic-scleronomic constraint (i.e. not depending explicitly on time) is used to connect two rigid bodies whose
reference frames are 𝐵1 and 𝐵2 respectively. In this case the constraints equations depend, by definition, only on the system
configuration i.e. 𝐶(𝒒) = 0, thus loosing the dependency over time. Two auxiliary joint frames 𝐹1 and 𝐹2, attached respectively
3

to the two bodies, are introduced (Fig. 1). Throughout the paper body 1 will be considered the driven body, while body 2 has to
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Fig. 1. The main frame 𝐹2 and the driven frame 𝐹1 for a holonomic-scleronomic constraint. In this figure the constraint is not exactly satisfied, hence a small
learance 𝒄 is shown.

e considered the main body since it is the one with respect to which constraint equations are written. The absolute positions and
otations of the two bodies 𝒓𝐵1

, 𝑅𝐵1
, 𝒓𝐵2

, 𝑅𝐵2
are functions of generalized coordinates 𝒒. The body-relative positions and rotations

f the two joint frames 𝐹1, 𝐹2 are constant geometric properties, namely 𝒓𝐹1 (𝐵1) , 𝑅𝐹1 (𝐵1)
, 𝒓𝐹2 (𝐵2) , 𝑅𝐹2 (𝐵2)

.
The constraint equations can be expressed in an arbitrary frame. Since in engineering practice the reaction forces and torques are

typically described or measured in the local basis of the joint, we choose to use the basis of the main frame 𝐹2 so that the reaction
forces and torques are consistent with the intuitive understanding.

2.1.1. Translational scleronomic constraints
In the following, we use the notation 𝒓𝐴 (𝐹 )

to indicate the position of a point 𝐴 with respect to a floating frame 𝐹 , expressed
in the basis of 𝐹 . When the basis is the absolute reference, we use the letter 𝑊 , or we omit it. Similarly, with 𝑅𝐹 (𝐺)

we define the
rotation matrix 𝑅 ∈ 𝖲𝖮3 of a frame 𝐹 with respect to a frame 𝐺, that can be omitted when 𝐺 ≡ 𝑊 .

In order to constrain the relative displacement between the two frames, the positions of the origins of 𝐹1 and 𝐹2 should be made
coincident. This can be done by imposing the condition 𝒓𝐹1 (𝐹2) − 𝒓𝐹2 (𝐹2) = 𝒓𝐹1 (𝐹2) = 𝟎. The constraint equation becomes

𝑪(𝒒) = 𝒓𝐹1 (𝐹2) = 𝟎 (11)

Using the point transformation 𝒓𝐹 (𝑊 )
= 𝒓𝐵 (𝑊 )

+ 𝑅𝐵𝒓𝐹 (𝐵)
and omitting the (𝑊 ) basis subscript for variables in absolute coordinates,

we expand the terms and obtain

𝑪(𝒒) = 𝑅𝑇
𝐹2

(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

= 𝟎 (12)

The Jacobian matrix of the constraint 𝐶𝒒 is a sparse matrix with four row blocks, and it can be computed by showing the
dependence of the variation 𝛿𝑪(𝒒) from the four variation blocks 𝛿𝒓𝐵1

, 𝜽𝛿𝑙𝐵1
, 𝛿𝒓𝐵2

, 𝜽𝛿𝑙𝐵2
in the vector of generalized variations 𝛿𝒒

𝛿𝑪(𝒒) =𝛿𝑅𝑇
𝐹2

(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

+ 𝑅𝑇
𝐹2
𝛿
(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

=𝛿
(

𝑅𝑇
𝐹2 (𝐵2)

𝑅𝑇
𝐵2

)(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

+ 𝑅𝑇
𝐹2

(

𝛿𝒓𝐵1
+ 𝛿(𝑅𝐵1

𝒓𝐹1 (𝐵1) ) − 𝛿𝒓𝐵2
− 𝛿(𝑅𝐵2

𝒓𝐹2 (𝐵2) )
)

=𝑅𝑇
𝐹2 (𝐵2)

𝛿𝑅𝑇
𝐵2

(

𝒓𝐹1 .𝐹2
)

+ 𝑅𝑇
𝐹2

(

𝛿𝒓𝐵1
+ 𝛿𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝛿𝒓𝐵2
− 𝛿𝑅𝐵2

𝒓𝐹2 (𝐵2)

)

=𝑅𝑇
𝐹2 (𝐵2)

𝜃𝛿𝑇𝑙𝐵2
𝑅𝑇
𝐵2
𝒓𝐹1 .𝐹2 + 𝑅𝑇

𝐹2

(

𝛿𝒓𝐵1
+ 𝑅𝐵1

𝜃𝛿𝑙𝐵1
𝒓𝐹1 (𝐵1) − 𝛿𝒓𝐵2

− 𝑅𝐵2
𝜃𝛿𝑙𝐵2

𝒓𝐹2 (𝐵2)
)

=𝑅𝑇
𝐹2 (𝐵2)

𝒓12 (𝐵2) 𝜽
𝛿
𝑙𝐵2

+ 𝑅𝑇
𝐹2

(

𝛿𝒓𝐵1
− 𝑅𝐵1

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

− 𝛿𝒓𝐵2
+ 𝑅𝐵2

�̃�𝐹2 (𝐵2)𝜽
𝛿
𝑙𝐵2

)

=𝑅𝑇
𝐹2
𝑅𝐵2

𝒓12(𝐵2) 𝜽
𝛿
𝑙𝐵2

+ 𝑅𝑇
𝐹2

(

𝛿𝒓𝐵1
− 𝑅𝐵1

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

− 𝛿𝒓𝐵2
+ 𝑅𝐵2

�̃�𝐹2 (𝐵2)
𝜽𝛿𝑙𝐵2

)

(13)

where �̃� denotes the 3 × 3 skew-symmetric matrix associated with the vector 𝒂. We also considered the properties 𝛿𝑅 = 𝑅𝜃𝛿𝑙 and
�̃�𝑇 = −�̃�, �̃�𝒃 = −�̃�𝒂, ∀𝒂, 𝒃 ∈ R3. Moreover, for the sake of notation compactness, we grouped the vector from 𝐹1 to 𝐹2 expressed in
the 𝐵2 frame into:

𝒓12(𝐵2) = 𝑅𝑇
𝐵2
𝒓𝐹1 .𝐹2 = 𝑅𝑇

𝐵2

(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

(14)

Finally, recalling Eq. (3), one can group the terms and write the four blocks in the sparse Jacobian matrix 𝐶𝒒 for the translational
constraint as

𝐶 (𝒒) =
[

𝑅𝑇 −𝑅𝑇 𝑅 �̃� −𝑅𝑇 𝑅𝑇 𝑅 �̃� + 𝑅𝑇 𝑅 𝒓
]

(15)
4

𝒒 𝐹2 𝐹2 𝐵1 𝐹1 (𝐵1) 𝐹2 𝐹2 𝐵2 𝐹2 (𝐵2) 𝐹2 𝐵2 12 (𝐵2)
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2.1.2. Rotational scleronomic constraints
We choose to parametrize the finite rotation using quaternions because it does not exhibit singularities. The constraints on the

otational DOFs are expressed based on the quaternion algebra. In Appendix B a list of useful properties are offered.
The four components of a unit quaternion 𝝆 can be interpreted as the elements of Euler parameters 𝒆 =

[

𝑒0, 𝑒1, 𝑒2, 𝑒3
]𝑇 [9]

𝑒0 = cos(𝜃∕2) 𝑒1 = 𝑛𝑥 sin(𝜃∕2)

𝑒2 = 𝑛𝑦 sin(𝜃∕2) 𝑒3 = 𝑛𝑧 sin(𝜃∕2) (16)

which describe a finite rotation about the spinning axis 𝒏 =
[

𝑛𝑥, 𝑛𝑦, 𝑛𝑧
]𝑇 by the angle 𝜃. Thus the imaginary part of a unit quaternion

𝝆 maps the three rotational DOFs. This turns out to be useful also to retrieve relative angles of constrained frames: considering for
example a revolute joint along 𝑥 axis, the relative rotation can be expressed as one of the following:

𝜃 = 2 arccos
(

𝑒0
)

(17a)

𝜃 = 2 arctan2
(

𝑒1
𝑛𝑥

, 𝑒0

)

(17b)

emembering the implicit constraint of the unit quaternion: ‖𝝆‖ =
√

𝜌20 + 𝜌21 + 𝜌22 + 𝜌23 = 1, only its imaginary part 𝝆 is required to
formulate the constraint equation 𝑪(𝒒) for the three rotational DOFs. It has to be noted that the unit norm of the quaternion, while
it could be explicitly enforced by a constraint, is usually guaranteed by the integration scheme, that should appropriately update
the quaternion through an exponential update [14] such as:

𝝆(𝑡+𝛥𝑡) = 𝝆(𝑡)
[

cos
( 1
2
‖𝝎𝒍‖𝛥𝑡

)

,
𝝎𝒍

‖𝝎𝒍‖
sin

( 1
2
𝝎𝒍𝛥𝑡

)

]

To constrain the relative rotation between two frames 𝐹1 and 𝐹2, the constraint equation is given as:

𝑪(𝒒) = Im
(

𝝆𝐹1 (𝐹2)

)

= 𝟎3×1 (18)

where Im (⋅) is the operator to extract the imaginary vectorial part of a quaternion.
Instead of using all the four components of 𝝆𝐹1 (𝐹2)

to define the rotational constraint equation, which complicates the
mathematical formulation of the Jacobian matrix [15], it is indeed sufficient to constrain only its imaginary part.

Remembering the formula (C.2) (see Appendix C for specific notation and definitions) the variation of the constraint equation (18)
is differentiated as:

𝛿𝑪(𝒒) = Im
(

𝛿𝝆𝐹1 (𝐹2)

)

= 𝑃 (𝝆𝐹1 (𝐹2)
)𝜽𝛿𝑙𝐹1 (𝐹2)

(19)

The relative virtual rotation vector 𝜽𝛿𝑙𝐹1 (𝐹2)
of the frame 𝐹1 with respect to the frame 𝐹2 can be calculated through deriving the

ariation of the corresponding rotation tensor 𝛿𝑅𝐹1 (𝐹2)
.

The relative rotation tensor can be expanded as 𝑅𝐹1 (𝐹2)
= 𝑅𝑇

𝐹2 (𝐵2)
𝑅𝑇
𝐵2
𝑅𝐵1

𝑅𝐹1 (𝐵1)
. Its variation is calculated as:

𝛿𝑅𝐹1 (𝐹2)
= 𝑅𝑇

𝐹2 (𝐵2)

(

−𝜽𝛿𝑙 𝐵2
𝑅𝑇
𝐵2
𝑅𝐵1

+ 𝑅𝑇
𝐵2
𝑅𝐵1

𝜽𝛿𝑙 𝐵1

)

𝑅𝐹1 (𝐵1)
(20)

Substituting (20) into 𝜽𝛿𝑙 𝐹1 (𝐹2) = 𝑅𝑇
𝐹1 (𝐹2)

𝛿𝑅𝐹1 (𝐹2)
, after some calculations and extracting the spinning vectors of the skew-

symmetric matrices, one obtains:

𝜽𝛿𝑙𝐹1 (𝐹2)
= 𝑅𝑇

𝐹1

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

(21)

Substituting (21) into (19), the variation of the constraint equation of rotational DOFs is obtained as:

𝛿𝑪(𝒒) = 𝑃 (𝝆𝐹1 (𝐹2)
)𝑅𝑇

𝐹1

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

(22)

Remembering (C.4), we can restate the previous relation with respect to the main frame 𝐹2 as:

𝛿𝑪(𝒒) = 𝑃 (𝝆𝐹1 (𝐹2)
)𝑇𝑅𝑇

𝐹2

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

(23)

Eventually, the Jacobian matrix 𝐶𝒒 for the rotational DOFs becomes:

𝐶𝒒(𝒒) =
[

0 𝑃 (𝝆𝐹1 (𝐹2)
)𝑇𝑅𝑇

𝐹2
𝑅𝐵1

0 −𝑃 (𝝆𝐹1 (𝐹2)
)𝑇𝑅𝑇

𝐹2
𝑅𝐵2

]

(24)

2.1.3. Complete Jacobian of scleronomic constraints
The complete expression of the Jacobian matrix of constraint 𝐶𝒒 is obtained by combining (15) and (24):

𝐶𝒒 =

[

𝑅𝑇
𝐹2

−𝑅𝑇
𝐹2
𝑅𝐵1

�̃�𝐹1 (𝐵1) −𝑅𝑇
𝐹2

𝑅𝑇
𝐹2
𝑅𝐵2

�̃�𝐹2 (𝐵2) + 𝑅𝑇
𝐹2
𝑅𝐵2

𝒓12 (𝐵2)
0 𝑃 (𝝆 )𝑇𝑅𝑇 𝑅 0 −𝑃 (𝝆 )𝑇𝑅𝑇 𝑅

]

(25)
5

𝐹1 (𝐹2) 𝐹2 𝐵1 𝐹1 (𝐹2) 𝐹2 𝐵2
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Table 1
Several common joints inherited from the lock constraint.

𝐶𝒒𝑥 𝐶𝒒𝑦 𝐶𝒒𝑧 𝐶𝒒𝑅𝑥 𝐶𝒒𝑅𝑦 𝐶𝒒𝑅𝑧

Fix × × × × × ×
Coaxial × × × ×
Prismatic × × × × ×
Revolute × × × × ×
Orthogonal ×
Parallel × ×
Plane × × ×
Spherical × × ×
Distance along X ×

that, for simplicity, we could rewrite emphasizing its six rows, the first three for the translational constraints and last three for the
rotational constraints:

𝐶𝒒(𝒒) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝒒𝑥
𝐶𝒒𝑦
𝐶𝒒𝑧
𝐶𝒒𝑅𝑥
𝐶𝒒𝑅𝑦
𝐶𝒒𝑅𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(26)

While the above general expression would constrain all six degrees of freedom between the two frames 𝐹1 and 𝐹2 it is indeed
fairly easy to express other types of joints by just suppressing the corresponding rows according to the free DOFs, as reported in
Table 1. The ‘‘×’’ symbol means the corresponding rows are active and thus the corresponding DOFs are constrained. For example,
the Jacobian for a revolute joint along the 𝑥 axis will have only five rows out of six, since the row corresponding to 𝐶𝒒𝑅𝑥 will be
uppressed.

.2. Rheonomic constraints

In the rheonomic constraint the relative motion of the driven frame 𝐹1 with respect to the main frame 𝐹2 is an explicit function
f time 𝐶(𝒒, 𝑡) = 0. This case is often found while modelling linear or rotational actuators receiving a motion set-point from a
ontroller.

.2.1. Translational rheonomic constraints
The constraint equation of the rheonomic translational constraints can be expressed as:

𝑪(𝒒, 𝑡) = 𝒓𝐹1 .𝐹2 (𝐹2) − 𝒓𝑡 =

= 𝑅𝑇
𝐹2

(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
)

− 𝒓𝑡 =

= 𝟎3×1 (27)

here 𝒓𝑡 is the position vector corresponding to the relative translational motion of the driven frame 𝐹1 with respect to the main
rame 𝐹2, which is specified by end users as a function of time.

The variation is derived as:

𝛿𝑪(𝒒, 𝑡) = 𝐶𝒒𝛿𝒒 + 𝑪 𝑡𝛿𝑡 (28)

where,

𝐶𝒒 = 𝜕
𝜕𝒒

(

𝑅𝑇
𝐹2

(

𝒓𝐵1
+ 𝑅𝐵1

𝒓𝐹1 (𝐵1) − 𝒓𝐵2
− 𝑅𝐵2

𝒓𝐹2 (𝐵2)
))

(29a)

𝑪 𝑡 = −
𝜕𝒓𝑡
𝜕𝑡

(29b)

he rheonomic term 𝒓𝑡 does not affect the computation of 𝐶𝒒 , leading to the same Jacobian matrix as (15).

.2.2. Rotational rheonomic constraints
The constraint equation of the rheonomic rotational constraints is given as:

𝑪(𝒒, 𝑡) = −Im
(

𝝆𝑡𝝆𝐹2 (𝐹1)

)

= 𝟎3×1 (30)

here 𝝆𝑡 is the quaternion corresponding to the relative rotational motion of the driven frame 𝐹1 with respect to the main frame
6

2, which is specified by end users as a function of time. If the constraint is satisfied, there should be 𝝆𝐹1 = 𝝆𝐹2𝝆𝑡.
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3
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w

w

By introducing a shadow frame 𝐹♢

1 as 𝝆𝐹♢

1
= 𝝆𝐹1𝝆

∗
𝑡 – where 𝝆∗ denotes quaternion conjugate –, remembering the equality

𝝆𝐹2 (𝐹1)
= 𝝆 ∗

𝐹1
𝝆𝐹2 and 𝝆 ∗

𝐹2 (𝐹1)
= 𝝆𝐹1 (𝐹2)

, the constraint equation (30) can be rewritten as:

𝑪(𝒒, 𝑡) = Im
(

𝝆𝐹♢

1 (𝐹2)

)

= 𝟎3×1 (31)

The shadow frame 𝐹♢

1 is rotated back from the driven frame 𝐹1 by the given rotation 𝝆𝑡 to arrive at the same orientation as the
main frame 𝐹2. If the constraint is satisfied, the shadow frame 𝐹♢

1 is coincident with the main frame 𝐹2.
Similarly as the derivation from (18) to the results of (22) and (23), the variation of (31) is computed as:

𝛿𝑪(𝒒, 𝑡) = 𝑃 (𝝆𝐹♢

1 (𝐹2)
)𝑅𝑇

𝐹♢

1

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

=

= 𝑃 (𝝆𝐹♢

1 (𝐹2)
)𝑇𝑅𝑇

𝐹2

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

(32)

where the rheonomic term 𝑪 𝑡 =
𝜕
𝜕𝑡

(

Im
(

𝝆𝐹♢

1 (𝐹2)

))

does not affect 𝐶𝒒 and is not shown.
The complete expression of the Jacobian matrix of constraint 𝐶𝒒(𝒒, 𝑡) is obtained by replacing the blocks corresponding to the

otational DOFs in (25) with (32):

𝐶𝒒 =

[

𝑅𝑇
𝐹2

−𝑅𝑇
𝐹2
𝑅𝐵1

�̃�𝐹1 (𝐵1) −𝑅𝑇
𝐹2

𝑅𝑇
𝐹2
𝑅𝐵2

�̃�𝐹2 (𝐵2) + 𝑅𝑇
𝐹2
𝑅𝐵2

𝒓12 (𝐵2)
0 𝑃 (𝝆𝐹♢

1 (𝐹2)
)𝑇𝑅𝑇

𝐹2
𝑅𝐵1

0 −𝑃 (𝝆𝐹♢

1 (𝐹2)
)𝑇𝑅𝑇

𝐹2
𝑅𝐵2

]

(33)

3. Tangent stiffness matrix of constraints

To derive the tangent stiffness matrix of constraints (10), one needs to linearize the reaction forces and torques 𝐶𝒒(𝒒, 𝑡)𝑇 𝜸

with respect to the generalized coordinates 𝛿𝒒 =
[

𝛿𝒓𝑇𝐵1
,𝜽𝛿𝑇𝑙𝐵1

, 𝛿𝒓𝑇𝐵2
,𝜽𝛿𝑇𝑙𝐵2

]𝑇
. The Lagrange multipliers 𝜸 are assumed constant in this

linearization because their variations have been already included in the other linearization term 𝐶𝒒(𝒒, 𝑡)𝑇 𝛿𝜸 in (7).

.1. Scleronomic constraint

.1.1. Main part
The Lagrange multipliers 𝜸 can be split into two parts

𝜸 =
[

𝜸𝑇𝑓 (𝐹2)
, 𝜸𝑇𝑚 (𝐹2)

]𝑇
(34)

here 𝜸𝑓 (𝐹2)
, 𝜸𝑚 (𝐹2)

∈ R3 are the reaction forces and torques of the joint expressed in the main frame 𝐹2, respectively.
Recalling the expression (25), the transpose of the Jacobian matrix of constraint can be written in the following compact form

𝐶𝑇
𝒒 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐽𝑇
𝑥1

0
𝐽𝑇
𝑟1

𝐽𝑇
𝑤1

𝐽𝑇
𝑥2

0
𝐽𝑇
𝑟2

𝐽𝑇
𝑤2

⎤

⎥

⎥

⎥

⎥

⎦

(35)

here the sub-blocks are

𝐽𝑇
𝑥1

= 𝑅𝐹2 (36a)

𝐽𝑇
𝑟1

= �̃�𝐹1 (𝐵1)𝑅
𝑇
𝐵1
𝑅𝐹2 (36b)

𝐽𝑇
𝑤1

= 𝑅𝑇
𝐵1
𝑅𝐹2𝑃 (𝝆𝐹1 (𝐹2)

) (36c)

𝐽𝑇
𝑥2

= −𝑅𝐹2 (36d)

𝐽𝑇
𝑟2

= −�̃�𝐹2 (𝐵2)𝑅
𝑇
𝐵2
𝑅𝐹2 − 𝒓12(𝐵2)𝑅

𝑇
𝐵2
𝑅𝐹2 (36e)

𝐽𝑇
𝑤2

= −𝑅𝑇
𝐵2
𝑅𝐹2𝑃 (𝝆𝐹1 (𝐹2)

) (36f)

Since 𝐹1, 𝐹2 are rigidly attached on 𝐵1, 𝐵2 respectively, we have 𝛿𝒓𝐹1 (𝐵1) = 𝟎, 𝛿𝒓𝐹2 (𝐵2) = 𝟎, 𝛿𝑅𝐹1 (𝐵1)
= 0, 𝛿𝑅𝐹2 (𝐵2)

= 0. Meanwhile,

remembering the equality 𝛿𝑅 = 𝑅𝜽𝛿𝑙 , and the property of the skew-symmetric matrix �̃�𝑇 = −�̃�,∀𝒂 ∈ R3, the variations of the
sub-blocks are calculated as

𝛿𝐽𝑇
𝑥1

= 𝑅𝐵2
𝜽𝛿𝑙 𝐵2

𝑅𝑇
𝐵2
𝑅𝐹2 (37a)

𝛿𝐽𝑇
𝑟1

= �̃�𝐹1 (𝐵1)
(

−𝜽𝛿𝑙 𝐵1
𝑅𝑇
𝐵1
𝑅𝐹2 + 𝑅𝑇

𝐵1
𝑅𝐵2

𝜽𝛿𝑙 𝐵2
𝑅𝑇
𝐵2
𝑅𝐹2

)

(37b)

𝛿𝐽𝑇 =
(

−𝜽𝛿 𝑅𝑇 𝑅 + 𝑅𝑇 𝑅 𝜽𝛿 𝑅𝑇 𝑅
)

𝑃 (𝝆 ) +
(

𝑅𝑇 𝑅
)

𝛿𝑃 (𝝆 )
7

𝑤1 𝑙 𝐵1 𝐵1 𝐹2 𝐵1 𝐵2 𝑙 𝐵2 𝐵2 𝐹2 𝐹1 (𝐹2) 𝐵1 𝐹2 𝐹1 (𝐹2)
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𝛿𝐽𝑇
𝑥2

= −𝑅𝐵2
𝜽𝛿𝑙 𝐵2

𝑅𝑇
𝐵2
𝑅𝐹2 (37c)

𝛿𝐽𝑇
𝑟2

= −𝛿𝒓12 (𝐵2)𝑅
𝑇
𝐵2
𝑅𝐹2 (37d)

𝛿𝐽𝑇
𝑤2

= −𝑅𝑇
𝐵2
𝑅𝐹2𝛿𝑃 (𝝆𝐹1 (𝐹2)

) (37e)

Recalling the definition of 𝒓12 (𝐵2) in (14), and using the equalities �̃�𝒃 = −�̃�𝒂, �̃� + �̃� = 𝒂 + 𝒃, ∀𝒂, 𝒃 ∈ R3, its variation 𝛿𝒓12 (𝐵2) is
calculated as

𝛿𝒓12 (𝐵2) = 𝑅𝑇
𝐵2
𝛿𝒓𝐵1

− 𝑅𝑇
𝐵2
𝑅𝐵1

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

− 𝑅𝑇
𝐵2
𝛿𝒓𝐵2

+
(

𝒓12 (𝐵2) + �̃�𝐹2 (𝐵2)
)

𝜽𝛿𝑙𝐵2
(38)

Its skew-symmetric matrix is

𝛿𝒓12 (𝐵2) =𝑅
𝑇
𝐵2
𝛿𝒓𝐵1

𝑅𝐵2
− 𝑅𝑇

𝐵2
𝑅𝐵1

̃(

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

)

𝑅𝑇
𝐵1
𝑅𝐵2

− 𝑅𝑇
𝐵2
𝛿𝒓𝐵2

𝑅𝐵2
+

̃((

𝒓12(𝐵2) + �̃�𝐹2 (𝐵2)
)

𝜽𝛿𝑙𝐵2

)

(39)

where the equalities 𝑅𝒓 = 𝑅�̃�𝑅𝑇 ,∀𝑅 ∈ 𝖲𝖮(3), 𝒓 ∈ R3 and �̃� + �̃� = 𝒂 + 𝒃,∀𝒂, 𝒃 ∈ R3 are used.
Substituting (39) into (37d), the calculation of 𝛿𝐽𝑇

𝑟2
follows as

𝛿𝐽𝑇
𝑟2

= − 𝑅𝑇
𝐵2
𝛿𝒓𝐵1

𝑅𝐹2 + 𝑅𝑇
𝐵2
𝑅𝐵1

̃(

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

)

𝑅𝑇
𝐵1
𝑅𝐹2 + 𝑅𝑇

𝐵2
𝛿𝒓𝐵2

𝑅𝐹2 −
̃((

𝒓12 (𝐵2) + �̃�𝐹2 (𝐵2)
)

𝜽𝛿𝑙𝐵2

)

𝑅𝑇
𝐵2
𝑅𝐹2

(40)

Recalling (34) and (35), the variation of the reaction forces and torques of the joint is expressed as

𝛿𝐶𝑇
𝒒 𝜸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝐽𝑇
𝑥1
𝜸𝑓 (𝐹2)

𝛿𝐽𝑇
𝑟1
𝜸𝑓 (𝐹2)

+ 𝛿𝐽𝑇
𝑤1

𝜸𝑚 (𝐹2)

𝛿𝐽𝑇
𝑥2
𝜸𝑓 (𝐹2)

𝛿𝐽𝑇
𝑟2
𝜸𝑓 (𝐹2)

+ 𝛿𝐽𝑇
𝑤2

𝜸𝑚 (𝐹2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(41)

Substituting (37) and (40) into (41), and remembering the equalities 𝑅𝒓 = 𝑅�̃�𝑅𝑇 ,∀𝑅 ∈ 𝖲𝖮(3), 𝒓 ∈ R3 and �̃�𝒃 = −�̃�𝒂, ∀𝒂, 𝒃 ∈ R3

from which follows the useful property 𝜽𝛿𝑙𝑅𝜸 = −𝑅�̃�𝑅𝑇 𝜽𝛿𝑙 , the four rows are calculated as

𝛿𝐽𝑇
𝑥1
𝜸𝑓 (𝐹2)

= −𝑅𝐹2𝜸𝑓 (𝐹2)
𝑅𝑇
𝐹2
𝑅𝐵2

𝜽𝛿𝑙𝐵2
(42a)

𝛿𝐽𝑇
𝑟1
𝜸𝑓 (𝐹2)

+ 𝛿𝐽𝑇
𝑤1

𝜸𝑚 (𝐹2)
= �̃�𝐹1 (𝐵1)𝑅

𝑇
𝐵1
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵1

𝜽𝛿𝑙𝐵1
− �̃�𝐹1 (𝐵1)𝑅

𝑇
𝐵1
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵2

𝜽𝛿𝑙𝐵2

+ 𝑅𝑇
𝐵1
𝑅𝐹2

̃(

𝑃 (𝝆𝐹1 (𝐹2)
)𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹2
𝑅𝐵1

𝜽𝛿𝑙𝐵1
− 𝑅𝑇

𝐵1
𝑅𝐹2

̃(

𝑃 (𝝆𝐹1 (𝐹2)
)𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹2
𝑅𝐵2

𝜽𝛿𝑙𝐵2
+ 𝑅𝑇

𝐵1
𝑅𝐹2𝛿𝑃 (𝝆𝐹1 (𝐹2)

)𝜸𝑚 (𝐹2)
(42b)

𝛿𝐽𝑇
𝑥2
𝜸𝑓 (𝐹2)

= 𝑅𝐹2𝜸𝑓 (𝐹2)
𝑅𝑇
𝐹2
𝑅𝐵2

𝜽𝛿𝑙𝐵2
(42c)

𝛿𝐽𝑇
𝑟2
𝜸𝑓 (𝐹2)

+ 𝛿𝐽𝑇
𝑤2

𝜸𝑚 (𝐹2)
= 𝑅𝑇

𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝛿𝒓𝐵1

− 𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝛿𝒓𝐵2

− 𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵1

�̃�𝐹1 (𝐵1)𝜽
𝛿
𝑙𝐵1

+ 𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵2

(

𝒓12 (𝐵2) + �̃�𝐹2 (𝐵2)
)

𝜽𝛿𝑙𝐵2
− 𝑅𝑇

𝐵2
𝑅𝐹2𝛿𝑃 (𝝆𝐹1 (𝐹2)

)𝜸𝑚 (𝐹2)
(42d)

Substituting (42) into (41), and grouping the coefficient terms according to the generalized coordinates 𝛿𝒒 =
[

𝛿𝒓𝑇𝐵1
,𝜽𝛿𝑇𝑙𝐵1

, 𝛿𝒓𝑇𝐵2
,𝜽𝛿𝑇𝑙𝐵2

]𝑇
, one obtains

𝛿𝐶𝑇
𝒒 𝜸 = 𝐾 (𝑀)

𝑐 𝛿𝒒 + 𝛿𝛤 (43)

where the main part of the tangent stiffness matrix of constraints is

𝐾 (𝑀)
𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 𝐾 (𝑀)
𝑐14

0 𝐾 (𝑀)
𝑐22 0 𝐾 (𝑀)

𝑐24
0 0 0 𝐾 (𝑀)

𝑐34
𝐾 (𝑀)

𝑐41 𝐾 (𝑀)
𝑐42 𝐾 (𝑀)

𝑐43 𝐾 (𝑀)
𝑐44

⎤

⎥

⎥

⎥

⎥

⎦

(44)

of which the sub-blocks are

𝐾 (𝑀)
𝑐14

= −𝑅𝐹2𝜸𝑓 (𝐹2)
𝑅𝑇
𝐹2
𝑅𝐵2

(45a)

𝐾 (𝑀)
𝑐22

= �̃�𝐹1 (𝐵1)𝑅
𝑇
𝐵1
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵1

+ 𝑅𝑇
𝐵1
𝑅𝐹2

̃(

𝑃 (𝝆𝐹1 (𝐹2)
)𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹2
𝑅𝐵1

(45b)

𝐾 (𝑀) = −�̃� 𝑅𝑇 𝑅 𝜸 𝑅𝑇 𝑅 − 𝑅𝑇 𝑅
̃(

𝑃 (𝝆 )𝜸
)

𝑅𝑇 𝑅 (45c)
8
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𝐾 (𝑀)
𝑐34

= 𝑅𝐹2𝜸𝑓 (𝐹2)
𝑅𝑇
𝐹2
𝑅𝐵2

(45d)

𝐾 (𝑀)
𝑐41

= 𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2

(45e)

𝐾 (𝑀)
𝑐42

= −𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵1

�̃�𝐹1 (𝐵1) (45f)

𝐾 (𝑀)
𝑐43

= −𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2

(45g)

𝐾 (𝑀)
𝑐44

= 𝑅𝑇
𝐵2
𝑅𝐹2𝜸𝑓 (𝐹2)

𝑅𝑇
𝐹2
𝑅𝐵2

(

𝒓12 (𝐵2) + �̃�𝐹2 (𝐵2)
)

(45h)

The remaining part of (43) is

𝛿𝛤 =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝑅𝑇
𝐵1
𝑅𝐹2𝛿𝑃 (𝝆𝐹1 (𝐹2)

)𝜸𝑚 (𝐹2)

0
−𝑅𝑇

𝐵2
𝑅𝐹2𝛿𝑃 (𝝆𝐹1 (𝐹2)

)𝜸𝑚 (𝐹2)

⎤

⎥

⎥

⎥

⎥

⎦

(46)

When 𝐹1 and 𝐹2 are coincident, for instance when the constraint of the fixed joint is satisfied, the relative quaternion 𝝆𝐹1 (𝐹2)
is

the identity quaternion, and the projection matrix boils down to 𝑃 (𝝆𝐹1 (𝐹2)
) = 1

2 𝐼3×3.

.1.2. Projection part
The matrix 𝑃 (𝝆𝐹1 (𝐹2)

) present in (25) – originated from the variation of the quaternion of (C.2) – can map the Lagrange multipliers
𝑚 (𝐹2)

to a part of the reaction torques in the basis of the main frame 𝐹2, thus we call it projection matrix. Consequently, the remaining
erm (46) is called the projection part of the tangent stiffness matrix of constraints.

Remembering the equality (C.12), and substituting (21), the expression (46) is further derived as

𝛿𝛤 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝑅𝑇
𝐵1
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

0
−𝑅𝑇

𝐵2
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1

(

𝑅𝐵1
𝜽𝛿𝑙𝐵1

− 𝑅𝐵2
𝜽𝛿𝑙𝐵2

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(47)

Grouping the coefficient terms according to the generalized coordinates 𝛿𝒒 =
[

𝛿𝒓𝑇𝐵1
,𝜽𝛿𝑇𝑙𝐵1

, 𝛿𝒓𝑇𝐵2
,𝜽𝛿𝑇𝑙𝐵2

]𝑇
, one obtains the projection

art of the tangent stiffness matrix of constraints as

𝐾 (𝑃 )
𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 𝐾 (𝑃 )

𝑐22 0 𝐾 (𝑃 )
𝑐24

0 0 0 0
0 𝐾 (𝑃 )

𝑐42 0 𝐾 (𝑃 )
𝑐44

⎤

⎥

⎥

⎥

⎥

⎦

(48)

f which the sub-blocks are

𝐾 (𝑃 )
𝑐22

= 𝑅𝑇
𝐵1
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1
𝑅𝐵1

(49a)

𝐾 (𝑃 )
𝑐24

= −𝑅𝑇
𝐵1
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1
𝑅𝐵2

(49b)

𝐾 (𝑃 )
𝑐42

= −𝑅𝑇
𝐵2
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1
𝑅𝐵1

(49c)

𝐾 (𝑃 )
𝑐44

= 𝑅𝑇
𝐵2
𝑅𝐹2𝐺

(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

𝑅𝑇
𝐹1
𝑅𝐵2

(49d)

If 𝐹1, 𝐹2 are coincident, for instance, when the constraint of the fixed joint is satisfied, the relative quaternion 𝝆𝐹1 (𝐹2)
is the

dentity quaternion, one has a simple matrix 𝐺
(

𝝆𝐹1 (𝐹2)
, 𝜸𝑚 (𝐹2)

)

= − 1
4 𝜸𝑚 (𝐹2)

.

3.1.3. Complete form
The complete form of the tangent stiffness matrix of constraints is the summation of the main part (44) and the projection

part (48).

𝐾𝑐 = 𝐾 (𝑀)
𝑐 +𝐾 (𝑃 )

𝑐 (50)

The block patterns of 𝐾 (𝑀)
𝑐 and 𝐾 (𝑃 )

𝑐 are symmetric, but in general both of them are neither symmetric nor skew-symmetric.
The tangent stiffness matrix of constraints of other types of joints in Table 1 can be calculated using (50) directly. The reaction

orces and torques associated with the free DOFs are zero, thus the corresponding rows can be removed from the Jacobian matrix
f constraints.
9
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Fig. 2. The pendulum with a point mass, hinged at one end of the link under gravity.

3.2. Rheonomic constraints

The Jacobian matrix of translational rheonomic constraints is the same as the scleronomic constraints, hence the tangent stiffness
matrix is the same.

There is a difference in the rotational rheonomic constraints. By comparing the expression (25) and (33), one can note that the
only discrepancy between the scleronomic and rheonomic constraints is the projection matrix 𝑃 : replacing 𝑃 (𝝆𝐹1 (𝐹2)

) in (25) with
𝑃 (𝝆𝐹♢

1 (𝐹2)
) one obtains the expression (33). Thus one just needs to replace 𝑃 (𝝆𝐹1 (𝐹2)

) in (44) with 𝑃 (𝝆𝐹♢

1 (𝐹2)
) to revise the main part

of the tangent stiffness matrix of the rheonomic constraint and replace the quaternion 𝝆𝐹1 (𝐹2)
with 𝝆𝐹♢

1 (𝐹2)
in (47) to obtain the

projection part of the tangent stiffness matrix of the rheonomic constraint.

4. Examples

In order to emphasize the main role of the tangent stiffness matrix of constraints both in static and eigenvalue analyses a set
of examples are chosen and modelled in the open-source multibody software Chrono [16]. The high flexibility of the tool allows to
selectively enable and disable the stiffness term on the base of the required testing conditions.

4.1. Pendulum

The pendulum example consists of a single point mass hinged at the top point 𝑂 to the fixed world and has an initial offset angle
𝜃 with respect to the vertical axis i.e. to the gravity direction (see Fig. 2 and Table 2). A Newton–Raphson iteration loop is performed
in the initial configuration to search for a set of generalized coordinates 𝒒 and Lagrange multipliers 𝜸 satisfying all the constraints
under the external forces. After this assembling phase, reaction forces and torques of the joints are determined, thus allowing the
correct evaluation of the tangent stiffness matrix of constraints ((45) and (49)). By suppressing the inertia and damping forces
in (7), a Newton–Raphson iteration loop is then carried out to find the static equilibrium. The mass, stiffness, damping matrices and
the Jacobian matrix of constraints of the system are extracted in this latter equilibrium configuration. The generalized eigenvalue
problem [1] is set up and the eigenvalues are solved.

When the mass starts in a lower position with respect to the hinge point 𝑂 (‖𝜃‖ < 90 deg) the static analysis converges to
the lowest equilibrium configuration. In this case, the eigenvalues are a pair of imaginary numbers 0 ± 1.566i which indicates the
oscillating behaviour of the pendulum, matching the theoretical value 𝜔 =

√

𝑔∕𝐿 = 1.566 rad s−1. In contrast, when the mass of the
endulum starts above the hinge point 𝑂 (‖𝜃‖ > 90 deg), the pendulum converges to the upper (unstable) equilibrium state. This
s an expected behaviour of the Newton–Raphson iteration that looks for the closest solution. The eigenvalues are a pair of real
umbers ±1.566 + 0i thus implying an unstable motion; their absolute values match the theoretical solution.

Without the tangent stiffness matrix of constraints, the system stiffness matrix of the pendulum becomes zero, leading to the
ailure of static and eigenvalue analyses.

In order to test the computational workload introduced by the evaluation of the 𝐾𝑐 term, the pendulum dynamic simulation has
een run for 𝑡sim = 1 × 104 s on an Intel Core(R) i7 10510U CPU, with 1.80 GHz and 16 GB of RAM; the Intel VTune(R) tool has been
sed for profiling. The total required CPU time resulted in 𝑡cpu = 12.632 s, of which 1.124 s (i.e. 8.9%), were spent in the evaluation
10

f the tangent stiffness matrix of constraints.
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Table 2
Pendulum parameters.

Property Value

Mass (𝑚) 15 kg
Length (𝐿) 4m
Gravity acceleration (𝑔) 9.81m s−2

Offset angle (𝜃) 30°

Fig. 3. An anchor chain hinged at two ends under gravity in its initial and equilibrium configuration.

4.2. Anchor chain

An anchor chain is modelled using a series of rigid bodies and joints (Fig. 3). The left and right ends of the anchor chain are hinged
at the coordinates 𝐴(0, 0, 0) and 𝐵(10, 0, 0). The middle point is given at 𝐶(5, 0,−6). A series of rigid bodies connected through double
revolute joints (where the two bending degrees of freedom are released) are built between 𝐴, 𝐶, and 𝐵, 𝐶 and initialized in a ‘V’
shape configuration. The axial flexibility of the chain is neglected since the interest is to investigate the effect of the tangent stiffness
matrix of constraints. Nevertheless, the inextensibility hypothesis is a good approximation from the practical point of view [17].

4.2.1. Static analysis
The assembly and static analyses are carried out. The anchor chain drops because of gravity, as shown in Fig. 3. The horizontal

components of the reaction forces of the joints expressed in the absolute frame are found to be constant, which is a typical
characteristic of the catenary curve.

The analytical expression of a catenary curve is 𝑧 = 𝑎 cosh(𝑥∕𝑎 + 𝑥0) + 𝑧0, where 𝑥0, 𝑧0 are the coordinate offsets of the original
point, 𝑎 = 𝑇0∕(𝑚𝑔) is the constant coefficient of the catenary curve, 𝑇0 is the horizontal internal force, 𝑚 is the mass per unit length
and 𝑔 is the gravity acceleration.

The coordinates of the rigid bodies on the anchor chain in the equilibrium configuration are compared against the analytical
catenary curve, as Fig. 4.

4.2.2. Eigenvalue analysis
Also the eigenvalue analysis of the anchor chain at the equilibrium state is performed. The modal frequencies of the first four

modes are listed in Table 3, where the corresponding modal shapes are plotted in Fig. 5.
Non-linear time domain simulations are performed to identify the first four modal frequencies. A constant force 𝒇 is applied at

the point 𝐶 in the first 5 s to excite the vibration of the anchor chain around the equilibrium state. Later the force is removed to
11
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Fig. 4. The validation of the catenary curve.

Table 3
Modal frequencies of the anchor chain.

No. Frequency [Hz]

1 0.240
2 0.309
3 0.504
4 0.551

allow the free vibration. The amplitude spectrum from FFT analysis is shown in Fig. 6, where the data of the first 10 s have been
discarded to avoid the influence of the transient impulse at the beginning of the simulation.

The constant force is applied in the 𝑋 (longitudinal), 𝑌 (lateral), and 𝑍 (vertical) directions, respectively, to activate the vibration
of the corresponding modes:

• When the excitation force 𝒇 is applied in the +𝑋 direction, as in Fig. 6(a), the anchor chain oscillates at the frequency 0.311 Hz,
which matches the second modal frequency in Table 3.

• When the excitation force 𝒇 is applied in the +𝑌 direction, as in Fig. 6(b), the dominant frequency is 0.244Hz, whereas another
peak frequency of 0.544Hz is also observed with a lower amplitude. These two peak frequencies match the first and fourth
modal frequencies in Table 3, respectively.

• When the excitation force 𝒇 is applied in the −𝑍 direction, as in Fig. 6(c), the anchor chain oscillates at the frequency 0.5Hz,
which corresponds to the third modal frequency in Table 3.

The oscillation follows the directions of the excitation forces in the aforementioned three test cases, and is consistent with the
dominant directions of the corresponding modal shapes. It is concluded that a pretty good agreement is obtained between the
eigenvalue analysis and the non-linear time domain simulations.

4.3. Double wishbone suspension

The double-wishbone suspension proposed in [11] has been replicated (Fig. 7) preserving the original geometry and inertial
properties, but replacing some of the original constraints:

• the wheel has been considered as a rigid body and fixed to the upright;
• the non-holonomic constraint between the tyre and the road has been removed;
• the chassis has been fixed with respect to ground;
• the suspension damper has been excluded from the simulation, in order to get the undamped vibration modes;
• the excitation force is applied along the vertical direction directly to the wheel;
• since only few specifications were given about the spring–damper, the preload compression has been set to 4275N, leading to

a rest length of 0.664m.

With this setup the equilibrium force to be applied to the wheel centre resulted in 𝐹 = 3253N.
12
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Fig. 5. Modal shapes of the anchor chain.

Fig. 6. The vibration of the middle point 𝐶 of the anchor chain.
13
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Fig. 7. Double Wishbone Suspension.

This setup has been used, with little variations, for all the three different analyses. Summarizing: the suspension is initially
analysed through a time-domain dynamic simulation by applying a modest perturbation force to the wheel hub. The oscillations are
then analysed in the frequency domain and the results compared against the eigenvalue solution. This approach is indeed reasonable
since the dynamic simulation is not affected by the tangent stiffness matrix of constraints, thus allowing the fairest comparison.
Eigenvalues of the structure, with and without the tangent stiffness matrix of constraints are then compared.

In more detail, during the time-domain simulation an additional excitation force is temporarily added to the system. The force
is applied right at the beginning of the simulation in the vertical direction, with a magnitude of 1% of the equilibrium preload 𝐹0
and released as a step function at 𝑡 = 1 s. The simulation runs for 𝑡 = 50 s with a timestep of 𝛥𝑡 = 1ms; this guarantees the required
resolution and frequency span for the Fourier analysis; the Hilbert-Hughes-Taylor integrator method (HHT) is used in order to reduce
the numerical damping effects.

The time signal of the vertical position (suspension travel) is transformed by the Fast Fourier Transform in MATLAB in its
frequency-domain equivalent. An appropriate window has been applied in order to filter out the perturbation phase. Fig. 8 shows
the resulting spectrum: the main mode at frequency 3.799Hz is clearly identified.

The second term for the comparison comes from the eigenvalue solution of the structure. Again, a preliminary assembly phase,
followed by a static simulation is required to make the system reach the correct initial configuration. In this phase the tangent
stiffness matrix of constraints has to be included since it is crucial for the proper convergence of the model. In the next step two
eigenvalue analyses are run, both with and without 𝐾𝑐 . Since the tangent stiffness matrix of constraints is asymmetric the Krylov-Schur
eigenvalue solver has been used.

Results coming from the two eigenvalue analyses are compared with those coming from the dynamic simulation, taken
as reference value. The results highlight relevant differences: the frequency obtained including the tangent stiffness matrix of
constraints (3.899Hz) shows a significantly closer match compared to the results where the 𝐾𝑐 matrix has been neglected (3.125Hz).
It has to be noted that the choice of different integration schemes might matter: picking HHT over simpler Implicit Euler methods
allows to reduce the shifting effect of the damping, in any case always below 2%.

5. Conclusion

Using quaternion-based finite rotations, we derived a general expression of holonomic constraint equations and their Jacobian
matrix. The formulation represents a generic fixed joint, but it can be easily extended to a series of derived free-motion joints by
suppressing specific rows of the Jacobian matrix. Also, a consistent and unified analytical expression for the tangent stiffness matrix
of constraints is derived, showing the split between two (asymmetric) terms 𝐾𝑐 = 𝐾 (𝑀)

𝑐 +𝐾 (𝑃 )
𝑐 .

Three examples are presented to demonstrate the importance of 𝐾𝑐 in the static and eigenvalue analyses of multibody dynamics
systems featuring rigid-body motions.

The analytical expression of the tangent stiffness matrix of holonomic constraints has been implemented in the open-source
multibody library chrono [16].
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Fig. 8. Frequency of free degree of motion.

Appendix A. Notation

Here is the generic convention that we use for symbols.
In some cases, for rotations and displacements or their derivatives, we need to specify respect to which reference frames they

are expressed, and in which basis they are measured. This is done using subscripts like in the following scheme

□TO.FROM(BASIS)

where FROM can be a point of the origin of a frame, TO can be a point or the origin of a frame, (BASIS) is a frame.
For some tensorial quantities (virtual rotation vectors, position vectors, etc.) we often use 𝑙 or 𝑎 as shorthand symbols for (BASIS),

where 𝑙 means measured in the local basis (also intrinsic or material quantities, in some literatures), 𝑎 means measured in the absolute
basis or in general in the parent basis (also known as extrinsic or spatial quantities, in some literatures).

When there are no sources of misunderstanding, we omit or simplify those subscripts as in the following examples, where one
understands that if the TO entity is omitted, it is assumed to be the (BASE) entity, and if also the (BASE) entity is omitted, then it
is assumed to be the W world reference.

𝑡 time
𝒒 vector of configurations
𝝆 rotation (quaternion) of a rigid body frame
𝒓𝐵.𝐴 (𝐶)

position of B respect to A, in C basis
𝒓𝐵 (𝐴)

position of B respect to A, in B basis
𝒓𝐴 position of A respect to W world reference, in W basis
𝑅𝐴 (𝐵)

rotation matrix of frame A respect to frame B
𝑅𝐴 rotation matrix of frame A respect to world reference, shorthand for 𝑅𝐴 (𝑊 )

𝜽𝛿𝑎𝐴 virtual rotation vector of frame A respect to absolute world reference, in absolute basis, shorthand for 𝜽𝛿𝐴.𝑊(𝑊 )
or 𝜽𝛿𝐴(𝑊 )

𝜽𝛿𝑙𝐴 virtual rotation vector of frame A respect to absolute world reference, in local basis, shorthand for 𝜽𝛿𝐴.𝑊(𝐴)
or 𝜽𝛿𝐴(𝐴)

ppendix B. Rotation parametrization via quaternions

While important properties and definitions for quaternions can be easily found in literature (for example [18,19]), more specific
ymbols and properties used in the paper are listed in this section.

The variation of the identity quaternion 𝝆𝐼 = [1, 0, 0, 0]𝑇 is equal to the zero quaternion 𝝆0 = [0, 0, 0, 0]𝑇

𝛿𝝆𝝆 ∗ + 𝝆𝛿𝝆 ∗ = 𝛿𝝆 ∗𝝆 + 𝝆 ∗𝛿𝝆 = 𝝆0 (B.1)

The unit quaternion 𝝆 can be used to operate a rotation of a vector in the three–dimensional space

(0, 𝒓𝑎) = 𝝆(0, 𝒓𝑙)𝝆 ∗ (B.2)
15

here 𝒓𝑙, 𝒓𝑎 are the vectors expressed in the local and parent frames, respectively.
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w

T

The rotation transformation (B.2) can be also performed via a rotation tensor 𝑅 ∈ 𝖲𝖮(3) as

𝒓𝑎 = 𝑅𝒓𝑙 (B.3)

here the rotation matrix 𝑅 can be computed from its corresponding quaternion 𝝆 as

𝑅(𝝆) =
⎡

⎢

⎢

⎣

𝜌20 + 𝜌21 − 𝜌22 − 𝜌23 2(𝜌1𝜌2 − 𝜌3𝜌0) 2(𝜌1𝜌3 + 𝜌2𝜌0)
2(𝜌1𝜌2 + 𝜌3𝜌0) 𝜌20 − 𝜌21 + 𝜌22 − 𝜌23 2(−𝜌1𝜌0 + 𝜌2𝜌3)
2(𝜌1𝜌3 − 𝜌2𝜌0) 2(𝜌1𝜌0 + 𝜌2𝜌3) 𝜌20 − 𝜌21 − 𝜌22 + 𝜌23

⎤

⎥

⎥

⎦

(B.4)

The rotation matrix 𝑅(𝝆) can be also expressed as a product of two auxiliary matrices 𝐹 (𝑞)⊕ and 𝐹 (𝑞)⊖ as

𝑅(𝝆) = 𝐹 (𝝆)⊕𝐹 (𝝆)⊖𝑇 (B.5a)

𝐹 (𝝆)⊕ =
⎡

⎢

⎢

⎣

+𝜌1 +𝜌0 −𝜌3 +𝜌2
+𝜌2 +𝜌3 +𝜌0 −𝜌1
+𝜌3 −𝜌2 +𝜌1 +𝜌0

⎤

⎥

⎥

⎦

(B.5b)

𝐹 (𝝆)⊖ =
⎡

⎢

⎢

⎣

+𝜌1 +𝜌0 +𝜌3 −𝜌2
+𝜌2 −𝜌3 +𝜌0 +𝜌1
+𝜌3 +𝜌2 −𝜌1 +𝜌0

⎤

⎥

⎥

⎦

(B.5c)

These two auxiliary matrices have the following properties, that hold only for the unit quaternion 𝝆

𝐹 (𝝆)⊕𝐹 (𝝆)⊕𝑇 = 𝐹 (𝝆)⊖𝐹 (𝝆)⊖𝑇 = 𝐼 (B.6a)

𝐹 (𝝆)⊕𝑇𝐹 (𝝆)⊕ = 𝐹 (𝝆)⊖𝑇𝐹 (𝝆)⊖ = (𝐼 − 𝝆 ∗𝝆 ∗𝑇 ) (B.6b)

The variation of (B.2) follows the chain rule as

(0, 𝛿𝒓𝑎) = 𝛿𝝆(0, 𝒓𝑙)𝝆 ∗ + 𝝆(0, 𝒓𝑙)𝛿𝝆 ∗ + 𝝆(0, 𝛿𝒓𝑙)𝝆 ∗ (B.7)

Remembering the equality 𝛿𝑅 = 𝑅𝜽𝛿𝑙 , the variation of the vector 𝛿𝒓𝑎 can be also performed for the rotation transformation (B.3)

𝛿𝒓𝑎 = 𝛿𝑅𝒓𝑙 + 𝑅𝛿𝒓𝑙 = 𝑅𝜽𝛿𝑙 𝒓𝑙 + 𝑅𝛿𝒓𝑙 (B.8)

where 𝜽𝛿𝑙 is the virtual rotation vector1 in the local basis. (̃) is the operator to convert a vector to its corresponding skew-symmetric
matrix.

Expanding (B.8) to the notation of pure quaternions, and remembering the equivalent rotation transformation via the quaternion
in (B.2) and the rotation tensor in (B.3), one obtains

(0, 𝛿𝒓𝑎) = 𝝆(0,𝜽𝛿𝑙 𝒓𝑙)𝝆
∗ + 𝝆(0, 𝛿𝒓𝑙)𝝆 ∗ (B.9)

Substituting (B.9) into (B.7), and making use of the property (B.1), one obtains

(0,𝜽𝛿𝑙 𝒓𝑙) = 𝝆 ∗𝛿𝝆(0, 𝒓𝑙) − (0, 𝒓𝑙)𝝆 ∗𝛿𝝆 (B.10)

From (B.1) one sees the summation of 𝝆 ∗𝛿𝝆 and its conjugate is 𝝆0, thus 𝝆 ∗𝛿𝝆 is a pure quaternion and can be denoted as
𝝆 ∗𝛿𝝆 = (0, 𝒗𝛥). After removing the zero real part, (B.10) can be simplified as

𝜽𝛿𝑙 𝒓𝑙 = 2𝒗𝛥𝒓𝑙 (B.11)

The equality (B.11) is true for an arbitrary vector 𝒓𝑙, leading to a concise equation 𝜽𝛿𝑙 = 2𝒗𝛥. Expanding it to pure quaternions,
one obtains the transformation relation between the variation of a rotation quaternion 𝛿𝝆 and its corresponding virtual rotation
vector 𝜽𝛿𝑙

𝛿𝝆 = 1
2
𝝆(0,𝜽𝛿𝑙 ) (B.12a)

𝛿𝝆 = 1
2
(0,𝜽𝛿𝑎)𝝆

∗ (B.12b)

where 𝜽𝛿𝑎 is the virtual rotation vector expressed in the parent frame, 𝜽𝛿𝑎 = 𝑅(𝝆)𝜽𝛿𝑙 .
As an alternative, by using matrix algebra, and remembering (B.5) and (B.6), one can express (B.12) as

𝛿𝝆 = 1
2
𝐹 (𝝆 ∗)⊕

𝑇 𝜽𝛿𝑙 (B.13a)

𝛿𝝆 = 1
2
𝐹 (𝝆 ∗)⊖

𝑇 𝜽𝛿𝑎 (B.13b)

1 In general, 𝜽𝛿 is not the differential of an Euclidean vector 𝜽. In practical terms, there is no way to obtain a finite 𝜽 by directly integrating a vector 𝛿𝜽.
𝛿

16

his is the reason why we prefer the notation 𝜽 instead of 𝛿𝜽 to avoid misunderstandings.
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Appendix C. Projection matrix

By introducing a projection matrix 𝑃 (𝝆) ∈ R3×3 equal to the bottom three rows of the matrix 1
2𝐹 (𝝆 ∗)⊕

𝑇 , which can be expressed
s

𝑃 (𝝆) = 1
2
(

𝑠𝐼3×3 + �̃�
)

(C.1)

the imaginary vectorial part of (B.13a) can be written as

Im (𝛿𝝆) = 𝑃 (𝝆)𝜽𝛿𝑙 (C.2)

The projection matrix 𝑃 (𝝆) of a unit quaternion 𝝆 has important properties as below

𝑃 (𝝆)𝑇 = 𝑃 (𝝆 ∗) (C.3a)

𝑃 (𝝆) = 𝑃 (𝝆)𝑇𝑅(𝝆) (C.3b)

𝑃 (𝝆) = 𝑅(𝝆)𝑇 𝑃 (𝝆)𝑅(𝝆) (C.3c)

𝑃 (𝝆)−1 = 1
𝑠
(

𝑅(𝝆)𝑇 + 𝐼3×3
)

(C.3d)

When the rotation angle represented by 𝝆 is ±𝜋, the scalar part 𝑠 = 0, leading to a singular projection matrix 𝑃 (𝝆).
For the quaternion 𝝆𝐹1 (𝐹2)

representing the relative rotation of the driven frame 𝐹1 with respect to the main frame 𝐹2,
emembering (C.3b), and expanding the relative rotation 𝑅(𝝆𝐹1 (𝐹2)

) = 𝑅𝑇
𝐹2
𝑅𝐹1 , one obtains

𝑃 (𝝆𝐹1 (𝐹2)
)𝑇𝑅𝑇

𝐹2
= 𝑃 (𝝆𝐹1 (𝐹2)

)𝑅𝑇
𝐹1 (C.4)

For an arbitrary unit quaternion 𝝆 = (𝑠, 𝒗), its variation can be denoted as

𝛿𝝆 = (𝛿𝑠, 𝛿𝒗) (C.5)

Recalling the equality (B.12a), and remembering the multiplication properties, the variation of a quaternion can be computed
as

𝛿𝝆 = 1
2
(𝑠, 𝒗)

(

0,𝜽𝛿𝑙
)

= 1
2
(

−𝒗 ⋅ 𝜽𝛿𝑙 , 𝑠𝜽
𝛿
𝑙 + 𝒗 × 𝜽𝛿𝑙

)

(C.6)

here (⋅) is the dot product of two vectors, and (×) is the cross product of two vectors.
Comparing (C.5) and (C.6), the scalar and vectorial parts of the variations should be equal respectively, leading to

𝛿𝑠 = −1
2
𝒗 ⋅ 𝜽𝛿𝑙 (C.7)

𝛿𝒗 = 1
2
(

𝑠𝜽𝛿𝑙 + 𝒗 × 𝜽𝛿𝑙
)

(C.8)

Remembering the definition of the projection matrix (C.1), after substituting (C.7) and (C.8), and using the equalities �̃� + �̃� =
𝒂 + 𝒃, ̃̃𝒂𝒃 = �̃��̃� − �̃��̃�,∀𝒂, 𝒃 ∈ R3, the variation of the projection matrix 𝑃 (𝝆) can be derived as

𝛿𝑃 (𝝆) = 1
4

(

−
(

𝒗 ⋅ 𝜽𝛿𝑙
)

𝐼3×3 +
(

𝑠𝐼3×3 + �̃�
)

𝜽𝛿𝑙 − 𝜽𝛿𝑙 �̃�
)

(C.9)

Its multiplication with Lagrange multipliers 𝜸𝑚 can be further calculated as

𝛿𝑃 (𝝆)𝜸𝑚 =
(

−1
4
𝜸𝑚𝒗𝑇 − 1

4
𝜸𝑚

(

𝑠𝐼3×3 + �̃�
)

)

𝜽𝛿𝑙 (C.10)

where the equalities (𝒂 ⋅ 𝒃) 𝒄 =
(

𝒄𝒂𝑇
)

𝒃, �̃�𝒃 = −�̃�𝒂, ̃̃𝒂𝒃 = �̃��̃� − �̃��̃�, ∀𝒂, 𝒃, 𝒄 ∈ R3 are used.
By introducing another auxiliary matrix 𝐺

(

𝝆, 𝜸𝑚
)

∈ R3×3

𝐺
(

𝝆, 𝜸𝑚
)

= −1
4
𝜸𝑚𝒗𝑇 − 1

4
𝜸𝑚

(

𝑠𝐼3×3 + �̃�
)

(C.11)

ne obtains an equality in a compact form

𝛿𝑃 (𝝆)𝜸𝑚 = 𝐺
(

𝝆, 𝜸𝑚
)

𝜽𝛿𝑙 (C.12)
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